]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/IR/Instructions.cpp
Merge ^/head r311692 through r311807.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / IR / Instructions.cpp
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 //                            CallSite Class
31 //===----------------------------------------------------------------------===//
32
33 User::op_iterator CallSite::getCallee() const {
34   Instruction *II(getInstruction());
35   return isCall()
36     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38 }
39
40 //===----------------------------------------------------------------------===//
41 //                            TerminatorInst Class
42 //===----------------------------------------------------------------------===//
43
44 // Out of line virtual method, so the vtable, etc has a home.
45 TerminatorInst::~TerminatorInst() {
46 }
47
48 //===----------------------------------------------------------------------===//
49 //                           UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
51
52 // Out of line virtual method, so the vtable, etc has a home.
53 UnaryInstruction::~UnaryInstruction() {
54 }
55
56 //===----------------------------------------------------------------------===//
57 //                              SelectInst Class
58 //===----------------------------------------------------------------------===//
59
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63   if (Op1->getType() != Op2->getType())
64     return "both values to select must have same type";
65
66   if (Op1->getType()->isTokenTy())
67     return "select values cannot have token type";
68
69   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
70     // Vector select.
71     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
72       return "vector select condition element type must be i1";
73     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
74     if (!ET)
75       return "selected values for vector select must be vectors";
76     if (ET->getNumElements() != VT->getNumElements())
77       return "vector select requires selected vectors to have "
78                    "the same vector length as select condition";
79   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
80     return "select condition must be i1 or <n x i1>";
81   }
82   return nullptr;
83 }
84
85
86 //===----------------------------------------------------------------------===//
87 //                               PHINode Class
88 //===----------------------------------------------------------------------===//
89
90 void PHINode::anchor() {}
91
92 PHINode::PHINode(const PHINode &PN)
93     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
94       ReservedSpace(PN.getNumOperands()) {
95   allocHungoffUses(PN.getNumOperands());
96   std::copy(PN.op_begin(), PN.op_end(), op_begin());
97   std::copy(PN.block_begin(), PN.block_end(), block_begin());
98   SubclassOptionalData = PN.SubclassOptionalData;
99 }
100
101 // removeIncomingValue - Remove an incoming value.  This is useful if a
102 // predecessor basic block is deleted.
103 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
104   Value *Removed = getIncomingValue(Idx);
105
106   // Move everything after this operand down.
107   //
108   // FIXME: we could just swap with the end of the list, then erase.  However,
109   // clients might not expect this to happen.  The code as it is thrashes the
110   // use/def lists, which is kinda lame.
111   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
112   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
113
114   // Nuke the last value.
115   Op<-1>().set(nullptr);
116   setNumHungOffUseOperands(getNumOperands() - 1);
117
118   // If the PHI node is dead, because it has zero entries, nuke it now.
119   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
120     // If anyone is using this PHI, make them use a dummy value instead...
121     replaceAllUsesWith(UndefValue::get(getType()));
122     eraseFromParent();
123   }
124   return Removed;
125 }
126
127 /// growOperands - grow operands - This grows the operand list in response
128 /// to a push_back style of operation.  This grows the number of ops by 1.5
129 /// times.
130 ///
131 void PHINode::growOperands() {
132   unsigned e = getNumOperands();
133   unsigned NumOps = e + e / 2;
134   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
135
136   ReservedSpace = NumOps;
137   growHungoffUses(ReservedSpace, /* IsPhi */ true);
138 }
139
140 /// hasConstantValue - If the specified PHI node always merges together the same
141 /// value, return the value, otherwise return null.
142 Value *PHINode::hasConstantValue() const {
143   // Exploit the fact that phi nodes always have at least one entry.
144   Value *ConstantValue = getIncomingValue(0);
145   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
146     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
147       if (ConstantValue != this)
148         return nullptr; // Incoming values not all the same.
149        // The case where the first value is this PHI.
150       ConstantValue = getIncomingValue(i);
151     }
152   if (ConstantValue == this)
153     return UndefValue::get(getType());
154   return ConstantValue;
155 }
156
157 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
158 /// together the same value, assuming that undefs result in the same value as
159 /// non-undefs.
160 /// Unlike \ref hasConstantValue, this does not return a value because the
161 /// unique non-undef incoming value need not dominate the PHI node.
162 bool PHINode::hasConstantOrUndefValue() const {
163   Value *ConstantValue = nullptr;
164   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
165     Value *Incoming = getIncomingValue(i);
166     if (Incoming != this && !isa<UndefValue>(Incoming)) {
167       if (ConstantValue && ConstantValue != Incoming)
168         return false;
169       ConstantValue = Incoming;
170     }
171   }
172   return true;
173 }
174
175 //===----------------------------------------------------------------------===//
176 //                       LandingPadInst Implementation
177 //===----------------------------------------------------------------------===//
178
179 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
180                                const Twine &NameStr, Instruction *InsertBefore)
181     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
182   init(NumReservedValues, NameStr);
183 }
184
185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
186                                const Twine &NameStr, BasicBlock *InsertAtEnd)
187     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
188   init(NumReservedValues, NameStr);
189 }
190
191 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
192     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
193                   LP.getNumOperands()),
194       ReservedSpace(LP.getNumOperands()) {
195   allocHungoffUses(LP.getNumOperands());
196   Use *OL = getOperandList();
197   const Use *InOL = LP.getOperandList();
198   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
199     OL[I] = InOL[I];
200
201   setCleanup(LP.isCleanup());
202 }
203
204 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
205                                        const Twine &NameStr,
206                                        Instruction *InsertBefore) {
207   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
208 }
209
210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
211                                        const Twine &NameStr,
212                                        BasicBlock *InsertAtEnd) {
213   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
214 }
215
216 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
217   ReservedSpace = NumReservedValues;
218   setNumHungOffUseOperands(0);
219   allocHungoffUses(ReservedSpace);
220   setName(NameStr);
221   setCleanup(false);
222 }
223
224 /// growOperands - grow operands - This grows the operand list in response to a
225 /// push_back style of operation. This grows the number of ops by 2 times.
226 void LandingPadInst::growOperands(unsigned Size) {
227   unsigned e = getNumOperands();
228   if (ReservedSpace >= e + Size) return;
229   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
230   growHungoffUses(ReservedSpace);
231 }
232
233 void LandingPadInst::addClause(Constant *Val) {
234   unsigned OpNo = getNumOperands();
235   growOperands(1);
236   assert(OpNo < ReservedSpace && "Growing didn't work!");
237   setNumHungOffUseOperands(getNumOperands() + 1);
238   getOperandList()[OpNo] = Val;
239 }
240
241 //===----------------------------------------------------------------------===//
242 //                        CallInst Implementation
243 //===----------------------------------------------------------------------===//
244
245 CallInst::~CallInst() {
246 }
247
248 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
249                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
250   this->FTy = FTy;
251   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
252          "NumOperands not set up?");
253   Op<-1>() = Func;
254
255 #ifndef NDEBUG
256   assert((Args.size() == FTy->getNumParams() ||
257           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
258          "Calling a function with bad signature!");
259
260   for (unsigned i = 0; i != Args.size(); ++i)
261     assert((i >= FTy->getNumParams() || 
262             FTy->getParamType(i) == Args[i]->getType()) &&
263            "Calling a function with a bad signature!");
264 #endif
265
266   std::copy(Args.begin(), Args.end(), op_begin());
267
268   auto It = populateBundleOperandInfos(Bundles, Args.size());
269   (void)It;
270   assert(It + 1 == op_end() && "Should add up!");
271
272   setName(NameStr);
273 }
274
275 void CallInst::init(Value *Func, const Twine &NameStr) {
276   FTy =
277       cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
278   assert(getNumOperands() == 1 && "NumOperands not set up?");
279   Op<-1>() = Func;
280
281   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
282
283   setName(NameStr);
284 }
285
286 CallInst::CallInst(Value *Func, const Twine &Name,
287                    Instruction *InsertBefore)
288   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
289                                    ->getElementType())->getReturnType(),
290                 Instruction::Call,
291                 OperandTraits<CallInst>::op_end(this) - 1,
292                 1, InsertBefore) {
293   init(Func, Name);
294 }
295
296 CallInst::CallInst(Value *Func, const Twine &Name,
297                    BasicBlock *InsertAtEnd)
298   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
299                                    ->getElementType())->getReturnType(),
300                 Instruction::Call,
301                 OperandTraits<CallInst>::op_end(this) - 1,
302                 1, InsertAtEnd) {
303   init(Func, Name);
304 }
305
306 CallInst::CallInst(const CallInst &CI)
307     : Instruction(CI.getType(), Instruction::Call,
308                   OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
309                   CI.getNumOperands()),
310       AttributeList(CI.AttributeList), FTy(CI.FTy) {
311   setTailCallKind(CI.getTailCallKind());
312   setCallingConv(CI.getCallingConv());
313
314   std::copy(CI.op_begin(), CI.op_end(), op_begin());
315   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
316             bundle_op_info_begin());
317   SubclassOptionalData = CI.SubclassOptionalData;
318 }
319
320 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
321                            Instruction *InsertPt) {
322   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
323
324   auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
325                                  InsertPt);
326   NewCI->setTailCallKind(CI->getTailCallKind());
327   NewCI->setCallingConv(CI->getCallingConv());
328   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
329   NewCI->setAttributes(CI->getAttributes());
330   NewCI->setDebugLoc(CI->getDebugLoc());
331   return NewCI;
332 }
333
334 Value *CallInst::getReturnedArgOperand() const {
335   unsigned Index;
336
337   if (AttributeList.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
338     return getArgOperand(Index-1);
339   if (const Function *F = getCalledFunction())
340     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
341         Index)
342       return getArgOperand(Index-1);
343       
344   return nullptr;
345 }
346
347 void CallInst::addAttribute(unsigned i, Attribute::AttrKind Kind) {
348   AttributeSet PAL = getAttributes();
349   PAL = PAL.addAttribute(getContext(), i, Kind);
350   setAttributes(PAL);
351 }
352
353 void CallInst::addAttribute(unsigned i, Attribute Attr) {
354   AttributeSet PAL = getAttributes();
355   PAL = PAL.addAttribute(getContext(), i, Attr);
356   setAttributes(PAL);
357 }
358
359 void CallInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
360   AttributeSet PAL = getAttributes();
361   PAL = PAL.removeAttribute(getContext(), i, Kind);
362   setAttributes(PAL);
363 }
364
365 void CallInst::removeAttribute(unsigned i, StringRef Kind) {
366   AttributeSet PAL = getAttributes();
367   PAL = PAL.removeAttribute(getContext(), i, Kind);
368   setAttributes(PAL);
369 }
370
371 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
372   AttributeSet PAL = getAttributes();
373   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
374   setAttributes(PAL);
375 }
376
377 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
378   AttributeSet PAL = getAttributes();
379   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
380   setAttributes(PAL);
381 }
382
383 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const {
384   assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!");
385
386   if (AttributeList.hasAttribute(i, Kind))
387     return true;
388   if (const Function *F = getCalledFunction())
389     return F->getAttributes().hasAttribute(i, Kind);
390   return false;
391 }
392
393 bool CallInst::dataOperandHasImpliedAttr(unsigned i,
394                                          Attribute::AttrKind Kind) const {
395   // There are getNumOperands() - 1 data operands.  The last operand is the
396   // callee.
397   assert(i < getNumOperands() && "Data operand index out of bounds!");
398
399   // The attribute A can either be directly specified, if the operand in
400   // question is a call argument; or be indirectly implied by the kind of its
401   // containing operand bundle, if the operand is a bundle operand.
402
403   if (i < (getNumArgOperands() + 1))
404     return paramHasAttr(i, Kind);
405
406   assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
407          "Must be either a call argument or an operand bundle!");
408   return bundleOperandHasAttr(i - 1, Kind);
409 }
410
411 /// IsConstantOne - Return true only if val is constant int 1
412 static bool IsConstantOne(Value *val) {
413   assert(val && "IsConstantOne does not work with nullptr val");
414   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
415   return CVal && CVal->isOne();
416 }
417
418 static Instruction *createMalloc(Instruction *InsertBefore,
419                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
420                                  Type *AllocTy, Value *AllocSize,
421                                  Value *ArraySize,
422                                  ArrayRef<OperandBundleDef> OpB,
423                                  Function *MallocF, const Twine &Name) {
424   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
425          "createMalloc needs either InsertBefore or InsertAtEnd");
426
427   // malloc(type) becomes: 
428   //       bitcast (i8* malloc(typeSize)) to type*
429   // malloc(type, arraySize) becomes:
430   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
431   if (!ArraySize)
432     ArraySize = ConstantInt::get(IntPtrTy, 1);
433   else if (ArraySize->getType() != IntPtrTy) {
434     if (InsertBefore)
435       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
436                                               "", InsertBefore);
437     else
438       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
439                                               "", InsertAtEnd);
440   }
441
442   if (!IsConstantOne(ArraySize)) {
443     if (IsConstantOne(AllocSize)) {
444       AllocSize = ArraySize;         // Operand * 1 = Operand
445     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
446       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
447                                                      false /*ZExt*/);
448       // Malloc arg is constant product of type size and array size
449       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
450     } else {
451       // Multiply type size by the array size...
452       if (InsertBefore)
453         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
454                                               "mallocsize", InsertBefore);
455       else
456         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
457                                               "mallocsize", InsertAtEnd);
458     }
459   }
460
461   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
462   // Create the call to Malloc.
463   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
464   Module *M = BB->getParent()->getParent();
465   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
466   Value *MallocFunc = MallocF;
467   if (!MallocFunc)
468     // prototype malloc as "void *malloc(size_t)"
469     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr);
470   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
471   CallInst *MCall = nullptr;
472   Instruction *Result = nullptr;
473   if (InsertBefore) {
474     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
475                              InsertBefore);
476     Result = MCall;
477     if (Result->getType() != AllocPtrType)
478       // Create a cast instruction to convert to the right type...
479       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
480   } else {
481     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
482     Result = MCall;
483     if (Result->getType() != AllocPtrType) {
484       InsertAtEnd->getInstList().push_back(MCall);
485       // Create a cast instruction to convert to the right type...
486       Result = new BitCastInst(MCall, AllocPtrType, Name);
487     }
488   }
489   MCall->setTailCall();
490   if (Function *F = dyn_cast<Function>(MallocFunc)) {
491     MCall->setCallingConv(F->getCallingConv());
492     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
493   }
494   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
495
496   return Result;
497 }
498
499 /// CreateMalloc - Generate the IR for a call to malloc:
500 /// 1. Compute the malloc call's argument as the specified type's size,
501 ///    possibly multiplied by the array size if the array size is not
502 ///    constant 1.
503 /// 2. Call malloc with that argument.
504 /// 3. Bitcast the result of the malloc call to the specified type.
505 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
506                                     Type *IntPtrTy, Type *AllocTy,
507                                     Value *AllocSize, Value *ArraySize,
508                                     Function *MallocF,
509                                     const Twine &Name) {
510   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
511                       ArraySize, None, MallocF, Name);
512 }
513 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
514                                     Type *IntPtrTy, Type *AllocTy,
515                                     Value *AllocSize, Value *ArraySize,
516                                     ArrayRef<OperandBundleDef> OpB,
517                                     Function *MallocF,
518                                     const Twine &Name) {
519   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
520                       ArraySize, OpB, MallocF, Name);
521 }
522
523
524 /// CreateMalloc - Generate the IR for a call to malloc:
525 /// 1. Compute the malloc call's argument as the specified type's size,
526 ///    possibly multiplied by the array size if the array size is not
527 ///    constant 1.
528 /// 2. Call malloc with that argument.
529 /// 3. Bitcast the result of the malloc call to the specified type.
530 /// Note: This function does not add the bitcast to the basic block, that is the
531 /// responsibility of the caller.
532 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
533                                     Type *IntPtrTy, Type *AllocTy,
534                                     Value *AllocSize, Value *ArraySize, 
535                                     Function *MallocF, const Twine &Name) {
536   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
537                       ArraySize, None, MallocF, Name);
538 }
539 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
540                                     Type *IntPtrTy, Type *AllocTy,
541                                     Value *AllocSize, Value *ArraySize,
542                                     ArrayRef<OperandBundleDef> OpB,
543                                     Function *MallocF, const Twine &Name) {
544   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
545                       ArraySize, OpB, MallocF, Name);
546 }
547
548 static Instruction *createFree(Value *Source,
549                                ArrayRef<OperandBundleDef> Bundles,
550                                Instruction *InsertBefore,
551                                BasicBlock *InsertAtEnd) {
552   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
553          "createFree needs either InsertBefore or InsertAtEnd");
554   assert(Source->getType()->isPointerTy() &&
555          "Can not free something of nonpointer type!");
556
557   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
558   Module *M = BB->getParent()->getParent();
559
560   Type *VoidTy = Type::getVoidTy(M->getContext());
561   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
562   // prototype free as "void free(void*)"
563   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr);
564   CallInst *Result = nullptr;
565   Value *PtrCast = Source;
566   if (InsertBefore) {
567     if (Source->getType() != IntPtrTy)
568       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
569     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
570   } else {
571     if (Source->getType() != IntPtrTy)
572       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
573     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
574   }
575   Result->setTailCall();
576   if (Function *F = dyn_cast<Function>(FreeFunc))
577     Result->setCallingConv(F->getCallingConv());
578
579   return Result;
580 }
581
582 /// CreateFree - Generate the IR for a call to the builtin free function.
583 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
584   return createFree(Source, None, InsertBefore, nullptr);
585 }
586 Instruction *CallInst::CreateFree(Value *Source,
587                                   ArrayRef<OperandBundleDef> Bundles,
588                                   Instruction *InsertBefore) {
589   return createFree(Source, Bundles, InsertBefore, nullptr);
590 }
591
592 /// CreateFree - Generate the IR for a call to the builtin free function.
593 /// Note: This function does not add the call to the basic block, that is the
594 /// responsibility of the caller.
595 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
596   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
597   assert(FreeCall && "CreateFree did not create a CallInst");
598   return FreeCall;
599 }
600 Instruction *CallInst::CreateFree(Value *Source,
601                                   ArrayRef<OperandBundleDef> Bundles,
602                                   BasicBlock *InsertAtEnd) {
603   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
604   assert(FreeCall && "CreateFree did not create a CallInst");
605   return FreeCall;
606 }
607
608 //===----------------------------------------------------------------------===//
609 //                        InvokeInst Implementation
610 //===----------------------------------------------------------------------===//
611
612 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
613                       BasicBlock *IfException, ArrayRef<Value *> Args,
614                       ArrayRef<OperandBundleDef> Bundles,
615                       const Twine &NameStr) {
616   this->FTy = FTy;
617
618   assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) &&
619          "NumOperands not set up?");
620   Op<-3>() = Fn;
621   Op<-2>() = IfNormal;
622   Op<-1>() = IfException;
623
624 #ifndef NDEBUG
625   assert(((Args.size() == FTy->getNumParams()) ||
626           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
627          "Invoking a function with bad signature");
628
629   for (unsigned i = 0, e = Args.size(); i != e; i++)
630     assert((i >= FTy->getNumParams() || 
631             FTy->getParamType(i) == Args[i]->getType()) &&
632            "Invoking a function with a bad signature!");
633 #endif
634
635   std::copy(Args.begin(), Args.end(), op_begin());
636
637   auto It = populateBundleOperandInfos(Bundles, Args.size());
638   (void)It;
639   assert(It + 3 == op_end() && "Should add up!");
640
641   setName(NameStr);
642 }
643
644 InvokeInst::InvokeInst(const InvokeInst &II)
645     : TerminatorInst(II.getType(), Instruction::Invoke,
646                      OperandTraits<InvokeInst>::op_end(this) -
647                          II.getNumOperands(),
648                      II.getNumOperands()),
649       AttributeList(II.AttributeList), FTy(II.FTy) {
650   setCallingConv(II.getCallingConv());
651   std::copy(II.op_begin(), II.op_end(), op_begin());
652   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
653             bundle_op_info_begin());
654   SubclassOptionalData = II.SubclassOptionalData;
655 }
656
657 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
658                                Instruction *InsertPt) {
659   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
660
661   auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
662                                    II->getUnwindDest(), Args, OpB,
663                                    II->getName(), InsertPt);
664   NewII->setCallingConv(II->getCallingConv());
665   NewII->SubclassOptionalData = II->SubclassOptionalData;
666   NewII->setAttributes(II->getAttributes());
667   NewII->setDebugLoc(II->getDebugLoc());
668   return NewII;
669 }
670
671 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
672   return getSuccessor(idx);
673 }
674 unsigned InvokeInst::getNumSuccessorsV() const {
675   return getNumSuccessors();
676 }
677 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
678   return setSuccessor(idx, B);
679 }
680
681 Value *InvokeInst::getReturnedArgOperand() const {
682   unsigned Index;
683
684   if (AttributeList.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
685     return getArgOperand(Index-1);
686   if (const Function *F = getCalledFunction())
687     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
688         Index)
689       return getArgOperand(Index-1);
690       
691   return nullptr;
692 }
693
694 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const {
695   assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!");
696
697   if (AttributeList.hasAttribute(i, Kind))
698     return true;
699   if (const Function *F = getCalledFunction())
700     return F->getAttributes().hasAttribute(i, Kind);
701   return false;
702 }
703
704 bool InvokeInst::dataOperandHasImpliedAttr(unsigned i,
705                                            Attribute::AttrKind Kind) const {
706   // There are getNumOperands() - 3 data operands.  The last three operands are
707   // the callee and the two successor basic blocks.
708   assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!");
709
710   // The attribute A can either be directly specified, if the operand in
711   // question is an invoke argument; or be indirectly implied by the kind of its
712   // containing operand bundle, if the operand is a bundle operand.
713
714   if (i < (getNumArgOperands() + 1))
715     return paramHasAttr(i, Kind);
716
717   assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
718          "Must be either an invoke argument or an operand bundle!");
719   return bundleOperandHasAttr(i - 1, Kind);
720 }
721
722 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind Kind) {
723   AttributeSet PAL = getAttributes();
724   PAL = PAL.addAttribute(getContext(), i, Kind);
725   setAttributes(PAL);
726 }
727
728 void InvokeInst::addAttribute(unsigned i, Attribute Attr) {
729   AttributeSet PAL = getAttributes();
730   PAL = PAL.addAttribute(getContext(), i, Attr);
731   setAttributes(PAL);
732 }
733
734 void InvokeInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
735   AttributeSet PAL = getAttributes();
736   PAL = PAL.removeAttribute(getContext(), i, Kind);
737   setAttributes(PAL);
738 }
739
740 void InvokeInst::removeAttribute(unsigned i, StringRef Kind) {
741   AttributeSet PAL = getAttributes();
742   PAL = PAL.removeAttribute(getContext(), i, Kind);
743   setAttributes(PAL);
744 }
745
746 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
747   AttributeSet PAL = getAttributes();
748   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
749   setAttributes(PAL);
750 }
751
752 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
753   AttributeSet PAL = getAttributes();
754   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
755   setAttributes(PAL);
756 }
757
758 LandingPadInst *InvokeInst::getLandingPadInst() const {
759   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
760 }
761
762 //===----------------------------------------------------------------------===//
763 //                        ReturnInst Implementation
764 //===----------------------------------------------------------------------===//
765
766 ReturnInst::ReturnInst(const ReturnInst &RI)
767   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
768                    OperandTraits<ReturnInst>::op_end(this) -
769                      RI.getNumOperands(),
770                    RI.getNumOperands()) {
771   if (RI.getNumOperands())
772     Op<0>() = RI.Op<0>();
773   SubclassOptionalData = RI.SubclassOptionalData;
774 }
775
776 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
777   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
778                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
779                    InsertBefore) {
780   if (retVal)
781     Op<0>() = retVal;
782 }
783 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
784   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
785                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
786                    InsertAtEnd) {
787   if (retVal)
788     Op<0>() = retVal;
789 }
790 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
791   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
792                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
793 }
794
795 unsigned ReturnInst::getNumSuccessorsV() const {
796   return getNumSuccessors();
797 }
798
799 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
800 /// emit the vtable for the class in this translation unit.
801 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
802   llvm_unreachable("ReturnInst has no successors!");
803 }
804
805 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
806   llvm_unreachable("ReturnInst has no successors!");
807 }
808
809 ReturnInst::~ReturnInst() {
810 }
811
812 //===----------------------------------------------------------------------===//
813 //                        ResumeInst Implementation
814 //===----------------------------------------------------------------------===//
815
816 ResumeInst::ResumeInst(const ResumeInst &RI)
817   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
818                    OperandTraits<ResumeInst>::op_begin(this), 1) {
819   Op<0>() = RI.Op<0>();
820 }
821
822 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
823   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
824                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
825   Op<0>() = Exn;
826 }
827
828 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
829   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
830                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
831   Op<0>() = Exn;
832 }
833
834 unsigned ResumeInst::getNumSuccessorsV() const {
835   return getNumSuccessors();
836 }
837
838 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
839   llvm_unreachable("ResumeInst has no successors!");
840 }
841
842 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
843   llvm_unreachable("ResumeInst has no successors!");
844 }
845
846 //===----------------------------------------------------------------------===//
847 //                        CleanupReturnInst Implementation
848 //===----------------------------------------------------------------------===//
849
850 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
851     : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
852                      OperandTraits<CleanupReturnInst>::op_end(this) -
853                          CRI.getNumOperands(),
854                      CRI.getNumOperands()) {
855   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
856   Op<0>() = CRI.Op<0>();
857   if (CRI.hasUnwindDest())
858     Op<1>() = CRI.Op<1>();
859 }
860
861 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
862   if (UnwindBB)
863     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
864
865   Op<0>() = CleanupPad;
866   if (UnwindBB)
867     Op<1>() = UnwindBB;
868 }
869
870 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
871                                      unsigned Values, Instruction *InsertBefore)
872     : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
873                      Instruction::CleanupRet,
874                      OperandTraits<CleanupReturnInst>::op_end(this) - Values,
875                      Values, InsertBefore) {
876   init(CleanupPad, UnwindBB);
877 }
878
879 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
880                                      unsigned Values, BasicBlock *InsertAtEnd)
881     : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
882                      Instruction::CleanupRet,
883                      OperandTraits<CleanupReturnInst>::op_end(this) - Values,
884                      Values, InsertAtEnd) {
885   init(CleanupPad, UnwindBB);
886 }
887
888 BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const {
889   assert(Idx == 0);
890   return getUnwindDest();
891 }
892 unsigned CleanupReturnInst::getNumSuccessorsV() const {
893   return getNumSuccessors();
894 }
895 void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
896   assert(Idx == 0);
897   setUnwindDest(B);
898 }
899
900 //===----------------------------------------------------------------------===//
901 //                        CatchReturnInst Implementation
902 //===----------------------------------------------------------------------===//
903 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
904   Op<0>() = CatchPad;
905   Op<1>() = BB;
906 }
907
908 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
909     : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
910                      OperandTraits<CatchReturnInst>::op_begin(this), 2) {
911   Op<0>() = CRI.Op<0>();
912   Op<1>() = CRI.Op<1>();
913 }
914
915 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
916                                  Instruction *InsertBefore)
917     : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
918                      OperandTraits<CatchReturnInst>::op_begin(this), 2,
919                      InsertBefore) {
920   init(CatchPad, BB);
921 }
922
923 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
924                                  BasicBlock *InsertAtEnd)
925     : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
926                      OperandTraits<CatchReturnInst>::op_begin(this), 2,
927                      InsertAtEnd) {
928   init(CatchPad, BB);
929 }
930
931 BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const {
932   assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
933   return getSuccessor();
934 }
935 unsigned CatchReturnInst::getNumSuccessorsV() const {
936   return getNumSuccessors();
937 }
938 void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
939   assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
940   setSuccessor(B);
941 }
942
943 //===----------------------------------------------------------------------===//
944 //                       CatchSwitchInst Implementation
945 //===----------------------------------------------------------------------===//
946
947 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
948                                  unsigned NumReservedValues,
949                                  const Twine &NameStr,
950                                  Instruction *InsertBefore)
951     : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
952                      InsertBefore) {
953   if (UnwindDest)
954     ++NumReservedValues;
955   init(ParentPad, UnwindDest, NumReservedValues + 1);
956   setName(NameStr);
957 }
958
959 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
960                                  unsigned NumReservedValues,
961                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
962     : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
963                      InsertAtEnd) {
964   if (UnwindDest)
965     ++NumReservedValues;
966   init(ParentPad, UnwindDest, NumReservedValues + 1);
967   setName(NameStr);
968 }
969
970 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
971     : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr,
972                      CSI.getNumOperands()) {
973   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
974   setNumHungOffUseOperands(ReservedSpace);
975   Use *OL = getOperandList();
976   const Use *InOL = CSI.getOperandList();
977   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
978     OL[I] = InOL[I];
979 }
980
981 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
982                            unsigned NumReservedValues) {
983   assert(ParentPad && NumReservedValues);
984
985   ReservedSpace = NumReservedValues;
986   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
987   allocHungoffUses(ReservedSpace);
988
989   Op<0>() = ParentPad;
990   if (UnwindDest) {
991     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
992     setUnwindDest(UnwindDest);
993   }
994 }
995
996 /// growOperands - grow operands - This grows the operand list in response to a
997 /// push_back style of operation. This grows the number of ops by 2 times.
998 void CatchSwitchInst::growOperands(unsigned Size) {
999   unsigned NumOperands = getNumOperands();
1000   assert(NumOperands >= 1);
1001   if (ReservedSpace >= NumOperands + Size)
1002     return;
1003   ReservedSpace = (NumOperands + Size / 2) * 2;
1004   growHungoffUses(ReservedSpace);
1005 }
1006
1007 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1008   unsigned OpNo = getNumOperands();
1009   growOperands(1);
1010   assert(OpNo < ReservedSpace && "Growing didn't work!");
1011   setNumHungOffUseOperands(getNumOperands() + 1);
1012   getOperandList()[OpNo] = Handler;
1013 }
1014
1015 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1016   // Move all subsequent handlers up one.
1017   Use *EndDst = op_end() - 1;
1018   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1019     *CurDst = *(CurDst + 1);
1020   // Null out the last handler use.
1021   *EndDst = nullptr;
1022
1023   setNumHungOffUseOperands(getNumOperands() - 1);
1024 }
1025
1026 BasicBlock *CatchSwitchInst::getSuccessorV(unsigned idx) const {
1027   return getSuccessor(idx);
1028 }
1029 unsigned CatchSwitchInst::getNumSuccessorsV() const {
1030   return getNumSuccessors();
1031 }
1032 void CatchSwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
1033   setSuccessor(idx, B);
1034 }
1035
1036 //===----------------------------------------------------------------------===//
1037 //                        FuncletPadInst Implementation
1038 //===----------------------------------------------------------------------===//
1039 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1040                           const Twine &NameStr) {
1041   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1042   std::copy(Args.begin(), Args.end(), op_begin());
1043   setParentPad(ParentPad);
1044   setName(NameStr);
1045 }
1046
1047 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1048     : Instruction(FPI.getType(), FPI.getOpcode(),
1049                   OperandTraits<FuncletPadInst>::op_end(this) -
1050                       FPI.getNumOperands(),
1051                   FPI.getNumOperands()) {
1052   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1053   setParentPad(FPI.getParentPad());
1054 }
1055
1056 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1057                                ArrayRef<Value *> Args, unsigned Values,
1058                                const Twine &NameStr, Instruction *InsertBefore)
1059     : Instruction(ParentPad->getType(), Op,
1060                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1061                   InsertBefore) {
1062   init(ParentPad, Args, NameStr);
1063 }
1064
1065 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1066                                ArrayRef<Value *> Args, unsigned Values,
1067                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1068     : Instruction(ParentPad->getType(), Op,
1069                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1070                   InsertAtEnd) {
1071   init(ParentPad, Args, NameStr);
1072 }
1073
1074 //===----------------------------------------------------------------------===//
1075 //                      UnreachableInst Implementation
1076 //===----------------------------------------------------------------------===//
1077
1078 UnreachableInst::UnreachableInst(LLVMContext &Context, 
1079                                  Instruction *InsertBefore)
1080   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
1081                    nullptr, 0, InsertBefore) {
1082 }
1083 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1084   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
1085                    nullptr, 0, InsertAtEnd) {
1086 }
1087
1088 unsigned UnreachableInst::getNumSuccessorsV() const {
1089   return getNumSuccessors();
1090 }
1091
1092 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
1093   llvm_unreachable("UnreachableInst has no successors!");
1094 }
1095
1096 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
1097   llvm_unreachable("UnreachableInst has no successors!");
1098 }
1099
1100 //===----------------------------------------------------------------------===//
1101 //                        BranchInst Implementation
1102 //===----------------------------------------------------------------------===//
1103
1104 void BranchInst::AssertOK() {
1105   if (isConditional())
1106     assert(getCondition()->getType()->isIntegerTy(1) &&
1107            "May only branch on boolean predicates!");
1108 }
1109
1110 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1111   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1112                    OperandTraits<BranchInst>::op_end(this) - 1,
1113                    1, InsertBefore) {
1114   assert(IfTrue && "Branch destination may not be null!");
1115   Op<-1>() = IfTrue;
1116 }
1117 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1118                        Instruction *InsertBefore)
1119   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1120                    OperandTraits<BranchInst>::op_end(this) - 3,
1121                    3, InsertBefore) {
1122   Op<-1>() = IfTrue;
1123   Op<-2>() = IfFalse;
1124   Op<-3>() = Cond;
1125 #ifndef NDEBUG
1126   AssertOK();
1127 #endif
1128 }
1129
1130 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1131   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1132                    OperandTraits<BranchInst>::op_end(this) - 1,
1133                    1, InsertAtEnd) {
1134   assert(IfTrue && "Branch destination may not be null!");
1135   Op<-1>() = IfTrue;
1136 }
1137
1138 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1139            BasicBlock *InsertAtEnd)
1140   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1141                    OperandTraits<BranchInst>::op_end(this) - 3,
1142                    3, InsertAtEnd) {
1143   Op<-1>() = IfTrue;
1144   Op<-2>() = IfFalse;
1145   Op<-3>() = Cond;
1146 #ifndef NDEBUG
1147   AssertOK();
1148 #endif
1149 }
1150
1151
1152 BranchInst::BranchInst(const BranchInst &BI) :
1153   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
1154                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1155                  BI.getNumOperands()) {
1156   Op<-1>() = BI.Op<-1>();
1157   if (BI.getNumOperands() != 1) {
1158     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1159     Op<-3>() = BI.Op<-3>();
1160     Op<-2>() = BI.Op<-2>();
1161   }
1162   SubclassOptionalData = BI.SubclassOptionalData;
1163 }
1164
1165 void BranchInst::swapSuccessors() {
1166   assert(isConditional() &&
1167          "Cannot swap successors of an unconditional branch");
1168   Op<-1>().swap(Op<-2>());
1169
1170   // Update profile metadata if present and it matches our structural
1171   // expectations.
1172   swapProfMetadata();
1173 }
1174
1175 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
1176   return getSuccessor(idx);
1177 }
1178 unsigned BranchInst::getNumSuccessorsV() const {
1179   return getNumSuccessors();
1180 }
1181 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
1182   setSuccessor(idx, B);
1183 }
1184
1185
1186 //===----------------------------------------------------------------------===//
1187 //                        AllocaInst Implementation
1188 //===----------------------------------------------------------------------===//
1189
1190 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1191   if (!Amt)
1192     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1193   else {
1194     assert(!isa<BasicBlock>(Amt) &&
1195            "Passed basic block into allocation size parameter! Use other ctor");
1196     assert(Amt->getType()->isIntegerTy() &&
1197            "Allocation array size is not an integer!");
1198   }
1199   return Amt;
1200 }
1201
1202 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore)
1203     : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1204
1205 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
1206     : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1207
1208 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1209                        Instruction *InsertBefore)
1210     : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1211
1212 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1213                        BasicBlock *InsertAtEnd)
1214     : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1215
1216 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1217                        const Twine &Name, Instruction *InsertBefore)
1218     : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1219                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1220       AllocatedType(Ty) {
1221   setAlignment(Align);
1222   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1223   setName(Name);
1224 }
1225
1226 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1227                        const Twine &Name, BasicBlock *InsertAtEnd)
1228     : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1229                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1230       AllocatedType(Ty) {
1231   setAlignment(Align);
1232   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1233   setName(Name);
1234 }
1235
1236 // Out of line virtual method, so the vtable, etc has a home.
1237 AllocaInst::~AllocaInst() {
1238 }
1239
1240 void AllocaInst::setAlignment(unsigned Align) {
1241   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1242   assert(Align <= MaximumAlignment &&
1243          "Alignment is greater than MaximumAlignment!");
1244   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1245                              (Log2_32(Align) + 1));
1246   assert(getAlignment() == Align && "Alignment representation error!");
1247 }
1248
1249 bool AllocaInst::isArrayAllocation() const {
1250   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1251     return !CI->isOne();
1252   return true;
1253 }
1254
1255 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1256 /// function and is a constant size.  If so, the code generator will fold it
1257 /// into the prolog/epilog code, so it is basically free.
1258 bool AllocaInst::isStaticAlloca() const {
1259   // Must be constant size.
1260   if (!isa<ConstantInt>(getArraySize())) return false;
1261   
1262   // Must be in the entry block.
1263   const BasicBlock *Parent = getParent();
1264   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1265 }
1266
1267 //===----------------------------------------------------------------------===//
1268 //                           LoadInst Implementation
1269 //===----------------------------------------------------------------------===//
1270
1271 void LoadInst::AssertOK() {
1272   assert(getOperand(0)->getType()->isPointerTy() &&
1273          "Ptr must have pointer type.");
1274   assert(!(isAtomic() && getAlignment() == 0) &&
1275          "Alignment required for atomic load");
1276 }
1277
1278 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1279     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1280
1281 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1282     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1283
1284 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1285                    Instruction *InsertBef)
1286     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1287
1288 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1289                    BasicBlock *InsertAE)
1290     : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1291
1292 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1293                    unsigned Align, Instruction *InsertBef)
1294     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1295                CrossThread, InsertBef) {}
1296
1297 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1298                    unsigned Align, BasicBlock *InsertAE)
1299     : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1300                CrossThread, InsertAE) {}
1301
1302 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1303                    unsigned Align, AtomicOrdering Order,
1304                    SynchronizationScope SynchScope, Instruction *InsertBef)
1305     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1306   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1307   setVolatile(isVolatile);
1308   setAlignment(Align);
1309   setAtomic(Order, SynchScope);
1310   AssertOK();
1311   setName(Name);
1312 }
1313
1314 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
1315                    unsigned Align, AtomicOrdering Order,
1316                    SynchronizationScope SynchScope,
1317                    BasicBlock *InsertAE)
1318   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1319                      Load, Ptr, InsertAE) {
1320   setVolatile(isVolatile);
1321   setAlignment(Align);
1322   setAtomic(Order, SynchScope);
1323   AssertOK();
1324   setName(Name);
1325 }
1326
1327 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1328   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1329                      Load, Ptr, InsertBef) {
1330   setVolatile(false);
1331   setAlignment(0);
1332   setAtomic(AtomicOrdering::NotAtomic);
1333   AssertOK();
1334   if (Name && Name[0]) setName(Name);
1335 }
1336
1337 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1338   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1339                      Load, Ptr, InsertAE) {
1340   setVolatile(false);
1341   setAlignment(0);
1342   setAtomic(AtomicOrdering::NotAtomic);
1343   AssertOK();
1344   if (Name && Name[0]) setName(Name);
1345 }
1346
1347 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1348                    Instruction *InsertBef)
1349     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1350   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1351   setVolatile(isVolatile);
1352   setAlignment(0);
1353   setAtomic(AtomicOrdering::NotAtomic);
1354   AssertOK();
1355   if (Name && Name[0]) setName(Name);
1356 }
1357
1358 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1359                    BasicBlock *InsertAE)
1360   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1361                      Load, Ptr, InsertAE) {
1362   setVolatile(isVolatile);
1363   setAlignment(0);
1364   setAtomic(AtomicOrdering::NotAtomic);
1365   AssertOK();
1366   if (Name && Name[0]) setName(Name);
1367 }
1368
1369 void LoadInst::setAlignment(unsigned Align) {
1370   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1371   assert(Align <= MaximumAlignment &&
1372          "Alignment is greater than MaximumAlignment!");
1373   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1374                              ((Log2_32(Align)+1)<<1));
1375   assert(getAlignment() == Align && "Alignment representation error!");
1376 }
1377
1378 //===----------------------------------------------------------------------===//
1379 //                           StoreInst Implementation
1380 //===----------------------------------------------------------------------===//
1381
1382 void StoreInst::AssertOK() {
1383   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1384   assert(getOperand(1)->getType()->isPointerTy() &&
1385          "Ptr must have pointer type!");
1386   assert(getOperand(0)->getType() ==
1387                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1388          && "Ptr must be a pointer to Val type!");
1389   assert(!(isAtomic() && getAlignment() == 0) &&
1390          "Alignment required for atomic store");
1391 }
1392
1393 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1394     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1395
1396 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1397     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1398
1399 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1400                      Instruction *InsertBefore)
1401     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1402
1403 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1404                      BasicBlock *InsertAtEnd)
1405     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1406
1407 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1408                      Instruction *InsertBefore)
1409     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1410                 CrossThread, InsertBefore) {}
1411
1412 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1413                      BasicBlock *InsertAtEnd)
1414     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1415                 CrossThread, InsertAtEnd) {}
1416
1417 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1418                      unsigned Align, AtomicOrdering Order,
1419                      SynchronizationScope SynchScope,
1420                      Instruction *InsertBefore)
1421   : Instruction(Type::getVoidTy(val->getContext()), Store,
1422                 OperandTraits<StoreInst>::op_begin(this),
1423                 OperandTraits<StoreInst>::operands(this),
1424                 InsertBefore) {
1425   Op<0>() = val;
1426   Op<1>() = addr;
1427   setVolatile(isVolatile);
1428   setAlignment(Align);
1429   setAtomic(Order, SynchScope);
1430   AssertOK();
1431 }
1432
1433 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1434                      unsigned Align, AtomicOrdering Order,
1435                      SynchronizationScope SynchScope,
1436                      BasicBlock *InsertAtEnd)
1437   : Instruction(Type::getVoidTy(val->getContext()), Store,
1438                 OperandTraits<StoreInst>::op_begin(this),
1439                 OperandTraits<StoreInst>::operands(this),
1440                 InsertAtEnd) {
1441   Op<0>() = val;
1442   Op<1>() = addr;
1443   setVolatile(isVolatile);
1444   setAlignment(Align);
1445   setAtomic(Order, SynchScope);
1446   AssertOK();
1447 }
1448
1449 void StoreInst::setAlignment(unsigned Align) {
1450   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1451   assert(Align <= MaximumAlignment &&
1452          "Alignment is greater than MaximumAlignment!");
1453   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1454                              ((Log2_32(Align)+1) << 1));
1455   assert(getAlignment() == Align && "Alignment representation error!");
1456 }
1457
1458 //===----------------------------------------------------------------------===//
1459 //                       AtomicCmpXchgInst Implementation
1460 //===----------------------------------------------------------------------===//
1461
1462 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1463                              AtomicOrdering SuccessOrdering,
1464                              AtomicOrdering FailureOrdering,
1465                              SynchronizationScope SynchScope) {
1466   Op<0>() = Ptr;
1467   Op<1>() = Cmp;
1468   Op<2>() = NewVal;
1469   setSuccessOrdering(SuccessOrdering);
1470   setFailureOrdering(FailureOrdering);
1471   setSynchScope(SynchScope);
1472
1473   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1474          "All operands must be non-null!");
1475   assert(getOperand(0)->getType()->isPointerTy() &&
1476          "Ptr must have pointer type!");
1477   assert(getOperand(1)->getType() ==
1478                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1479          && "Ptr must be a pointer to Cmp type!");
1480   assert(getOperand(2)->getType() ==
1481                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1482          && "Ptr must be a pointer to NewVal type!");
1483   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1484          "AtomicCmpXchg instructions must be atomic!");
1485   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1486          "AtomicCmpXchg instructions must be atomic!");
1487   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1488          "AtomicCmpXchg failure argument shall be no stronger than the success "
1489          "argument");
1490   assert(FailureOrdering != AtomicOrdering::Release &&
1491          FailureOrdering != AtomicOrdering::AcquireRelease &&
1492          "AtomicCmpXchg failure ordering cannot include release semantics");
1493 }
1494
1495 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1496                                      AtomicOrdering SuccessOrdering,
1497                                      AtomicOrdering FailureOrdering,
1498                                      SynchronizationScope SynchScope,
1499                                      Instruction *InsertBefore)
1500     : Instruction(
1501           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1502                           nullptr),
1503           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1504           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1505   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1506 }
1507
1508 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1509                                      AtomicOrdering SuccessOrdering,
1510                                      AtomicOrdering FailureOrdering,
1511                                      SynchronizationScope SynchScope,
1512                                      BasicBlock *InsertAtEnd)
1513     : Instruction(
1514           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1515                           nullptr),
1516           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1517           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1518   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1519 }
1520
1521 //===----------------------------------------------------------------------===//
1522 //                       AtomicRMWInst Implementation
1523 //===----------------------------------------------------------------------===//
1524
1525 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1526                          AtomicOrdering Ordering,
1527                          SynchronizationScope SynchScope) {
1528   Op<0>() = Ptr;
1529   Op<1>() = Val;
1530   setOperation(Operation);
1531   setOrdering(Ordering);
1532   setSynchScope(SynchScope);
1533
1534   assert(getOperand(0) && getOperand(1) &&
1535          "All operands must be non-null!");
1536   assert(getOperand(0)->getType()->isPointerTy() &&
1537          "Ptr must have pointer type!");
1538   assert(getOperand(1)->getType() ==
1539          cast<PointerType>(getOperand(0)->getType())->getElementType()
1540          && "Ptr must be a pointer to Val type!");
1541   assert(Ordering != AtomicOrdering::NotAtomic &&
1542          "AtomicRMW instructions must be atomic!");
1543 }
1544
1545 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1546                              AtomicOrdering Ordering,
1547                              SynchronizationScope SynchScope,
1548                              Instruction *InsertBefore)
1549   : Instruction(Val->getType(), AtomicRMW,
1550                 OperandTraits<AtomicRMWInst>::op_begin(this),
1551                 OperandTraits<AtomicRMWInst>::operands(this),
1552                 InsertBefore) {
1553   Init(Operation, Ptr, Val, Ordering, SynchScope);
1554 }
1555
1556 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1557                              AtomicOrdering Ordering,
1558                              SynchronizationScope SynchScope,
1559                              BasicBlock *InsertAtEnd)
1560   : Instruction(Val->getType(), AtomicRMW,
1561                 OperandTraits<AtomicRMWInst>::op_begin(this),
1562                 OperandTraits<AtomicRMWInst>::operands(this),
1563                 InsertAtEnd) {
1564   Init(Operation, Ptr, Val, Ordering, SynchScope);
1565 }
1566
1567 //===----------------------------------------------------------------------===//
1568 //                       FenceInst Implementation
1569 //===----------------------------------------------------------------------===//
1570
1571 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1572                      SynchronizationScope SynchScope,
1573                      Instruction *InsertBefore)
1574   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1575   setOrdering(Ordering);
1576   setSynchScope(SynchScope);
1577 }
1578
1579 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1580                      SynchronizationScope SynchScope,
1581                      BasicBlock *InsertAtEnd)
1582   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1583   setOrdering(Ordering);
1584   setSynchScope(SynchScope);
1585 }
1586
1587 //===----------------------------------------------------------------------===//
1588 //                       GetElementPtrInst Implementation
1589 //===----------------------------------------------------------------------===//
1590
1591 void GetElementPtrInst::anchor() {}
1592
1593 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1594                              const Twine &Name) {
1595   assert(getNumOperands() == 1 + IdxList.size() &&
1596          "NumOperands not initialized?");
1597   Op<0>() = Ptr;
1598   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1599   setName(Name);
1600 }
1601
1602 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1603     : Instruction(GEPI.getType(), GetElementPtr,
1604                   OperandTraits<GetElementPtrInst>::op_end(this) -
1605                       GEPI.getNumOperands(),
1606                   GEPI.getNumOperands()),
1607       SourceElementType(GEPI.SourceElementType),
1608       ResultElementType(GEPI.ResultElementType) {
1609   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1610   SubclassOptionalData = GEPI.SubclassOptionalData;
1611 }
1612
1613 /// getIndexedType - Returns the type of the element that would be accessed with
1614 /// a gep instruction with the specified parameters.
1615 ///
1616 /// The Idxs pointer should point to a continuous piece of memory containing the
1617 /// indices, either as Value* or uint64_t.
1618 ///
1619 /// A null type is returned if the indices are invalid for the specified
1620 /// pointer type.
1621 ///
1622 template <typename IndexTy>
1623 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1624   // Handle the special case of the empty set index set, which is always valid.
1625   if (IdxList.empty())
1626     return Agg;
1627
1628   // If there is at least one index, the top level type must be sized, otherwise
1629   // it cannot be 'stepped over'.
1630   if (!Agg->isSized())
1631     return nullptr;
1632
1633   unsigned CurIdx = 1;
1634   for (; CurIdx != IdxList.size(); ++CurIdx) {
1635     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1636     if (!CT || CT->isPointerTy()) return nullptr;
1637     IndexTy Index = IdxList[CurIdx];
1638     if (!CT->indexValid(Index)) return nullptr;
1639     Agg = CT->getTypeAtIndex(Index);
1640   }
1641   return CurIdx == IdxList.size() ? Agg : nullptr;
1642 }
1643
1644 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1645   return getIndexedTypeInternal(Ty, IdxList);
1646 }
1647
1648 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1649                                         ArrayRef<Constant *> IdxList) {
1650   return getIndexedTypeInternal(Ty, IdxList);
1651 }
1652
1653 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1654   return getIndexedTypeInternal(Ty, IdxList);
1655 }
1656
1657 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1658 /// zeros.  If so, the result pointer and the first operand have the same
1659 /// value, just potentially different types.
1660 bool GetElementPtrInst::hasAllZeroIndices() const {
1661   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1662     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1663       if (!CI->isZero()) return false;
1664     } else {
1665       return false;
1666     }
1667   }
1668   return true;
1669 }
1670
1671 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1672 /// constant integers.  If so, the result pointer and the first operand have
1673 /// a constant offset between them.
1674 bool GetElementPtrInst::hasAllConstantIndices() const {
1675   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1676     if (!isa<ConstantInt>(getOperand(i)))
1677       return false;
1678   }
1679   return true;
1680 }
1681
1682 void GetElementPtrInst::setIsInBounds(bool B) {
1683   cast<GEPOperator>(this)->setIsInBounds(B);
1684 }
1685
1686 bool GetElementPtrInst::isInBounds() const {
1687   return cast<GEPOperator>(this)->isInBounds();
1688 }
1689
1690 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1691                                                  APInt &Offset) const {
1692   // Delegate to the generic GEPOperator implementation.
1693   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1694 }
1695
1696 //===----------------------------------------------------------------------===//
1697 //                           ExtractElementInst Implementation
1698 //===----------------------------------------------------------------------===//
1699
1700 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1701                                        const Twine &Name,
1702                                        Instruction *InsertBef)
1703   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1704                 ExtractElement,
1705                 OperandTraits<ExtractElementInst>::op_begin(this),
1706                 2, InsertBef) {
1707   assert(isValidOperands(Val, Index) &&
1708          "Invalid extractelement instruction operands!");
1709   Op<0>() = Val;
1710   Op<1>() = Index;
1711   setName(Name);
1712 }
1713
1714 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1715                                        const Twine &Name,
1716                                        BasicBlock *InsertAE)
1717   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1718                 ExtractElement,
1719                 OperandTraits<ExtractElementInst>::op_begin(this),
1720                 2, InsertAE) {
1721   assert(isValidOperands(Val, Index) &&
1722          "Invalid extractelement instruction operands!");
1723
1724   Op<0>() = Val;
1725   Op<1>() = Index;
1726   setName(Name);
1727 }
1728
1729
1730 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1731   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1732     return false;
1733   return true;
1734 }
1735
1736
1737 //===----------------------------------------------------------------------===//
1738 //                           InsertElementInst Implementation
1739 //===----------------------------------------------------------------------===//
1740
1741 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1742                                      const Twine &Name,
1743                                      Instruction *InsertBef)
1744   : Instruction(Vec->getType(), InsertElement,
1745                 OperandTraits<InsertElementInst>::op_begin(this),
1746                 3, InsertBef) {
1747   assert(isValidOperands(Vec, Elt, Index) &&
1748          "Invalid insertelement instruction operands!");
1749   Op<0>() = Vec;
1750   Op<1>() = Elt;
1751   Op<2>() = Index;
1752   setName(Name);
1753 }
1754
1755 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1756                                      const Twine &Name,
1757                                      BasicBlock *InsertAE)
1758   : Instruction(Vec->getType(), InsertElement,
1759                 OperandTraits<InsertElementInst>::op_begin(this),
1760                 3, InsertAE) {
1761   assert(isValidOperands(Vec, Elt, Index) &&
1762          "Invalid insertelement instruction operands!");
1763
1764   Op<0>() = Vec;
1765   Op<1>() = Elt;
1766   Op<2>() = Index;
1767   setName(Name);
1768 }
1769
1770 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
1771                                         const Value *Index) {
1772   if (!Vec->getType()->isVectorTy())
1773     return false;   // First operand of insertelement must be vector type.
1774   
1775   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1776     return false;// Second operand of insertelement must be vector element type.
1777     
1778   if (!Index->getType()->isIntegerTy())
1779     return false;  // Third operand of insertelement must be i32.
1780   return true;
1781 }
1782
1783
1784 //===----------------------------------------------------------------------===//
1785 //                      ShuffleVectorInst Implementation
1786 //===----------------------------------------------------------------------===//
1787
1788 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1789                                      const Twine &Name,
1790                                      Instruction *InsertBefore)
1791 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1792                 cast<VectorType>(Mask->getType())->getNumElements()),
1793               ShuffleVector,
1794               OperandTraits<ShuffleVectorInst>::op_begin(this),
1795               OperandTraits<ShuffleVectorInst>::operands(this),
1796               InsertBefore) {
1797   assert(isValidOperands(V1, V2, Mask) &&
1798          "Invalid shuffle vector instruction operands!");
1799   Op<0>() = V1;
1800   Op<1>() = V2;
1801   Op<2>() = Mask;
1802   setName(Name);
1803 }
1804
1805 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1806                                      const Twine &Name,
1807                                      BasicBlock *InsertAtEnd)
1808 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1809                 cast<VectorType>(Mask->getType())->getNumElements()),
1810               ShuffleVector,
1811               OperandTraits<ShuffleVectorInst>::op_begin(this),
1812               OperandTraits<ShuffleVectorInst>::operands(this),
1813               InsertAtEnd) {
1814   assert(isValidOperands(V1, V2, Mask) &&
1815          "Invalid shuffle vector instruction operands!");
1816
1817   Op<0>() = V1;
1818   Op<1>() = V2;
1819   Op<2>() = Mask;
1820   setName(Name);
1821 }
1822
1823 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1824                                         const Value *Mask) {
1825   // V1 and V2 must be vectors of the same type.
1826   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1827     return false;
1828   
1829   // Mask must be vector of i32.
1830   VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1831   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1832     return false;
1833
1834   // Check to see if Mask is valid.
1835   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1836     return true;
1837
1838   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1839     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1840     for (Value *Op : MV->operands()) {
1841       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1842         if (CI->uge(V1Size*2))
1843           return false;
1844       } else if (!isa<UndefValue>(Op)) {
1845         return false;
1846       }
1847     }
1848     return true;
1849   }
1850   
1851   if (const ConstantDataSequential *CDS =
1852         dyn_cast<ConstantDataSequential>(Mask)) {
1853     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1854     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1855       if (CDS->getElementAsInteger(i) >= V1Size*2)
1856         return false;
1857     return true;
1858   }
1859   
1860   // The bitcode reader can create a place holder for a forward reference
1861   // used as the shuffle mask. When this occurs, the shuffle mask will
1862   // fall into this case and fail. To avoid this error, do this bit of
1863   // ugliness to allow such a mask pass.
1864   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1865     if (CE->getOpcode() == Instruction::UserOp1)
1866       return true;
1867
1868   return false;
1869 }
1870
1871 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1872   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1873   if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1874     return CDS->getElementAsInteger(i);
1875   Constant *C = Mask->getAggregateElement(i);
1876   if (isa<UndefValue>(C))
1877     return -1;
1878   return cast<ConstantInt>(C)->getZExtValue();
1879 }
1880
1881 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1882                                        SmallVectorImpl<int> &Result) {
1883   unsigned NumElts = Mask->getType()->getVectorNumElements();
1884   
1885   if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1886     for (unsigned i = 0; i != NumElts; ++i)
1887       Result.push_back(CDS->getElementAsInteger(i));
1888     return;
1889   }    
1890   for (unsigned i = 0; i != NumElts; ++i) {
1891     Constant *C = Mask->getAggregateElement(i);
1892     Result.push_back(isa<UndefValue>(C) ? -1 :
1893                      cast<ConstantInt>(C)->getZExtValue());
1894   }
1895 }
1896
1897
1898 //===----------------------------------------------------------------------===//
1899 //                             InsertValueInst Class
1900 //===----------------------------------------------------------------------===//
1901
1902 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 
1903                            const Twine &Name) {
1904   assert(getNumOperands() == 2 && "NumOperands not initialized?");
1905
1906   // There's no fundamental reason why we require at least one index
1907   // (other than weirdness with &*IdxBegin being invalid; see
1908   // getelementptr's init routine for example). But there's no
1909   // present need to support it.
1910   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1911
1912   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1913          Val->getType() && "Inserted value must match indexed type!");
1914   Op<0>() = Agg;
1915   Op<1>() = Val;
1916
1917   Indices.append(Idxs.begin(), Idxs.end());
1918   setName(Name);
1919 }
1920
1921 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1922   : Instruction(IVI.getType(), InsertValue,
1923                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1924     Indices(IVI.Indices) {
1925   Op<0>() = IVI.getOperand(0);
1926   Op<1>() = IVI.getOperand(1);
1927   SubclassOptionalData = IVI.SubclassOptionalData;
1928 }
1929
1930 //===----------------------------------------------------------------------===//
1931 //                             ExtractValueInst Class
1932 //===----------------------------------------------------------------------===//
1933
1934 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1935   assert(getNumOperands() == 1 && "NumOperands not initialized?");
1936
1937   // There's no fundamental reason why we require at least one index.
1938   // But there's no present need to support it.
1939   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1940
1941   Indices.append(Idxs.begin(), Idxs.end());
1942   setName(Name);
1943 }
1944
1945 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1946   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1947     Indices(EVI.Indices) {
1948   SubclassOptionalData = EVI.SubclassOptionalData;
1949 }
1950
1951 // getIndexedType - Returns the type of the element that would be extracted
1952 // with an extractvalue instruction with the specified parameters.
1953 //
1954 // A null type is returned if the indices are invalid for the specified
1955 // pointer type.
1956 //
1957 Type *ExtractValueInst::getIndexedType(Type *Agg,
1958                                        ArrayRef<unsigned> Idxs) {
1959   for (unsigned Index : Idxs) {
1960     // We can't use CompositeType::indexValid(Index) here.
1961     // indexValid() always returns true for arrays because getelementptr allows
1962     // out-of-bounds indices. Since we don't allow those for extractvalue and
1963     // insertvalue we need to check array indexing manually.
1964     // Since the only other types we can index into are struct types it's just
1965     // as easy to check those manually as well.
1966     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1967       if (Index >= AT->getNumElements())
1968         return nullptr;
1969     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1970       if (Index >= ST->getNumElements())
1971         return nullptr;
1972     } else {
1973       // Not a valid type to index into.
1974       return nullptr;
1975     }
1976
1977     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1978   }
1979   return const_cast<Type*>(Agg);
1980 }
1981
1982 //===----------------------------------------------------------------------===//
1983 //                             BinaryOperator Class
1984 //===----------------------------------------------------------------------===//
1985
1986 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1987                                Type *Ty, const Twine &Name,
1988                                Instruction *InsertBefore)
1989   : Instruction(Ty, iType,
1990                 OperandTraits<BinaryOperator>::op_begin(this),
1991                 OperandTraits<BinaryOperator>::operands(this),
1992                 InsertBefore) {
1993   Op<0>() = S1;
1994   Op<1>() = S2;
1995   init(iType);
1996   setName(Name);
1997 }
1998
1999 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
2000                                Type *Ty, const Twine &Name,
2001                                BasicBlock *InsertAtEnd)
2002   : Instruction(Ty, iType,
2003                 OperandTraits<BinaryOperator>::op_begin(this),
2004                 OperandTraits<BinaryOperator>::operands(this),
2005                 InsertAtEnd) {
2006   Op<0>() = S1;
2007   Op<1>() = S2;
2008   init(iType);
2009   setName(Name);
2010 }
2011
2012
2013 void BinaryOperator::init(BinaryOps iType) {
2014   Value *LHS = getOperand(0), *RHS = getOperand(1);
2015   (void)LHS; (void)RHS; // Silence warnings.
2016   assert(LHS->getType() == RHS->getType() &&
2017          "Binary operator operand types must match!");
2018 #ifndef NDEBUG
2019   switch (iType) {
2020   case Add: case Sub:
2021   case Mul:
2022     assert(getType() == LHS->getType() &&
2023            "Arithmetic operation should return same type as operands!");
2024     assert(getType()->isIntOrIntVectorTy() &&
2025            "Tried to create an integer operation on a non-integer type!");
2026     break;
2027   case FAdd: case FSub:
2028   case FMul:
2029     assert(getType() == LHS->getType() &&
2030            "Arithmetic operation should return same type as operands!");
2031     assert(getType()->isFPOrFPVectorTy() &&
2032            "Tried to create a floating-point operation on a "
2033            "non-floating-point type!");
2034     break;
2035   case UDiv: 
2036   case SDiv: 
2037     assert(getType() == LHS->getType() &&
2038            "Arithmetic operation should return same type as operands!");
2039     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
2040             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2041            "Incorrect operand type (not integer) for S/UDIV");
2042     break;
2043   case FDiv:
2044     assert(getType() == LHS->getType() &&
2045            "Arithmetic operation should return same type as operands!");
2046     assert(getType()->isFPOrFPVectorTy() &&
2047            "Incorrect operand type (not floating point) for FDIV");
2048     break;
2049   case URem: 
2050   case SRem: 
2051     assert(getType() == LHS->getType() &&
2052            "Arithmetic operation should return same type as operands!");
2053     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
2054             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2055            "Incorrect operand type (not integer) for S/UREM");
2056     break;
2057   case FRem:
2058     assert(getType() == LHS->getType() &&
2059            "Arithmetic operation should return same type as operands!");
2060     assert(getType()->isFPOrFPVectorTy() &&
2061            "Incorrect operand type (not floating point) for FREM");
2062     break;
2063   case Shl:
2064   case LShr:
2065   case AShr:
2066     assert(getType() == LHS->getType() &&
2067            "Shift operation should return same type as operands!");
2068     assert((getType()->isIntegerTy() ||
2069             (getType()->isVectorTy() && 
2070              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2071            "Tried to create a shift operation on a non-integral type!");
2072     break;
2073   case And: case Or:
2074   case Xor:
2075     assert(getType() == LHS->getType() &&
2076            "Logical operation should return same type as operands!");
2077     assert((getType()->isIntegerTy() ||
2078             (getType()->isVectorTy() && 
2079              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2080            "Tried to create a logical operation on a non-integral type!");
2081     break;
2082   default:
2083     break;
2084   }
2085 #endif
2086 }
2087
2088 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2089                                        const Twine &Name,
2090                                        Instruction *InsertBefore) {
2091   assert(S1->getType() == S2->getType() &&
2092          "Cannot create binary operator with two operands of differing type!");
2093   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2094 }
2095
2096 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2097                                        const Twine &Name,
2098                                        BasicBlock *InsertAtEnd) {
2099   BinaryOperator *Res = Create(Op, S1, S2, Name);
2100   InsertAtEnd->getInstList().push_back(Res);
2101   return Res;
2102 }
2103
2104 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2105                                           Instruction *InsertBefore) {
2106   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2107   return new BinaryOperator(Instruction::Sub,
2108                             zero, Op,
2109                             Op->getType(), Name, InsertBefore);
2110 }
2111
2112 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2113                                           BasicBlock *InsertAtEnd) {
2114   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2115   return new BinaryOperator(Instruction::Sub,
2116                             zero, Op,
2117                             Op->getType(), Name, InsertAtEnd);
2118 }
2119
2120 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2121                                              Instruction *InsertBefore) {
2122   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2123   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2124 }
2125
2126 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2127                                              BasicBlock *InsertAtEnd) {
2128   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2129   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2130 }
2131
2132 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2133                                              Instruction *InsertBefore) {
2134   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2135   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2136 }
2137
2138 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2139                                              BasicBlock *InsertAtEnd) {
2140   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2141   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2142 }
2143
2144 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2145                                            Instruction *InsertBefore) {
2146   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2147   return new BinaryOperator(Instruction::FSub, zero, Op,
2148                             Op->getType(), Name, InsertBefore);
2149 }
2150
2151 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2152                                            BasicBlock *InsertAtEnd) {
2153   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2154   return new BinaryOperator(Instruction::FSub, zero, Op,
2155                             Op->getType(), Name, InsertAtEnd);
2156 }
2157
2158 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2159                                           Instruction *InsertBefore) {
2160   Constant *C = Constant::getAllOnesValue(Op->getType());
2161   return new BinaryOperator(Instruction::Xor, Op, C,
2162                             Op->getType(), Name, InsertBefore);
2163 }
2164
2165 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2166                                           BasicBlock *InsertAtEnd) {
2167   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2168   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2169                             Op->getType(), Name, InsertAtEnd);
2170 }
2171
2172
2173 // isConstantAllOnes - Helper function for several functions below
2174 static inline bool isConstantAllOnes(const Value *V) {
2175   if (const Constant *C = dyn_cast<Constant>(V))
2176     return C->isAllOnesValue();
2177   return false;
2178 }
2179
2180 bool BinaryOperator::isNeg(const Value *V) {
2181   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2182     if (Bop->getOpcode() == Instruction::Sub)
2183       if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0)))
2184         return C->isNegativeZeroValue();
2185   return false;
2186 }
2187
2188 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
2189   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2190     if (Bop->getOpcode() == Instruction::FSub)
2191       if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) {
2192         if (!IgnoreZeroSign)
2193           IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
2194         return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
2195       }
2196   return false;
2197 }
2198
2199 bool BinaryOperator::isNot(const Value *V) {
2200   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2201     return (Bop->getOpcode() == Instruction::Xor &&
2202             (isConstantAllOnes(Bop->getOperand(1)) ||
2203              isConstantAllOnes(Bop->getOperand(0))));
2204   return false;
2205 }
2206
2207 Value *BinaryOperator::getNegArgument(Value *BinOp) {
2208   return cast<BinaryOperator>(BinOp)->getOperand(1);
2209 }
2210
2211 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
2212   return getNegArgument(const_cast<Value*>(BinOp));
2213 }
2214
2215 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
2216   return cast<BinaryOperator>(BinOp)->getOperand(1);
2217 }
2218
2219 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
2220   return getFNegArgument(const_cast<Value*>(BinOp));
2221 }
2222
2223 Value *BinaryOperator::getNotArgument(Value *BinOp) {
2224   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2225   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2226   Value *Op0 = BO->getOperand(0);
2227   Value *Op1 = BO->getOperand(1);
2228   if (isConstantAllOnes(Op0)) return Op1;
2229
2230   assert(isConstantAllOnes(Op1));
2231   return Op0;
2232 }
2233
2234 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
2235   return getNotArgument(const_cast<Value*>(BinOp));
2236 }
2237
2238
2239 // Exchange the two operands to this instruction. This instruction is safe to
2240 // use on any binary instruction and does not modify the semantics of the
2241 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2242 // is changed.
2243 bool BinaryOperator::swapOperands() {
2244   if (!isCommutative())
2245     return true; // Can't commute operands
2246   Op<0>().swap(Op<1>());
2247   return false;
2248 }
2249
2250
2251 //===----------------------------------------------------------------------===//
2252 //                             FPMathOperator Class
2253 //===----------------------------------------------------------------------===//
2254
2255 float FPMathOperator::getFPAccuracy() const {
2256   const MDNode *MD =
2257       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2258   if (!MD)
2259     return 0.0;
2260   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2261   return Accuracy->getValueAPF().convertToFloat();
2262 }
2263
2264
2265 //===----------------------------------------------------------------------===//
2266 //                                CastInst Class
2267 //===----------------------------------------------------------------------===//
2268
2269 void CastInst::anchor() {}
2270
2271 // Just determine if this cast only deals with integral->integral conversion.
2272 bool CastInst::isIntegerCast() const {
2273   switch (getOpcode()) {
2274     default: return false;
2275     case Instruction::ZExt:
2276     case Instruction::SExt:
2277     case Instruction::Trunc:
2278       return true;
2279     case Instruction::BitCast:
2280       return getOperand(0)->getType()->isIntegerTy() &&
2281         getType()->isIntegerTy();
2282   }
2283 }
2284
2285 bool CastInst::isLosslessCast() const {
2286   // Only BitCast can be lossless, exit fast if we're not BitCast
2287   if (getOpcode() != Instruction::BitCast)
2288     return false;
2289
2290   // Identity cast is always lossless
2291   Type *SrcTy = getOperand(0)->getType();
2292   Type *DstTy = getType();
2293   if (SrcTy == DstTy)
2294     return true;
2295   
2296   // Pointer to pointer is always lossless.
2297   if (SrcTy->isPointerTy())
2298     return DstTy->isPointerTy();
2299   return false;  // Other types have no identity values
2300 }
2301
2302 /// This function determines if the CastInst does not require any bits to be
2303 /// changed in order to effect the cast. Essentially, it identifies cases where
2304 /// no code gen is necessary for the cast, hence the name no-op cast.  For 
2305 /// example, the following are all no-op casts:
2306 /// # bitcast i32* %x to i8*
2307 /// # bitcast <2 x i32> %x to <4 x i16> 
2308 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2309 /// @brief Determine if the described cast is a no-op.
2310 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2311                           Type *SrcTy,
2312                           Type *DestTy,
2313                           Type *IntPtrTy) {
2314   switch (Opcode) {
2315     default: llvm_unreachable("Invalid CastOp");
2316     case Instruction::Trunc:
2317     case Instruction::ZExt:
2318     case Instruction::SExt: 
2319     case Instruction::FPTrunc:
2320     case Instruction::FPExt:
2321     case Instruction::UIToFP:
2322     case Instruction::SIToFP:
2323     case Instruction::FPToUI:
2324     case Instruction::FPToSI:
2325     case Instruction::AddrSpaceCast:
2326       // TODO: Target informations may give a more accurate answer here.
2327       return false;
2328     case Instruction::BitCast:
2329       return true;  // BitCast never modifies bits.
2330     case Instruction::PtrToInt:
2331       return IntPtrTy->getScalarSizeInBits() ==
2332              DestTy->getScalarSizeInBits();
2333     case Instruction::IntToPtr:
2334       return IntPtrTy->getScalarSizeInBits() ==
2335              SrcTy->getScalarSizeInBits();
2336   }
2337 }
2338
2339 /// @brief Determine if a cast is a no-op.
2340 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2341   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2342 }
2343
2344 bool CastInst::isNoopCast(const DataLayout &DL) const {
2345   Type *PtrOpTy = nullptr;
2346   if (getOpcode() == Instruction::PtrToInt)
2347     PtrOpTy = getOperand(0)->getType();
2348   else if (getOpcode() == Instruction::IntToPtr)
2349     PtrOpTy = getType();
2350
2351   Type *IntPtrTy =
2352       PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0);
2353
2354   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2355 }
2356
2357 /// This function determines if a pair of casts can be eliminated and what
2358 /// opcode should be used in the elimination. This assumes that there are two
2359 /// instructions like this:
2360 /// *  %F = firstOpcode SrcTy %x to MidTy
2361 /// *  %S = secondOpcode MidTy %F to DstTy
2362 /// The function returns a resultOpcode so these two casts can be replaced with:
2363 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2364 /// If no such cast is permitted, the function returns 0.
2365 unsigned CastInst::isEliminableCastPair(
2366   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2367   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2368   Type *DstIntPtrTy) {
2369   // Define the 144 possibilities for these two cast instructions. The values
2370   // in this matrix determine what to do in a given situation and select the
2371   // case in the switch below.  The rows correspond to firstOp, the columns 
2372   // correspond to secondOp.  In looking at the table below, keep in mind
2373   // the following cast properties:
2374   //
2375   //          Size Compare       Source               Destination
2376   // Operator  Src ? Size   Type       Sign         Type       Sign
2377   // -------- ------------ -------------------   ---------------------
2378   // TRUNC         >       Integer      Any        Integral     Any
2379   // ZEXT          <       Integral   Unsigned     Integer      Any
2380   // SEXT          <       Integral    Signed      Integer      Any
2381   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2382   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2383   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2384   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2385   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2386   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2387   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2388   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2389   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2390   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2391   //
2392   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2393   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2394   // into "fptoui double to i64", but this loses information about the range
2395   // of the produced value (we no longer know the top-part is all zeros).
2396   // Further this conversion is often much more expensive for typical hardware,
2397   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2398   // same reason.
2399   const unsigned numCastOps =
2400     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2401   static const uint8_t CastResults[numCastOps][numCastOps] = {
2402     // T        F  F  U  S  F  F  P  I  B  A  -+
2403     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2404     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2405     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2406     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2407     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2408     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2409     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2410     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2411     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2412     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2413     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2414     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2415     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt          |
2416     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2417     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2418     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2419     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2420   };
2421
2422   // TODO: This logic could be encoded into the table above and handled in the
2423   // switch below.
2424   // If either of the casts are a bitcast from scalar to vector, disallow the
2425   // merging. However, any pair of bitcasts are allowed.
2426   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2427   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2428   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2429
2430   // Check if any of the casts convert scalars <-> vectors.
2431   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2432       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2433     if (!AreBothBitcasts)
2434       return 0;
2435
2436   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2437                             [secondOp-Instruction::CastOpsBegin];
2438   switch (ElimCase) {
2439     case 0: 
2440       // Categorically disallowed.
2441       return 0;
2442     case 1: 
2443       // Allowed, use first cast's opcode.
2444       return firstOp;
2445     case 2: 
2446       // Allowed, use second cast's opcode.
2447       return secondOp;
2448     case 3: 
2449       // No-op cast in second op implies firstOp as long as the DestTy
2450       // is integer and we are not converting between a vector and a
2451       // non-vector type.
2452       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2453         return firstOp;
2454       return 0;
2455     case 4:
2456       // No-op cast in second op implies firstOp as long as the DestTy
2457       // is floating point.
2458       if (DstTy->isFloatingPointTy())
2459         return firstOp;
2460       return 0;
2461     case 5: 
2462       // No-op cast in first op implies secondOp as long as the SrcTy
2463       // is an integer.
2464       if (SrcTy->isIntegerTy())
2465         return secondOp;
2466       return 0;
2467     case 6:
2468       // No-op cast in first op implies secondOp as long as the SrcTy
2469       // is a floating point.
2470       if (SrcTy->isFloatingPointTy())
2471         return secondOp;
2472       return 0;
2473     case 7: {
2474       // Cannot simplify if address spaces are different!
2475       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2476         return 0;
2477
2478       unsigned MidSize = MidTy->getScalarSizeInBits();
2479       // We can still fold this without knowing the actual sizes as long we
2480       // know that the intermediate pointer is the largest possible
2481       // pointer size.
2482       // FIXME: Is this always true?
2483       if (MidSize == 64)
2484         return Instruction::BitCast;
2485
2486       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2487       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2488         return 0;
2489       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2490       if (MidSize >= PtrSize)
2491         return Instruction::BitCast;
2492       return 0;
2493     }
2494     case 8: {
2495       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2496       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2497       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2498       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2499       unsigned DstSize = DstTy->getScalarSizeInBits();
2500       if (SrcSize == DstSize)
2501         return Instruction::BitCast;
2502       else if (SrcSize < DstSize)
2503         return firstOp;
2504       return secondOp;
2505     }
2506     case 9:
2507       // zext, sext -> zext, because sext can't sign extend after zext
2508       return Instruction::ZExt;
2509     case 10:
2510       // fpext followed by ftrunc is allowed if the bit size returned to is
2511       // the same as the original, in which case its just a bitcast
2512       if (SrcTy == DstTy)
2513         return Instruction::BitCast;
2514       return 0; // If the types are not the same we can't eliminate it.
2515     case 11: {
2516       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2517       if (!MidIntPtrTy)
2518         return 0;
2519       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2520       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2521       unsigned DstSize = DstTy->getScalarSizeInBits();
2522       if (SrcSize <= PtrSize && SrcSize == DstSize)
2523         return Instruction::BitCast;
2524       return 0;
2525     }
2526     case 12: {
2527       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2528       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2529       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2530         return Instruction::AddrSpaceCast;
2531       return Instruction::BitCast;
2532     }
2533     case 13:
2534       // FIXME: this state can be merged with (1), but the following assert
2535       // is useful to check the correcteness of the sequence due to semantic
2536       // change of bitcast.
2537       assert(
2538         SrcTy->isPtrOrPtrVectorTy() &&
2539         MidTy->isPtrOrPtrVectorTy() &&
2540         DstTy->isPtrOrPtrVectorTy() &&
2541         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2542         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2543         "Illegal addrspacecast, bitcast sequence!");
2544       // Allowed, use first cast's opcode
2545       return firstOp;
2546     case 14:
2547       // bitcast, addrspacecast -> addrspacecast if the element type of
2548       // bitcast's source is the same as that of addrspacecast's destination.
2549       if (SrcTy->getScalarType()->getPointerElementType() ==
2550           DstTy->getScalarType()->getPointerElementType())
2551         return Instruction::AddrSpaceCast;
2552       return 0;
2553
2554     case 15:
2555       // FIXME: this state can be merged with (1), but the following assert
2556       // is useful to check the correcteness of the sequence due to semantic
2557       // change of bitcast.
2558       assert(
2559         SrcTy->isIntOrIntVectorTy() &&
2560         MidTy->isPtrOrPtrVectorTy() &&
2561         DstTy->isPtrOrPtrVectorTy() &&
2562         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2563         "Illegal inttoptr, bitcast sequence!");
2564       // Allowed, use first cast's opcode
2565       return firstOp;
2566     case 16:
2567       // FIXME: this state can be merged with (2), but the following assert
2568       // is useful to check the correcteness of the sequence due to semantic
2569       // change of bitcast.
2570       assert(
2571         SrcTy->isPtrOrPtrVectorTy() &&
2572         MidTy->isPtrOrPtrVectorTy() &&
2573         DstTy->isIntOrIntVectorTy() &&
2574         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2575         "Illegal bitcast, ptrtoint sequence!");
2576       // Allowed, use second cast's opcode
2577       return secondOp;
2578     case 17:
2579       // (sitofp (zext x)) -> (uitofp x)
2580       return Instruction::UIToFP;
2581     case 99: 
2582       // Cast combination can't happen (error in input). This is for all cases
2583       // where the MidTy is not the same for the two cast instructions.
2584       llvm_unreachable("Invalid Cast Combination");
2585     default:
2586       llvm_unreachable("Error in CastResults table!!!");
2587   }
2588 }
2589
2590 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 
2591   const Twine &Name, Instruction *InsertBefore) {
2592   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2593   // Construct and return the appropriate CastInst subclass
2594   switch (op) {
2595   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2596   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2597   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2598   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2599   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2600   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2601   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2602   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2603   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2604   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2605   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2606   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2607   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2608   default: llvm_unreachable("Invalid opcode provided");
2609   }
2610 }
2611
2612 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2613   const Twine &Name, BasicBlock *InsertAtEnd) {
2614   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2615   // Construct and return the appropriate CastInst subclass
2616   switch (op) {
2617   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2618   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2619   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2620   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2621   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2622   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2623   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2624   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2625   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2626   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2627   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2628   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2629   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2630   default: llvm_unreachable("Invalid opcode provided");
2631   }
2632 }
2633
2634 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2635                                         const Twine &Name,
2636                                         Instruction *InsertBefore) {
2637   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2638     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2639   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2640 }
2641
2642 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2643                                         const Twine &Name,
2644                                         BasicBlock *InsertAtEnd) {
2645   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2646     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2647   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2648 }
2649
2650 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2651                                         const Twine &Name,
2652                                         Instruction *InsertBefore) {
2653   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2654     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2655   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2656 }
2657
2658 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2659                                         const Twine &Name,
2660                                         BasicBlock *InsertAtEnd) {
2661   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2662     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2663   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2664 }
2665
2666 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2667                                          const Twine &Name,
2668                                          Instruction *InsertBefore) {
2669   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2670     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2671   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2672 }
2673
2674 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2675                                          const Twine &Name, 
2676                                          BasicBlock *InsertAtEnd) {
2677   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2678     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2679   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2680 }
2681
2682 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2683                                       const Twine &Name,
2684                                       BasicBlock *InsertAtEnd) {
2685   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2686   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2687          "Invalid cast");
2688   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2689   assert((!Ty->isVectorTy() ||
2690           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2691          "Invalid cast");
2692
2693   if (Ty->isIntOrIntVectorTy())
2694     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2695
2696   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2697 }
2698
2699 /// @brief Create a BitCast or a PtrToInt cast instruction
2700 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2701                                       const Twine &Name,
2702                                       Instruction *InsertBefore) {
2703   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2704   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2705          "Invalid cast");
2706   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2707   assert((!Ty->isVectorTy() ||
2708           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2709          "Invalid cast");
2710
2711   if (Ty->isIntOrIntVectorTy())
2712     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2713
2714   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2715 }
2716
2717 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2718   Value *S, Type *Ty,
2719   const Twine &Name,
2720   BasicBlock *InsertAtEnd) {
2721   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2722   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2723
2724   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2725     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2726
2727   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2728 }
2729
2730 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2731   Value *S, Type *Ty,
2732   const Twine &Name,
2733   Instruction *InsertBefore) {
2734   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2735   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2736
2737   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2738     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2739
2740   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2741 }
2742
2743 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2744                                            const Twine &Name,
2745                                            Instruction *InsertBefore) {
2746   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2747     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2748   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2749     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2750
2751   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2752 }
2753
2754 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2755                                       bool isSigned, const Twine &Name,
2756                                       Instruction *InsertBefore) {
2757   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2758          "Invalid integer cast");
2759   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2760   unsigned DstBits = Ty->getScalarSizeInBits();
2761   Instruction::CastOps opcode =
2762     (SrcBits == DstBits ? Instruction::BitCast :
2763      (SrcBits > DstBits ? Instruction::Trunc :
2764       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2765   return Create(opcode, C, Ty, Name, InsertBefore);
2766 }
2767
2768 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
2769                                       bool isSigned, const Twine &Name,
2770                                       BasicBlock *InsertAtEnd) {
2771   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2772          "Invalid cast");
2773   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2774   unsigned DstBits = Ty->getScalarSizeInBits();
2775   Instruction::CastOps opcode =
2776     (SrcBits == DstBits ? Instruction::BitCast :
2777      (SrcBits > DstBits ? Instruction::Trunc :
2778       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2779   return Create(opcode, C, Ty, Name, InsertAtEnd);
2780 }
2781
2782 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2783                                  const Twine &Name, 
2784                                  Instruction *InsertBefore) {
2785   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2786          "Invalid cast");
2787   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2788   unsigned DstBits = Ty->getScalarSizeInBits();
2789   Instruction::CastOps opcode =
2790     (SrcBits == DstBits ? Instruction::BitCast :
2791      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2792   return Create(opcode, C, Ty, Name, InsertBefore);
2793 }
2794
2795 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2796                                  const Twine &Name, 
2797                                  BasicBlock *InsertAtEnd) {
2798   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2799          "Invalid cast");
2800   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2801   unsigned DstBits = Ty->getScalarSizeInBits();
2802   Instruction::CastOps opcode =
2803     (SrcBits == DstBits ? Instruction::BitCast :
2804      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2805   return Create(opcode, C, Ty, Name, InsertAtEnd);
2806 }
2807
2808 // Check whether it is valid to call getCastOpcode for these types.
2809 // This routine must be kept in sync with getCastOpcode.
2810 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2811   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2812     return false;
2813
2814   if (SrcTy == DestTy)
2815     return true;
2816
2817   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2818     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2819       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2820         // An element by element cast.  Valid if casting the elements is valid.
2821         SrcTy = SrcVecTy->getElementType();
2822         DestTy = DestVecTy->getElementType();
2823       }
2824
2825   // Get the bit sizes, we'll need these
2826   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2827   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2828
2829   // Run through the possibilities ...
2830   if (DestTy->isIntegerTy()) {               // Casting to integral
2831     if (SrcTy->isIntegerTy())                // Casting from integral
2832         return true;
2833     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2834       return true;
2835     if (SrcTy->isVectorTy())          // Casting from vector
2836       return DestBits == SrcBits;
2837                                       // Casting from something else
2838     return SrcTy->isPointerTy();
2839   } 
2840   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2841     if (SrcTy->isIntegerTy())                // Casting from integral
2842       return true;
2843     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2844       return true;
2845     if (SrcTy->isVectorTy())          // Casting from vector
2846       return DestBits == SrcBits;
2847                                     // Casting from something else
2848     return false;
2849   }
2850   if (DestTy->isVectorTy())         // Casting to vector
2851     return DestBits == SrcBits;
2852   if (DestTy->isPointerTy()) {        // Casting to pointer
2853     if (SrcTy->isPointerTy())                // Casting from pointer
2854       return true;
2855     return SrcTy->isIntegerTy();             // Casting from integral
2856   } 
2857   if (DestTy->isX86_MMXTy()) {
2858     if (SrcTy->isVectorTy())
2859       return DestBits == SrcBits;       // 64-bit vector to MMX
2860     return false;
2861   }                                    // Casting to something else
2862   return false;
2863 }
2864
2865 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2866   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2867     return false;
2868
2869   if (SrcTy == DestTy)
2870     return true;
2871
2872   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2873     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2874       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2875         // An element by element cast. Valid if casting the elements is valid.
2876         SrcTy = SrcVecTy->getElementType();
2877         DestTy = DestVecTy->getElementType();
2878       }
2879     }
2880   }
2881
2882   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2883     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2884       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2885     }
2886   }
2887
2888   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2889   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2890
2891   // Could still have vectors of pointers if the number of elements doesn't
2892   // match
2893   if (SrcBits == 0 || DestBits == 0)
2894     return false;
2895
2896   if (SrcBits != DestBits)
2897     return false;
2898
2899   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2900     return false;
2901
2902   return true;
2903 }
2904
2905 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2906                                           const DataLayout &DL) {
2907   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2908     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2909       return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2910   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2911     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2912       return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2913
2914   return isBitCastable(SrcTy, DestTy);
2915 }
2916
2917 // Provide a way to get a "cast" where the cast opcode is inferred from the
2918 // types and size of the operand. This, basically, is a parallel of the
2919 // logic in the castIsValid function below.  This axiom should hold:
2920 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2921 // should not assert in castIsValid. In other words, this produces a "correct"
2922 // casting opcode for the arguments passed to it.
2923 // This routine must be kept in sync with isCastable.
2924 Instruction::CastOps
2925 CastInst::getCastOpcode(
2926   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2927   Type *SrcTy = Src->getType();
2928
2929   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2930          "Only first class types are castable!");
2931
2932   if (SrcTy == DestTy)
2933     return BitCast;
2934
2935   // FIXME: Check address space sizes here
2936   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2937     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2938       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2939         // An element by element cast.  Find the appropriate opcode based on the
2940         // element types.
2941         SrcTy = SrcVecTy->getElementType();
2942         DestTy = DestVecTy->getElementType();
2943       }
2944
2945   // Get the bit sizes, we'll need these
2946   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2947   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2948
2949   // Run through the possibilities ...
2950   if (DestTy->isIntegerTy()) {                      // Casting to integral
2951     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2952       if (DestBits < SrcBits)
2953         return Trunc;                               // int -> smaller int
2954       else if (DestBits > SrcBits) {                // its an extension
2955         if (SrcIsSigned)
2956           return SExt;                              // signed -> SEXT
2957         else
2958           return ZExt;                              // unsigned -> ZEXT
2959       } else {
2960         return BitCast;                             // Same size, No-op cast
2961       }
2962     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2963       if (DestIsSigned) 
2964         return FPToSI;                              // FP -> sint
2965       else
2966         return FPToUI;                              // FP -> uint 
2967     } else if (SrcTy->isVectorTy()) {
2968       assert(DestBits == SrcBits &&
2969              "Casting vector to integer of different width");
2970       return BitCast;                             // Same size, no-op cast
2971     } else {
2972       assert(SrcTy->isPointerTy() &&
2973              "Casting from a value that is not first-class type");
2974       return PtrToInt;                              // ptr -> int
2975     }
2976   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2977     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2978       if (SrcIsSigned)
2979         return SIToFP;                              // sint -> FP
2980       else
2981         return UIToFP;                              // uint -> FP
2982     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2983       if (DestBits < SrcBits) {
2984         return FPTrunc;                             // FP -> smaller FP
2985       } else if (DestBits > SrcBits) {
2986         return FPExt;                               // FP -> larger FP
2987       } else  {
2988         return BitCast;                             // same size, no-op cast
2989       }
2990     } else if (SrcTy->isVectorTy()) {
2991       assert(DestBits == SrcBits &&
2992              "Casting vector to floating point of different width");
2993       return BitCast;                             // same size, no-op cast
2994     }
2995     llvm_unreachable("Casting pointer or non-first class to float");
2996   } else if (DestTy->isVectorTy()) {
2997     assert(DestBits == SrcBits &&
2998            "Illegal cast to vector (wrong type or size)");
2999     return BitCast;
3000   } else if (DestTy->isPointerTy()) {
3001     if (SrcTy->isPointerTy()) {
3002       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3003         return AddrSpaceCast;
3004       return BitCast;                               // ptr -> ptr
3005     } else if (SrcTy->isIntegerTy()) {
3006       return IntToPtr;                              // int -> ptr
3007     }
3008     llvm_unreachable("Casting pointer to other than pointer or int");
3009   } else if (DestTy->isX86_MMXTy()) {
3010     if (SrcTy->isVectorTy()) {
3011       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3012       return BitCast;                               // 64-bit vector to MMX
3013     }
3014     llvm_unreachable("Illegal cast to X86_MMX");
3015   }
3016   llvm_unreachable("Casting to type that is not first-class");
3017 }
3018
3019 //===----------------------------------------------------------------------===//
3020 //                    CastInst SubClass Constructors
3021 //===----------------------------------------------------------------------===//
3022
3023 /// Check that the construction parameters for a CastInst are correct. This
3024 /// could be broken out into the separate constructors but it is useful to have
3025 /// it in one place and to eliminate the redundant code for getting the sizes
3026 /// of the types involved.
3027 bool 
3028 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3029
3030   // Check for type sanity on the arguments
3031   Type *SrcTy = S->getType();
3032
3033   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3034       SrcTy->isAggregateType() || DstTy->isAggregateType())
3035     return false;
3036
3037   // Get the size of the types in bits, we'll need this later
3038   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3039   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3040
3041   // If these are vector types, get the lengths of the vectors (using zero for
3042   // scalar types means that checking that vector lengths match also checks that
3043   // scalars are not being converted to vectors or vectors to scalars).
3044   unsigned SrcLength = SrcTy->isVectorTy() ?
3045     cast<VectorType>(SrcTy)->getNumElements() : 0;
3046   unsigned DstLength = DstTy->isVectorTy() ?
3047     cast<VectorType>(DstTy)->getNumElements() : 0;
3048
3049   // Switch on the opcode provided
3050   switch (op) {
3051   default: return false; // This is an input error
3052   case Instruction::Trunc:
3053     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3054       SrcLength == DstLength && SrcBitSize > DstBitSize;
3055   case Instruction::ZExt:
3056     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3057       SrcLength == DstLength && SrcBitSize < DstBitSize;
3058   case Instruction::SExt: 
3059     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3060       SrcLength == DstLength && SrcBitSize < DstBitSize;
3061   case Instruction::FPTrunc:
3062     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3063       SrcLength == DstLength && SrcBitSize > DstBitSize;
3064   case Instruction::FPExt:
3065     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3066       SrcLength == DstLength && SrcBitSize < DstBitSize;
3067   case Instruction::UIToFP:
3068   case Instruction::SIToFP:
3069     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3070       SrcLength == DstLength;
3071   case Instruction::FPToUI:
3072   case Instruction::FPToSI:
3073     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3074       SrcLength == DstLength;
3075   case Instruction::PtrToInt:
3076     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3077       return false;
3078     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3079       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3080         return false;
3081     return SrcTy->getScalarType()->isPointerTy() &&
3082            DstTy->getScalarType()->isIntegerTy();
3083   case Instruction::IntToPtr:
3084     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3085       return false;
3086     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3087       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3088         return false;
3089     return SrcTy->getScalarType()->isIntegerTy() &&
3090            DstTy->getScalarType()->isPointerTy();
3091   case Instruction::BitCast: {
3092     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3093     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3094
3095     // BitCast implies a no-op cast of type only. No bits change.
3096     // However, you can't cast pointers to anything but pointers.
3097     if (!SrcPtrTy != !DstPtrTy)
3098       return false;
3099
3100     // For non-pointer cases, the cast is okay if the source and destination bit
3101     // widths are identical.
3102     if (!SrcPtrTy)
3103       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3104
3105     // If both are pointers then the address spaces must match.
3106     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3107       return false;
3108
3109     // A vector of pointers must have the same number of elements.
3110     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3111       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3112         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3113
3114       return false;
3115     }
3116
3117     return true;
3118   }
3119   case Instruction::AddrSpaceCast: {
3120     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3121     if (!SrcPtrTy)
3122       return false;
3123
3124     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3125     if (!DstPtrTy)
3126       return false;
3127
3128     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3129       return false;
3130
3131     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3132       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3133         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3134
3135       return false;
3136     }
3137
3138     return true;
3139   }
3140   }
3141 }
3142
3143 TruncInst::TruncInst(
3144   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3145 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3146   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3147 }
3148
3149 TruncInst::TruncInst(
3150   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3151 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
3152   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3153 }
3154
3155 ZExtInst::ZExtInst(
3156   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3157 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
3158   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3159 }
3160
3161 ZExtInst::ZExtInst(
3162   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3163 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
3164   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3165 }
3166 SExtInst::SExtInst(
3167   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3168 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
3169   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3170 }
3171
3172 SExtInst::SExtInst(
3173   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3174 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
3175   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3176 }
3177
3178 FPTruncInst::FPTruncInst(
3179   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3180 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
3181   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3182 }
3183
3184 FPTruncInst::FPTruncInst(
3185   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3186 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
3187   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3188 }
3189
3190 FPExtInst::FPExtInst(
3191   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3192 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
3193   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3194 }
3195
3196 FPExtInst::FPExtInst(
3197   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3198 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
3199   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3200 }
3201
3202 UIToFPInst::UIToFPInst(
3203   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3204 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
3205   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3206 }
3207
3208 UIToFPInst::UIToFPInst(
3209   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3210 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
3211   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3212 }
3213
3214 SIToFPInst::SIToFPInst(
3215   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3216 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
3217   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3218 }
3219
3220 SIToFPInst::SIToFPInst(
3221   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3222 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
3223   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3224 }
3225
3226 FPToUIInst::FPToUIInst(
3227   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3228 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
3229   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3230 }
3231
3232 FPToUIInst::FPToUIInst(
3233   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3234 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
3235   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3236 }
3237
3238 FPToSIInst::FPToSIInst(
3239   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3240 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
3241   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3242 }
3243
3244 FPToSIInst::FPToSIInst(
3245   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3246 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
3247   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3248 }
3249
3250 PtrToIntInst::PtrToIntInst(
3251   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3252 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
3253   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3254 }
3255
3256 PtrToIntInst::PtrToIntInst(
3257   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3258 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
3259   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3260 }
3261
3262 IntToPtrInst::IntToPtrInst(
3263   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3264 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
3265   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3266 }
3267
3268 IntToPtrInst::IntToPtrInst(
3269   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3270 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
3271   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3272 }
3273
3274 BitCastInst::BitCastInst(
3275   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3276 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
3277   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3278 }
3279
3280 BitCastInst::BitCastInst(
3281   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3282 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
3283   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3284 }
3285
3286 AddrSpaceCastInst::AddrSpaceCastInst(
3287   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3288 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3289   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3290 }
3291
3292 AddrSpaceCastInst::AddrSpaceCastInst(
3293   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3294 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3295   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3296 }
3297
3298 //===----------------------------------------------------------------------===//
3299 //                               CmpInst Classes
3300 //===----------------------------------------------------------------------===//
3301
3302 void CmpInst::anchor() {}
3303
3304 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3305                  Value *RHS, const Twine &Name, Instruction *InsertBefore)
3306   : Instruction(ty, op,
3307                 OperandTraits<CmpInst>::op_begin(this),
3308                 OperandTraits<CmpInst>::operands(this),
3309                 InsertBefore) {
3310     Op<0>() = LHS;
3311     Op<1>() = RHS;
3312   setPredicate((Predicate)predicate);
3313   setName(Name);
3314 }
3315
3316 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3317                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3318   : Instruction(ty, op,
3319                 OperandTraits<CmpInst>::op_begin(this),
3320                 OperandTraits<CmpInst>::operands(this),
3321                 InsertAtEnd) {
3322   Op<0>() = LHS;
3323   Op<1>() = RHS;
3324   setPredicate((Predicate)predicate);
3325   setName(Name);
3326 }
3327
3328 CmpInst *
3329 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3330                 const Twine &Name, Instruction *InsertBefore) {
3331   if (Op == Instruction::ICmp) {
3332     if (InsertBefore)
3333       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3334                           S1, S2, Name);
3335     else
3336       return new ICmpInst(CmpInst::Predicate(predicate),
3337                           S1, S2, Name);
3338   }
3339   
3340   if (InsertBefore)
3341     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3342                         S1, S2, Name);
3343   else
3344     return new FCmpInst(CmpInst::Predicate(predicate),
3345                         S1, S2, Name);
3346 }
3347
3348 CmpInst *
3349 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3350                 const Twine &Name, BasicBlock *InsertAtEnd) {
3351   if (Op == Instruction::ICmp) {
3352     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3353                         S1, S2, Name);
3354   }
3355   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3356                       S1, S2, Name);
3357 }
3358
3359 void CmpInst::swapOperands() {
3360   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3361     IC->swapOperands();
3362   else
3363     cast<FCmpInst>(this)->swapOperands();
3364 }
3365
3366 bool CmpInst::isCommutative() const {
3367   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3368     return IC->isCommutative();
3369   return cast<FCmpInst>(this)->isCommutative();
3370 }
3371
3372 bool CmpInst::isEquality() const {
3373   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3374     return IC->isEquality();
3375   return cast<FCmpInst>(this)->isEquality();
3376 }
3377
3378
3379 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3380   switch (pred) {
3381     default: llvm_unreachable("Unknown cmp predicate!");
3382     case ICMP_EQ: return ICMP_NE;
3383     case ICMP_NE: return ICMP_EQ;
3384     case ICMP_UGT: return ICMP_ULE;
3385     case ICMP_ULT: return ICMP_UGE;
3386     case ICMP_UGE: return ICMP_ULT;
3387     case ICMP_ULE: return ICMP_UGT;
3388     case ICMP_SGT: return ICMP_SLE;
3389     case ICMP_SLT: return ICMP_SGE;
3390     case ICMP_SGE: return ICMP_SLT;
3391     case ICMP_SLE: return ICMP_SGT;
3392
3393     case FCMP_OEQ: return FCMP_UNE;
3394     case FCMP_ONE: return FCMP_UEQ;
3395     case FCMP_OGT: return FCMP_ULE;
3396     case FCMP_OLT: return FCMP_UGE;
3397     case FCMP_OGE: return FCMP_ULT;
3398     case FCMP_OLE: return FCMP_UGT;
3399     case FCMP_UEQ: return FCMP_ONE;
3400     case FCMP_UNE: return FCMP_OEQ;
3401     case FCMP_UGT: return FCMP_OLE;
3402     case FCMP_ULT: return FCMP_OGE;
3403     case FCMP_UGE: return FCMP_OLT;
3404     case FCMP_ULE: return FCMP_OGT;
3405     case FCMP_ORD: return FCMP_UNO;
3406     case FCMP_UNO: return FCMP_ORD;
3407     case FCMP_TRUE: return FCMP_FALSE;
3408     case FCMP_FALSE: return FCMP_TRUE;
3409   }
3410 }
3411
3412 StringRef CmpInst::getPredicateName(Predicate Pred) {
3413   switch (Pred) {
3414   default:                   return "unknown";
3415   case FCmpInst::FCMP_FALSE: return "false";
3416   case FCmpInst::FCMP_OEQ:   return "oeq";
3417   case FCmpInst::FCMP_OGT:   return "ogt";
3418   case FCmpInst::FCMP_OGE:   return "oge";
3419   case FCmpInst::FCMP_OLT:   return "olt";
3420   case FCmpInst::FCMP_OLE:   return "ole";
3421   case FCmpInst::FCMP_ONE:   return "one";
3422   case FCmpInst::FCMP_ORD:   return "ord";
3423   case FCmpInst::FCMP_UNO:   return "uno";
3424   case FCmpInst::FCMP_UEQ:   return "ueq";
3425   case FCmpInst::FCMP_UGT:   return "ugt";
3426   case FCmpInst::FCMP_UGE:   return "uge";
3427   case FCmpInst::FCMP_ULT:   return "ult";
3428   case FCmpInst::FCMP_ULE:   return "ule";
3429   case FCmpInst::FCMP_UNE:   return "une";
3430   case FCmpInst::FCMP_TRUE:  return "true";
3431   case ICmpInst::ICMP_EQ:    return "eq";
3432   case ICmpInst::ICMP_NE:    return "ne";
3433   case ICmpInst::ICMP_SGT:   return "sgt";
3434   case ICmpInst::ICMP_SGE:   return "sge";
3435   case ICmpInst::ICMP_SLT:   return "slt";
3436   case ICmpInst::ICMP_SLE:   return "sle";
3437   case ICmpInst::ICMP_UGT:   return "ugt";
3438   case ICmpInst::ICMP_UGE:   return "uge";
3439   case ICmpInst::ICMP_ULT:   return "ult";
3440   case ICmpInst::ICMP_ULE:   return "ule";
3441   }
3442 }
3443
3444 void ICmpInst::anchor() {}
3445
3446 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3447   switch (pred) {
3448     default: llvm_unreachable("Unknown icmp predicate!");
3449     case ICMP_EQ: case ICMP_NE: 
3450     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
3451        return pred;
3452     case ICMP_UGT: return ICMP_SGT;
3453     case ICMP_ULT: return ICMP_SLT;
3454     case ICMP_UGE: return ICMP_SGE;
3455     case ICMP_ULE: return ICMP_SLE;
3456   }
3457 }
3458
3459 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3460   switch (pred) {
3461     default: llvm_unreachable("Unknown icmp predicate!");
3462     case ICMP_EQ: case ICMP_NE: 
3463     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 
3464        return pred;
3465     case ICMP_SGT: return ICMP_UGT;
3466     case ICMP_SLT: return ICMP_ULT;
3467     case ICMP_SGE: return ICMP_UGE;
3468     case ICMP_SLE: return ICMP_ULE;
3469   }
3470 }
3471
3472 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3473   switch (pred) {
3474     default: llvm_unreachable("Unknown cmp predicate!");
3475     case ICMP_EQ: case ICMP_NE:
3476       return pred;
3477     case ICMP_SGT: return ICMP_SLT;
3478     case ICMP_SLT: return ICMP_SGT;
3479     case ICMP_SGE: return ICMP_SLE;
3480     case ICMP_SLE: return ICMP_SGE;
3481     case ICMP_UGT: return ICMP_ULT;
3482     case ICMP_ULT: return ICMP_UGT;
3483     case ICMP_UGE: return ICMP_ULE;
3484     case ICMP_ULE: return ICMP_UGE;
3485   
3486     case FCMP_FALSE: case FCMP_TRUE:
3487     case FCMP_OEQ: case FCMP_ONE:
3488     case FCMP_UEQ: case FCMP_UNE:
3489     case FCMP_ORD: case FCMP_UNO:
3490       return pred;
3491     case FCMP_OGT: return FCMP_OLT;
3492     case FCMP_OLT: return FCMP_OGT;
3493     case FCMP_OGE: return FCMP_OLE;
3494     case FCMP_OLE: return FCMP_OGE;
3495     case FCMP_UGT: return FCMP_ULT;
3496     case FCMP_ULT: return FCMP_UGT;
3497     case FCMP_UGE: return FCMP_ULE;
3498     case FCMP_ULE: return FCMP_UGE;
3499   }
3500 }
3501
3502 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3503   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3504
3505   switch (pred) {
3506   default:
3507     llvm_unreachable("Unknown predicate!");
3508   case CmpInst::ICMP_ULT:
3509     return CmpInst::ICMP_SLT;
3510   case CmpInst::ICMP_ULE:
3511     return CmpInst::ICMP_SLE;
3512   case CmpInst::ICMP_UGT:
3513     return CmpInst::ICMP_SGT;
3514   case CmpInst::ICMP_UGE:
3515     return CmpInst::ICMP_SGE;
3516   }
3517 }
3518
3519 bool CmpInst::isUnsigned(Predicate predicate) {
3520   switch (predicate) {
3521     default: return false;
3522     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
3523     case ICmpInst::ICMP_UGE: return true;
3524   }
3525 }
3526
3527 bool CmpInst::isSigned(Predicate predicate) {
3528   switch (predicate) {
3529     default: return false;
3530     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
3531     case ICmpInst::ICMP_SGE: return true;
3532   }
3533 }
3534
3535 bool CmpInst::isOrdered(Predicate predicate) {
3536   switch (predicate) {
3537     default: return false;
3538     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
3539     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
3540     case FCmpInst::FCMP_ORD: return true;
3541   }
3542 }
3543       
3544 bool CmpInst::isUnordered(Predicate predicate) {
3545   switch (predicate) {
3546     default: return false;
3547     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
3548     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
3549     case FCmpInst::FCMP_UNO: return true;
3550   }
3551 }
3552
3553 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3554   switch(predicate) {
3555     default: return false;
3556     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3557     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3558   }
3559 }
3560
3561 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3562   switch(predicate) {
3563   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3564   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3565   default: return false;
3566   }
3567 }
3568
3569 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3570   // If the predicates match, then we know the first condition implies the
3571   // second is true.
3572   if (Pred1 == Pred2)
3573     return true;
3574
3575   switch (Pred1) {
3576   default:
3577     break;
3578   case ICMP_EQ:
3579     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3580     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3581            Pred2 == ICMP_SLE;
3582   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3583     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3584   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3585     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3586   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3587     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3588   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3589     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3590   }
3591   return false;
3592 }
3593
3594 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3595   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3596 }
3597
3598 //===----------------------------------------------------------------------===//
3599 //                        SwitchInst Implementation
3600 //===----------------------------------------------------------------------===//
3601
3602 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3603   assert(Value && Default && NumReserved);
3604   ReservedSpace = NumReserved;
3605   setNumHungOffUseOperands(2);
3606   allocHungoffUses(ReservedSpace);
3607
3608   Op<0>() = Value;
3609   Op<1>() = Default;
3610 }
3611
3612 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3613 /// switch on and a default destination.  The number of additional cases can
3614 /// be specified here to make memory allocation more efficient.  This
3615 /// constructor can also autoinsert before another instruction.
3616 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3617                        Instruction *InsertBefore)
3618   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3619                    nullptr, 0, InsertBefore) {
3620   init(Value, Default, 2+NumCases*2);
3621 }
3622
3623 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3624 /// switch on and a default destination.  The number of additional cases can
3625 /// be specified here to make memory allocation more efficient.  This
3626 /// constructor also autoinserts at the end of the specified BasicBlock.
3627 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3628                        BasicBlock *InsertAtEnd)
3629   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3630                    nullptr, 0, InsertAtEnd) {
3631   init(Value, Default, 2+NumCases*2);
3632 }
3633
3634 SwitchInst::SwitchInst(const SwitchInst &SI)
3635   : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3636   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3637   setNumHungOffUseOperands(SI.getNumOperands());
3638   Use *OL = getOperandList();
3639   const Use *InOL = SI.getOperandList();
3640   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3641     OL[i] = InOL[i];
3642     OL[i+1] = InOL[i+1];
3643   }
3644   SubclassOptionalData = SI.SubclassOptionalData;
3645 }
3646
3647
3648 /// addCase - Add an entry to the switch instruction...
3649 ///
3650 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3651   unsigned NewCaseIdx = getNumCases();
3652   unsigned OpNo = getNumOperands();
3653   if (OpNo+2 > ReservedSpace)
3654     growOperands();  // Get more space!
3655   // Initialize some new operands.
3656   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3657   setNumHungOffUseOperands(OpNo+2);
3658   CaseIt Case(this, NewCaseIdx);
3659   Case.setValue(OnVal);
3660   Case.setSuccessor(Dest);
3661 }
3662
3663 /// removeCase - This method removes the specified case and its successor
3664 /// from the switch instruction.
3665 void SwitchInst::removeCase(CaseIt i) {
3666   unsigned idx = i.getCaseIndex();
3667   
3668   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3669
3670   unsigned NumOps = getNumOperands();
3671   Use *OL = getOperandList();
3672
3673   // Overwrite this case with the end of the list.
3674   if (2 + (idx + 1) * 2 != NumOps) {
3675     OL[2 + idx * 2] = OL[NumOps - 2];
3676     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3677   }
3678
3679   // Nuke the last value.
3680   OL[NumOps-2].set(nullptr);
3681   OL[NumOps-2+1].set(nullptr);
3682   setNumHungOffUseOperands(NumOps-2);
3683 }
3684
3685 /// growOperands - grow operands - This grows the operand list in response
3686 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3687 ///
3688 void SwitchInst::growOperands() {
3689   unsigned e = getNumOperands();
3690   unsigned NumOps = e*3;
3691
3692   ReservedSpace = NumOps;
3693   growHungoffUses(ReservedSpace);
3694 }
3695
3696
3697 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3698   return getSuccessor(idx);
3699 }
3700 unsigned SwitchInst::getNumSuccessorsV() const {
3701   return getNumSuccessors();
3702 }
3703 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3704   setSuccessor(idx, B);
3705 }
3706
3707 //===----------------------------------------------------------------------===//
3708 //                        IndirectBrInst Implementation
3709 //===----------------------------------------------------------------------===//
3710
3711 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3712   assert(Address && Address->getType()->isPointerTy() &&
3713          "Address of indirectbr must be a pointer");
3714   ReservedSpace = 1+NumDests;
3715   setNumHungOffUseOperands(1);
3716   allocHungoffUses(ReservedSpace);
3717
3718   Op<0>() = Address;
3719 }
3720
3721
3722 /// growOperands - grow operands - This grows the operand list in response
3723 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3724 ///
3725 void IndirectBrInst::growOperands() {
3726   unsigned e = getNumOperands();
3727   unsigned NumOps = e*2;
3728   
3729   ReservedSpace = NumOps;
3730   growHungoffUses(ReservedSpace);
3731 }
3732
3733 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3734                                Instruction *InsertBefore)
3735 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3736                  nullptr, 0, InsertBefore) {
3737   init(Address, NumCases);
3738 }
3739
3740 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3741                                BasicBlock *InsertAtEnd)
3742 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3743                  nullptr, 0, InsertAtEnd) {
3744   init(Address, NumCases);
3745 }
3746
3747 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3748     : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3749                      nullptr, IBI.getNumOperands()) {
3750   allocHungoffUses(IBI.getNumOperands());
3751   Use *OL = getOperandList();
3752   const Use *InOL = IBI.getOperandList();
3753   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3754     OL[i] = InOL[i];
3755   SubclassOptionalData = IBI.SubclassOptionalData;
3756 }
3757
3758 /// addDestination - Add a destination.
3759 ///
3760 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3761   unsigned OpNo = getNumOperands();
3762   if (OpNo+1 > ReservedSpace)
3763     growOperands();  // Get more space!
3764   // Initialize some new operands.
3765   assert(OpNo < ReservedSpace && "Growing didn't work!");
3766   setNumHungOffUseOperands(OpNo+1);
3767   getOperandList()[OpNo] = DestBB;
3768 }
3769
3770 /// removeDestination - This method removes the specified successor from the
3771 /// indirectbr instruction.
3772 void IndirectBrInst::removeDestination(unsigned idx) {
3773   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3774   
3775   unsigned NumOps = getNumOperands();
3776   Use *OL = getOperandList();
3777
3778   // Replace this value with the last one.
3779   OL[idx+1] = OL[NumOps-1];
3780   
3781   // Nuke the last value.
3782   OL[NumOps-1].set(nullptr);
3783   setNumHungOffUseOperands(NumOps-1);
3784 }
3785
3786 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3787   return getSuccessor(idx);
3788 }
3789 unsigned IndirectBrInst::getNumSuccessorsV() const {
3790   return getNumSuccessors();
3791 }
3792 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3793   setSuccessor(idx, B);
3794 }
3795
3796 //===----------------------------------------------------------------------===//
3797 //                           cloneImpl() implementations
3798 //===----------------------------------------------------------------------===//
3799
3800 // Define these methods here so vtables don't get emitted into every translation
3801 // unit that uses these classes.
3802
3803 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3804   return new (getNumOperands()) GetElementPtrInst(*this);
3805 }
3806
3807 BinaryOperator *BinaryOperator::cloneImpl() const {
3808   return Create(getOpcode(), Op<0>(), Op<1>());
3809 }
3810
3811 FCmpInst *FCmpInst::cloneImpl() const {
3812   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3813 }
3814
3815 ICmpInst *ICmpInst::cloneImpl() const {
3816   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3817 }
3818
3819 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3820   return new ExtractValueInst(*this);
3821 }
3822
3823 InsertValueInst *InsertValueInst::cloneImpl() const {
3824   return new InsertValueInst(*this);
3825 }
3826
3827 AllocaInst *AllocaInst::cloneImpl() const {
3828   AllocaInst *Result = new AllocaInst(getAllocatedType(),
3829                                       (Value *)getOperand(0), getAlignment());
3830   Result->setUsedWithInAlloca(isUsedWithInAlloca());
3831   Result->setSwiftError(isSwiftError());
3832   return Result;
3833 }
3834
3835 LoadInst *LoadInst::cloneImpl() const {
3836   return new LoadInst(getOperand(0), Twine(), isVolatile(),
3837                       getAlignment(), getOrdering(), getSynchScope());
3838 }
3839
3840 StoreInst *StoreInst::cloneImpl() const {
3841   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3842                        getAlignment(), getOrdering(), getSynchScope());
3843   
3844 }
3845
3846 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3847   AtomicCmpXchgInst *Result =
3848     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3849                           getSuccessOrdering(), getFailureOrdering(),
3850                           getSynchScope());
3851   Result->setVolatile(isVolatile());
3852   Result->setWeak(isWeak());
3853   return Result;
3854 }
3855
3856 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3857   AtomicRMWInst *Result =
3858     new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3859                       getOrdering(), getSynchScope());
3860   Result->setVolatile(isVolatile());
3861   return Result;
3862 }
3863
3864 FenceInst *FenceInst::cloneImpl() const {
3865   return new FenceInst(getContext(), getOrdering(), getSynchScope());
3866 }
3867
3868 TruncInst *TruncInst::cloneImpl() const {
3869   return new TruncInst(getOperand(0), getType());
3870 }
3871
3872 ZExtInst *ZExtInst::cloneImpl() const {
3873   return new ZExtInst(getOperand(0), getType());
3874 }
3875
3876 SExtInst *SExtInst::cloneImpl() const {
3877   return new SExtInst(getOperand(0), getType());
3878 }
3879
3880 FPTruncInst *FPTruncInst::cloneImpl() const {
3881   return new FPTruncInst(getOperand(0), getType());
3882 }
3883
3884 FPExtInst *FPExtInst::cloneImpl() const {
3885   return new FPExtInst(getOperand(0), getType());
3886 }
3887
3888 UIToFPInst *UIToFPInst::cloneImpl() const {
3889   return new UIToFPInst(getOperand(0), getType());
3890 }
3891
3892 SIToFPInst *SIToFPInst::cloneImpl() const {
3893   return new SIToFPInst(getOperand(0), getType());
3894 }
3895
3896 FPToUIInst *FPToUIInst::cloneImpl() const {
3897   return new FPToUIInst(getOperand(0), getType());
3898 }
3899
3900 FPToSIInst *FPToSIInst::cloneImpl() const {
3901   return new FPToSIInst(getOperand(0), getType());
3902 }
3903
3904 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3905   return new PtrToIntInst(getOperand(0), getType());
3906 }
3907
3908 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3909   return new IntToPtrInst(getOperand(0), getType());
3910 }
3911
3912 BitCastInst *BitCastInst::cloneImpl() const {
3913   return new BitCastInst(getOperand(0), getType());
3914 }
3915
3916 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
3917   return new AddrSpaceCastInst(getOperand(0), getType());
3918 }
3919
3920 CallInst *CallInst::cloneImpl() const {
3921   if (hasOperandBundles()) {
3922     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3923     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
3924   }
3925   return  new(getNumOperands()) CallInst(*this);
3926 }
3927
3928 SelectInst *SelectInst::cloneImpl() const {
3929   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3930 }
3931
3932 VAArgInst *VAArgInst::cloneImpl() const {
3933   return new VAArgInst(getOperand(0), getType());
3934 }
3935
3936 ExtractElementInst *ExtractElementInst::cloneImpl() const {
3937   return ExtractElementInst::Create(getOperand(0), getOperand(1));
3938 }
3939
3940 InsertElementInst *InsertElementInst::cloneImpl() const {
3941   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3942 }
3943
3944 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
3945   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3946 }
3947
3948 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3949
3950 LandingPadInst *LandingPadInst::cloneImpl() const {
3951   return new LandingPadInst(*this);
3952 }
3953
3954 ReturnInst *ReturnInst::cloneImpl() const {
3955   return new(getNumOperands()) ReturnInst(*this);
3956 }
3957
3958 BranchInst *BranchInst::cloneImpl() const {
3959   return new(getNumOperands()) BranchInst(*this);
3960 }
3961
3962 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3963
3964 IndirectBrInst *IndirectBrInst::cloneImpl() const {
3965   return new IndirectBrInst(*this);
3966 }
3967
3968 InvokeInst *InvokeInst::cloneImpl() const {
3969   if (hasOperandBundles()) {
3970     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3971     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
3972   }
3973   return new(getNumOperands()) InvokeInst(*this);
3974 }
3975
3976 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3977
3978 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
3979   return new (getNumOperands()) CleanupReturnInst(*this);
3980 }
3981
3982 CatchReturnInst *CatchReturnInst::cloneImpl() const {
3983   return new (getNumOperands()) CatchReturnInst(*this);
3984 }
3985
3986 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
3987   return new CatchSwitchInst(*this);
3988 }
3989
3990 FuncletPadInst *FuncletPadInst::cloneImpl() const {
3991   return new (getNumOperands()) FuncletPadInst(*this);
3992 }
3993
3994 UnreachableInst *UnreachableInst::cloneImpl() const {
3995   LLVMContext &Context = getContext();
3996   return new UnreachableInst(Context);
3997 }