]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/IR/Instruction.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / IR / Instruction.cpp
1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/MDBuilder.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/Type.h"
22 using namespace llvm;
23
24 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
25                          Instruction *InsertBefore)
26   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
27
28   // If requested, insert this instruction into a basic block...
29   if (InsertBefore) {
30     BasicBlock *BB = InsertBefore->getParent();
31     assert(BB && "Instruction to insert before is not in a basic block!");
32     BB->getInstList().insert(InsertBefore->getIterator(), this);
33   }
34 }
35
36 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
37                          BasicBlock *InsertAtEnd)
38   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
39
40   // append this instruction into the basic block
41   assert(InsertAtEnd && "Basic block to append to may not be NULL!");
42   InsertAtEnd->getInstList().push_back(this);
43 }
44
45 Instruction::~Instruction() {
46   assert(!Parent && "Instruction still linked in the program!");
47   if (hasMetadataHashEntry())
48     clearMetadataHashEntries();
49 }
50
51
52 void Instruction::setParent(BasicBlock *P) {
53   Parent = P;
54 }
55
56 const Module *Instruction::getModule() const {
57   return getParent()->getModule();
58 }
59
60 const Function *Instruction::getFunction() const {
61   return getParent()->getParent();
62 }
63
64 void Instruction::removeFromParent() {
65   getParent()->getInstList().remove(getIterator());
66 }
67
68 iplist<Instruction>::iterator Instruction::eraseFromParent() {
69   return getParent()->getInstList().erase(getIterator());
70 }
71
72 /// Insert an unlinked instruction into a basic block immediately before the
73 /// specified instruction.
74 void Instruction::insertBefore(Instruction *InsertPos) {
75   InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
76 }
77
78 /// Insert an unlinked instruction into a basic block immediately after the
79 /// specified instruction.
80 void Instruction::insertAfter(Instruction *InsertPos) {
81   InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
82                                                     this);
83 }
84
85 /// Unlink this instruction from its current basic block and insert it into the
86 /// basic block that MovePos lives in, right before MovePos.
87 void Instruction::moveBefore(Instruction *MovePos) {
88   moveBefore(*MovePos->getParent(), MovePos->getIterator());
89 }
90
91 void Instruction::moveAfter(Instruction *MovePos) {
92   moveBefore(*MovePos->getParent(), ++MovePos->getIterator());
93 }
94
95 void Instruction::moveBefore(BasicBlock &BB,
96                              SymbolTableList<Instruction>::iterator I) {
97   assert(I == BB.end() || I->getParent() == &BB);
98   BB.getInstList().splice(I, getParent()->getInstList(), getIterator());
99 }
100
101 void Instruction::setHasNoUnsignedWrap(bool b) {
102   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
103 }
104
105 void Instruction::setHasNoSignedWrap(bool b) {
106   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
107 }
108
109 void Instruction::setIsExact(bool b) {
110   cast<PossiblyExactOperator>(this)->setIsExact(b);
111 }
112
113 bool Instruction::hasNoUnsignedWrap() const {
114   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
115 }
116
117 bool Instruction::hasNoSignedWrap() const {
118   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
119 }
120
121 void Instruction::dropPoisonGeneratingFlags() {
122   switch (getOpcode()) {
123   case Instruction::Add:
124   case Instruction::Sub:
125   case Instruction::Mul:
126   case Instruction::Shl:
127     cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(false);
128     cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(false);
129     break;
130
131   case Instruction::UDiv:
132   case Instruction::SDiv:
133   case Instruction::AShr:
134   case Instruction::LShr:
135     cast<PossiblyExactOperator>(this)->setIsExact(false);
136     break;
137
138   case Instruction::GetElementPtr:
139     cast<GetElementPtrInst>(this)->setIsInBounds(false);
140     break;
141   }
142 }
143
144 bool Instruction::isExact() const {
145   return cast<PossiblyExactOperator>(this)->isExact();
146 }
147
148 void Instruction::setFast(bool B) {
149   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
150   cast<FPMathOperator>(this)->setFast(B);
151 }
152
153 void Instruction::setHasAllowReassoc(bool B) {
154   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
155   cast<FPMathOperator>(this)->setHasAllowReassoc(B);
156 }
157
158 void Instruction::setHasNoNaNs(bool B) {
159   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
160   cast<FPMathOperator>(this)->setHasNoNaNs(B);
161 }
162
163 void Instruction::setHasNoInfs(bool B) {
164   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
165   cast<FPMathOperator>(this)->setHasNoInfs(B);
166 }
167
168 void Instruction::setHasNoSignedZeros(bool B) {
169   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
170   cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
171 }
172
173 void Instruction::setHasAllowReciprocal(bool B) {
174   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
175   cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
176 }
177
178 void Instruction::setHasApproxFunc(bool B) {
179   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
180   cast<FPMathOperator>(this)->setHasApproxFunc(B);
181 }
182
183 void Instruction::setFastMathFlags(FastMathFlags FMF) {
184   assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
185   cast<FPMathOperator>(this)->setFastMathFlags(FMF);
186 }
187
188 void Instruction::copyFastMathFlags(FastMathFlags FMF) {
189   assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
190   cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
191 }
192
193 bool Instruction::isFast() const {
194   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
195   return cast<FPMathOperator>(this)->isFast();
196 }
197
198 bool Instruction::hasAllowReassoc() const {
199   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
200   return cast<FPMathOperator>(this)->hasAllowReassoc();
201 }
202
203 bool Instruction::hasNoNaNs() const {
204   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
205   return cast<FPMathOperator>(this)->hasNoNaNs();
206 }
207
208 bool Instruction::hasNoInfs() const {
209   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
210   return cast<FPMathOperator>(this)->hasNoInfs();
211 }
212
213 bool Instruction::hasNoSignedZeros() const {
214   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
215   return cast<FPMathOperator>(this)->hasNoSignedZeros();
216 }
217
218 bool Instruction::hasAllowReciprocal() const {
219   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
220   return cast<FPMathOperator>(this)->hasAllowReciprocal();
221 }
222
223 bool Instruction::hasAllowContract() const {
224   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
225   return cast<FPMathOperator>(this)->hasAllowContract();
226 }
227
228 bool Instruction::hasApproxFunc() const {
229   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
230   return cast<FPMathOperator>(this)->hasApproxFunc();
231 }
232
233 FastMathFlags Instruction::getFastMathFlags() const {
234   assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
235   return cast<FPMathOperator>(this)->getFastMathFlags();
236 }
237
238 void Instruction::copyFastMathFlags(const Instruction *I) {
239   copyFastMathFlags(I->getFastMathFlags());
240 }
241
242 void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) {
243   // Copy the wrapping flags.
244   if (IncludeWrapFlags && isa<OverflowingBinaryOperator>(this)) {
245     if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
246       setHasNoSignedWrap(OB->hasNoSignedWrap());
247       setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
248     }
249   }
250
251   // Copy the exact flag.
252   if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
253     if (isa<PossiblyExactOperator>(this))
254       setIsExact(PE->isExact());
255
256   // Copy the fast-math flags.
257   if (auto *FP = dyn_cast<FPMathOperator>(V))
258     if (isa<FPMathOperator>(this))
259       copyFastMathFlags(FP->getFastMathFlags());
260
261   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
262     if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
263       DestGEP->setIsInBounds(SrcGEP->isInBounds() | DestGEP->isInBounds());
264 }
265
266 void Instruction::andIRFlags(const Value *V) {
267   if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
268     if (isa<OverflowingBinaryOperator>(this)) {
269       setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
270       setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
271     }
272   }
273
274   if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
275     if (isa<PossiblyExactOperator>(this))
276       setIsExact(isExact() & PE->isExact());
277
278   if (auto *FP = dyn_cast<FPMathOperator>(V)) {
279     if (isa<FPMathOperator>(this)) {
280       FastMathFlags FM = getFastMathFlags();
281       FM &= FP->getFastMathFlags();
282       copyFastMathFlags(FM);
283     }
284   }
285
286   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
287     if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
288       DestGEP->setIsInBounds(SrcGEP->isInBounds() & DestGEP->isInBounds());
289 }
290
291 const char *Instruction::getOpcodeName(unsigned OpCode) {
292   switch (OpCode) {
293   // Terminators
294   case Ret:    return "ret";
295   case Br:     return "br";
296   case Switch: return "switch";
297   case IndirectBr: return "indirectbr";
298   case Invoke: return "invoke";
299   case Resume: return "resume";
300   case Unreachable: return "unreachable";
301   case CleanupRet: return "cleanupret";
302   case CatchRet: return "catchret";
303   case CatchPad: return "catchpad";
304   case CatchSwitch: return "catchswitch";
305
306   // Standard unary operators...
307   case FNeg: return "fneg";
308
309   // Standard binary operators...
310   case Add: return "add";
311   case FAdd: return "fadd";
312   case Sub: return "sub";
313   case FSub: return "fsub";
314   case Mul: return "mul";
315   case FMul: return "fmul";
316   case UDiv: return "udiv";
317   case SDiv: return "sdiv";
318   case FDiv: return "fdiv";
319   case URem: return "urem";
320   case SRem: return "srem";
321   case FRem: return "frem";
322
323   // Logical operators...
324   case And: return "and";
325   case Or : return "or";
326   case Xor: return "xor";
327
328   // Memory instructions...
329   case Alloca:        return "alloca";
330   case Load:          return "load";
331   case Store:         return "store";
332   case AtomicCmpXchg: return "cmpxchg";
333   case AtomicRMW:     return "atomicrmw";
334   case Fence:         return "fence";
335   case GetElementPtr: return "getelementptr";
336
337   // Convert instructions...
338   case Trunc:         return "trunc";
339   case ZExt:          return "zext";
340   case SExt:          return "sext";
341   case FPTrunc:       return "fptrunc";
342   case FPExt:         return "fpext";
343   case FPToUI:        return "fptoui";
344   case FPToSI:        return "fptosi";
345   case UIToFP:        return "uitofp";
346   case SIToFP:        return "sitofp";
347   case IntToPtr:      return "inttoptr";
348   case PtrToInt:      return "ptrtoint";
349   case BitCast:       return "bitcast";
350   case AddrSpaceCast: return "addrspacecast";
351
352   // Other instructions...
353   case ICmp:           return "icmp";
354   case FCmp:           return "fcmp";
355   case PHI:            return "phi";
356   case Select:         return "select";
357   case Call:           return "call";
358   case Shl:            return "shl";
359   case LShr:           return "lshr";
360   case AShr:           return "ashr";
361   case VAArg:          return "va_arg";
362   case ExtractElement: return "extractelement";
363   case InsertElement:  return "insertelement";
364   case ShuffleVector:  return "shufflevector";
365   case ExtractValue:   return "extractvalue";
366   case InsertValue:    return "insertvalue";
367   case LandingPad:     return "landingpad";
368   case CleanupPad:     return "cleanuppad";
369
370   default: return "<Invalid operator> ";
371   }
372 }
373
374 /// Return true if both instructions have the same special state. This must be
375 /// kept in sync with FunctionComparator::cmpOperations in
376 /// lib/Transforms/IPO/MergeFunctions.cpp.
377 static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
378                                  bool IgnoreAlignment = false) {
379   assert(I1->getOpcode() == I2->getOpcode() &&
380          "Can not compare special state of different instructions");
381
382   if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
383     return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
384            (AI->getAlignment() == cast<AllocaInst>(I2)->getAlignment() ||
385             IgnoreAlignment);
386   if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
387     return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
388            (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
389             IgnoreAlignment) &&
390            LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
391            LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID();
392   if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
393     return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
394            (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
395             IgnoreAlignment) &&
396            SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
397            SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID();
398   if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
399     return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
400   if (const CallInst *CI = dyn_cast<CallInst>(I1))
401     return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
402            CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
403            CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
404            CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
405   if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
406     return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
407            CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
408            CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
409   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
410     return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
411   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
412     return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
413   if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
414     return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
415            FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID();
416   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
417     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
418            CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
419            CXI->getSuccessOrdering() ==
420                cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
421            CXI->getFailureOrdering() ==
422                cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
423            CXI->getSyncScopeID() ==
424                cast<AtomicCmpXchgInst>(I2)->getSyncScopeID();
425   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
426     return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
427            RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
428            RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
429            RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID();
430
431   return true;
432 }
433
434 bool Instruction::isIdenticalTo(const Instruction *I) const {
435   return isIdenticalToWhenDefined(I) &&
436          SubclassOptionalData == I->SubclassOptionalData;
437 }
438
439 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
440   if (getOpcode() != I->getOpcode() ||
441       getNumOperands() != I->getNumOperands() ||
442       getType() != I->getType())
443     return false;
444
445   // If both instructions have no operands, they are identical.
446   if (getNumOperands() == 0 && I->getNumOperands() == 0)
447     return haveSameSpecialState(this, I);
448
449   // We have two instructions of identical opcode and #operands.  Check to see
450   // if all operands are the same.
451   if (!std::equal(op_begin(), op_end(), I->op_begin()))
452     return false;
453
454   if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
455     const PHINode *otherPHI = cast<PHINode>(I);
456     return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
457                       otherPHI->block_begin());
458   }
459
460   return haveSameSpecialState(this, I);
461 }
462
463 // Keep this in sync with FunctionComparator::cmpOperations in
464 // lib/Transforms/IPO/MergeFunctions.cpp.
465 bool Instruction::isSameOperationAs(const Instruction *I,
466                                     unsigned flags) const {
467   bool IgnoreAlignment = flags & CompareIgnoringAlignment;
468   bool UseScalarTypes  = flags & CompareUsingScalarTypes;
469
470   if (getOpcode() != I->getOpcode() ||
471       getNumOperands() != I->getNumOperands() ||
472       (UseScalarTypes ?
473        getType()->getScalarType() != I->getType()->getScalarType() :
474        getType() != I->getType()))
475     return false;
476
477   // We have two instructions of identical opcode and #operands.  Check to see
478   // if all operands are the same type
479   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
480     if (UseScalarTypes ?
481         getOperand(i)->getType()->getScalarType() !=
482           I->getOperand(i)->getType()->getScalarType() :
483         getOperand(i)->getType() != I->getOperand(i)->getType())
484       return false;
485
486   return haveSameSpecialState(this, I, IgnoreAlignment);
487 }
488
489 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
490   for (const Use &U : uses()) {
491     // PHI nodes uses values in the corresponding predecessor block.  For other
492     // instructions, just check to see whether the parent of the use matches up.
493     const Instruction *I = cast<Instruction>(U.getUser());
494     const PHINode *PN = dyn_cast<PHINode>(I);
495     if (!PN) {
496       if (I->getParent() != BB)
497         return true;
498       continue;
499     }
500
501     if (PN->getIncomingBlock(U) != BB)
502       return true;
503   }
504   return false;
505 }
506
507 bool Instruction::mayReadFromMemory() const {
508   switch (getOpcode()) {
509   default: return false;
510   case Instruction::VAArg:
511   case Instruction::Load:
512   case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
513   case Instruction::AtomicCmpXchg:
514   case Instruction::AtomicRMW:
515   case Instruction::CatchPad:
516   case Instruction::CatchRet:
517     return true;
518   case Instruction::Call:
519     return !cast<CallInst>(this)->doesNotAccessMemory();
520   case Instruction::Invoke:
521     return !cast<InvokeInst>(this)->doesNotAccessMemory();
522   case Instruction::Store:
523     return !cast<StoreInst>(this)->isUnordered();
524   }
525 }
526
527 bool Instruction::mayWriteToMemory() const {
528   switch (getOpcode()) {
529   default: return false;
530   case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
531   case Instruction::Store:
532   case Instruction::VAArg:
533   case Instruction::AtomicCmpXchg:
534   case Instruction::AtomicRMW:
535   case Instruction::CatchPad:
536   case Instruction::CatchRet:
537     return true;
538   case Instruction::Call:
539     return !cast<CallInst>(this)->onlyReadsMemory();
540   case Instruction::Invoke:
541     return !cast<InvokeInst>(this)->onlyReadsMemory();
542   case Instruction::Load:
543     return !cast<LoadInst>(this)->isUnordered();
544   }
545 }
546
547 bool Instruction::isAtomic() const {
548   switch (getOpcode()) {
549   default:
550     return false;
551   case Instruction::AtomicCmpXchg:
552   case Instruction::AtomicRMW:
553   case Instruction::Fence:
554     return true;
555   case Instruction::Load:
556     return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
557   case Instruction::Store:
558     return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
559   }
560 }
561
562 bool Instruction::hasAtomicLoad() const {
563   assert(isAtomic());
564   switch (getOpcode()) {
565   default:
566     return false;
567   case Instruction::AtomicCmpXchg:
568   case Instruction::AtomicRMW:
569   case Instruction::Load:
570     return true;
571   }
572 }
573
574 bool Instruction::hasAtomicStore() const {
575   assert(isAtomic());
576   switch (getOpcode()) {
577   default:
578     return false;
579   case Instruction::AtomicCmpXchg:
580   case Instruction::AtomicRMW:
581   case Instruction::Store:
582     return true;
583   }
584 }
585
586 bool Instruction::mayThrow() const {
587   if (const CallInst *CI = dyn_cast<CallInst>(this))
588     return !CI->doesNotThrow();
589   if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
590     return CRI->unwindsToCaller();
591   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
592     return CatchSwitch->unwindsToCaller();
593   return isa<ResumeInst>(this);
594 }
595
596 bool Instruction::isSafeToRemove() const {
597   return (!isa<CallInst>(this) || !this->mayHaveSideEffects()) &&
598          !this->isTerminator();
599 }
600
601 bool Instruction::isLifetimeStartOrEnd() const {
602   auto II = dyn_cast<IntrinsicInst>(this);
603   if (!II)
604     return false;
605   Intrinsic::ID ID = II->getIntrinsicID();
606   return ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end;
607 }
608
609 const Instruction *Instruction::getNextNonDebugInstruction() const {
610   for (const Instruction *I = getNextNode(); I; I = I->getNextNode())
611     if (!isa<DbgInfoIntrinsic>(I))
612       return I;
613   return nullptr;
614 }
615
616 const Instruction *Instruction::getPrevNonDebugInstruction() const {
617   for (const Instruction *I = getPrevNode(); I; I = I->getPrevNode())
618     if (!isa<DbgInfoIntrinsic>(I))
619       return I;
620   return nullptr;
621 }
622
623 bool Instruction::isAssociative() const {
624   unsigned Opcode = getOpcode();
625   if (isAssociative(Opcode))
626     return true;
627
628   switch (Opcode) {
629   case FMul:
630   case FAdd:
631     return cast<FPMathOperator>(this)->hasAllowReassoc() &&
632            cast<FPMathOperator>(this)->hasNoSignedZeros();
633   default:
634     return false;
635   }
636 }
637
638 unsigned Instruction::getNumSuccessors() const {
639   switch (getOpcode()) {
640 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
641   case Instruction::OPC:                                                       \
642     return static_cast<const CLASS *>(this)->getNumSuccessors();
643 #include "llvm/IR/Instruction.def"
644   default:
645     break;
646   }
647   llvm_unreachable("not a terminator");
648 }
649
650 BasicBlock *Instruction::getSuccessor(unsigned idx) const {
651   switch (getOpcode()) {
652 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
653   case Instruction::OPC:                                                       \
654     return static_cast<const CLASS *>(this)->getSuccessor(idx);
655 #include "llvm/IR/Instruction.def"
656   default:
657     break;
658   }
659   llvm_unreachable("not a terminator");
660 }
661
662 void Instruction::setSuccessor(unsigned idx, BasicBlock *B) {
663   switch (getOpcode()) {
664 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
665   case Instruction::OPC:                                                       \
666     return static_cast<CLASS *>(this)->setSuccessor(idx, B);
667 #include "llvm/IR/Instruction.def"
668   default:
669     break;
670   }
671   llvm_unreachable("not a terminator");
672 }
673
674 Instruction *Instruction::cloneImpl() const {
675   llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
676 }
677
678 void Instruction::swapProfMetadata() {
679   MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
680   if (!ProfileData || ProfileData->getNumOperands() != 3 ||
681       !isa<MDString>(ProfileData->getOperand(0)))
682     return;
683
684   MDString *MDName = cast<MDString>(ProfileData->getOperand(0));
685   if (MDName->getString() != "branch_weights")
686     return;
687
688   // The first operand is the name. Fetch them backwards and build a new one.
689   Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
690                      ProfileData->getOperand(1)};
691   setMetadata(LLVMContext::MD_prof,
692               MDNode::get(ProfileData->getContext(), Ops));
693 }
694
695 void Instruction::copyMetadata(const Instruction &SrcInst,
696                                ArrayRef<unsigned> WL) {
697   if (!SrcInst.hasMetadata())
698     return;
699
700   DenseSet<unsigned> WLS;
701   for (unsigned M : WL)
702     WLS.insert(M);
703
704   // Otherwise, enumerate and copy over metadata from the old instruction to the
705   // new one.
706   SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
707   SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
708   for (const auto &MD : TheMDs) {
709     if (WL.empty() || WLS.count(MD.first))
710       setMetadata(MD.first, MD.second);
711   }
712   if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
713     setDebugLoc(SrcInst.getDebugLoc());
714 }
715
716 Instruction *Instruction::clone() const {
717   Instruction *New = nullptr;
718   switch (getOpcode()) {
719   default:
720     llvm_unreachable("Unhandled Opcode.");
721 #define HANDLE_INST(num, opc, clas)                                            \
722   case Instruction::opc:                                                       \
723     New = cast<clas>(this)->cloneImpl();                                       \
724     break;
725 #include "llvm/IR/Instruction.def"
726 #undef HANDLE_INST
727   }
728
729   New->SubclassOptionalData = SubclassOptionalData;
730   New->copyMetadata(*this);
731   return New;
732 }
733
734 void Instruction::updateProfWeight(uint64_t S, uint64_t T) {
735   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
736   if (ProfileData == nullptr)
737     return;
738
739   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
740   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
741                         !ProfDataName->getString().equals("VP")))
742     return;
743
744   MDBuilder MDB(getContext());
745   SmallVector<Metadata *, 3> Vals;
746   Vals.push_back(ProfileData->getOperand(0));
747   APInt APS(128, S), APT(128, T);
748   if (ProfDataName->getString().equals("branch_weights"))
749     for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
750       // Using APInt::div may be expensive, but most cases should fit 64 bits.
751       APInt Val(128,
752                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i))
753                     ->getValue()
754                     .getZExtValue());
755       Val *= APS;
756       Vals.push_back(MDB.createConstant(
757           ConstantInt::get(Type::getInt64Ty(getContext()),
758                            Val.udiv(APT).getLimitedValue())));
759     }
760   else if (ProfDataName->getString().equals("VP"))
761     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
762       // The first value is the key of the value profile, which will not change.
763       Vals.push_back(ProfileData->getOperand(i));
764       // Using APInt::div may be expensive, but most cases should fit 64 bits.
765       APInt Val(128,
766                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
767                     ->getValue()
768                     .getZExtValue());
769       Val *= APS;
770       Vals.push_back(MDB.createConstant(
771           ConstantInt::get(Type::getInt64Ty(getContext()),
772                            Val.udiv(APT).getLimitedValue())));
773     }
774   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
775 }
776
777 void Instruction::setProfWeight(uint64_t W) {
778   assert((isa<CallInst>(this) || isa<InvokeInst>(this)) &&
779          "Can only set weights for call and invoke instrucitons");
780   SmallVector<uint32_t, 1> Weights;
781   Weights.push_back(W);
782   MDBuilder MDB(getContext());
783   setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
784 }