]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/IR/Instructions.cpp
Merge OpenSSL 1.0.2o.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / IR / Instructions.cpp
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstdint>
43 #include <vector>
44
45 using namespace llvm;
46
47 //===----------------------------------------------------------------------===//
48 //                            CallSite Class
49 //===----------------------------------------------------------------------===//
50
51 User::op_iterator CallSite::getCallee() const {
52   Instruction *II(getInstruction());
53   return isCall()
54     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
55     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
56 }
57
58 //===----------------------------------------------------------------------===//
59 //                            TerminatorInst Class
60 //===----------------------------------------------------------------------===//
61
62 unsigned TerminatorInst::getNumSuccessors() const {
63   switch (getOpcode()) {
64 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
65   case Instruction::OPC:                                                       \
66     return static_cast<const CLASS *>(this)->getNumSuccessors();
67 #include "llvm/IR/Instruction.def"
68   default:
69     break;
70   }
71   llvm_unreachable("not a terminator");
72 }
73
74 BasicBlock *TerminatorInst::getSuccessor(unsigned idx) const {
75   switch (getOpcode()) {
76 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
77   case Instruction::OPC:                                                       \
78     return static_cast<const CLASS *>(this)->getSuccessor(idx);
79 #include "llvm/IR/Instruction.def"
80   default:
81     break;
82   }
83   llvm_unreachable("not a terminator");
84 }
85
86 void TerminatorInst::setSuccessor(unsigned idx, BasicBlock *B) {
87   switch (getOpcode()) {
88 #define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
89   case Instruction::OPC:                                                       \
90     return static_cast<CLASS *>(this)->setSuccessor(idx, B);
91 #include "llvm/IR/Instruction.def"
92   default:
93     break;
94   }
95   llvm_unreachable("not a terminator");
96 }
97
98 //===----------------------------------------------------------------------===//
99 //                              SelectInst Class
100 //===----------------------------------------------------------------------===//
101
102 /// areInvalidOperands - Return a string if the specified operands are invalid
103 /// for a select operation, otherwise return null.
104 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
105   if (Op1->getType() != Op2->getType())
106     return "both values to select must have same type";
107
108   if (Op1->getType()->isTokenTy())
109     return "select values cannot have token type";
110
111   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
112     // Vector select.
113     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
114       return "vector select condition element type must be i1";
115     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
116     if (!ET)
117       return "selected values for vector select must be vectors";
118     if (ET->getNumElements() != VT->getNumElements())
119       return "vector select requires selected vectors to have "
120                    "the same vector length as select condition";
121   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
122     return "select condition must be i1 or <n x i1>";
123   }
124   return nullptr;
125 }
126
127 //===----------------------------------------------------------------------===//
128 //                               PHINode Class
129 //===----------------------------------------------------------------------===//
130
131 PHINode::PHINode(const PHINode &PN)
132     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
133       ReservedSpace(PN.getNumOperands()) {
134   allocHungoffUses(PN.getNumOperands());
135   std::copy(PN.op_begin(), PN.op_end(), op_begin());
136   std::copy(PN.block_begin(), PN.block_end(), block_begin());
137   SubclassOptionalData = PN.SubclassOptionalData;
138 }
139
140 // removeIncomingValue - Remove an incoming value.  This is useful if a
141 // predecessor basic block is deleted.
142 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
143   Value *Removed = getIncomingValue(Idx);
144
145   // Move everything after this operand down.
146   //
147   // FIXME: we could just swap with the end of the list, then erase.  However,
148   // clients might not expect this to happen.  The code as it is thrashes the
149   // use/def lists, which is kinda lame.
150   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
151   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
152
153   // Nuke the last value.
154   Op<-1>().set(nullptr);
155   setNumHungOffUseOperands(getNumOperands() - 1);
156
157   // If the PHI node is dead, because it has zero entries, nuke it now.
158   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
159     // If anyone is using this PHI, make them use a dummy value instead...
160     replaceAllUsesWith(UndefValue::get(getType()));
161     eraseFromParent();
162   }
163   return Removed;
164 }
165
166 /// growOperands - grow operands - This grows the operand list in response
167 /// to a push_back style of operation.  This grows the number of ops by 1.5
168 /// times.
169 ///
170 void PHINode::growOperands() {
171   unsigned e = getNumOperands();
172   unsigned NumOps = e + e / 2;
173   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
174
175   ReservedSpace = NumOps;
176   growHungoffUses(ReservedSpace, /* IsPhi */ true);
177 }
178
179 /// hasConstantValue - If the specified PHI node always merges together the same
180 /// value, return the value, otherwise return null.
181 Value *PHINode::hasConstantValue() const {
182   // Exploit the fact that phi nodes always have at least one entry.
183   Value *ConstantValue = getIncomingValue(0);
184   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
185     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
186       if (ConstantValue != this)
187         return nullptr; // Incoming values not all the same.
188        // The case where the first value is this PHI.
189       ConstantValue = getIncomingValue(i);
190     }
191   if (ConstantValue == this)
192     return UndefValue::get(getType());
193   return ConstantValue;
194 }
195
196 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
197 /// together the same value, assuming that undefs result in the same value as
198 /// non-undefs.
199 /// Unlike \ref hasConstantValue, this does not return a value because the
200 /// unique non-undef incoming value need not dominate the PHI node.
201 bool PHINode::hasConstantOrUndefValue() const {
202   Value *ConstantValue = nullptr;
203   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
204     Value *Incoming = getIncomingValue(i);
205     if (Incoming != this && !isa<UndefValue>(Incoming)) {
206       if (ConstantValue && ConstantValue != Incoming)
207         return false;
208       ConstantValue = Incoming;
209     }
210   }
211   return true;
212 }
213
214 //===----------------------------------------------------------------------===//
215 //                       LandingPadInst Implementation
216 //===----------------------------------------------------------------------===//
217
218 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
219                                const Twine &NameStr, Instruction *InsertBefore)
220     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
221   init(NumReservedValues, NameStr);
222 }
223
224 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
225                                const Twine &NameStr, BasicBlock *InsertAtEnd)
226     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
227   init(NumReservedValues, NameStr);
228 }
229
230 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
231     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
232                   LP.getNumOperands()),
233       ReservedSpace(LP.getNumOperands()) {
234   allocHungoffUses(LP.getNumOperands());
235   Use *OL = getOperandList();
236   const Use *InOL = LP.getOperandList();
237   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
238     OL[I] = InOL[I];
239
240   setCleanup(LP.isCleanup());
241 }
242
243 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
244                                        const Twine &NameStr,
245                                        Instruction *InsertBefore) {
246   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
247 }
248
249 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
250                                        const Twine &NameStr,
251                                        BasicBlock *InsertAtEnd) {
252   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
253 }
254
255 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
256   ReservedSpace = NumReservedValues;
257   setNumHungOffUseOperands(0);
258   allocHungoffUses(ReservedSpace);
259   setName(NameStr);
260   setCleanup(false);
261 }
262
263 /// growOperands - grow operands - This grows the operand list in response to a
264 /// push_back style of operation. This grows the number of ops by 2 times.
265 void LandingPadInst::growOperands(unsigned Size) {
266   unsigned e = getNumOperands();
267   if (ReservedSpace >= e + Size) return;
268   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
269   growHungoffUses(ReservedSpace);
270 }
271
272 void LandingPadInst::addClause(Constant *Val) {
273   unsigned OpNo = getNumOperands();
274   growOperands(1);
275   assert(OpNo < ReservedSpace && "Growing didn't work!");
276   setNumHungOffUseOperands(getNumOperands() + 1);
277   getOperandList()[OpNo] = Val;
278 }
279
280 //===----------------------------------------------------------------------===//
281 //                        CallInst Implementation
282 //===----------------------------------------------------------------------===//
283
284 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
285                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
286   this->FTy = FTy;
287   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
288          "NumOperands not set up?");
289   Op<-1>() = Func;
290
291 #ifndef NDEBUG
292   assert((Args.size() == FTy->getNumParams() ||
293           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
294          "Calling a function with bad signature!");
295
296   for (unsigned i = 0; i != Args.size(); ++i)
297     assert((i >= FTy->getNumParams() || 
298             FTy->getParamType(i) == Args[i]->getType()) &&
299            "Calling a function with a bad signature!");
300 #endif
301
302   std::copy(Args.begin(), Args.end(), op_begin());
303
304   auto It = populateBundleOperandInfos(Bundles, Args.size());
305   (void)It;
306   assert(It + 1 == op_end() && "Should add up!");
307
308   setName(NameStr);
309 }
310
311 void CallInst::init(Value *Func, const Twine &NameStr) {
312   FTy =
313       cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
314   assert(getNumOperands() == 1 && "NumOperands not set up?");
315   Op<-1>() = Func;
316
317   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
318
319   setName(NameStr);
320 }
321
322 CallInst::CallInst(Value *Func, const Twine &Name,
323                    Instruction *InsertBefore)
324   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
325                                    ->getElementType())->getReturnType(),
326                 Instruction::Call,
327                 OperandTraits<CallInst>::op_end(this) - 1,
328                 1, InsertBefore) {
329   init(Func, Name);
330 }
331
332 CallInst::CallInst(Value *Func, const Twine &Name,
333                    BasicBlock *InsertAtEnd)
334   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
335                                    ->getElementType())->getReturnType(),
336                 Instruction::Call,
337                 OperandTraits<CallInst>::op_end(this) - 1,
338                 1, InsertAtEnd) {
339   init(Func, Name);
340 }
341
342 CallInst::CallInst(const CallInst &CI)
343     : Instruction(CI.getType(), Instruction::Call,
344                   OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
345                   CI.getNumOperands()),
346       Attrs(CI.Attrs), FTy(CI.FTy) {
347   setTailCallKind(CI.getTailCallKind());
348   setCallingConv(CI.getCallingConv());
349
350   std::copy(CI.op_begin(), CI.op_end(), op_begin());
351   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
352             bundle_op_info_begin());
353   SubclassOptionalData = CI.SubclassOptionalData;
354 }
355
356 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
357                            Instruction *InsertPt) {
358   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
359
360   auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
361                                  InsertPt);
362   NewCI->setTailCallKind(CI->getTailCallKind());
363   NewCI->setCallingConv(CI->getCallingConv());
364   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
365   NewCI->setAttributes(CI->getAttributes());
366   NewCI->setDebugLoc(CI->getDebugLoc());
367   return NewCI;
368 }
369
370 Value *CallInst::getReturnedArgOperand() const {
371   unsigned Index;
372
373   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
374     return getArgOperand(Index - AttributeList::FirstArgIndex);
375   if (const Function *F = getCalledFunction())
376     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
377         Index)
378       return getArgOperand(Index - AttributeList::FirstArgIndex);
379
380   return nullptr;
381 }
382
383 void CallInst::addAttribute(unsigned i, Attribute::AttrKind Kind) {
384   AttributeList PAL = getAttributes();
385   PAL = PAL.addAttribute(getContext(), i, Kind);
386   setAttributes(PAL);
387 }
388
389 void CallInst::addAttribute(unsigned i, Attribute Attr) {
390   AttributeList PAL = getAttributes();
391   PAL = PAL.addAttribute(getContext(), i, Attr);
392   setAttributes(PAL);
393 }
394
395 void CallInst::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
396   assert(ArgNo < getNumArgOperands() && "Out of bounds");
397   AttributeList PAL = getAttributes();
398   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
399   setAttributes(PAL);
400 }
401
402 void CallInst::addParamAttr(unsigned ArgNo, Attribute Attr) {
403   assert(ArgNo < getNumArgOperands() && "Out of bounds");
404   AttributeList PAL = getAttributes();
405   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
406   setAttributes(PAL);
407 }
408
409 void CallInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
410   AttributeList PAL = getAttributes();
411   PAL = PAL.removeAttribute(getContext(), i, Kind);
412   setAttributes(PAL);
413 }
414
415 void CallInst::removeAttribute(unsigned i, StringRef Kind) {
416   AttributeList PAL = getAttributes();
417   PAL = PAL.removeAttribute(getContext(), i, Kind);
418   setAttributes(PAL);
419 }
420
421 void CallInst::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
422   assert(ArgNo < getNumArgOperands() && "Out of bounds");
423   AttributeList PAL = getAttributes();
424   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
425   setAttributes(PAL);
426 }
427
428 void CallInst::removeParamAttr(unsigned ArgNo, StringRef Kind) {
429   assert(ArgNo < getNumArgOperands() && "Out of bounds");
430   AttributeList PAL = getAttributes();
431   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
432   setAttributes(PAL);
433 }
434
435 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
436   AttributeList PAL = getAttributes();
437   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
438   setAttributes(PAL);
439 }
440
441 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
442   AttributeList PAL = getAttributes();
443   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
444   setAttributes(PAL);
445 }
446
447 bool CallInst::hasRetAttr(Attribute::AttrKind Kind) const {
448   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
449     return true;
450
451   // Look at the callee, if available.
452   if (const Function *F = getCalledFunction())
453     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
454   return false;
455 }
456
457 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const {
458   assert(i < getNumArgOperands() && "Param index out of bounds!");
459
460   if (Attrs.hasParamAttribute(i, Kind))
461     return true;
462   if (const Function *F = getCalledFunction())
463     return F->getAttributes().hasParamAttribute(i, Kind);
464   return false;
465 }
466
467 bool CallInst::dataOperandHasImpliedAttr(unsigned i,
468                                          Attribute::AttrKind Kind) const {
469   // There are getNumOperands() - 1 data operands.  The last operand is the
470   // callee.
471   assert(i < getNumOperands() && "Data operand index out of bounds!");
472
473   // The attribute A can either be directly specified, if the operand in
474   // question is a call argument; or be indirectly implied by the kind of its
475   // containing operand bundle, if the operand is a bundle operand.
476
477   if (i == AttributeList::ReturnIndex)
478     return hasRetAttr(Kind);
479
480   // FIXME: Avoid these i - 1 calculations and update the API to use zero-based
481   // indices.
482   if (i < (getNumArgOperands() + 1))
483     return paramHasAttr(i - 1, Kind);
484
485   assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
486          "Must be either a call argument or an operand bundle!");
487   return bundleOperandHasAttr(i - 1, Kind);
488 }
489
490 /// IsConstantOne - Return true only if val is constant int 1
491 static bool IsConstantOne(Value *val) {
492   assert(val && "IsConstantOne does not work with nullptr val");
493   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
494   return CVal && CVal->isOne();
495 }
496
497 static Instruction *createMalloc(Instruction *InsertBefore,
498                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
499                                  Type *AllocTy, Value *AllocSize,
500                                  Value *ArraySize,
501                                  ArrayRef<OperandBundleDef> OpB,
502                                  Function *MallocF, const Twine &Name) {
503   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
504          "createMalloc needs either InsertBefore or InsertAtEnd");
505
506   // malloc(type) becomes: 
507   //       bitcast (i8* malloc(typeSize)) to type*
508   // malloc(type, arraySize) becomes:
509   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
510   if (!ArraySize)
511     ArraySize = ConstantInt::get(IntPtrTy, 1);
512   else if (ArraySize->getType() != IntPtrTy) {
513     if (InsertBefore)
514       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
515                                               "", InsertBefore);
516     else
517       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
518                                               "", InsertAtEnd);
519   }
520
521   if (!IsConstantOne(ArraySize)) {
522     if (IsConstantOne(AllocSize)) {
523       AllocSize = ArraySize;         // Operand * 1 = Operand
524     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
525       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
526                                                      false /*ZExt*/);
527       // Malloc arg is constant product of type size and array size
528       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
529     } else {
530       // Multiply type size by the array size...
531       if (InsertBefore)
532         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
533                                               "mallocsize", InsertBefore);
534       else
535         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
536                                               "mallocsize", InsertAtEnd);
537     }
538   }
539
540   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
541   // Create the call to Malloc.
542   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
543   Module *M = BB->getParent()->getParent();
544   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
545   Value *MallocFunc = MallocF;
546   if (!MallocFunc)
547     // prototype malloc as "void *malloc(size_t)"
548     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
549   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
550   CallInst *MCall = nullptr;
551   Instruction *Result = nullptr;
552   if (InsertBefore) {
553     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
554                              InsertBefore);
555     Result = MCall;
556     if (Result->getType() != AllocPtrType)
557       // Create a cast instruction to convert to the right type...
558       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
559   } else {
560     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
561     Result = MCall;
562     if (Result->getType() != AllocPtrType) {
563       InsertAtEnd->getInstList().push_back(MCall);
564       // Create a cast instruction to convert to the right type...
565       Result = new BitCastInst(MCall, AllocPtrType, Name);
566     }
567   }
568   MCall->setTailCall();
569   if (Function *F = dyn_cast<Function>(MallocFunc)) {
570     MCall->setCallingConv(F->getCallingConv());
571     if (!F->returnDoesNotAlias())
572       F->setReturnDoesNotAlias();
573   }
574   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
575
576   return Result;
577 }
578
579 /// CreateMalloc - Generate the IR for a call to malloc:
580 /// 1. Compute the malloc call's argument as the specified type's size,
581 ///    possibly multiplied by the array size if the array size is not
582 ///    constant 1.
583 /// 2. Call malloc with that argument.
584 /// 3. Bitcast the result of the malloc call to the specified type.
585 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
586                                     Type *IntPtrTy, Type *AllocTy,
587                                     Value *AllocSize, Value *ArraySize,
588                                     Function *MallocF,
589                                     const Twine &Name) {
590   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
591                       ArraySize, None, MallocF, Name);
592 }
593 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
594                                     Type *IntPtrTy, Type *AllocTy,
595                                     Value *AllocSize, Value *ArraySize,
596                                     ArrayRef<OperandBundleDef> OpB,
597                                     Function *MallocF,
598                                     const Twine &Name) {
599   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
600                       ArraySize, OpB, MallocF, Name);
601 }
602
603 /// CreateMalloc - Generate the IR for a call to malloc:
604 /// 1. Compute the malloc call's argument as the specified type's size,
605 ///    possibly multiplied by the array size if the array size is not
606 ///    constant 1.
607 /// 2. Call malloc with that argument.
608 /// 3. Bitcast the result of the malloc call to the specified type.
609 /// Note: This function does not add the bitcast to the basic block, that is the
610 /// responsibility of the caller.
611 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
612                                     Type *IntPtrTy, Type *AllocTy,
613                                     Value *AllocSize, Value *ArraySize, 
614                                     Function *MallocF, const Twine &Name) {
615   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
616                       ArraySize, None, MallocF, Name);
617 }
618 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
619                                     Type *IntPtrTy, Type *AllocTy,
620                                     Value *AllocSize, Value *ArraySize,
621                                     ArrayRef<OperandBundleDef> OpB,
622                                     Function *MallocF, const Twine &Name) {
623   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
624                       ArraySize, OpB, MallocF, Name);
625 }
626
627 static Instruction *createFree(Value *Source,
628                                ArrayRef<OperandBundleDef> Bundles,
629                                Instruction *InsertBefore,
630                                BasicBlock *InsertAtEnd) {
631   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
632          "createFree needs either InsertBefore or InsertAtEnd");
633   assert(Source->getType()->isPointerTy() &&
634          "Can not free something of nonpointer type!");
635
636   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
637   Module *M = BB->getParent()->getParent();
638
639   Type *VoidTy = Type::getVoidTy(M->getContext());
640   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
641   // prototype free as "void free(void*)"
642   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
643   CallInst *Result = nullptr;
644   Value *PtrCast = Source;
645   if (InsertBefore) {
646     if (Source->getType() != IntPtrTy)
647       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
648     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
649   } else {
650     if (Source->getType() != IntPtrTy)
651       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
652     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
653   }
654   Result->setTailCall();
655   if (Function *F = dyn_cast<Function>(FreeFunc))
656     Result->setCallingConv(F->getCallingConv());
657
658   return Result;
659 }
660
661 /// CreateFree - Generate the IR for a call to the builtin free function.
662 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
663   return createFree(Source, None, InsertBefore, nullptr);
664 }
665 Instruction *CallInst::CreateFree(Value *Source,
666                                   ArrayRef<OperandBundleDef> Bundles,
667                                   Instruction *InsertBefore) {
668   return createFree(Source, Bundles, InsertBefore, nullptr);
669 }
670
671 /// CreateFree - Generate the IR for a call to the builtin free function.
672 /// Note: This function does not add the call to the basic block, that is the
673 /// responsibility of the caller.
674 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
675   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
676   assert(FreeCall && "CreateFree did not create a CallInst");
677   return FreeCall;
678 }
679 Instruction *CallInst::CreateFree(Value *Source,
680                                   ArrayRef<OperandBundleDef> Bundles,
681                                   BasicBlock *InsertAtEnd) {
682   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
683   assert(FreeCall && "CreateFree did not create a CallInst");
684   return FreeCall;
685 }
686
687 //===----------------------------------------------------------------------===//
688 //                        InvokeInst Implementation
689 //===----------------------------------------------------------------------===//
690
691 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
692                       BasicBlock *IfException, ArrayRef<Value *> Args,
693                       ArrayRef<OperandBundleDef> Bundles,
694                       const Twine &NameStr) {
695   this->FTy = FTy;
696
697   assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) &&
698          "NumOperands not set up?");
699   Op<-3>() = Fn;
700   Op<-2>() = IfNormal;
701   Op<-1>() = IfException;
702
703 #ifndef NDEBUG
704   assert(((Args.size() == FTy->getNumParams()) ||
705           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
706          "Invoking a function with bad signature");
707
708   for (unsigned i = 0, e = Args.size(); i != e; i++)
709     assert((i >= FTy->getNumParams() || 
710             FTy->getParamType(i) == Args[i]->getType()) &&
711            "Invoking a function with a bad signature!");
712 #endif
713
714   std::copy(Args.begin(), Args.end(), op_begin());
715
716   auto It = populateBundleOperandInfos(Bundles, Args.size());
717   (void)It;
718   assert(It + 3 == op_end() && "Should add up!");
719
720   setName(NameStr);
721 }
722
723 InvokeInst::InvokeInst(const InvokeInst &II)
724     : TerminatorInst(II.getType(), Instruction::Invoke,
725                      OperandTraits<InvokeInst>::op_end(this) -
726                          II.getNumOperands(),
727                      II.getNumOperands()),
728       Attrs(II.Attrs), FTy(II.FTy) {
729   setCallingConv(II.getCallingConv());
730   std::copy(II.op_begin(), II.op_end(), op_begin());
731   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
732             bundle_op_info_begin());
733   SubclassOptionalData = II.SubclassOptionalData;
734 }
735
736 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
737                                Instruction *InsertPt) {
738   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
739
740   auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
741                                    II->getUnwindDest(), Args, OpB,
742                                    II->getName(), InsertPt);
743   NewII->setCallingConv(II->getCallingConv());
744   NewII->SubclassOptionalData = II->SubclassOptionalData;
745   NewII->setAttributes(II->getAttributes());
746   NewII->setDebugLoc(II->getDebugLoc());
747   return NewII;
748 }
749
750 Value *InvokeInst::getReturnedArgOperand() const {
751   unsigned Index;
752
753   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
754     return getArgOperand(Index - AttributeList::FirstArgIndex);
755   if (const Function *F = getCalledFunction())
756     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
757         Index)
758       return getArgOperand(Index - AttributeList::FirstArgIndex);
759
760   return nullptr;
761 }
762
763 bool InvokeInst::hasRetAttr(Attribute::AttrKind Kind) const {
764   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
765     return true;
766
767   // Look at the callee, if available.
768   if (const Function *F = getCalledFunction())
769     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
770   return false;
771 }
772
773 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const {
774   assert(i < getNumArgOperands() && "Param index out of bounds!");
775
776   if (Attrs.hasParamAttribute(i, Kind))
777     return true;
778   if (const Function *F = getCalledFunction())
779     return F->getAttributes().hasParamAttribute(i, Kind);
780   return false;
781 }
782
783 bool InvokeInst::dataOperandHasImpliedAttr(unsigned i,
784                                            Attribute::AttrKind Kind) const {
785   // There are getNumOperands() - 3 data operands.  The last three operands are
786   // the callee and the two successor basic blocks.
787   assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!");
788
789   // The attribute A can either be directly specified, if the operand in
790   // question is an invoke argument; or be indirectly implied by the kind of its
791   // containing operand bundle, if the operand is a bundle operand.
792
793   if (i == AttributeList::ReturnIndex)
794     return hasRetAttr(Kind);
795
796   // FIXME: Avoid these i - 1 calculations and update the API to use zero-based
797   // indices.
798   if (i < (getNumArgOperands() + 1))
799     return paramHasAttr(i - 1, Kind);
800
801   assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
802          "Must be either an invoke argument or an operand bundle!");
803   return bundleOperandHasAttr(i - 1, Kind);
804 }
805
806 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind Kind) {
807   AttributeList PAL = getAttributes();
808   PAL = PAL.addAttribute(getContext(), i, Kind);
809   setAttributes(PAL);
810 }
811
812 void InvokeInst::addAttribute(unsigned i, Attribute Attr) {
813   AttributeList PAL = getAttributes();
814   PAL = PAL.addAttribute(getContext(), i, Attr);
815   setAttributes(PAL);
816 }
817
818 void InvokeInst::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
819   AttributeList PAL = getAttributes();
820   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
821   setAttributes(PAL);
822 }
823
824 void InvokeInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
825   AttributeList PAL = getAttributes();
826   PAL = PAL.removeAttribute(getContext(), i, Kind);
827   setAttributes(PAL);
828 }
829
830 void InvokeInst::removeAttribute(unsigned i, StringRef Kind) {
831   AttributeList PAL = getAttributes();
832   PAL = PAL.removeAttribute(getContext(), i, Kind);
833   setAttributes(PAL);
834 }
835
836 void InvokeInst::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
837   AttributeList PAL = getAttributes();
838   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
839   setAttributes(PAL);
840 }
841
842 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
843   AttributeList PAL = getAttributes();
844   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
845   setAttributes(PAL);
846 }
847
848 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
849   AttributeList PAL = getAttributes();
850   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
851   setAttributes(PAL);
852 }
853
854 LandingPadInst *InvokeInst::getLandingPadInst() const {
855   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
856 }
857
858 //===----------------------------------------------------------------------===//
859 //                        ReturnInst Implementation
860 //===----------------------------------------------------------------------===//
861
862 ReturnInst::ReturnInst(const ReturnInst &RI)
863   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
864                    OperandTraits<ReturnInst>::op_end(this) -
865                      RI.getNumOperands(),
866                    RI.getNumOperands()) {
867   if (RI.getNumOperands())
868     Op<0>() = RI.Op<0>();
869   SubclassOptionalData = RI.SubclassOptionalData;
870 }
871
872 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
873   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
874                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
875                    InsertBefore) {
876   if (retVal)
877     Op<0>() = retVal;
878 }
879
880 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
881   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
882                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
883                    InsertAtEnd) {
884   if (retVal)
885     Op<0>() = retVal;
886 }
887
888 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
889   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
890                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
891 }
892
893 //===----------------------------------------------------------------------===//
894 //                        ResumeInst Implementation
895 //===----------------------------------------------------------------------===//
896
897 ResumeInst::ResumeInst(const ResumeInst &RI)
898   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
899                    OperandTraits<ResumeInst>::op_begin(this), 1) {
900   Op<0>() = RI.Op<0>();
901 }
902
903 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
904   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
905                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
906   Op<0>() = Exn;
907 }
908
909 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
910   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
911                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
912   Op<0>() = Exn;
913 }
914
915 //===----------------------------------------------------------------------===//
916 //                        CleanupReturnInst Implementation
917 //===----------------------------------------------------------------------===//
918
919 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
920     : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
921                      OperandTraits<CleanupReturnInst>::op_end(this) -
922                          CRI.getNumOperands(),
923                      CRI.getNumOperands()) {
924   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
925   Op<0>() = CRI.Op<0>();
926   if (CRI.hasUnwindDest())
927     Op<1>() = CRI.Op<1>();
928 }
929
930 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
931   if (UnwindBB)
932     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
933
934   Op<0>() = CleanupPad;
935   if (UnwindBB)
936     Op<1>() = UnwindBB;
937 }
938
939 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
940                                      unsigned Values, Instruction *InsertBefore)
941     : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
942                      Instruction::CleanupRet,
943                      OperandTraits<CleanupReturnInst>::op_end(this) - Values,
944                      Values, InsertBefore) {
945   init(CleanupPad, UnwindBB);
946 }
947
948 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
949                                      unsigned Values, BasicBlock *InsertAtEnd)
950     : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
951                      Instruction::CleanupRet,
952                      OperandTraits<CleanupReturnInst>::op_end(this) - Values,
953                      Values, InsertAtEnd) {
954   init(CleanupPad, UnwindBB);
955 }
956
957 //===----------------------------------------------------------------------===//
958 //                        CatchReturnInst Implementation
959 //===----------------------------------------------------------------------===//
960 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
961   Op<0>() = CatchPad;
962   Op<1>() = BB;
963 }
964
965 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
966     : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
967                      OperandTraits<CatchReturnInst>::op_begin(this), 2) {
968   Op<0>() = CRI.Op<0>();
969   Op<1>() = CRI.Op<1>();
970 }
971
972 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
973                                  Instruction *InsertBefore)
974     : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
975                      OperandTraits<CatchReturnInst>::op_begin(this), 2,
976                      InsertBefore) {
977   init(CatchPad, BB);
978 }
979
980 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
981                                  BasicBlock *InsertAtEnd)
982     : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
983                      OperandTraits<CatchReturnInst>::op_begin(this), 2,
984                      InsertAtEnd) {
985   init(CatchPad, BB);
986 }
987
988 //===----------------------------------------------------------------------===//
989 //                       CatchSwitchInst Implementation
990 //===----------------------------------------------------------------------===//
991
992 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
993                                  unsigned NumReservedValues,
994                                  const Twine &NameStr,
995                                  Instruction *InsertBefore)
996     : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
997                      InsertBefore) {
998   if (UnwindDest)
999     ++NumReservedValues;
1000   init(ParentPad, UnwindDest, NumReservedValues + 1);
1001   setName(NameStr);
1002 }
1003
1004 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1005                                  unsigned NumReservedValues,
1006                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1007     : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1008                      InsertAtEnd) {
1009   if (UnwindDest)
1010     ++NumReservedValues;
1011   init(ParentPad, UnwindDest, NumReservedValues + 1);
1012   setName(NameStr);
1013 }
1014
1015 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1016     : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr,
1017                      CSI.getNumOperands()) {
1018   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1019   setNumHungOffUseOperands(ReservedSpace);
1020   Use *OL = getOperandList();
1021   const Use *InOL = CSI.getOperandList();
1022   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1023     OL[I] = InOL[I];
1024 }
1025
1026 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1027                            unsigned NumReservedValues) {
1028   assert(ParentPad && NumReservedValues);
1029
1030   ReservedSpace = NumReservedValues;
1031   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1032   allocHungoffUses(ReservedSpace);
1033
1034   Op<0>() = ParentPad;
1035   if (UnwindDest) {
1036     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1037     setUnwindDest(UnwindDest);
1038   }
1039 }
1040
1041 /// growOperands - grow operands - This grows the operand list in response to a
1042 /// push_back style of operation. This grows the number of ops by 2 times.
1043 void CatchSwitchInst::growOperands(unsigned Size) {
1044   unsigned NumOperands = getNumOperands();
1045   assert(NumOperands >= 1);
1046   if (ReservedSpace >= NumOperands + Size)
1047     return;
1048   ReservedSpace = (NumOperands + Size / 2) * 2;
1049   growHungoffUses(ReservedSpace);
1050 }
1051
1052 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1053   unsigned OpNo = getNumOperands();
1054   growOperands(1);
1055   assert(OpNo < ReservedSpace && "Growing didn't work!");
1056   setNumHungOffUseOperands(getNumOperands() + 1);
1057   getOperandList()[OpNo] = Handler;
1058 }
1059
1060 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1061   // Move all subsequent handlers up one.
1062   Use *EndDst = op_end() - 1;
1063   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1064     *CurDst = *(CurDst + 1);
1065   // Null out the last handler use.
1066   *EndDst = nullptr;
1067
1068   setNumHungOffUseOperands(getNumOperands() - 1);
1069 }
1070
1071 //===----------------------------------------------------------------------===//
1072 //                        FuncletPadInst Implementation
1073 //===----------------------------------------------------------------------===//
1074 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1075                           const Twine &NameStr) {
1076   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1077   std::copy(Args.begin(), Args.end(), op_begin());
1078   setParentPad(ParentPad);
1079   setName(NameStr);
1080 }
1081
1082 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1083     : Instruction(FPI.getType(), FPI.getOpcode(),
1084                   OperandTraits<FuncletPadInst>::op_end(this) -
1085                       FPI.getNumOperands(),
1086                   FPI.getNumOperands()) {
1087   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1088   setParentPad(FPI.getParentPad());
1089 }
1090
1091 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1092                                ArrayRef<Value *> Args, unsigned Values,
1093                                const Twine &NameStr, Instruction *InsertBefore)
1094     : Instruction(ParentPad->getType(), Op,
1095                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1096                   InsertBefore) {
1097   init(ParentPad, Args, NameStr);
1098 }
1099
1100 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1101                                ArrayRef<Value *> Args, unsigned Values,
1102                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1103     : Instruction(ParentPad->getType(), Op,
1104                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1105                   InsertAtEnd) {
1106   init(ParentPad, Args, NameStr);
1107 }
1108
1109 //===----------------------------------------------------------------------===//
1110 //                      UnreachableInst Implementation
1111 //===----------------------------------------------------------------------===//
1112
1113 UnreachableInst::UnreachableInst(LLVMContext &Context, 
1114                                  Instruction *InsertBefore)
1115   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
1116                    nullptr, 0, InsertBefore) {
1117 }
1118 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1119   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
1120                    nullptr, 0, InsertAtEnd) {
1121 }
1122
1123 //===----------------------------------------------------------------------===//
1124 //                        BranchInst Implementation
1125 //===----------------------------------------------------------------------===//
1126
1127 void BranchInst::AssertOK() {
1128   if (isConditional())
1129     assert(getCondition()->getType()->isIntegerTy(1) &&
1130            "May only branch on boolean predicates!");
1131 }
1132
1133 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1134   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1135                    OperandTraits<BranchInst>::op_end(this) - 1,
1136                    1, InsertBefore) {
1137   assert(IfTrue && "Branch destination may not be null!");
1138   Op<-1>() = IfTrue;
1139 }
1140
1141 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1142                        Instruction *InsertBefore)
1143   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1144                    OperandTraits<BranchInst>::op_end(this) - 3,
1145                    3, InsertBefore) {
1146   Op<-1>() = IfTrue;
1147   Op<-2>() = IfFalse;
1148   Op<-3>() = Cond;
1149 #ifndef NDEBUG
1150   AssertOK();
1151 #endif
1152 }
1153
1154 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1155   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1156                    OperandTraits<BranchInst>::op_end(this) - 1,
1157                    1, InsertAtEnd) {
1158   assert(IfTrue && "Branch destination may not be null!");
1159   Op<-1>() = IfTrue;
1160 }
1161
1162 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1163            BasicBlock *InsertAtEnd)
1164   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1165                    OperandTraits<BranchInst>::op_end(this) - 3,
1166                    3, InsertAtEnd) {
1167   Op<-1>() = IfTrue;
1168   Op<-2>() = IfFalse;
1169   Op<-3>() = Cond;
1170 #ifndef NDEBUG
1171   AssertOK();
1172 #endif
1173 }
1174
1175 BranchInst::BranchInst(const BranchInst &BI) :
1176   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
1177                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1178                  BI.getNumOperands()) {
1179   Op<-1>() = BI.Op<-1>();
1180   if (BI.getNumOperands() != 1) {
1181     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1182     Op<-3>() = BI.Op<-3>();
1183     Op<-2>() = BI.Op<-2>();
1184   }
1185   SubclassOptionalData = BI.SubclassOptionalData;
1186 }
1187
1188 void BranchInst::swapSuccessors() {
1189   assert(isConditional() &&
1190          "Cannot swap successors of an unconditional branch");
1191   Op<-1>().swap(Op<-2>());
1192
1193   // Update profile metadata if present and it matches our structural
1194   // expectations.
1195   swapProfMetadata();
1196 }
1197
1198 //===----------------------------------------------------------------------===//
1199 //                        AllocaInst Implementation
1200 //===----------------------------------------------------------------------===//
1201
1202 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1203   if (!Amt)
1204     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1205   else {
1206     assert(!isa<BasicBlock>(Amt) &&
1207            "Passed basic block into allocation size parameter! Use other ctor");
1208     assert(Amt->getType()->isIntegerTy() &&
1209            "Allocation array size is not an integer!");
1210   }
1211   return Amt;
1212 }
1213
1214 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1215                        Instruction *InsertBefore)
1216   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1217
1218 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1219                        BasicBlock *InsertAtEnd)
1220   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1221
1222 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1223                        const Twine &Name, Instruction *InsertBefore)
1224   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1225
1226 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1227                        const Twine &Name, BasicBlock *InsertAtEnd)
1228   : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1229
1230 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1231                        unsigned Align, const Twine &Name,
1232                        Instruction *InsertBefore)
1233   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1234                      getAISize(Ty->getContext(), ArraySize), InsertBefore),
1235     AllocatedType(Ty) {
1236   setAlignment(Align);
1237   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1238   setName(Name);
1239 }
1240
1241 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1242                        unsigned Align, const Twine &Name,
1243                        BasicBlock *InsertAtEnd)
1244   : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1245                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1246       AllocatedType(Ty) {
1247   setAlignment(Align);
1248   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1249   setName(Name);
1250 }
1251
1252 void AllocaInst::setAlignment(unsigned Align) {
1253   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1254   assert(Align <= MaximumAlignment &&
1255          "Alignment is greater than MaximumAlignment!");
1256   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1257                              (Log2_32(Align) + 1));
1258   assert(getAlignment() == Align && "Alignment representation error!");
1259 }
1260
1261 bool AllocaInst::isArrayAllocation() const {
1262   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1263     return !CI->isOne();
1264   return true;
1265 }
1266
1267 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1268 /// function and is a constant size.  If so, the code generator will fold it
1269 /// into the prolog/epilog code, so it is basically free.
1270 bool AllocaInst::isStaticAlloca() const {
1271   // Must be constant size.
1272   if (!isa<ConstantInt>(getArraySize())) return false;
1273   
1274   // Must be in the entry block.
1275   const BasicBlock *Parent = getParent();
1276   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1277 }
1278
1279 //===----------------------------------------------------------------------===//
1280 //                           LoadInst Implementation
1281 //===----------------------------------------------------------------------===//
1282
1283 void LoadInst::AssertOK() {
1284   assert(getOperand(0)->getType()->isPointerTy() &&
1285          "Ptr must have pointer type.");
1286   assert(!(isAtomic() && getAlignment() == 0) &&
1287          "Alignment required for atomic load");
1288 }
1289
1290 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1291     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1292
1293 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1294     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1295
1296 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1297                    Instruction *InsertBef)
1298     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1299
1300 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1301                    BasicBlock *InsertAE)
1302     : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1303
1304 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1305                    unsigned Align, Instruction *InsertBef)
1306     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1307                SyncScope::System, InsertBef) {}
1308
1309 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1310                    unsigned Align, BasicBlock *InsertAE)
1311     : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1312                SyncScope::System, InsertAE) {}
1313
1314 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1315                    unsigned Align, AtomicOrdering Order,
1316                    SyncScope::ID SSID, Instruction *InsertBef)
1317     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1318   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1319   setVolatile(isVolatile);
1320   setAlignment(Align);
1321   setAtomic(Order, SSID);
1322   AssertOK();
1323   setName(Name);
1324 }
1325
1326 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
1327                    unsigned Align, AtomicOrdering Order,
1328                    SyncScope::ID SSID,
1329                    BasicBlock *InsertAE)
1330   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1331                      Load, Ptr, InsertAE) {
1332   setVolatile(isVolatile);
1333   setAlignment(Align);
1334   setAtomic(Order, SSID);
1335   AssertOK();
1336   setName(Name);
1337 }
1338
1339 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1340   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1341                      Load, Ptr, InsertBef) {
1342   setVolatile(false);
1343   setAlignment(0);
1344   setAtomic(AtomicOrdering::NotAtomic);
1345   AssertOK();
1346   if (Name && Name[0]) setName(Name);
1347 }
1348
1349 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1350   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1351                      Load, Ptr, InsertAE) {
1352   setVolatile(false);
1353   setAlignment(0);
1354   setAtomic(AtomicOrdering::NotAtomic);
1355   AssertOK();
1356   if (Name && Name[0]) setName(Name);
1357 }
1358
1359 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1360                    Instruction *InsertBef)
1361     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1362   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1363   setVolatile(isVolatile);
1364   setAlignment(0);
1365   setAtomic(AtomicOrdering::NotAtomic);
1366   AssertOK();
1367   if (Name && Name[0]) setName(Name);
1368 }
1369
1370 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1371                    BasicBlock *InsertAE)
1372   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1373                      Load, Ptr, InsertAE) {
1374   setVolatile(isVolatile);
1375   setAlignment(0);
1376   setAtomic(AtomicOrdering::NotAtomic);
1377   AssertOK();
1378   if (Name && Name[0]) setName(Name);
1379 }
1380
1381 void LoadInst::setAlignment(unsigned Align) {
1382   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1383   assert(Align <= MaximumAlignment &&
1384          "Alignment is greater than MaximumAlignment!");
1385   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1386                              ((Log2_32(Align)+1)<<1));
1387   assert(getAlignment() == Align && "Alignment representation error!");
1388 }
1389
1390 //===----------------------------------------------------------------------===//
1391 //                           StoreInst Implementation
1392 //===----------------------------------------------------------------------===//
1393
1394 void StoreInst::AssertOK() {
1395   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1396   assert(getOperand(1)->getType()->isPointerTy() &&
1397          "Ptr must have pointer type!");
1398   assert(getOperand(0)->getType() ==
1399                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1400          && "Ptr must be a pointer to Val type!");
1401   assert(!(isAtomic() && getAlignment() == 0) &&
1402          "Alignment required for atomic store");
1403 }
1404
1405 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1406     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1407
1408 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1409     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1410
1411 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1412                      Instruction *InsertBefore)
1413     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1414
1415 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1416                      BasicBlock *InsertAtEnd)
1417     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1418
1419 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1420                      Instruction *InsertBefore)
1421     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1422                 SyncScope::System, InsertBefore) {}
1423
1424 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1425                      BasicBlock *InsertAtEnd)
1426     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1427                 SyncScope::System, InsertAtEnd) {}
1428
1429 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1430                      unsigned Align, AtomicOrdering Order,
1431                      SyncScope::ID SSID,
1432                      Instruction *InsertBefore)
1433   : Instruction(Type::getVoidTy(val->getContext()), Store,
1434                 OperandTraits<StoreInst>::op_begin(this),
1435                 OperandTraits<StoreInst>::operands(this),
1436                 InsertBefore) {
1437   Op<0>() = val;
1438   Op<1>() = addr;
1439   setVolatile(isVolatile);
1440   setAlignment(Align);
1441   setAtomic(Order, SSID);
1442   AssertOK();
1443 }
1444
1445 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1446                      unsigned Align, AtomicOrdering Order,
1447                      SyncScope::ID SSID,
1448                      BasicBlock *InsertAtEnd)
1449   : Instruction(Type::getVoidTy(val->getContext()), Store,
1450                 OperandTraits<StoreInst>::op_begin(this),
1451                 OperandTraits<StoreInst>::operands(this),
1452                 InsertAtEnd) {
1453   Op<0>() = val;
1454   Op<1>() = addr;
1455   setVolatile(isVolatile);
1456   setAlignment(Align);
1457   setAtomic(Order, SSID);
1458   AssertOK();
1459 }
1460
1461 void StoreInst::setAlignment(unsigned Align) {
1462   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1463   assert(Align <= MaximumAlignment &&
1464          "Alignment is greater than MaximumAlignment!");
1465   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1466                              ((Log2_32(Align)+1) << 1));
1467   assert(getAlignment() == Align && "Alignment representation error!");
1468 }
1469
1470 //===----------------------------------------------------------------------===//
1471 //                       AtomicCmpXchgInst Implementation
1472 //===----------------------------------------------------------------------===//
1473
1474 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1475                              AtomicOrdering SuccessOrdering,
1476                              AtomicOrdering FailureOrdering,
1477                              SyncScope::ID SSID) {
1478   Op<0>() = Ptr;
1479   Op<1>() = Cmp;
1480   Op<2>() = NewVal;
1481   setSuccessOrdering(SuccessOrdering);
1482   setFailureOrdering(FailureOrdering);
1483   setSyncScopeID(SSID);
1484
1485   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1486          "All operands must be non-null!");
1487   assert(getOperand(0)->getType()->isPointerTy() &&
1488          "Ptr must have pointer type!");
1489   assert(getOperand(1)->getType() ==
1490                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1491          && "Ptr must be a pointer to Cmp type!");
1492   assert(getOperand(2)->getType() ==
1493                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1494          && "Ptr must be a pointer to NewVal type!");
1495   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1496          "AtomicCmpXchg instructions must be atomic!");
1497   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1498          "AtomicCmpXchg instructions must be atomic!");
1499   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1500          "AtomicCmpXchg failure argument shall be no stronger than the success "
1501          "argument");
1502   assert(FailureOrdering != AtomicOrdering::Release &&
1503          FailureOrdering != AtomicOrdering::AcquireRelease &&
1504          "AtomicCmpXchg failure ordering cannot include release semantics");
1505 }
1506
1507 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1508                                      AtomicOrdering SuccessOrdering,
1509                                      AtomicOrdering FailureOrdering,
1510                                      SyncScope::ID SSID,
1511                                      Instruction *InsertBefore)
1512     : Instruction(
1513           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1514           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1515           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1516   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1517 }
1518
1519 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1520                                      AtomicOrdering SuccessOrdering,
1521                                      AtomicOrdering FailureOrdering,
1522                                      SyncScope::ID SSID,
1523                                      BasicBlock *InsertAtEnd)
1524     : Instruction(
1525           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1526           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1527           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1528   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1529 }
1530
1531 //===----------------------------------------------------------------------===//
1532 //                       AtomicRMWInst Implementation
1533 //===----------------------------------------------------------------------===//
1534
1535 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1536                          AtomicOrdering Ordering,
1537                          SyncScope::ID SSID) {
1538   Op<0>() = Ptr;
1539   Op<1>() = Val;
1540   setOperation(Operation);
1541   setOrdering(Ordering);
1542   setSyncScopeID(SSID);
1543
1544   assert(getOperand(0) && getOperand(1) &&
1545          "All operands must be non-null!");
1546   assert(getOperand(0)->getType()->isPointerTy() &&
1547          "Ptr must have pointer type!");
1548   assert(getOperand(1)->getType() ==
1549          cast<PointerType>(getOperand(0)->getType())->getElementType()
1550          && "Ptr must be a pointer to Val type!");
1551   assert(Ordering != AtomicOrdering::NotAtomic &&
1552          "AtomicRMW instructions must be atomic!");
1553 }
1554
1555 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1556                              AtomicOrdering Ordering,
1557                              SyncScope::ID SSID,
1558                              Instruction *InsertBefore)
1559   : Instruction(Val->getType(), AtomicRMW,
1560                 OperandTraits<AtomicRMWInst>::op_begin(this),
1561                 OperandTraits<AtomicRMWInst>::operands(this),
1562                 InsertBefore) {
1563   Init(Operation, Ptr, Val, Ordering, SSID);
1564 }
1565
1566 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1567                              AtomicOrdering Ordering,
1568                              SyncScope::ID SSID,
1569                              BasicBlock *InsertAtEnd)
1570   : Instruction(Val->getType(), AtomicRMW,
1571                 OperandTraits<AtomicRMWInst>::op_begin(this),
1572                 OperandTraits<AtomicRMWInst>::operands(this),
1573                 InsertAtEnd) {
1574   Init(Operation, Ptr, Val, Ordering, SSID);
1575 }
1576
1577 //===----------------------------------------------------------------------===//
1578 //                       FenceInst Implementation
1579 //===----------------------------------------------------------------------===//
1580
1581 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1582                      SyncScope::ID SSID,
1583                      Instruction *InsertBefore)
1584   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1585   setOrdering(Ordering);
1586   setSyncScopeID(SSID);
1587 }
1588
1589 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1590                      SyncScope::ID SSID,
1591                      BasicBlock *InsertAtEnd)
1592   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1593   setOrdering(Ordering);
1594   setSyncScopeID(SSID);
1595 }
1596
1597 //===----------------------------------------------------------------------===//
1598 //                       GetElementPtrInst Implementation
1599 //===----------------------------------------------------------------------===//
1600
1601 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1602                              const Twine &Name) {
1603   assert(getNumOperands() == 1 + IdxList.size() &&
1604          "NumOperands not initialized?");
1605   Op<0>() = Ptr;
1606   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1607   setName(Name);
1608 }
1609
1610 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1611     : Instruction(GEPI.getType(), GetElementPtr,
1612                   OperandTraits<GetElementPtrInst>::op_end(this) -
1613                       GEPI.getNumOperands(),
1614                   GEPI.getNumOperands()),
1615       SourceElementType(GEPI.SourceElementType),
1616       ResultElementType(GEPI.ResultElementType) {
1617   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1618   SubclassOptionalData = GEPI.SubclassOptionalData;
1619 }
1620
1621 /// getIndexedType - Returns the type of the element that would be accessed with
1622 /// a gep instruction with the specified parameters.
1623 ///
1624 /// The Idxs pointer should point to a continuous piece of memory containing the
1625 /// indices, either as Value* or uint64_t.
1626 ///
1627 /// A null type is returned if the indices are invalid for the specified
1628 /// pointer type.
1629 ///
1630 template <typename IndexTy>
1631 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1632   // Handle the special case of the empty set index set, which is always valid.
1633   if (IdxList.empty())
1634     return Agg;
1635
1636   // If there is at least one index, the top level type must be sized, otherwise
1637   // it cannot be 'stepped over'.
1638   if (!Agg->isSized())
1639     return nullptr;
1640
1641   unsigned CurIdx = 1;
1642   for (; CurIdx != IdxList.size(); ++CurIdx) {
1643     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1644     if (!CT || CT->isPointerTy()) return nullptr;
1645     IndexTy Index = IdxList[CurIdx];
1646     if (!CT->indexValid(Index)) return nullptr;
1647     Agg = CT->getTypeAtIndex(Index);
1648   }
1649   return CurIdx == IdxList.size() ? Agg : nullptr;
1650 }
1651
1652 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1653   return getIndexedTypeInternal(Ty, IdxList);
1654 }
1655
1656 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1657                                         ArrayRef<Constant *> IdxList) {
1658   return getIndexedTypeInternal(Ty, IdxList);
1659 }
1660
1661 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1662   return getIndexedTypeInternal(Ty, IdxList);
1663 }
1664
1665 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1666 /// zeros.  If so, the result pointer and the first operand have the same
1667 /// value, just potentially different types.
1668 bool GetElementPtrInst::hasAllZeroIndices() const {
1669   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1670     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1671       if (!CI->isZero()) return false;
1672     } else {
1673       return false;
1674     }
1675   }
1676   return true;
1677 }
1678
1679 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1680 /// constant integers.  If so, the result pointer and the first operand have
1681 /// a constant offset between them.
1682 bool GetElementPtrInst::hasAllConstantIndices() const {
1683   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1684     if (!isa<ConstantInt>(getOperand(i)))
1685       return false;
1686   }
1687   return true;
1688 }
1689
1690 void GetElementPtrInst::setIsInBounds(bool B) {
1691   cast<GEPOperator>(this)->setIsInBounds(B);
1692 }
1693
1694 bool GetElementPtrInst::isInBounds() const {
1695   return cast<GEPOperator>(this)->isInBounds();
1696 }
1697
1698 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1699                                                  APInt &Offset) const {
1700   // Delegate to the generic GEPOperator implementation.
1701   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1702 }
1703
1704 //===----------------------------------------------------------------------===//
1705 //                           ExtractElementInst Implementation
1706 //===----------------------------------------------------------------------===//
1707
1708 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1709                                        const Twine &Name,
1710                                        Instruction *InsertBef)
1711   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1712                 ExtractElement,
1713                 OperandTraits<ExtractElementInst>::op_begin(this),
1714                 2, InsertBef) {
1715   assert(isValidOperands(Val, Index) &&
1716          "Invalid extractelement instruction operands!");
1717   Op<0>() = Val;
1718   Op<1>() = Index;
1719   setName(Name);
1720 }
1721
1722 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1723                                        const Twine &Name,
1724                                        BasicBlock *InsertAE)
1725   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1726                 ExtractElement,
1727                 OperandTraits<ExtractElementInst>::op_begin(this),
1728                 2, InsertAE) {
1729   assert(isValidOperands(Val, Index) &&
1730          "Invalid extractelement instruction operands!");
1731
1732   Op<0>() = Val;
1733   Op<1>() = Index;
1734   setName(Name);
1735 }
1736
1737 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1738   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1739     return false;
1740   return true;
1741 }
1742
1743 //===----------------------------------------------------------------------===//
1744 //                           InsertElementInst Implementation
1745 //===----------------------------------------------------------------------===//
1746
1747 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1748                                      const Twine &Name,
1749                                      Instruction *InsertBef)
1750   : Instruction(Vec->getType(), InsertElement,
1751                 OperandTraits<InsertElementInst>::op_begin(this),
1752                 3, InsertBef) {
1753   assert(isValidOperands(Vec, Elt, Index) &&
1754          "Invalid insertelement instruction operands!");
1755   Op<0>() = Vec;
1756   Op<1>() = Elt;
1757   Op<2>() = Index;
1758   setName(Name);
1759 }
1760
1761 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1762                                      const Twine &Name,
1763                                      BasicBlock *InsertAE)
1764   : Instruction(Vec->getType(), InsertElement,
1765                 OperandTraits<InsertElementInst>::op_begin(this),
1766                 3, InsertAE) {
1767   assert(isValidOperands(Vec, Elt, Index) &&
1768          "Invalid insertelement instruction operands!");
1769
1770   Op<0>() = Vec;
1771   Op<1>() = Elt;
1772   Op<2>() = Index;
1773   setName(Name);
1774 }
1775
1776 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
1777                                         const Value *Index) {
1778   if (!Vec->getType()->isVectorTy())
1779     return false;   // First operand of insertelement must be vector type.
1780   
1781   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1782     return false;// Second operand of insertelement must be vector element type.
1783     
1784   if (!Index->getType()->isIntegerTy())
1785     return false;  // Third operand of insertelement must be i32.
1786   return true;
1787 }
1788
1789 //===----------------------------------------------------------------------===//
1790 //                      ShuffleVectorInst Implementation
1791 //===----------------------------------------------------------------------===//
1792
1793 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1794                                      const Twine &Name,
1795                                      Instruction *InsertBefore)
1796 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1797                 cast<VectorType>(Mask->getType())->getNumElements()),
1798               ShuffleVector,
1799               OperandTraits<ShuffleVectorInst>::op_begin(this),
1800               OperandTraits<ShuffleVectorInst>::operands(this),
1801               InsertBefore) {
1802   assert(isValidOperands(V1, V2, Mask) &&
1803          "Invalid shuffle vector instruction operands!");
1804   Op<0>() = V1;
1805   Op<1>() = V2;
1806   Op<2>() = Mask;
1807   setName(Name);
1808 }
1809
1810 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1811                                      const Twine &Name,
1812                                      BasicBlock *InsertAtEnd)
1813 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1814                 cast<VectorType>(Mask->getType())->getNumElements()),
1815               ShuffleVector,
1816               OperandTraits<ShuffleVectorInst>::op_begin(this),
1817               OperandTraits<ShuffleVectorInst>::operands(this),
1818               InsertAtEnd) {
1819   assert(isValidOperands(V1, V2, Mask) &&
1820          "Invalid shuffle vector instruction operands!");
1821
1822   Op<0>() = V1;
1823   Op<1>() = V2;
1824   Op<2>() = Mask;
1825   setName(Name);
1826 }
1827
1828 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1829                                         const Value *Mask) {
1830   // V1 and V2 must be vectors of the same type.
1831   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1832     return false;
1833   
1834   // Mask must be vector of i32.
1835   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1836   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1837     return false;
1838
1839   // Check to see if Mask is valid.
1840   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1841     return true;
1842
1843   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1844     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1845     for (Value *Op : MV->operands()) {
1846       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1847         if (CI->uge(V1Size*2))
1848           return false;
1849       } else if (!isa<UndefValue>(Op)) {
1850         return false;
1851       }
1852     }
1853     return true;
1854   }
1855   
1856   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1857     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1858     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1859       if (CDS->getElementAsInteger(i) >= V1Size*2)
1860         return false;
1861     return true;
1862   }
1863   
1864   // The bitcode reader can create a place holder for a forward reference
1865   // used as the shuffle mask. When this occurs, the shuffle mask will
1866   // fall into this case and fail. To avoid this error, do this bit of
1867   // ugliness to allow such a mask pass.
1868   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1869     if (CE->getOpcode() == Instruction::UserOp1)
1870       return true;
1871
1872   return false;
1873 }
1874
1875 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1876   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1877   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1878     return CDS->getElementAsInteger(i);
1879   Constant *C = Mask->getAggregateElement(i);
1880   if (isa<UndefValue>(C))
1881     return -1;
1882   return cast<ConstantInt>(C)->getZExtValue();
1883 }
1884
1885 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1886                                        SmallVectorImpl<int> &Result) {
1887   unsigned NumElts = Mask->getType()->getVectorNumElements();
1888   
1889   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1890     for (unsigned i = 0; i != NumElts; ++i)
1891       Result.push_back(CDS->getElementAsInteger(i));
1892     return;
1893   }    
1894   for (unsigned i = 0; i != NumElts; ++i) {
1895     Constant *C = Mask->getAggregateElement(i);
1896     Result.push_back(isa<UndefValue>(C) ? -1 :
1897                      cast<ConstantInt>(C)->getZExtValue());
1898   }
1899 }
1900
1901 //===----------------------------------------------------------------------===//
1902 //                             InsertValueInst Class
1903 //===----------------------------------------------------------------------===//
1904
1905 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 
1906                            const Twine &Name) {
1907   assert(getNumOperands() == 2 && "NumOperands not initialized?");
1908
1909   // There's no fundamental reason why we require at least one index
1910   // (other than weirdness with &*IdxBegin being invalid; see
1911   // getelementptr's init routine for example). But there's no
1912   // present need to support it.
1913   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
1914
1915   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1916          Val->getType() && "Inserted value must match indexed type!");
1917   Op<0>() = Agg;
1918   Op<1>() = Val;
1919
1920   Indices.append(Idxs.begin(), Idxs.end());
1921   setName(Name);
1922 }
1923
1924 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1925   : Instruction(IVI.getType(), InsertValue,
1926                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1927     Indices(IVI.Indices) {
1928   Op<0>() = IVI.getOperand(0);
1929   Op<1>() = IVI.getOperand(1);
1930   SubclassOptionalData = IVI.SubclassOptionalData;
1931 }
1932
1933 //===----------------------------------------------------------------------===//
1934 //                             ExtractValueInst Class
1935 //===----------------------------------------------------------------------===//
1936
1937 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1938   assert(getNumOperands() == 1 && "NumOperands not initialized?");
1939
1940   // There's no fundamental reason why we require at least one index.
1941   // But there's no present need to support it.
1942   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
1943
1944   Indices.append(Idxs.begin(), Idxs.end());
1945   setName(Name);
1946 }
1947
1948 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1949   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1950     Indices(EVI.Indices) {
1951   SubclassOptionalData = EVI.SubclassOptionalData;
1952 }
1953
1954 // getIndexedType - Returns the type of the element that would be extracted
1955 // with an extractvalue instruction with the specified parameters.
1956 //
1957 // A null type is returned if the indices are invalid for the specified
1958 // pointer type.
1959 //
1960 Type *ExtractValueInst::getIndexedType(Type *Agg,
1961                                        ArrayRef<unsigned> Idxs) {
1962   for (unsigned Index : Idxs) {
1963     // We can't use CompositeType::indexValid(Index) here.
1964     // indexValid() always returns true for arrays because getelementptr allows
1965     // out-of-bounds indices. Since we don't allow those for extractvalue and
1966     // insertvalue we need to check array indexing manually.
1967     // Since the only other types we can index into are struct types it's just
1968     // as easy to check those manually as well.
1969     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1970       if (Index >= AT->getNumElements())
1971         return nullptr;
1972     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1973       if (Index >= ST->getNumElements())
1974         return nullptr;
1975     } else {
1976       // Not a valid type to index into.
1977       return nullptr;
1978     }
1979
1980     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1981   }
1982   return const_cast<Type*>(Agg);
1983 }
1984
1985 //===----------------------------------------------------------------------===//
1986 //                             BinaryOperator Class
1987 //===----------------------------------------------------------------------===//
1988
1989 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1990                                Type *Ty, const Twine &Name,
1991                                Instruction *InsertBefore)
1992   : Instruction(Ty, iType,
1993                 OperandTraits<BinaryOperator>::op_begin(this),
1994                 OperandTraits<BinaryOperator>::operands(this),
1995                 InsertBefore) {
1996   Op<0>() = S1;
1997   Op<1>() = S2;
1998   setName(Name);
1999   AssertOK();
2000 }
2001
2002 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
2003                                Type *Ty, const Twine &Name,
2004                                BasicBlock *InsertAtEnd)
2005   : Instruction(Ty, iType,
2006                 OperandTraits<BinaryOperator>::op_begin(this),
2007                 OperandTraits<BinaryOperator>::operands(this),
2008                 InsertAtEnd) {
2009   Op<0>() = S1;
2010   Op<1>() = S2;
2011   setName(Name);
2012   AssertOK();
2013 }
2014
2015 void BinaryOperator::AssertOK() {
2016   Value *LHS = getOperand(0), *RHS = getOperand(1);
2017   (void)LHS; (void)RHS; // Silence warnings.
2018   assert(LHS->getType() == RHS->getType() &&
2019          "Binary operator operand types must match!");
2020 #ifndef NDEBUG
2021   switch (getOpcode()) {
2022   case Add: case Sub:
2023   case Mul:
2024     assert(getType() == LHS->getType() &&
2025            "Arithmetic operation should return same type as operands!");
2026     assert(getType()->isIntOrIntVectorTy() &&
2027            "Tried to create an integer operation on a non-integer type!");
2028     break;
2029   case FAdd: case FSub:
2030   case FMul:
2031     assert(getType() == LHS->getType() &&
2032            "Arithmetic operation should return same type as operands!");
2033     assert(getType()->isFPOrFPVectorTy() &&
2034            "Tried to create a floating-point operation on a "
2035            "non-floating-point type!");
2036     break;
2037   case UDiv: 
2038   case SDiv: 
2039     assert(getType() == LHS->getType() &&
2040            "Arithmetic operation should return same type as operands!");
2041     assert(getType()->isIntOrIntVectorTy() &&
2042            "Incorrect operand type (not integer) for S/UDIV");
2043     break;
2044   case FDiv:
2045     assert(getType() == LHS->getType() &&
2046            "Arithmetic operation should return same type as operands!");
2047     assert(getType()->isFPOrFPVectorTy() &&
2048            "Incorrect operand type (not floating point) for FDIV");
2049     break;
2050   case URem: 
2051   case SRem: 
2052     assert(getType() == LHS->getType() &&
2053            "Arithmetic operation should return same type as operands!");
2054     assert(getType()->isIntOrIntVectorTy() &&
2055            "Incorrect operand type (not integer) for S/UREM");
2056     break;
2057   case FRem:
2058     assert(getType() == LHS->getType() &&
2059            "Arithmetic operation should return same type as operands!");
2060     assert(getType()->isFPOrFPVectorTy() &&
2061            "Incorrect operand type (not floating point) for FREM");
2062     break;
2063   case Shl:
2064   case LShr:
2065   case AShr:
2066     assert(getType() == LHS->getType() &&
2067            "Shift operation should return same type as operands!");
2068     assert(getType()->isIntOrIntVectorTy() &&
2069            "Tried to create a shift operation on a non-integral type!");
2070     break;
2071   case And: case Or:
2072   case Xor:
2073     assert(getType() == LHS->getType() &&
2074            "Logical operation should return same type as operands!");
2075     assert(getType()->isIntOrIntVectorTy() &&
2076            "Tried to create a logical operation on a non-integral type!");
2077     break;
2078   default: llvm_unreachable("Invalid opcode provided");
2079   }
2080 #endif
2081 }
2082
2083 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2084                                        const Twine &Name,
2085                                        Instruction *InsertBefore) {
2086   assert(S1->getType() == S2->getType() &&
2087          "Cannot create binary operator with two operands of differing type!");
2088   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2089 }
2090
2091 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2092                                        const Twine &Name,
2093                                        BasicBlock *InsertAtEnd) {
2094   BinaryOperator *Res = Create(Op, S1, S2, Name);
2095   InsertAtEnd->getInstList().push_back(Res);
2096   return Res;
2097 }
2098
2099 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2100                                           Instruction *InsertBefore) {
2101   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2102   return new BinaryOperator(Instruction::Sub,
2103                             zero, Op,
2104                             Op->getType(), Name, InsertBefore);
2105 }
2106
2107 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2108                                           BasicBlock *InsertAtEnd) {
2109   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2110   return new BinaryOperator(Instruction::Sub,
2111                             zero, Op,
2112                             Op->getType(), Name, InsertAtEnd);
2113 }
2114
2115 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2116                                              Instruction *InsertBefore) {
2117   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2118   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2119 }
2120
2121 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2122                                              BasicBlock *InsertAtEnd) {
2123   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2124   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2125 }
2126
2127 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2128                                              Instruction *InsertBefore) {
2129   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2130   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2131 }
2132
2133 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2134                                              BasicBlock *InsertAtEnd) {
2135   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2136   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2137 }
2138
2139 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2140                                            Instruction *InsertBefore) {
2141   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2142   return new BinaryOperator(Instruction::FSub, zero, Op,
2143                             Op->getType(), Name, InsertBefore);
2144 }
2145
2146 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2147                                            BasicBlock *InsertAtEnd) {
2148   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2149   return new BinaryOperator(Instruction::FSub, zero, Op,
2150                             Op->getType(), Name, InsertAtEnd);
2151 }
2152
2153 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2154                                           Instruction *InsertBefore) {
2155   Constant *C = Constant::getAllOnesValue(Op->getType());
2156   return new BinaryOperator(Instruction::Xor, Op, C,
2157                             Op->getType(), Name, InsertBefore);
2158 }
2159
2160 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2161                                           BasicBlock *InsertAtEnd) {
2162   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2163   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2164                             Op->getType(), Name, InsertAtEnd);
2165 }
2166
2167 // isConstantAllOnes - Helper function for several functions below
2168 static inline bool isConstantAllOnes(const Value *V) {
2169   if (const Constant *C = dyn_cast<Constant>(V))
2170     return C->isAllOnesValue();
2171   return false;
2172 }
2173
2174 bool BinaryOperator::isNeg(const Value *V) {
2175   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2176     if (Bop->getOpcode() == Instruction::Sub)
2177       if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0)))
2178         return C->isNegativeZeroValue();
2179   return false;
2180 }
2181
2182 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
2183   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2184     if (Bop->getOpcode() == Instruction::FSub)
2185       if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) {
2186         if (!IgnoreZeroSign)
2187           IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
2188         return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
2189       }
2190   return false;
2191 }
2192
2193 bool BinaryOperator::isNot(const Value *V) {
2194   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2195     return (Bop->getOpcode() == Instruction::Xor &&
2196             (isConstantAllOnes(Bop->getOperand(1)) ||
2197              isConstantAllOnes(Bop->getOperand(0))));
2198   return false;
2199 }
2200
2201 Value *BinaryOperator::getNegArgument(Value *BinOp) {
2202   return cast<BinaryOperator>(BinOp)->getOperand(1);
2203 }
2204
2205 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
2206   return getNegArgument(const_cast<Value*>(BinOp));
2207 }
2208
2209 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
2210   return cast<BinaryOperator>(BinOp)->getOperand(1);
2211 }
2212
2213 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
2214   return getFNegArgument(const_cast<Value*>(BinOp));
2215 }
2216
2217 Value *BinaryOperator::getNotArgument(Value *BinOp) {
2218   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2219   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2220   Value *Op0 = BO->getOperand(0);
2221   Value *Op1 = BO->getOperand(1);
2222   if (isConstantAllOnes(Op0)) return Op1;
2223
2224   assert(isConstantAllOnes(Op1));
2225   return Op0;
2226 }
2227
2228 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
2229   return getNotArgument(const_cast<Value*>(BinOp));
2230 }
2231
2232 // Exchange the two operands to this instruction. This instruction is safe to
2233 // use on any binary instruction and does not modify the semantics of the
2234 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2235 // is changed.
2236 bool BinaryOperator::swapOperands() {
2237   if (!isCommutative())
2238     return true; // Can't commute operands
2239   Op<0>().swap(Op<1>());
2240   return false;
2241 }
2242
2243 //===----------------------------------------------------------------------===//
2244 //                             FPMathOperator Class
2245 //===----------------------------------------------------------------------===//
2246
2247 float FPMathOperator::getFPAccuracy() const {
2248   const MDNode *MD =
2249       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2250   if (!MD)
2251     return 0.0;
2252   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2253   return Accuracy->getValueAPF().convertToFloat();
2254 }
2255
2256 //===----------------------------------------------------------------------===//
2257 //                                CastInst Class
2258 //===----------------------------------------------------------------------===//
2259
2260 // Just determine if this cast only deals with integral->integral conversion.
2261 bool CastInst::isIntegerCast() const {
2262   switch (getOpcode()) {
2263     default: return false;
2264     case Instruction::ZExt:
2265     case Instruction::SExt:
2266     case Instruction::Trunc:
2267       return true;
2268     case Instruction::BitCast:
2269       return getOperand(0)->getType()->isIntegerTy() &&
2270         getType()->isIntegerTy();
2271   }
2272 }
2273
2274 bool CastInst::isLosslessCast() const {
2275   // Only BitCast can be lossless, exit fast if we're not BitCast
2276   if (getOpcode() != Instruction::BitCast)
2277     return false;
2278
2279   // Identity cast is always lossless
2280   Type *SrcTy = getOperand(0)->getType();
2281   Type *DstTy = getType();
2282   if (SrcTy == DstTy)
2283     return true;
2284   
2285   // Pointer to pointer is always lossless.
2286   if (SrcTy->isPointerTy())
2287     return DstTy->isPointerTy();
2288   return false;  // Other types have no identity values
2289 }
2290
2291 /// This function determines if the CastInst does not require any bits to be
2292 /// changed in order to effect the cast. Essentially, it identifies cases where
2293 /// no code gen is necessary for the cast, hence the name no-op cast.  For 
2294 /// example, the following are all no-op casts:
2295 /// # bitcast i32* %x to i8*
2296 /// # bitcast <2 x i32> %x to <4 x i16> 
2297 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2298 /// @brief Determine if the described cast is a no-op.
2299 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2300                           Type *SrcTy,
2301                           Type *DestTy,
2302                           const DataLayout &DL) {
2303   switch (Opcode) {
2304     default: llvm_unreachable("Invalid CastOp");
2305     case Instruction::Trunc:
2306     case Instruction::ZExt:
2307     case Instruction::SExt: 
2308     case Instruction::FPTrunc:
2309     case Instruction::FPExt:
2310     case Instruction::UIToFP:
2311     case Instruction::SIToFP:
2312     case Instruction::FPToUI:
2313     case Instruction::FPToSI:
2314     case Instruction::AddrSpaceCast:
2315       // TODO: Target informations may give a more accurate answer here.
2316       return false;
2317     case Instruction::BitCast:
2318       return true;  // BitCast never modifies bits.
2319     case Instruction::PtrToInt:
2320       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2321              DestTy->getScalarSizeInBits();
2322     case Instruction::IntToPtr:
2323       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2324              SrcTy->getScalarSizeInBits();
2325   }
2326 }
2327
2328 bool CastInst::isNoopCast(const DataLayout &DL) const {
2329   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2330 }
2331
2332 /// This function determines if a pair of casts can be eliminated and what
2333 /// opcode should be used in the elimination. This assumes that there are two
2334 /// instructions like this:
2335 /// *  %F = firstOpcode SrcTy %x to MidTy
2336 /// *  %S = secondOpcode MidTy %F to DstTy
2337 /// The function returns a resultOpcode so these two casts can be replaced with:
2338 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2339 /// If no such cast is permitted, the function returns 0.
2340 unsigned CastInst::isEliminableCastPair(
2341   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2342   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2343   Type *DstIntPtrTy) {
2344   // Define the 144 possibilities for these two cast instructions. The values
2345   // in this matrix determine what to do in a given situation and select the
2346   // case in the switch below.  The rows correspond to firstOp, the columns 
2347   // correspond to secondOp.  In looking at the table below, keep in mind
2348   // the following cast properties:
2349   //
2350   //          Size Compare       Source               Destination
2351   // Operator  Src ? Size   Type       Sign         Type       Sign
2352   // -------- ------------ -------------------   ---------------------
2353   // TRUNC         >       Integer      Any        Integral     Any
2354   // ZEXT          <       Integral   Unsigned     Integer      Any
2355   // SEXT          <       Integral    Signed      Integer      Any
2356   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2357   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2358   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2359   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2360   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2361   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2362   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2363   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2364   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2365   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2366   //
2367   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2368   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2369   // into "fptoui double to i64", but this loses information about the range
2370   // of the produced value (we no longer know the top-part is all zeros).
2371   // Further this conversion is often much more expensive for typical hardware,
2372   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2373   // same reason.
2374   const unsigned numCastOps =
2375     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2376   static const uint8_t CastResults[numCastOps][numCastOps] = {
2377     // T        F  F  U  S  F  F  P  I  B  A  -+
2378     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2379     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2380     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2381     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2382     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2383     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2384     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2385     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2386     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2387     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2388     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2389     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2390     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt          |
2391     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2392     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2393     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2394     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2395   };
2396
2397   // TODO: This logic could be encoded into the table above and handled in the
2398   // switch below.
2399   // If either of the casts are a bitcast from scalar to vector, disallow the
2400   // merging. However, any pair of bitcasts are allowed.
2401   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2402   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2403   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2404
2405   // Check if any of the casts convert scalars <-> vectors.
2406   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2407       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2408     if (!AreBothBitcasts)
2409       return 0;
2410
2411   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2412                             [secondOp-Instruction::CastOpsBegin];
2413   switch (ElimCase) {
2414     case 0: 
2415       // Categorically disallowed.
2416       return 0;
2417     case 1: 
2418       // Allowed, use first cast's opcode.
2419       return firstOp;
2420     case 2: 
2421       // Allowed, use second cast's opcode.
2422       return secondOp;
2423     case 3: 
2424       // No-op cast in second op implies firstOp as long as the DestTy
2425       // is integer and we are not converting between a vector and a
2426       // non-vector type.
2427       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2428         return firstOp;
2429       return 0;
2430     case 4:
2431       // No-op cast in second op implies firstOp as long as the DestTy
2432       // is floating point.
2433       if (DstTy->isFloatingPointTy())
2434         return firstOp;
2435       return 0;
2436     case 5: 
2437       // No-op cast in first op implies secondOp as long as the SrcTy
2438       // is an integer.
2439       if (SrcTy->isIntegerTy())
2440         return secondOp;
2441       return 0;
2442     case 6:
2443       // No-op cast in first op implies secondOp as long as the SrcTy
2444       // is a floating point.
2445       if (SrcTy->isFloatingPointTy())
2446         return secondOp;
2447       return 0;
2448     case 7: {
2449       // Cannot simplify if address spaces are different!
2450       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2451         return 0;
2452
2453       unsigned MidSize = MidTy->getScalarSizeInBits();
2454       // We can still fold this without knowing the actual sizes as long we
2455       // know that the intermediate pointer is the largest possible
2456       // pointer size.
2457       // FIXME: Is this always true?
2458       if (MidSize == 64)
2459         return Instruction::BitCast;
2460
2461       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2462       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2463         return 0;
2464       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2465       if (MidSize >= PtrSize)
2466         return Instruction::BitCast;
2467       return 0;
2468     }
2469     case 8: {
2470       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2471       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2472       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2473       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2474       unsigned DstSize = DstTy->getScalarSizeInBits();
2475       if (SrcSize == DstSize)
2476         return Instruction::BitCast;
2477       else if (SrcSize < DstSize)
2478         return firstOp;
2479       return secondOp;
2480     }
2481     case 9:
2482       // zext, sext -> zext, because sext can't sign extend after zext
2483       return Instruction::ZExt;
2484     case 10:
2485       // fpext followed by ftrunc is allowed if the bit size returned to is
2486       // the same as the original, in which case its just a bitcast
2487       if (SrcTy == DstTy)
2488         return Instruction::BitCast;
2489       return 0; // If the types are not the same we can't eliminate it.
2490     case 11: {
2491       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2492       if (!MidIntPtrTy)
2493         return 0;
2494       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2495       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2496       unsigned DstSize = DstTy->getScalarSizeInBits();
2497       if (SrcSize <= PtrSize && SrcSize == DstSize)
2498         return Instruction::BitCast;
2499       return 0;
2500     }
2501     case 12:
2502       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2503       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2504       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2505         return Instruction::AddrSpaceCast;
2506       return Instruction::BitCast;
2507     case 13:
2508       // FIXME: this state can be merged with (1), but the following assert
2509       // is useful to check the correcteness of the sequence due to semantic
2510       // change of bitcast.
2511       assert(
2512         SrcTy->isPtrOrPtrVectorTy() &&
2513         MidTy->isPtrOrPtrVectorTy() &&
2514         DstTy->isPtrOrPtrVectorTy() &&
2515         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2516         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2517         "Illegal addrspacecast, bitcast sequence!");
2518       // Allowed, use first cast's opcode
2519       return firstOp;
2520     case 14:
2521       // bitcast, addrspacecast -> addrspacecast if the element type of
2522       // bitcast's source is the same as that of addrspacecast's destination.
2523       if (SrcTy->getScalarType()->getPointerElementType() ==
2524           DstTy->getScalarType()->getPointerElementType())
2525         return Instruction::AddrSpaceCast;
2526       return 0;
2527     case 15:
2528       // FIXME: this state can be merged with (1), but the following assert
2529       // is useful to check the correcteness of the sequence due to semantic
2530       // change of bitcast.
2531       assert(
2532         SrcTy->isIntOrIntVectorTy() &&
2533         MidTy->isPtrOrPtrVectorTy() &&
2534         DstTy->isPtrOrPtrVectorTy() &&
2535         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2536         "Illegal inttoptr, bitcast sequence!");
2537       // Allowed, use first cast's opcode
2538       return firstOp;
2539     case 16:
2540       // FIXME: this state can be merged with (2), but the following assert
2541       // is useful to check the correcteness of the sequence due to semantic
2542       // change of bitcast.
2543       assert(
2544         SrcTy->isPtrOrPtrVectorTy() &&
2545         MidTy->isPtrOrPtrVectorTy() &&
2546         DstTy->isIntOrIntVectorTy() &&
2547         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2548         "Illegal bitcast, ptrtoint sequence!");
2549       // Allowed, use second cast's opcode
2550       return secondOp;
2551     case 17:
2552       // (sitofp (zext x)) -> (uitofp x)
2553       return Instruction::UIToFP;
2554     case 99: 
2555       // Cast combination can't happen (error in input). This is for all cases
2556       // where the MidTy is not the same for the two cast instructions.
2557       llvm_unreachable("Invalid Cast Combination");
2558     default:
2559       llvm_unreachable("Error in CastResults table!!!");
2560   }
2561 }
2562
2563 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 
2564   const Twine &Name, Instruction *InsertBefore) {
2565   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2566   // Construct and return the appropriate CastInst subclass
2567   switch (op) {
2568   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2569   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2570   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2571   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2572   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2573   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2574   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2575   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2576   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2577   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2578   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2579   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2580   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2581   default: llvm_unreachable("Invalid opcode provided");
2582   }
2583 }
2584
2585 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2586   const Twine &Name, BasicBlock *InsertAtEnd) {
2587   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2588   // Construct and return the appropriate CastInst subclass
2589   switch (op) {
2590   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2591   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2592   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2593   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2594   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2595   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2596   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2597   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2598   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2599   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2600   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2601   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2602   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2603   default: llvm_unreachable("Invalid opcode provided");
2604   }
2605 }
2606
2607 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2608                                         const Twine &Name,
2609                                         Instruction *InsertBefore) {
2610   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2611     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2612   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2613 }
2614
2615 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2616                                         const Twine &Name,
2617                                         BasicBlock *InsertAtEnd) {
2618   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2619     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2620   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2621 }
2622
2623 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2624                                         const Twine &Name,
2625                                         Instruction *InsertBefore) {
2626   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2627     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2628   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2629 }
2630
2631 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2632                                         const Twine &Name,
2633                                         BasicBlock *InsertAtEnd) {
2634   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2635     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2636   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2637 }
2638
2639 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2640                                          const Twine &Name,
2641                                          Instruction *InsertBefore) {
2642   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2643     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2644   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2645 }
2646
2647 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2648                                          const Twine &Name, 
2649                                          BasicBlock *InsertAtEnd) {
2650   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2651     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2652   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2653 }
2654
2655 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2656                                       const Twine &Name,
2657                                       BasicBlock *InsertAtEnd) {
2658   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2659   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2660          "Invalid cast");
2661   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2662   assert((!Ty->isVectorTy() ||
2663           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2664          "Invalid cast");
2665
2666   if (Ty->isIntOrIntVectorTy())
2667     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2668
2669   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2670 }
2671
2672 /// @brief Create a BitCast or a PtrToInt cast instruction
2673 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2674                                       const Twine &Name,
2675                                       Instruction *InsertBefore) {
2676   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2677   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2678          "Invalid cast");
2679   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2680   assert((!Ty->isVectorTy() ||
2681           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2682          "Invalid cast");
2683
2684   if (Ty->isIntOrIntVectorTy())
2685     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2686
2687   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2688 }
2689
2690 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2691   Value *S, Type *Ty,
2692   const Twine &Name,
2693   BasicBlock *InsertAtEnd) {
2694   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2695   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2696
2697   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2698     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2699
2700   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2701 }
2702
2703 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2704   Value *S, Type *Ty,
2705   const Twine &Name,
2706   Instruction *InsertBefore) {
2707   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2708   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2709
2710   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2711     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2712
2713   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2714 }
2715
2716 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2717                                            const Twine &Name,
2718                                            Instruction *InsertBefore) {
2719   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2720     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2721   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2722     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2723
2724   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2725 }
2726
2727 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2728                                       bool isSigned, const Twine &Name,
2729                                       Instruction *InsertBefore) {
2730   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2731          "Invalid integer cast");
2732   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2733   unsigned DstBits = Ty->getScalarSizeInBits();
2734   Instruction::CastOps opcode =
2735     (SrcBits == DstBits ? Instruction::BitCast :
2736      (SrcBits > DstBits ? Instruction::Trunc :
2737       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2738   return Create(opcode, C, Ty, Name, InsertBefore);
2739 }
2740
2741 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
2742                                       bool isSigned, const Twine &Name,
2743                                       BasicBlock *InsertAtEnd) {
2744   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2745          "Invalid cast");
2746   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2747   unsigned DstBits = Ty->getScalarSizeInBits();
2748   Instruction::CastOps opcode =
2749     (SrcBits == DstBits ? Instruction::BitCast :
2750      (SrcBits > DstBits ? Instruction::Trunc :
2751       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2752   return Create(opcode, C, Ty, Name, InsertAtEnd);
2753 }
2754
2755 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2756                                  const Twine &Name, 
2757                                  Instruction *InsertBefore) {
2758   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2759          "Invalid cast");
2760   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2761   unsigned DstBits = Ty->getScalarSizeInBits();
2762   Instruction::CastOps opcode =
2763     (SrcBits == DstBits ? Instruction::BitCast :
2764      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2765   return Create(opcode, C, Ty, Name, InsertBefore);
2766 }
2767
2768 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2769                                  const Twine &Name, 
2770                                  BasicBlock *InsertAtEnd) {
2771   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2772          "Invalid cast");
2773   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2774   unsigned DstBits = Ty->getScalarSizeInBits();
2775   Instruction::CastOps opcode =
2776     (SrcBits == DstBits ? Instruction::BitCast :
2777      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2778   return Create(opcode, C, Ty, Name, InsertAtEnd);
2779 }
2780
2781 // Check whether it is valid to call getCastOpcode for these types.
2782 // This routine must be kept in sync with getCastOpcode.
2783 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2784   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2785     return false;
2786
2787   if (SrcTy == DestTy)
2788     return true;
2789
2790   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2791     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2792       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2793         // An element by element cast.  Valid if casting the elements is valid.
2794         SrcTy = SrcVecTy->getElementType();
2795         DestTy = DestVecTy->getElementType();
2796       }
2797
2798   // Get the bit sizes, we'll need these
2799   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2800   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2801
2802   // Run through the possibilities ...
2803   if (DestTy->isIntegerTy()) {               // Casting to integral
2804     if (SrcTy->isIntegerTy())                // Casting from integral
2805         return true;
2806     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2807       return true;
2808     if (SrcTy->isVectorTy())          // Casting from vector
2809       return DestBits == SrcBits;
2810                                       // Casting from something else
2811     return SrcTy->isPointerTy();
2812   } 
2813   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2814     if (SrcTy->isIntegerTy())                // Casting from integral
2815       return true;
2816     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2817       return true;
2818     if (SrcTy->isVectorTy())          // Casting from vector
2819       return DestBits == SrcBits;
2820                                     // Casting from something else
2821     return false;
2822   }
2823   if (DestTy->isVectorTy())         // Casting to vector
2824     return DestBits == SrcBits;
2825   if (DestTy->isPointerTy()) {        // Casting to pointer
2826     if (SrcTy->isPointerTy())                // Casting from pointer
2827       return true;
2828     return SrcTy->isIntegerTy();             // Casting from integral
2829   } 
2830   if (DestTy->isX86_MMXTy()) {
2831     if (SrcTy->isVectorTy())
2832       return DestBits == SrcBits;       // 64-bit vector to MMX
2833     return false;
2834   }                                    // Casting to something else
2835   return false;
2836 }
2837
2838 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2839   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2840     return false;
2841
2842   if (SrcTy == DestTy)
2843     return true;
2844
2845   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2846     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2847       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2848         // An element by element cast. Valid if casting the elements is valid.
2849         SrcTy = SrcVecTy->getElementType();
2850         DestTy = DestVecTy->getElementType();
2851       }
2852     }
2853   }
2854
2855   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2856     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2857       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2858     }
2859   }
2860
2861   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2862   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2863
2864   // Could still have vectors of pointers if the number of elements doesn't
2865   // match
2866   if (SrcBits == 0 || DestBits == 0)
2867     return false;
2868
2869   if (SrcBits != DestBits)
2870     return false;
2871
2872   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2873     return false;
2874
2875   return true;
2876 }
2877
2878 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2879                                           const DataLayout &DL) {
2880   // ptrtoint and inttoptr are not allowed on non-integral pointers
2881   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2882     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2883       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2884               !DL.isNonIntegralPointerType(PtrTy));
2885   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2886     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2887       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2888               !DL.isNonIntegralPointerType(PtrTy));
2889
2890   return isBitCastable(SrcTy, DestTy);
2891 }
2892
2893 // Provide a way to get a "cast" where the cast opcode is inferred from the
2894 // types and size of the operand. This, basically, is a parallel of the
2895 // logic in the castIsValid function below.  This axiom should hold:
2896 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2897 // should not assert in castIsValid. In other words, this produces a "correct"
2898 // casting opcode for the arguments passed to it.
2899 // This routine must be kept in sync with isCastable.
2900 Instruction::CastOps
2901 CastInst::getCastOpcode(
2902   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2903   Type *SrcTy = Src->getType();
2904
2905   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2906          "Only first class types are castable!");
2907
2908   if (SrcTy == DestTy)
2909     return BitCast;
2910
2911   // FIXME: Check address space sizes here
2912   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2913     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2914       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2915         // An element by element cast.  Find the appropriate opcode based on the
2916         // element types.
2917         SrcTy = SrcVecTy->getElementType();
2918         DestTy = DestVecTy->getElementType();
2919       }
2920
2921   // Get the bit sizes, we'll need these
2922   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2923   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2924
2925   // Run through the possibilities ...
2926   if (DestTy->isIntegerTy()) {                      // Casting to integral
2927     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2928       if (DestBits < SrcBits)
2929         return Trunc;                               // int -> smaller int
2930       else if (DestBits > SrcBits) {                // its an extension
2931         if (SrcIsSigned)
2932           return SExt;                              // signed -> SEXT
2933         else
2934           return ZExt;                              // unsigned -> ZEXT
2935       } else {
2936         return BitCast;                             // Same size, No-op cast
2937       }
2938     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2939       if (DestIsSigned) 
2940         return FPToSI;                              // FP -> sint
2941       else
2942         return FPToUI;                              // FP -> uint 
2943     } else if (SrcTy->isVectorTy()) {
2944       assert(DestBits == SrcBits &&
2945              "Casting vector to integer of different width");
2946       return BitCast;                             // Same size, no-op cast
2947     } else {
2948       assert(SrcTy->isPointerTy() &&
2949              "Casting from a value that is not first-class type");
2950       return PtrToInt;                              // ptr -> int
2951     }
2952   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2953     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2954       if (SrcIsSigned)
2955         return SIToFP;                              // sint -> FP
2956       else
2957         return UIToFP;                              // uint -> FP
2958     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2959       if (DestBits < SrcBits) {
2960         return FPTrunc;                             // FP -> smaller FP
2961       } else if (DestBits > SrcBits) {
2962         return FPExt;                               // FP -> larger FP
2963       } else  {
2964         return BitCast;                             // same size, no-op cast
2965       }
2966     } else if (SrcTy->isVectorTy()) {
2967       assert(DestBits == SrcBits &&
2968              "Casting vector to floating point of different width");
2969       return BitCast;                             // same size, no-op cast
2970     }
2971     llvm_unreachable("Casting pointer or non-first class to float");
2972   } else if (DestTy->isVectorTy()) {
2973     assert(DestBits == SrcBits &&
2974            "Illegal cast to vector (wrong type or size)");
2975     return BitCast;
2976   } else if (DestTy->isPointerTy()) {
2977     if (SrcTy->isPointerTy()) {
2978       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2979         return AddrSpaceCast;
2980       return BitCast;                               // ptr -> ptr
2981     } else if (SrcTy->isIntegerTy()) {
2982       return IntToPtr;                              // int -> ptr
2983     }
2984     llvm_unreachable("Casting pointer to other than pointer or int");
2985   } else if (DestTy->isX86_MMXTy()) {
2986     if (SrcTy->isVectorTy()) {
2987       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2988       return BitCast;                               // 64-bit vector to MMX
2989     }
2990     llvm_unreachable("Illegal cast to X86_MMX");
2991   }
2992   llvm_unreachable("Casting to type that is not first-class");
2993 }
2994
2995 //===----------------------------------------------------------------------===//
2996 //                    CastInst SubClass Constructors
2997 //===----------------------------------------------------------------------===//
2998
2999 /// Check that the construction parameters for a CastInst are correct. This
3000 /// could be broken out into the separate constructors but it is useful to have
3001 /// it in one place and to eliminate the redundant code for getting the sizes
3002 /// of the types involved.
3003 bool 
3004 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3005   // Check for type sanity on the arguments
3006   Type *SrcTy = S->getType();
3007
3008   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3009       SrcTy->isAggregateType() || DstTy->isAggregateType())
3010     return false;
3011
3012   // Get the size of the types in bits, we'll need this later
3013   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3014   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3015
3016   // If these are vector types, get the lengths of the vectors (using zero for
3017   // scalar types means that checking that vector lengths match also checks that
3018   // scalars are not being converted to vectors or vectors to scalars).
3019   unsigned SrcLength = SrcTy->isVectorTy() ?
3020     cast<VectorType>(SrcTy)->getNumElements() : 0;
3021   unsigned DstLength = DstTy->isVectorTy() ?
3022     cast<VectorType>(DstTy)->getNumElements() : 0;
3023
3024   // Switch on the opcode provided
3025   switch (op) {
3026   default: return false; // This is an input error
3027   case Instruction::Trunc:
3028     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3029       SrcLength == DstLength && SrcBitSize > DstBitSize;
3030   case Instruction::ZExt:
3031     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3032       SrcLength == DstLength && SrcBitSize < DstBitSize;
3033   case Instruction::SExt: 
3034     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3035       SrcLength == DstLength && SrcBitSize < DstBitSize;
3036   case Instruction::FPTrunc:
3037     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3038       SrcLength == DstLength && SrcBitSize > DstBitSize;
3039   case Instruction::FPExt:
3040     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3041       SrcLength == DstLength && SrcBitSize < DstBitSize;
3042   case Instruction::UIToFP:
3043   case Instruction::SIToFP:
3044     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3045       SrcLength == DstLength;
3046   case Instruction::FPToUI:
3047   case Instruction::FPToSI:
3048     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3049       SrcLength == DstLength;
3050   case Instruction::PtrToInt:
3051     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3052       return false;
3053     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3054       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3055         return false;
3056     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3057   case Instruction::IntToPtr:
3058     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3059       return false;
3060     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3061       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3062         return false;
3063     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3064   case Instruction::BitCast: {
3065     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3066     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3067
3068     // BitCast implies a no-op cast of type only. No bits change.
3069     // However, you can't cast pointers to anything but pointers.
3070     if (!SrcPtrTy != !DstPtrTy)
3071       return false;
3072
3073     // For non-pointer cases, the cast is okay if the source and destination bit
3074     // widths are identical.
3075     if (!SrcPtrTy)
3076       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3077
3078     // If both are pointers then the address spaces must match.
3079     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3080       return false;
3081
3082     // A vector of pointers must have the same number of elements.
3083     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3084       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3085         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3086
3087       return false;
3088     }
3089
3090     return true;
3091   }
3092   case Instruction::AddrSpaceCast: {
3093     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3094     if (!SrcPtrTy)
3095       return false;
3096
3097     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3098     if (!DstPtrTy)
3099       return false;
3100
3101     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3102       return false;
3103
3104     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3105       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3106         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3107
3108       return false;
3109     }
3110
3111     return true;
3112   }
3113   }
3114 }
3115
3116 TruncInst::TruncInst(
3117   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3118 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3119   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3120 }
3121
3122 TruncInst::TruncInst(
3123   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3124 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
3125   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3126 }
3127
3128 ZExtInst::ZExtInst(
3129   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3130 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
3131   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3132 }
3133
3134 ZExtInst::ZExtInst(
3135   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3136 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
3137   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3138 }
3139 SExtInst::SExtInst(
3140   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3141 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
3142   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3143 }
3144
3145 SExtInst::SExtInst(
3146   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3147 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
3148   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3149 }
3150
3151 FPTruncInst::FPTruncInst(
3152   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3153 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
3154   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3155 }
3156
3157 FPTruncInst::FPTruncInst(
3158   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3159 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
3160   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3161 }
3162
3163 FPExtInst::FPExtInst(
3164   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3165 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
3166   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3167 }
3168
3169 FPExtInst::FPExtInst(
3170   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3171 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
3172   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3173 }
3174
3175 UIToFPInst::UIToFPInst(
3176   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3177 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
3178   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3179 }
3180
3181 UIToFPInst::UIToFPInst(
3182   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3183 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
3184   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3185 }
3186
3187 SIToFPInst::SIToFPInst(
3188   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3189 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
3190   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3191 }
3192
3193 SIToFPInst::SIToFPInst(
3194   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3195 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
3196   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3197 }
3198
3199 FPToUIInst::FPToUIInst(
3200   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3201 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
3202   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3203 }
3204
3205 FPToUIInst::FPToUIInst(
3206   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3207 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
3208   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3209 }
3210
3211 FPToSIInst::FPToSIInst(
3212   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3213 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
3214   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3215 }
3216
3217 FPToSIInst::FPToSIInst(
3218   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3219 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
3220   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3221 }
3222
3223 PtrToIntInst::PtrToIntInst(
3224   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3225 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
3226   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3227 }
3228
3229 PtrToIntInst::PtrToIntInst(
3230   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3231 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
3232   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3233 }
3234
3235 IntToPtrInst::IntToPtrInst(
3236   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3237 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
3238   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3239 }
3240
3241 IntToPtrInst::IntToPtrInst(
3242   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3243 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
3244   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3245 }
3246
3247 BitCastInst::BitCastInst(
3248   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3249 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
3250   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3251 }
3252
3253 BitCastInst::BitCastInst(
3254   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3255 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
3256   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3257 }
3258
3259 AddrSpaceCastInst::AddrSpaceCastInst(
3260   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3261 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3262   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3263 }
3264
3265 AddrSpaceCastInst::AddrSpaceCastInst(
3266   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3267 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3268   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3269 }
3270
3271 //===----------------------------------------------------------------------===//
3272 //                               CmpInst Classes
3273 //===----------------------------------------------------------------------===//
3274
3275 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3276                  Value *RHS, const Twine &Name, Instruction *InsertBefore)
3277   : Instruction(ty, op,
3278                 OperandTraits<CmpInst>::op_begin(this),
3279                 OperandTraits<CmpInst>::operands(this),
3280                 InsertBefore) {
3281     Op<0>() = LHS;
3282     Op<1>() = RHS;
3283   setPredicate((Predicate)predicate);
3284   setName(Name);
3285 }
3286
3287 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3288                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3289   : Instruction(ty, op,
3290                 OperandTraits<CmpInst>::op_begin(this),
3291                 OperandTraits<CmpInst>::operands(this),
3292                 InsertAtEnd) {
3293   Op<0>() = LHS;
3294   Op<1>() = RHS;
3295   setPredicate((Predicate)predicate);
3296   setName(Name);
3297 }
3298
3299 CmpInst *
3300 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3301                 const Twine &Name, Instruction *InsertBefore) {
3302   if (Op == Instruction::ICmp) {
3303     if (InsertBefore)
3304       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3305                           S1, S2, Name);
3306     else
3307       return new ICmpInst(CmpInst::Predicate(predicate),
3308                           S1, S2, Name);
3309   }
3310   
3311   if (InsertBefore)
3312     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3313                         S1, S2, Name);
3314   else
3315     return new FCmpInst(CmpInst::Predicate(predicate),
3316                         S1, S2, Name);
3317 }
3318
3319 CmpInst *
3320 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3321                 const Twine &Name, BasicBlock *InsertAtEnd) {
3322   if (Op == Instruction::ICmp) {
3323     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3324                         S1, S2, Name);
3325   }
3326   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3327                       S1, S2, Name);
3328 }
3329
3330 void CmpInst::swapOperands() {
3331   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3332     IC->swapOperands();
3333   else
3334     cast<FCmpInst>(this)->swapOperands();
3335 }
3336
3337 bool CmpInst::isCommutative() const {
3338   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3339     return IC->isCommutative();
3340   return cast<FCmpInst>(this)->isCommutative();
3341 }
3342
3343 bool CmpInst::isEquality() const {
3344   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3345     return IC->isEquality();
3346   return cast<FCmpInst>(this)->isEquality();
3347 }
3348
3349 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3350   switch (pred) {
3351     default: llvm_unreachable("Unknown cmp predicate!");
3352     case ICMP_EQ: return ICMP_NE;
3353     case ICMP_NE: return ICMP_EQ;
3354     case ICMP_UGT: return ICMP_ULE;
3355     case ICMP_ULT: return ICMP_UGE;
3356     case ICMP_UGE: return ICMP_ULT;
3357     case ICMP_ULE: return ICMP_UGT;
3358     case ICMP_SGT: return ICMP_SLE;
3359     case ICMP_SLT: return ICMP_SGE;
3360     case ICMP_SGE: return ICMP_SLT;
3361     case ICMP_SLE: return ICMP_SGT;
3362
3363     case FCMP_OEQ: return FCMP_UNE;
3364     case FCMP_ONE: return FCMP_UEQ;
3365     case FCMP_OGT: return FCMP_ULE;
3366     case FCMP_OLT: return FCMP_UGE;
3367     case FCMP_OGE: return FCMP_ULT;
3368     case FCMP_OLE: return FCMP_UGT;
3369     case FCMP_UEQ: return FCMP_ONE;
3370     case FCMP_UNE: return FCMP_OEQ;
3371     case FCMP_UGT: return FCMP_OLE;
3372     case FCMP_ULT: return FCMP_OGE;
3373     case FCMP_UGE: return FCMP_OLT;
3374     case FCMP_ULE: return FCMP_OGT;
3375     case FCMP_ORD: return FCMP_UNO;
3376     case FCMP_UNO: return FCMP_ORD;
3377     case FCMP_TRUE: return FCMP_FALSE;
3378     case FCMP_FALSE: return FCMP_TRUE;
3379   }
3380 }
3381
3382 StringRef CmpInst::getPredicateName(Predicate Pred) {
3383   switch (Pred) {
3384   default:                   return "unknown";
3385   case FCmpInst::FCMP_FALSE: return "false";
3386   case FCmpInst::FCMP_OEQ:   return "oeq";
3387   case FCmpInst::FCMP_OGT:   return "ogt";
3388   case FCmpInst::FCMP_OGE:   return "oge";
3389   case FCmpInst::FCMP_OLT:   return "olt";
3390   case FCmpInst::FCMP_OLE:   return "ole";
3391   case FCmpInst::FCMP_ONE:   return "one";
3392   case FCmpInst::FCMP_ORD:   return "ord";
3393   case FCmpInst::FCMP_UNO:   return "uno";
3394   case FCmpInst::FCMP_UEQ:   return "ueq";
3395   case FCmpInst::FCMP_UGT:   return "ugt";
3396   case FCmpInst::FCMP_UGE:   return "uge";
3397   case FCmpInst::FCMP_ULT:   return "ult";
3398   case FCmpInst::FCMP_ULE:   return "ule";
3399   case FCmpInst::FCMP_UNE:   return "une";
3400   case FCmpInst::FCMP_TRUE:  return "true";
3401   case ICmpInst::ICMP_EQ:    return "eq";
3402   case ICmpInst::ICMP_NE:    return "ne";
3403   case ICmpInst::ICMP_SGT:   return "sgt";
3404   case ICmpInst::ICMP_SGE:   return "sge";
3405   case ICmpInst::ICMP_SLT:   return "slt";
3406   case ICmpInst::ICMP_SLE:   return "sle";
3407   case ICmpInst::ICMP_UGT:   return "ugt";
3408   case ICmpInst::ICMP_UGE:   return "uge";
3409   case ICmpInst::ICMP_ULT:   return "ult";
3410   case ICmpInst::ICMP_ULE:   return "ule";
3411   }
3412 }
3413
3414 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3415   switch (pred) {
3416     default: llvm_unreachable("Unknown icmp predicate!");
3417     case ICMP_EQ: case ICMP_NE: 
3418     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
3419        return pred;
3420     case ICMP_UGT: return ICMP_SGT;
3421     case ICMP_ULT: return ICMP_SLT;
3422     case ICMP_UGE: return ICMP_SGE;
3423     case ICMP_ULE: return ICMP_SLE;
3424   }
3425 }
3426
3427 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3428   switch (pred) {
3429     default: llvm_unreachable("Unknown icmp predicate!");
3430     case ICMP_EQ: case ICMP_NE: 
3431     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 
3432        return pred;
3433     case ICMP_SGT: return ICMP_UGT;
3434     case ICMP_SLT: return ICMP_ULT;
3435     case ICMP_SGE: return ICMP_UGE;
3436     case ICMP_SLE: return ICMP_ULE;
3437   }
3438 }
3439
3440 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3441   switch (pred) {
3442     default: llvm_unreachable("Unknown cmp predicate!");
3443     case ICMP_EQ: case ICMP_NE:
3444       return pred;
3445     case ICMP_SGT: return ICMP_SLT;
3446     case ICMP_SLT: return ICMP_SGT;
3447     case ICMP_SGE: return ICMP_SLE;
3448     case ICMP_SLE: return ICMP_SGE;
3449     case ICMP_UGT: return ICMP_ULT;
3450     case ICMP_ULT: return ICMP_UGT;
3451     case ICMP_UGE: return ICMP_ULE;
3452     case ICMP_ULE: return ICMP_UGE;
3453   
3454     case FCMP_FALSE: case FCMP_TRUE:
3455     case FCMP_OEQ: case FCMP_ONE:
3456     case FCMP_UEQ: case FCMP_UNE:
3457     case FCMP_ORD: case FCMP_UNO:
3458       return pred;
3459     case FCMP_OGT: return FCMP_OLT;
3460     case FCMP_OLT: return FCMP_OGT;
3461     case FCMP_OGE: return FCMP_OLE;
3462     case FCMP_OLE: return FCMP_OGE;
3463     case FCMP_UGT: return FCMP_ULT;
3464     case FCMP_ULT: return FCMP_UGT;
3465     case FCMP_UGE: return FCMP_ULE;
3466     case FCMP_ULE: return FCMP_UGE;
3467   }
3468 }
3469
3470 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3471   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3472
3473   switch (pred) {
3474   default:
3475     llvm_unreachable("Unknown predicate!");
3476   case CmpInst::ICMP_ULT:
3477     return CmpInst::ICMP_SLT;
3478   case CmpInst::ICMP_ULE:
3479     return CmpInst::ICMP_SLE;
3480   case CmpInst::ICMP_UGT:
3481     return CmpInst::ICMP_SGT;
3482   case CmpInst::ICMP_UGE:
3483     return CmpInst::ICMP_SGE;
3484   }
3485 }
3486
3487 bool CmpInst::isUnsigned(Predicate predicate) {
3488   switch (predicate) {
3489     default: return false;
3490     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
3491     case ICmpInst::ICMP_UGE: return true;
3492   }
3493 }
3494
3495 bool CmpInst::isSigned(Predicate predicate) {
3496   switch (predicate) {
3497     default: return false;
3498     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
3499     case ICmpInst::ICMP_SGE: return true;
3500   }
3501 }
3502
3503 bool CmpInst::isOrdered(Predicate predicate) {
3504   switch (predicate) {
3505     default: return false;
3506     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
3507     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
3508     case FCmpInst::FCMP_ORD: return true;
3509   }
3510 }
3511       
3512 bool CmpInst::isUnordered(Predicate predicate) {
3513   switch (predicate) {
3514     default: return false;
3515     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
3516     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
3517     case FCmpInst::FCMP_UNO: return true;
3518   }
3519 }
3520
3521 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3522   switch(predicate) {
3523     default: return false;
3524     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3525     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3526   }
3527 }
3528
3529 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3530   switch(predicate) {
3531   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3532   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3533   default: return false;
3534   }
3535 }
3536
3537 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3538   // If the predicates match, then we know the first condition implies the
3539   // second is true.
3540   if (Pred1 == Pred2)
3541     return true;
3542
3543   switch (Pred1) {
3544   default:
3545     break;
3546   case ICMP_EQ:
3547     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3548     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3549            Pred2 == ICMP_SLE;
3550   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3551     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3552   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3553     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3554   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3555     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3556   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3557     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3558   }
3559   return false;
3560 }
3561
3562 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3563   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3564 }
3565
3566 //===----------------------------------------------------------------------===//
3567 //                        SwitchInst Implementation
3568 //===----------------------------------------------------------------------===//
3569
3570 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3571   assert(Value && Default && NumReserved);
3572   ReservedSpace = NumReserved;
3573   setNumHungOffUseOperands(2);
3574   allocHungoffUses(ReservedSpace);
3575
3576   Op<0>() = Value;
3577   Op<1>() = Default;
3578 }
3579
3580 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3581 /// switch on and a default destination.  The number of additional cases can
3582 /// be specified here to make memory allocation more efficient.  This
3583 /// constructor can also autoinsert before another instruction.
3584 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3585                        Instruction *InsertBefore)
3586   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3587                    nullptr, 0, InsertBefore) {
3588   init(Value, Default, 2+NumCases*2);
3589 }
3590
3591 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3592 /// switch on and a default destination.  The number of additional cases can
3593 /// be specified here to make memory allocation more efficient.  This
3594 /// constructor also autoinserts at the end of the specified BasicBlock.
3595 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3596                        BasicBlock *InsertAtEnd)
3597   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3598                    nullptr, 0, InsertAtEnd) {
3599   init(Value, Default, 2+NumCases*2);
3600 }
3601
3602 SwitchInst::SwitchInst(const SwitchInst &SI)
3603   : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3604   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3605   setNumHungOffUseOperands(SI.getNumOperands());
3606   Use *OL = getOperandList();
3607   const Use *InOL = SI.getOperandList();
3608   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3609     OL[i] = InOL[i];
3610     OL[i+1] = InOL[i+1];
3611   }
3612   SubclassOptionalData = SI.SubclassOptionalData;
3613 }
3614
3615
3616 /// addCase - Add an entry to the switch instruction...
3617 ///
3618 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3619   unsigned NewCaseIdx = getNumCases();
3620   unsigned OpNo = getNumOperands();
3621   if (OpNo+2 > ReservedSpace)
3622     growOperands();  // Get more space!
3623   // Initialize some new operands.
3624   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3625   setNumHungOffUseOperands(OpNo+2);
3626   CaseHandle Case(this, NewCaseIdx);
3627   Case.setValue(OnVal);
3628   Case.setSuccessor(Dest);
3629 }
3630
3631 /// removeCase - This method removes the specified case and its successor
3632 /// from the switch instruction.
3633 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3634   unsigned idx = I->getCaseIndex();
3635
3636   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3637
3638   unsigned NumOps = getNumOperands();
3639   Use *OL = getOperandList();
3640
3641   // Overwrite this case with the end of the list.
3642   if (2 + (idx + 1) * 2 != NumOps) {
3643     OL[2 + idx * 2] = OL[NumOps - 2];
3644     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3645   }
3646
3647   // Nuke the last value.
3648   OL[NumOps-2].set(nullptr);
3649   OL[NumOps-2+1].set(nullptr);
3650   setNumHungOffUseOperands(NumOps-2);
3651
3652   return CaseIt(this, idx);
3653 }
3654
3655 /// growOperands - grow operands - This grows the operand list in response
3656 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3657 ///
3658 void SwitchInst::growOperands() {
3659   unsigned e = getNumOperands();
3660   unsigned NumOps = e*3;
3661
3662   ReservedSpace = NumOps;
3663   growHungoffUses(ReservedSpace);
3664 }
3665
3666 //===----------------------------------------------------------------------===//
3667 //                        IndirectBrInst Implementation
3668 //===----------------------------------------------------------------------===//
3669
3670 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3671   assert(Address && Address->getType()->isPointerTy() &&
3672          "Address of indirectbr must be a pointer");
3673   ReservedSpace = 1+NumDests;
3674   setNumHungOffUseOperands(1);
3675   allocHungoffUses(ReservedSpace);
3676
3677   Op<0>() = Address;
3678 }
3679
3680
3681 /// growOperands - grow operands - This grows the operand list in response
3682 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3683 ///
3684 void IndirectBrInst::growOperands() {
3685   unsigned e = getNumOperands();
3686   unsigned NumOps = e*2;
3687   
3688   ReservedSpace = NumOps;
3689   growHungoffUses(ReservedSpace);
3690 }
3691
3692 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3693                                Instruction *InsertBefore)
3694 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3695                  nullptr, 0, InsertBefore) {
3696   init(Address, NumCases);
3697 }
3698
3699 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3700                                BasicBlock *InsertAtEnd)
3701 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3702                  nullptr, 0, InsertAtEnd) {
3703   init(Address, NumCases);
3704 }
3705
3706 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3707     : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3708                      nullptr, IBI.getNumOperands()) {
3709   allocHungoffUses(IBI.getNumOperands());
3710   Use *OL = getOperandList();
3711   const Use *InOL = IBI.getOperandList();
3712   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3713     OL[i] = InOL[i];
3714   SubclassOptionalData = IBI.SubclassOptionalData;
3715 }
3716
3717 /// addDestination - Add a destination.
3718 ///
3719 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3720   unsigned OpNo = getNumOperands();
3721   if (OpNo+1 > ReservedSpace)
3722     growOperands();  // Get more space!
3723   // Initialize some new operands.
3724   assert(OpNo < ReservedSpace && "Growing didn't work!");
3725   setNumHungOffUseOperands(OpNo+1);
3726   getOperandList()[OpNo] = DestBB;
3727 }
3728
3729 /// removeDestination - This method removes the specified successor from the
3730 /// indirectbr instruction.
3731 void IndirectBrInst::removeDestination(unsigned idx) {
3732   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3733   
3734   unsigned NumOps = getNumOperands();
3735   Use *OL = getOperandList();
3736
3737   // Replace this value with the last one.
3738   OL[idx+1] = OL[NumOps-1];
3739   
3740   // Nuke the last value.
3741   OL[NumOps-1].set(nullptr);
3742   setNumHungOffUseOperands(NumOps-1);
3743 }
3744
3745 //===----------------------------------------------------------------------===//
3746 //                           cloneImpl() implementations
3747 //===----------------------------------------------------------------------===//
3748
3749 // Define these methods here so vtables don't get emitted into every translation
3750 // unit that uses these classes.
3751
3752 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3753   return new (getNumOperands()) GetElementPtrInst(*this);
3754 }
3755
3756 BinaryOperator *BinaryOperator::cloneImpl() const {
3757   return Create(getOpcode(), Op<0>(), Op<1>());
3758 }
3759
3760 FCmpInst *FCmpInst::cloneImpl() const {
3761   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3762 }
3763
3764 ICmpInst *ICmpInst::cloneImpl() const {
3765   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3766 }
3767
3768 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3769   return new ExtractValueInst(*this);
3770 }
3771
3772 InsertValueInst *InsertValueInst::cloneImpl() const {
3773   return new InsertValueInst(*this);
3774 }
3775
3776 AllocaInst *AllocaInst::cloneImpl() const {
3777   AllocaInst *Result = new AllocaInst(getAllocatedType(),
3778                                       getType()->getAddressSpace(),
3779                                       (Value *)getOperand(0), getAlignment());
3780   Result->setUsedWithInAlloca(isUsedWithInAlloca());
3781   Result->setSwiftError(isSwiftError());
3782   return Result;
3783 }
3784
3785 LoadInst *LoadInst::cloneImpl() const {
3786   return new LoadInst(getOperand(0), Twine(), isVolatile(),
3787                       getAlignment(), getOrdering(), getSyncScopeID());
3788 }
3789
3790 StoreInst *StoreInst::cloneImpl() const {
3791   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3792                        getAlignment(), getOrdering(), getSyncScopeID());
3793   
3794 }
3795
3796 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3797   AtomicCmpXchgInst *Result =
3798     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3799                           getSuccessOrdering(), getFailureOrdering(),
3800                           getSyncScopeID());
3801   Result->setVolatile(isVolatile());
3802   Result->setWeak(isWeak());
3803   return Result;
3804 }
3805
3806 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3807   AtomicRMWInst *Result =
3808     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3809                       getOrdering(), getSyncScopeID());
3810   Result->setVolatile(isVolatile());
3811   return Result;
3812 }
3813
3814 FenceInst *FenceInst::cloneImpl() const {
3815   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3816 }
3817
3818 TruncInst *TruncInst::cloneImpl() const {
3819   return new TruncInst(getOperand(0), getType());
3820 }
3821
3822 ZExtInst *ZExtInst::cloneImpl() const {
3823   return new ZExtInst(getOperand(0), getType());
3824 }
3825
3826 SExtInst *SExtInst::cloneImpl() const {
3827   return new SExtInst(getOperand(0), getType());
3828 }
3829
3830 FPTruncInst *FPTruncInst::cloneImpl() const {
3831   return new FPTruncInst(getOperand(0), getType());
3832 }
3833
3834 FPExtInst *FPExtInst::cloneImpl() const {
3835   return new FPExtInst(getOperand(0), getType());
3836 }
3837
3838 UIToFPInst *UIToFPInst::cloneImpl() const {
3839   return new UIToFPInst(getOperand(0), getType());
3840 }
3841
3842 SIToFPInst *SIToFPInst::cloneImpl() const {
3843   return new SIToFPInst(getOperand(0), getType());
3844 }
3845
3846 FPToUIInst *FPToUIInst::cloneImpl() const {
3847   return new FPToUIInst(getOperand(0), getType());
3848 }
3849
3850 FPToSIInst *FPToSIInst::cloneImpl() const {
3851   return new FPToSIInst(getOperand(0), getType());
3852 }
3853
3854 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3855   return new PtrToIntInst(getOperand(0), getType());
3856 }
3857
3858 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3859   return new IntToPtrInst(getOperand(0), getType());
3860 }
3861
3862 BitCastInst *BitCastInst::cloneImpl() const {
3863   return new BitCastInst(getOperand(0), getType());
3864 }
3865
3866 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
3867   return new AddrSpaceCastInst(getOperand(0), getType());
3868 }
3869
3870 CallInst *CallInst::cloneImpl() const {
3871   if (hasOperandBundles()) {
3872     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3873     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
3874   }
3875   return  new(getNumOperands()) CallInst(*this);
3876 }
3877
3878 SelectInst *SelectInst::cloneImpl() const {
3879   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3880 }
3881
3882 VAArgInst *VAArgInst::cloneImpl() const {
3883   return new VAArgInst(getOperand(0), getType());
3884 }
3885
3886 ExtractElementInst *ExtractElementInst::cloneImpl() const {
3887   return ExtractElementInst::Create(getOperand(0), getOperand(1));
3888 }
3889
3890 InsertElementInst *InsertElementInst::cloneImpl() const {
3891   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3892 }
3893
3894 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
3895   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3896 }
3897
3898 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3899
3900 LandingPadInst *LandingPadInst::cloneImpl() const {
3901   return new LandingPadInst(*this);
3902 }
3903
3904 ReturnInst *ReturnInst::cloneImpl() const {
3905   return new(getNumOperands()) ReturnInst(*this);
3906 }
3907
3908 BranchInst *BranchInst::cloneImpl() const {
3909   return new(getNumOperands()) BranchInst(*this);
3910 }
3911
3912 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3913
3914 IndirectBrInst *IndirectBrInst::cloneImpl() const {
3915   return new IndirectBrInst(*this);
3916 }
3917
3918 InvokeInst *InvokeInst::cloneImpl() const {
3919   if (hasOperandBundles()) {
3920     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3921     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
3922   }
3923   return new(getNumOperands()) InvokeInst(*this);
3924 }
3925
3926 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3927
3928 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
3929   return new (getNumOperands()) CleanupReturnInst(*this);
3930 }
3931
3932 CatchReturnInst *CatchReturnInst::cloneImpl() const {
3933   return new (getNumOperands()) CatchReturnInst(*this);
3934 }
3935
3936 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
3937   return new CatchSwitchInst(*this);
3938 }
3939
3940 FuncletPadInst *FuncletPadInst::cloneImpl() const {
3941   return new (getNumOperands()) FuncletPadInst(*this);
3942 }
3943
3944 UnreachableInst *UnreachableInst::cloneImpl() const {
3945   LLVMContext &Context = getContext();
3946   return new UnreachableInst(Context);
3947 }