]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/IR/Instructions.cpp
Import mandoc 1.4.1rc2
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / IR / Instructions.cpp
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 //                            CallSite Class
31 //===----------------------------------------------------------------------===//
32
33 User::op_iterator CallSite::getCallee() const {
34   Instruction *II(getInstruction());
35   return isCall()
36     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38 }
39
40 //===----------------------------------------------------------------------===//
41 //                            TerminatorInst Class
42 //===----------------------------------------------------------------------===//
43
44 // Out of line virtual method, so the vtable, etc has a home.
45 TerminatorInst::~TerminatorInst() {
46 }
47
48 //===----------------------------------------------------------------------===//
49 //                           UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
51
52 // Out of line virtual method, so the vtable, etc has a home.
53 UnaryInstruction::~UnaryInstruction() {
54 }
55
56 //===----------------------------------------------------------------------===//
57 //                              SelectInst Class
58 //===----------------------------------------------------------------------===//
59
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63   if (Op1->getType() != Op2->getType())
64     return "both values to select must have same type";
65
66   if (Op1->getType()->isTokenTy())
67     return "select values cannot have token type";
68
69   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
70     // Vector select.
71     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
72       return "vector select condition element type must be i1";
73     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
74     if (!ET)
75       return "selected values for vector select must be vectors";
76     if (ET->getNumElements() != VT->getNumElements())
77       return "vector select requires selected vectors to have "
78                    "the same vector length as select condition";
79   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
80     return "select condition must be i1 or <n x i1>";
81   }
82   return nullptr;
83 }
84
85
86 //===----------------------------------------------------------------------===//
87 //                               PHINode Class
88 //===----------------------------------------------------------------------===//
89
90 void PHINode::anchor() {}
91
92 PHINode::PHINode(const PHINode &PN)
93     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
94       ReservedSpace(PN.getNumOperands()) {
95   allocHungoffUses(PN.getNumOperands());
96   std::copy(PN.op_begin(), PN.op_end(), op_begin());
97   std::copy(PN.block_begin(), PN.block_end(), block_begin());
98   SubclassOptionalData = PN.SubclassOptionalData;
99 }
100
101 // removeIncomingValue - Remove an incoming value.  This is useful if a
102 // predecessor basic block is deleted.
103 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
104   Value *Removed = getIncomingValue(Idx);
105
106   // Move everything after this operand down.
107   //
108   // FIXME: we could just swap with the end of the list, then erase.  However,
109   // clients might not expect this to happen.  The code as it is thrashes the
110   // use/def lists, which is kinda lame.
111   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
112   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
113
114   // Nuke the last value.
115   Op<-1>().set(nullptr);
116   setNumHungOffUseOperands(getNumOperands() - 1);
117
118   // If the PHI node is dead, because it has zero entries, nuke it now.
119   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
120     // If anyone is using this PHI, make them use a dummy value instead...
121     replaceAllUsesWith(UndefValue::get(getType()));
122     eraseFromParent();
123   }
124   return Removed;
125 }
126
127 /// growOperands - grow operands - This grows the operand list in response
128 /// to a push_back style of operation.  This grows the number of ops by 1.5
129 /// times.
130 ///
131 void PHINode::growOperands() {
132   unsigned e = getNumOperands();
133   unsigned NumOps = e + e / 2;
134   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
135
136   ReservedSpace = NumOps;
137   growHungoffUses(ReservedSpace, /* IsPhi */ true);
138 }
139
140 /// hasConstantValue - If the specified PHI node always merges together the same
141 /// value, return the value, otherwise return null.
142 Value *PHINode::hasConstantValue() const {
143   // Exploit the fact that phi nodes always have at least one entry.
144   Value *ConstantValue = getIncomingValue(0);
145   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
146     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
147       if (ConstantValue != this)
148         return nullptr; // Incoming values not all the same.
149        // The case where the first value is this PHI.
150       ConstantValue = getIncomingValue(i);
151     }
152   if (ConstantValue == this)
153     return UndefValue::get(getType());
154   return ConstantValue;
155 }
156
157 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
158 /// together the same value, assuming that undefs result in the same value as
159 /// non-undefs.
160 /// Unlike \ref hasConstantValue, this does not return a value because the
161 /// unique non-undef incoming value need not dominate the PHI node.
162 bool PHINode::hasConstantOrUndefValue() const {
163   Value *ConstantValue = nullptr;
164   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
165     Value *Incoming = getIncomingValue(i);
166     if (Incoming != this && !isa<UndefValue>(Incoming)) {
167       if (ConstantValue && ConstantValue != Incoming)
168         return false;
169       ConstantValue = Incoming;
170     }
171   }
172   return true;
173 }
174
175 //===----------------------------------------------------------------------===//
176 //                       LandingPadInst Implementation
177 //===----------------------------------------------------------------------===//
178
179 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
180                                const Twine &NameStr, Instruction *InsertBefore)
181     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
182   init(NumReservedValues, NameStr);
183 }
184
185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
186                                const Twine &NameStr, BasicBlock *InsertAtEnd)
187     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
188   init(NumReservedValues, NameStr);
189 }
190
191 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
192     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
193                   LP.getNumOperands()),
194       ReservedSpace(LP.getNumOperands()) {
195   allocHungoffUses(LP.getNumOperands());
196   Use *OL = getOperandList();
197   const Use *InOL = LP.getOperandList();
198   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
199     OL[I] = InOL[I];
200
201   setCleanup(LP.isCleanup());
202 }
203
204 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
205                                        const Twine &NameStr,
206                                        Instruction *InsertBefore) {
207   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
208 }
209
210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
211                                        const Twine &NameStr,
212                                        BasicBlock *InsertAtEnd) {
213   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
214 }
215
216 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
217   ReservedSpace = NumReservedValues;
218   setNumHungOffUseOperands(0);
219   allocHungoffUses(ReservedSpace);
220   setName(NameStr);
221   setCleanup(false);
222 }
223
224 /// growOperands - grow operands - This grows the operand list in response to a
225 /// push_back style of operation. This grows the number of ops by 2 times.
226 void LandingPadInst::growOperands(unsigned Size) {
227   unsigned e = getNumOperands();
228   if (ReservedSpace >= e + Size) return;
229   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
230   growHungoffUses(ReservedSpace);
231 }
232
233 void LandingPadInst::addClause(Constant *Val) {
234   unsigned OpNo = getNumOperands();
235   growOperands(1);
236   assert(OpNo < ReservedSpace && "Growing didn't work!");
237   setNumHungOffUseOperands(getNumOperands() + 1);
238   getOperandList()[OpNo] = Val;
239 }
240
241 //===----------------------------------------------------------------------===//
242 //                        CallInst Implementation
243 //===----------------------------------------------------------------------===//
244
245 CallInst::~CallInst() {
246 }
247
248 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
249                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
250   this->FTy = FTy;
251   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
252          "NumOperands not set up?");
253   Op<-1>() = Func;
254
255 #ifndef NDEBUG
256   assert((Args.size() == FTy->getNumParams() ||
257           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
258          "Calling a function with bad signature!");
259
260   for (unsigned i = 0; i != Args.size(); ++i)
261     assert((i >= FTy->getNumParams() || 
262             FTy->getParamType(i) == Args[i]->getType()) &&
263            "Calling a function with a bad signature!");
264 #endif
265
266   std::copy(Args.begin(), Args.end(), op_begin());
267
268   auto It = populateBundleOperandInfos(Bundles, Args.size());
269   (void)It;
270   assert(It + 1 == op_end() && "Should add up!");
271
272   setName(NameStr);
273 }
274
275 void CallInst::init(Value *Func, const Twine &NameStr) {
276   FTy =
277       cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
278   assert(getNumOperands() == 1 && "NumOperands not set up?");
279   Op<-1>() = Func;
280
281   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
282
283   setName(NameStr);
284 }
285
286 CallInst::CallInst(Value *Func, const Twine &Name,
287                    Instruction *InsertBefore)
288   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
289                                    ->getElementType())->getReturnType(),
290                 Instruction::Call,
291                 OperandTraits<CallInst>::op_end(this) - 1,
292                 1, InsertBefore) {
293   init(Func, Name);
294 }
295
296 CallInst::CallInst(Value *Func, const Twine &Name,
297                    BasicBlock *InsertAtEnd)
298   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
299                                    ->getElementType())->getReturnType(),
300                 Instruction::Call,
301                 OperandTraits<CallInst>::op_end(this) - 1,
302                 1, InsertAtEnd) {
303   init(Func, Name);
304 }
305
306 CallInst::CallInst(const CallInst &CI)
307     : Instruction(CI.getType(), Instruction::Call,
308                   OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
309                   CI.getNumOperands()),
310       AttributeList(CI.AttributeList), FTy(CI.FTy) {
311   setTailCallKind(CI.getTailCallKind());
312   setCallingConv(CI.getCallingConv());
313
314   std::copy(CI.op_begin(), CI.op_end(), op_begin());
315   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
316             bundle_op_info_begin());
317   SubclassOptionalData = CI.SubclassOptionalData;
318 }
319
320 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
321                            Instruction *InsertPt) {
322   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
323
324   auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
325                                  InsertPt);
326   NewCI->setTailCallKind(CI->getTailCallKind());
327   NewCI->setCallingConv(CI->getCallingConv());
328   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
329   NewCI->setAttributes(CI->getAttributes());
330   NewCI->setDebugLoc(CI->getDebugLoc());
331   return NewCI;
332 }
333
334 Value *CallInst::getReturnedArgOperand() const {
335   unsigned Index;
336
337   if (AttributeList.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
338     return getArgOperand(Index-1);
339   if (const Function *F = getCalledFunction())
340     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
341         Index)
342       return getArgOperand(Index-1);
343       
344   return nullptr;
345 }
346
347 void CallInst::addAttribute(unsigned i, Attribute::AttrKind Kind) {
348   AttributeSet PAL = getAttributes();
349   PAL = PAL.addAttribute(getContext(), i, Kind);
350   setAttributes(PAL);
351 }
352
353 void CallInst::addAttribute(unsigned i, StringRef Kind, StringRef Value) {
354   AttributeSet PAL = getAttributes();
355   PAL = PAL.addAttribute(getContext(), i, Kind, Value);
356   setAttributes(PAL);
357 }
358
359 void CallInst::addAttribute(unsigned i, Attribute Attr) {
360   AttributeSet PAL = getAttributes();
361   PAL = PAL.addAttribute(getContext(), i, Attr);
362   setAttributes(PAL);
363 }
364
365 void CallInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
366   AttributeSet PAL = getAttributes();
367   PAL = PAL.removeAttribute(getContext(), i, Kind);
368   setAttributes(PAL);
369 }
370
371 void CallInst::removeAttribute(unsigned i, StringRef Kind) {
372   AttributeSet PAL = getAttributes();
373   PAL = PAL.removeAttribute(getContext(), i, Kind);
374   setAttributes(PAL);
375 }
376
377 void CallInst::removeAttribute(unsigned i, Attribute Attr) {
378   AttributeSet PAL = getAttributes();
379   AttrBuilder B(Attr);
380   LLVMContext &Context = getContext();
381   PAL = PAL.removeAttributes(Context, i,
382                              AttributeSet::get(Context, i, B));
383   setAttributes(PAL);
384 }
385
386 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
387   AttributeSet PAL = getAttributes();
388   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
389   setAttributes(PAL);
390 }
391
392 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
393   AttributeSet PAL = getAttributes();
394   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
395   setAttributes(PAL);
396 }
397
398 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const {
399   assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!");
400
401   if (AttributeList.hasAttribute(i, Kind))
402     return true;
403   if (const Function *F = getCalledFunction())
404     return F->getAttributes().hasAttribute(i, Kind);
405   return false;
406 }
407
408 Attribute CallInst::getAttribute(unsigned i, Attribute::AttrKind Kind) const {
409   return getAttributes().getAttribute(i, Kind);
410 }
411
412 Attribute CallInst::getAttribute(unsigned i, StringRef Kind) const {
413   return getAttributes().getAttribute(i, Kind);
414 }
415
416 bool CallInst::dataOperandHasImpliedAttr(unsigned i,
417                                          Attribute::AttrKind Kind) const {
418   // There are getNumOperands() - 1 data operands.  The last operand is the
419   // callee.
420   assert(i < getNumOperands() && "Data operand index out of bounds!");
421
422   // The attribute A can either be directly specified, if the operand in
423   // question is a call argument; or be indirectly implied by the kind of its
424   // containing operand bundle, if the operand is a bundle operand.
425
426   if (i < (getNumArgOperands() + 1))
427     return paramHasAttr(i, Kind);
428
429   assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
430          "Must be either a call argument or an operand bundle!");
431   return bundleOperandHasAttr(i - 1, Kind);
432 }
433
434 /// IsConstantOne - Return true only if val is constant int 1
435 static bool IsConstantOne(Value *val) {
436   assert(val && "IsConstantOne does not work with nullptr val");
437   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
438   return CVal && CVal->isOne();
439 }
440
441 static Instruction *createMalloc(Instruction *InsertBefore,
442                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
443                                  Type *AllocTy, Value *AllocSize,
444                                  Value *ArraySize,
445                                  ArrayRef<OperandBundleDef> OpB,
446                                  Function *MallocF, const Twine &Name) {
447   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
448          "createMalloc needs either InsertBefore or InsertAtEnd");
449
450   // malloc(type) becomes: 
451   //       bitcast (i8* malloc(typeSize)) to type*
452   // malloc(type, arraySize) becomes:
453   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
454   if (!ArraySize)
455     ArraySize = ConstantInt::get(IntPtrTy, 1);
456   else if (ArraySize->getType() != IntPtrTy) {
457     if (InsertBefore)
458       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
459                                               "", InsertBefore);
460     else
461       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
462                                               "", InsertAtEnd);
463   }
464
465   if (!IsConstantOne(ArraySize)) {
466     if (IsConstantOne(AllocSize)) {
467       AllocSize = ArraySize;         // Operand * 1 = Operand
468     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
469       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
470                                                      false /*ZExt*/);
471       // Malloc arg is constant product of type size and array size
472       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
473     } else {
474       // Multiply type size by the array size...
475       if (InsertBefore)
476         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
477                                               "mallocsize", InsertBefore);
478       else
479         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
480                                               "mallocsize", InsertAtEnd);
481     }
482   }
483
484   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
485   // Create the call to Malloc.
486   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
487   Module *M = BB->getParent()->getParent();
488   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
489   Value *MallocFunc = MallocF;
490   if (!MallocFunc)
491     // prototype malloc as "void *malloc(size_t)"
492     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr);
493   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
494   CallInst *MCall = nullptr;
495   Instruction *Result = nullptr;
496   if (InsertBefore) {
497     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
498                              InsertBefore);
499     Result = MCall;
500     if (Result->getType() != AllocPtrType)
501       // Create a cast instruction to convert to the right type...
502       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
503   } else {
504     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
505     Result = MCall;
506     if (Result->getType() != AllocPtrType) {
507       InsertAtEnd->getInstList().push_back(MCall);
508       // Create a cast instruction to convert to the right type...
509       Result = new BitCastInst(MCall, AllocPtrType, Name);
510     }
511   }
512   MCall->setTailCall();
513   if (Function *F = dyn_cast<Function>(MallocFunc)) {
514     MCall->setCallingConv(F->getCallingConv());
515     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
516   }
517   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
518
519   return Result;
520 }
521
522 /// CreateMalloc - Generate the IR for a call to malloc:
523 /// 1. Compute the malloc call's argument as the specified type's size,
524 ///    possibly multiplied by the array size if the array size is not
525 ///    constant 1.
526 /// 2. Call malloc with that argument.
527 /// 3. Bitcast the result of the malloc call to the specified type.
528 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
529                                     Type *IntPtrTy, Type *AllocTy,
530                                     Value *AllocSize, Value *ArraySize,
531                                     Function *MallocF,
532                                     const Twine &Name) {
533   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
534                       ArraySize, None, MallocF, Name);
535 }
536 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
537                                     Type *IntPtrTy, Type *AllocTy,
538                                     Value *AllocSize, Value *ArraySize,
539                                     ArrayRef<OperandBundleDef> OpB,
540                                     Function *MallocF,
541                                     const Twine &Name) {
542   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
543                       ArraySize, OpB, MallocF, Name);
544 }
545
546
547 /// CreateMalloc - Generate the IR for a call to malloc:
548 /// 1. Compute the malloc call's argument as the specified type's size,
549 ///    possibly multiplied by the array size if the array size is not
550 ///    constant 1.
551 /// 2. Call malloc with that argument.
552 /// 3. Bitcast the result of the malloc call to the specified type.
553 /// Note: This function does not add the bitcast to the basic block, that is the
554 /// responsibility of the caller.
555 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
556                                     Type *IntPtrTy, Type *AllocTy,
557                                     Value *AllocSize, Value *ArraySize, 
558                                     Function *MallocF, const Twine &Name) {
559   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
560                       ArraySize, None, MallocF, Name);
561 }
562 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
563                                     Type *IntPtrTy, Type *AllocTy,
564                                     Value *AllocSize, Value *ArraySize,
565                                     ArrayRef<OperandBundleDef> OpB,
566                                     Function *MallocF, const Twine &Name) {
567   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
568                       ArraySize, OpB, MallocF, Name);
569 }
570
571 static Instruction *createFree(Value *Source,
572                                ArrayRef<OperandBundleDef> Bundles,
573                                Instruction *InsertBefore,
574                                BasicBlock *InsertAtEnd) {
575   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
576          "createFree needs either InsertBefore or InsertAtEnd");
577   assert(Source->getType()->isPointerTy() &&
578          "Can not free something of nonpointer type!");
579
580   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
581   Module *M = BB->getParent()->getParent();
582
583   Type *VoidTy = Type::getVoidTy(M->getContext());
584   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
585   // prototype free as "void free(void*)"
586   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr);
587   CallInst *Result = nullptr;
588   Value *PtrCast = Source;
589   if (InsertBefore) {
590     if (Source->getType() != IntPtrTy)
591       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
592     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
593   } else {
594     if (Source->getType() != IntPtrTy)
595       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
596     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
597   }
598   Result->setTailCall();
599   if (Function *F = dyn_cast<Function>(FreeFunc))
600     Result->setCallingConv(F->getCallingConv());
601
602   return Result;
603 }
604
605 /// CreateFree - Generate the IR for a call to the builtin free function.
606 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
607   return createFree(Source, None, InsertBefore, nullptr);
608 }
609 Instruction *CallInst::CreateFree(Value *Source,
610                                   ArrayRef<OperandBundleDef> Bundles,
611                                   Instruction *InsertBefore) {
612   return createFree(Source, Bundles, InsertBefore, nullptr);
613 }
614
615 /// CreateFree - Generate the IR for a call to the builtin free function.
616 /// Note: This function does not add the call to the basic block, that is the
617 /// responsibility of the caller.
618 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
619   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
620   assert(FreeCall && "CreateFree did not create a CallInst");
621   return FreeCall;
622 }
623 Instruction *CallInst::CreateFree(Value *Source,
624                                   ArrayRef<OperandBundleDef> Bundles,
625                                   BasicBlock *InsertAtEnd) {
626   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
627   assert(FreeCall && "CreateFree did not create a CallInst");
628   return FreeCall;
629 }
630
631 //===----------------------------------------------------------------------===//
632 //                        InvokeInst Implementation
633 //===----------------------------------------------------------------------===//
634
635 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
636                       BasicBlock *IfException, ArrayRef<Value *> Args,
637                       ArrayRef<OperandBundleDef> Bundles,
638                       const Twine &NameStr) {
639   this->FTy = FTy;
640
641   assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) &&
642          "NumOperands not set up?");
643   Op<-3>() = Fn;
644   Op<-2>() = IfNormal;
645   Op<-1>() = IfException;
646
647 #ifndef NDEBUG
648   assert(((Args.size() == FTy->getNumParams()) ||
649           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
650          "Invoking a function with bad signature");
651
652   for (unsigned i = 0, e = Args.size(); i != e; i++)
653     assert((i >= FTy->getNumParams() || 
654             FTy->getParamType(i) == Args[i]->getType()) &&
655            "Invoking a function with a bad signature!");
656 #endif
657
658   std::copy(Args.begin(), Args.end(), op_begin());
659
660   auto It = populateBundleOperandInfos(Bundles, Args.size());
661   (void)It;
662   assert(It + 3 == op_end() && "Should add up!");
663
664   setName(NameStr);
665 }
666
667 InvokeInst::InvokeInst(const InvokeInst &II)
668     : TerminatorInst(II.getType(), Instruction::Invoke,
669                      OperandTraits<InvokeInst>::op_end(this) -
670                          II.getNumOperands(),
671                      II.getNumOperands()),
672       AttributeList(II.AttributeList), FTy(II.FTy) {
673   setCallingConv(II.getCallingConv());
674   std::copy(II.op_begin(), II.op_end(), op_begin());
675   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
676             bundle_op_info_begin());
677   SubclassOptionalData = II.SubclassOptionalData;
678 }
679
680 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
681                                Instruction *InsertPt) {
682   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
683
684   auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
685                                    II->getUnwindDest(), Args, OpB,
686                                    II->getName(), InsertPt);
687   NewII->setCallingConv(II->getCallingConv());
688   NewII->SubclassOptionalData = II->SubclassOptionalData;
689   NewII->setAttributes(II->getAttributes());
690   NewII->setDebugLoc(II->getDebugLoc());
691   return NewII;
692 }
693
694 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
695   return getSuccessor(idx);
696 }
697 unsigned InvokeInst::getNumSuccessorsV() const {
698   return getNumSuccessors();
699 }
700 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
701   return setSuccessor(idx, B);
702 }
703
704 Value *InvokeInst::getReturnedArgOperand() const {
705   unsigned Index;
706
707   if (AttributeList.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
708     return getArgOperand(Index-1);
709   if (const Function *F = getCalledFunction())
710     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
711         Index)
712       return getArgOperand(Index-1);
713       
714   return nullptr;
715 }
716
717 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind Kind) const {
718   assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!");
719
720   if (AttributeList.hasAttribute(i, Kind))
721     return true;
722   if (const Function *F = getCalledFunction())
723     return F->getAttributes().hasAttribute(i, Kind);
724   return false;
725 }
726
727 bool InvokeInst::dataOperandHasImpliedAttr(unsigned i,
728                                            Attribute::AttrKind Kind) const {
729   // There are getNumOperands() - 3 data operands.  The last three operands are
730   // the callee and the two successor basic blocks.
731   assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!");
732
733   // The attribute A can either be directly specified, if the operand in
734   // question is an invoke argument; or be indirectly implied by the kind of its
735   // containing operand bundle, if the operand is a bundle operand.
736
737   if (i < (getNumArgOperands() + 1))
738     return paramHasAttr(i, Kind);
739
740   assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
741          "Must be either an invoke argument or an operand bundle!");
742   return bundleOperandHasAttr(i - 1, Kind);
743 }
744
745 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind Kind) {
746   AttributeSet PAL = getAttributes();
747   PAL = PAL.addAttribute(getContext(), i, Kind);
748   setAttributes(PAL);
749 }
750
751 void InvokeInst::addAttribute(unsigned i, Attribute Attr) {
752   AttributeSet PAL = getAttributes();
753   PAL = PAL.addAttribute(getContext(), i, Attr);
754   setAttributes(PAL);
755 }
756
757 void InvokeInst::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
758   AttributeSet PAL = getAttributes();
759   PAL = PAL.removeAttribute(getContext(), i, Kind);
760   setAttributes(PAL);
761 }
762
763 void InvokeInst::removeAttribute(unsigned i, StringRef Kind) {
764   AttributeSet PAL = getAttributes();
765   PAL = PAL.removeAttribute(getContext(), i, Kind);
766   setAttributes(PAL);
767 }
768
769 void InvokeInst::removeAttribute(unsigned i, Attribute Attr) {
770   AttributeSet PAL = getAttributes();
771   AttrBuilder B(Attr);
772   PAL = PAL.removeAttributes(getContext(), i,
773                              AttributeSet::get(getContext(), i, B));
774   setAttributes(PAL);
775 }
776
777 Attribute InvokeInst::getAttribute(unsigned i,
778                                    Attribute::AttrKind Kind) const {
779   return getAttributes().getAttribute(i, Kind);
780 }
781
782 Attribute InvokeInst::getAttribute(unsigned i, StringRef Kind) const {
783   return getAttributes().getAttribute(i, Kind);
784 }
785
786 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
787   AttributeSet PAL = getAttributes();
788   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
789   setAttributes(PAL);
790 }
791
792 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
793   AttributeSet PAL = getAttributes();
794   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
795   setAttributes(PAL);
796 }
797
798 LandingPadInst *InvokeInst::getLandingPadInst() const {
799   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
800 }
801
802 //===----------------------------------------------------------------------===//
803 //                        ReturnInst Implementation
804 //===----------------------------------------------------------------------===//
805
806 ReturnInst::ReturnInst(const ReturnInst &RI)
807   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
808                    OperandTraits<ReturnInst>::op_end(this) -
809                      RI.getNumOperands(),
810                    RI.getNumOperands()) {
811   if (RI.getNumOperands())
812     Op<0>() = RI.Op<0>();
813   SubclassOptionalData = RI.SubclassOptionalData;
814 }
815
816 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
817   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
818                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
819                    InsertBefore) {
820   if (retVal)
821     Op<0>() = retVal;
822 }
823 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
824   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
825                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
826                    InsertAtEnd) {
827   if (retVal)
828     Op<0>() = retVal;
829 }
830 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
831   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
832                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
833 }
834
835 unsigned ReturnInst::getNumSuccessorsV() const {
836   return getNumSuccessors();
837 }
838
839 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
840 /// emit the vtable for the class in this translation unit.
841 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
842   llvm_unreachable("ReturnInst has no successors!");
843 }
844
845 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
846   llvm_unreachable("ReturnInst has no successors!");
847 }
848
849 ReturnInst::~ReturnInst() {
850 }
851
852 //===----------------------------------------------------------------------===//
853 //                        ResumeInst Implementation
854 //===----------------------------------------------------------------------===//
855
856 ResumeInst::ResumeInst(const ResumeInst &RI)
857   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
858                    OperandTraits<ResumeInst>::op_begin(this), 1) {
859   Op<0>() = RI.Op<0>();
860 }
861
862 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
863   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
864                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
865   Op<0>() = Exn;
866 }
867
868 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
869   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
870                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
871   Op<0>() = Exn;
872 }
873
874 unsigned ResumeInst::getNumSuccessorsV() const {
875   return getNumSuccessors();
876 }
877
878 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
879   llvm_unreachable("ResumeInst has no successors!");
880 }
881
882 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
883   llvm_unreachable("ResumeInst has no successors!");
884 }
885
886 //===----------------------------------------------------------------------===//
887 //                        CleanupReturnInst Implementation
888 //===----------------------------------------------------------------------===//
889
890 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
891     : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
892                      OperandTraits<CleanupReturnInst>::op_end(this) -
893                          CRI.getNumOperands(),
894                      CRI.getNumOperands()) {
895   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
896   Op<0>() = CRI.Op<0>();
897   if (CRI.hasUnwindDest())
898     Op<1>() = CRI.Op<1>();
899 }
900
901 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
902   if (UnwindBB)
903     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
904
905   Op<0>() = CleanupPad;
906   if (UnwindBB)
907     Op<1>() = UnwindBB;
908 }
909
910 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
911                                      unsigned Values, Instruction *InsertBefore)
912     : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
913                      Instruction::CleanupRet,
914                      OperandTraits<CleanupReturnInst>::op_end(this) - Values,
915                      Values, InsertBefore) {
916   init(CleanupPad, UnwindBB);
917 }
918
919 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
920                                      unsigned Values, BasicBlock *InsertAtEnd)
921     : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
922                      Instruction::CleanupRet,
923                      OperandTraits<CleanupReturnInst>::op_end(this) - Values,
924                      Values, InsertAtEnd) {
925   init(CleanupPad, UnwindBB);
926 }
927
928 BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const {
929   assert(Idx == 0);
930   return getUnwindDest();
931 }
932 unsigned CleanupReturnInst::getNumSuccessorsV() const {
933   return getNumSuccessors();
934 }
935 void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
936   assert(Idx == 0);
937   setUnwindDest(B);
938 }
939
940 //===----------------------------------------------------------------------===//
941 //                        CatchReturnInst Implementation
942 //===----------------------------------------------------------------------===//
943 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
944   Op<0>() = CatchPad;
945   Op<1>() = BB;
946 }
947
948 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
949     : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
950                      OperandTraits<CatchReturnInst>::op_begin(this), 2) {
951   Op<0>() = CRI.Op<0>();
952   Op<1>() = CRI.Op<1>();
953 }
954
955 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
956                                  Instruction *InsertBefore)
957     : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
958                      OperandTraits<CatchReturnInst>::op_begin(this), 2,
959                      InsertBefore) {
960   init(CatchPad, BB);
961 }
962
963 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
964                                  BasicBlock *InsertAtEnd)
965     : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
966                      OperandTraits<CatchReturnInst>::op_begin(this), 2,
967                      InsertAtEnd) {
968   init(CatchPad, BB);
969 }
970
971 BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const {
972   assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
973   return getSuccessor();
974 }
975 unsigned CatchReturnInst::getNumSuccessorsV() const {
976   return getNumSuccessors();
977 }
978 void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
979   assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
980   setSuccessor(B);
981 }
982
983 //===----------------------------------------------------------------------===//
984 //                       CatchSwitchInst Implementation
985 //===----------------------------------------------------------------------===//
986
987 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
988                                  unsigned NumReservedValues,
989                                  const Twine &NameStr,
990                                  Instruction *InsertBefore)
991     : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
992                      InsertBefore) {
993   if (UnwindDest)
994     ++NumReservedValues;
995   init(ParentPad, UnwindDest, NumReservedValues + 1);
996   setName(NameStr);
997 }
998
999 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1000                                  unsigned NumReservedValues,
1001                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1002     : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1003                      InsertAtEnd) {
1004   if (UnwindDest)
1005     ++NumReservedValues;
1006   init(ParentPad, UnwindDest, NumReservedValues + 1);
1007   setName(NameStr);
1008 }
1009
1010 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1011     : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr,
1012                      CSI.getNumOperands()) {
1013   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1014   setNumHungOffUseOperands(ReservedSpace);
1015   Use *OL = getOperandList();
1016   const Use *InOL = CSI.getOperandList();
1017   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1018     OL[I] = InOL[I];
1019 }
1020
1021 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1022                            unsigned NumReservedValues) {
1023   assert(ParentPad && NumReservedValues);
1024
1025   ReservedSpace = NumReservedValues;
1026   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1027   allocHungoffUses(ReservedSpace);
1028
1029   Op<0>() = ParentPad;
1030   if (UnwindDest) {
1031     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1032     setUnwindDest(UnwindDest);
1033   }
1034 }
1035
1036 /// growOperands - grow operands - This grows the operand list in response to a
1037 /// push_back style of operation. This grows the number of ops by 2 times.
1038 void CatchSwitchInst::growOperands(unsigned Size) {
1039   unsigned NumOperands = getNumOperands();
1040   assert(NumOperands >= 1);
1041   if (ReservedSpace >= NumOperands + Size)
1042     return;
1043   ReservedSpace = (NumOperands + Size / 2) * 2;
1044   growHungoffUses(ReservedSpace);
1045 }
1046
1047 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1048   unsigned OpNo = getNumOperands();
1049   growOperands(1);
1050   assert(OpNo < ReservedSpace && "Growing didn't work!");
1051   setNumHungOffUseOperands(getNumOperands() + 1);
1052   getOperandList()[OpNo] = Handler;
1053 }
1054
1055 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1056   // Move all subsequent handlers up one.
1057   Use *EndDst = op_end() - 1;
1058   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1059     *CurDst = *(CurDst + 1);
1060   // Null out the last handler use.
1061   *EndDst = nullptr;
1062
1063   setNumHungOffUseOperands(getNumOperands() - 1);
1064 }
1065
1066 BasicBlock *CatchSwitchInst::getSuccessorV(unsigned idx) const {
1067   return getSuccessor(idx);
1068 }
1069 unsigned CatchSwitchInst::getNumSuccessorsV() const {
1070   return getNumSuccessors();
1071 }
1072 void CatchSwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
1073   setSuccessor(idx, B);
1074 }
1075
1076 //===----------------------------------------------------------------------===//
1077 //                        FuncletPadInst Implementation
1078 //===----------------------------------------------------------------------===//
1079 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1080                           const Twine &NameStr) {
1081   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1082   std::copy(Args.begin(), Args.end(), op_begin());
1083   setParentPad(ParentPad);
1084   setName(NameStr);
1085 }
1086
1087 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1088     : Instruction(FPI.getType(), FPI.getOpcode(),
1089                   OperandTraits<FuncletPadInst>::op_end(this) -
1090                       FPI.getNumOperands(),
1091                   FPI.getNumOperands()) {
1092   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1093   setParentPad(FPI.getParentPad());
1094 }
1095
1096 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1097                                ArrayRef<Value *> Args, unsigned Values,
1098                                const Twine &NameStr, Instruction *InsertBefore)
1099     : Instruction(ParentPad->getType(), Op,
1100                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1101                   InsertBefore) {
1102   init(ParentPad, Args, NameStr);
1103 }
1104
1105 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1106                                ArrayRef<Value *> Args, unsigned Values,
1107                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1108     : Instruction(ParentPad->getType(), Op,
1109                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1110                   InsertAtEnd) {
1111   init(ParentPad, Args, NameStr);
1112 }
1113
1114 //===----------------------------------------------------------------------===//
1115 //                      UnreachableInst Implementation
1116 //===----------------------------------------------------------------------===//
1117
1118 UnreachableInst::UnreachableInst(LLVMContext &Context, 
1119                                  Instruction *InsertBefore)
1120   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
1121                    nullptr, 0, InsertBefore) {
1122 }
1123 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1124   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
1125                    nullptr, 0, InsertAtEnd) {
1126 }
1127
1128 unsigned UnreachableInst::getNumSuccessorsV() const {
1129   return getNumSuccessors();
1130 }
1131
1132 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
1133   llvm_unreachable("UnreachableInst has no successors!");
1134 }
1135
1136 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
1137   llvm_unreachable("UnreachableInst has no successors!");
1138 }
1139
1140 //===----------------------------------------------------------------------===//
1141 //                        BranchInst Implementation
1142 //===----------------------------------------------------------------------===//
1143
1144 void BranchInst::AssertOK() {
1145   if (isConditional())
1146     assert(getCondition()->getType()->isIntegerTy(1) &&
1147            "May only branch on boolean predicates!");
1148 }
1149
1150 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1151   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1152                    OperandTraits<BranchInst>::op_end(this) - 1,
1153                    1, InsertBefore) {
1154   assert(IfTrue && "Branch destination may not be null!");
1155   Op<-1>() = IfTrue;
1156 }
1157 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1158                        Instruction *InsertBefore)
1159   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1160                    OperandTraits<BranchInst>::op_end(this) - 3,
1161                    3, InsertBefore) {
1162   Op<-1>() = IfTrue;
1163   Op<-2>() = IfFalse;
1164   Op<-3>() = Cond;
1165 #ifndef NDEBUG
1166   AssertOK();
1167 #endif
1168 }
1169
1170 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1171   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1172                    OperandTraits<BranchInst>::op_end(this) - 1,
1173                    1, InsertAtEnd) {
1174   assert(IfTrue && "Branch destination may not be null!");
1175   Op<-1>() = IfTrue;
1176 }
1177
1178 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1179            BasicBlock *InsertAtEnd)
1180   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1181                    OperandTraits<BranchInst>::op_end(this) - 3,
1182                    3, InsertAtEnd) {
1183   Op<-1>() = IfTrue;
1184   Op<-2>() = IfFalse;
1185   Op<-3>() = Cond;
1186 #ifndef NDEBUG
1187   AssertOK();
1188 #endif
1189 }
1190
1191
1192 BranchInst::BranchInst(const BranchInst &BI) :
1193   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
1194                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1195                  BI.getNumOperands()) {
1196   Op<-1>() = BI.Op<-1>();
1197   if (BI.getNumOperands() != 1) {
1198     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1199     Op<-3>() = BI.Op<-3>();
1200     Op<-2>() = BI.Op<-2>();
1201   }
1202   SubclassOptionalData = BI.SubclassOptionalData;
1203 }
1204
1205 void BranchInst::swapSuccessors() {
1206   assert(isConditional() &&
1207          "Cannot swap successors of an unconditional branch");
1208   Op<-1>().swap(Op<-2>());
1209
1210   // Update profile metadata if present and it matches our structural
1211   // expectations.
1212   MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
1213   if (!ProfileData || ProfileData->getNumOperands() != 3)
1214     return;
1215
1216   // The first operand is the name. Fetch them backwards and build a new one.
1217   Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
1218                      ProfileData->getOperand(1)};
1219   setMetadata(LLVMContext::MD_prof,
1220               MDNode::get(ProfileData->getContext(), Ops));
1221 }
1222
1223 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
1224   return getSuccessor(idx);
1225 }
1226 unsigned BranchInst::getNumSuccessorsV() const {
1227   return getNumSuccessors();
1228 }
1229 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
1230   setSuccessor(idx, B);
1231 }
1232
1233
1234 //===----------------------------------------------------------------------===//
1235 //                        AllocaInst Implementation
1236 //===----------------------------------------------------------------------===//
1237
1238 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1239   if (!Amt)
1240     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1241   else {
1242     assert(!isa<BasicBlock>(Amt) &&
1243            "Passed basic block into allocation size parameter! Use other ctor");
1244     assert(Amt->getType()->isIntegerTy() &&
1245            "Allocation array size is not an integer!");
1246   }
1247   return Amt;
1248 }
1249
1250 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore)
1251     : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1252
1253 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
1254     : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1255
1256 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1257                        Instruction *InsertBefore)
1258     : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1259
1260 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1261                        BasicBlock *InsertAtEnd)
1262     : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1263
1264 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1265                        const Twine &Name, Instruction *InsertBefore)
1266     : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1267                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1268       AllocatedType(Ty) {
1269   setAlignment(Align);
1270   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1271   setName(Name);
1272 }
1273
1274 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1275                        const Twine &Name, BasicBlock *InsertAtEnd)
1276     : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1277                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1278       AllocatedType(Ty) {
1279   setAlignment(Align);
1280   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1281   setName(Name);
1282 }
1283
1284 // Out of line virtual method, so the vtable, etc has a home.
1285 AllocaInst::~AllocaInst() {
1286 }
1287
1288 void AllocaInst::setAlignment(unsigned Align) {
1289   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1290   assert(Align <= MaximumAlignment &&
1291          "Alignment is greater than MaximumAlignment!");
1292   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1293                              (Log2_32(Align) + 1));
1294   assert(getAlignment() == Align && "Alignment representation error!");
1295 }
1296
1297 bool AllocaInst::isArrayAllocation() const {
1298   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1299     return !CI->isOne();
1300   return true;
1301 }
1302
1303 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1304 /// function and is a constant size.  If so, the code generator will fold it
1305 /// into the prolog/epilog code, so it is basically free.
1306 bool AllocaInst::isStaticAlloca() const {
1307   // Must be constant size.
1308   if (!isa<ConstantInt>(getArraySize())) return false;
1309   
1310   // Must be in the entry block.
1311   const BasicBlock *Parent = getParent();
1312   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1313 }
1314
1315 //===----------------------------------------------------------------------===//
1316 //                           LoadInst Implementation
1317 //===----------------------------------------------------------------------===//
1318
1319 void LoadInst::AssertOK() {
1320   assert(getOperand(0)->getType()->isPointerTy() &&
1321          "Ptr must have pointer type.");
1322   assert(!(isAtomic() && getAlignment() == 0) &&
1323          "Alignment required for atomic load");
1324 }
1325
1326 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1327     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1328
1329 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1330     : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1331
1332 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1333                    Instruction *InsertBef)
1334     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1335
1336 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1337                    BasicBlock *InsertAE)
1338     : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1339
1340 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1341                    unsigned Align, Instruction *InsertBef)
1342     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1343                CrossThread, InsertBef) {}
1344
1345 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1346                    unsigned Align, BasicBlock *InsertAE)
1347     : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1348                CrossThread, InsertAE) {}
1349
1350 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1351                    unsigned Align, AtomicOrdering Order,
1352                    SynchronizationScope SynchScope, Instruction *InsertBef)
1353     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1354   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1355   setVolatile(isVolatile);
1356   setAlignment(Align);
1357   setAtomic(Order, SynchScope);
1358   AssertOK();
1359   setName(Name);
1360 }
1361
1362 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 
1363                    unsigned Align, AtomicOrdering Order,
1364                    SynchronizationScope SynchScope,
1365                    BasicBlock *InsertAE)
1366   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1367                      Load, Ptr, InsertAE) {
1368   setVolatile(isVolatile);
1369   setAlignment(Align);
1370   setAtomic(Order, SynchScope);
1371   AssertOK();
1372   setName(Name);
1373 }
1374
1375 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1376   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1377                      Load, Ptr, InsertBef) {
1378   setVolatile(false);
1379   setAlignment(0);
1380   setAtomic(AtomicOrdering::NotAtomic);
1381   AssertOK();
1382   if (Name && Name[0]) setName(Name);
1383 }
1384
1385 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1386   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1387                      Load, Ptr, InsertAE) {
1388   setVolatile(false);
1389   setAlignment(0);
1390   setAtomic(AtomicOrdering::NotAtomic);
1391   AssertOK();
1392   if (Name && Name[0]) setName(Name);
1393 }
1394
1395 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1396                    Instruction *InsertBef)
1397     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1398   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1399   setVolatile(isVolatile);
1400   setAlignment(0);
1401   setAtomic(AtomicOrdering::NotAtomic);
1402   AssertOK();
1403   if (Name && Name[0]) setName(Name);
1404 }
1405
1406 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1407                    BasicBlock *InsertAE)
1408   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1409                      Load, Ptr, InsertAE) {
1410   setVolatile(isVolatile);
1411   setAlignment(0);
1412   setAtomic(AtomicOrdering::NotAtomic);
1413   AssertOK();
1414   if (Name && Name[0]) setName(Name);
1415 }
1416
1417 void LoadInst::setAlignment(unsigned Align) {
1418   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1419   assert(Align <= MaximumAlignment &&
1420          "Alignment is greater than MaximumAlignment!");
1421   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1422                              ((Log2_32(Align)+1)<<1));
1423   assert(getAlignment() == Align && "Alignment representation error!");
1424 }
1425
1426 //===----------------------------------------------------------------------===//
1427 //                           StoreInst Implementation
1428 //===----------------------------------------------------------------------===//
1429
1430 void StoreInst::AssertOK() {
1431   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1432   assert(getOperand(1)->getType()->isPointerTy() &&
1433          "Ptr must have pointer type!");
1434   assert(getOperand(0)->getType() ==
1435                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1436          && "Ptr must be a pointer to Val type!");
1437   assert(!(isAtomic() && getAlignment() == 0) &&
1438          "Alignment required for atomic store");
1439 }
1440
1441 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1442     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1443
1444 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1445     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1446
1447 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1448                      Instruction *InsertBefore)
1449     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1450
1451 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1452                      BasicBlock *InsertAtEnd)
1453     : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1454
1455 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1456                      Instruction *InsertBefore)
1457     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1458                 CrossThread, InsertBefore) {}
1459
1460 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1461                      BasicBlock *InsertAtEnd)
1462     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1463                 CrossThread, InsertAtEnd) {}
1464
1465 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1466                      unsigned Align, AtomicOrdering Order,
1467                      SynchronizationScope SynchScope,
1468                      Instruction *InsertBefore)
1469   : Instruction(Type::getVoidTy(val->getContext()), Store,
1470                 OperandTraits<StoreInst>::op_begin(this),
1471                 OperandTraits<StoreInst>::operands(this),
1472                 InsertBefore) {
1473   Op<0>() = val;
1474   Op<1>() = addr;
1475   setVolatile(isVolatile);
1476   setAlignment(Align);
1477   setAtomic(Order, SynchScope);
1478   AssertOK();
1479 }
1480
1481 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1482                      unsigned Align, AtomicOrdering Order,
1483                      SynchronizationScope SynchScope,
1484                      BasicBlock *InsertAtEnd)
1485   : Instruction(Type::getVoidTy(val->getContext()), Store,
1486                 OperandTraits<StoreInst>::op_begin(this),
1487                 OperandTraits<StoreInst>::operands(this),
1488                 InsertAtEnd) {
1489   Op<0>() = val;
1490   Op<1>() = addr;
1491   setVolatile(isVolatile);
1492   setAlignment(Align);
1493   setAtomic(Order, SynchScope);
1494   AssertOK();
1495 }
1496
1497 void StoreInst::setAlignment(unsigned Align) {
1498   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1499   assert(Align <= MaximumAlignment &&
1500          "Alignment is greater than MaximumAlignment!");
1501   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1502                              ((Log2_32(Align)+1) << 1));
1503   assert(getAlignment() == Align && "Alignment representation error!");
1504 }
1505
1506 //===----------------------------------------------------------------------===//
1507 //                       AtomicCmpXchgInst Implementation
1508 //===----------------------------------------------------------------------===//
1509
1510 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1511                              AtomicOrdering SuccessOrdering,
1512                              AtomicOrdering FailureOrdering,
1513                              SynchronizationScope SynchScope) {
1514   Op<0>() = Ptr;
1515   Op<1>() = Cmp;
1516   Op<2>() = NewVal;
1517   setSuccessOrdering(SuccessOrdering);
1518   setFailureOrdering(FailureOrdering);
1519   setSynchScope(SynchScope);
1520
1521   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1522          "All operands must be non-null!");
1523   assert(getOperand(0)->getType()->isPointerTy() &&
1524          "Ptr must have pointer type!");
1525   assert(getOperand(1)->getType() ==
1526                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1527          && "Ptr must be a pointer to Cmp type!");
1528   assert(getOperand(2)->getType() ==
1529                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1530          && "Ptr must be a pointer to NewVal type!");
1531   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1532          "AtomicCmpXchg instructions must be atomic!");
1533   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1534          "AtomicCmpXchg instructions must be atomic!");
1535   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1536          "AtomicCmpXchg failure argument shall be no stronger than the success "
1537          "argument");
1538   assert(FailureOrdering != AtomicOrdering::Release &&
1539          FailureOrdering != AtomicOrdering::AcquireRelease &&
1540          "AtomicCmpXchg failure ordering cannot include release semantics");
1541 }
1542
1543 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1544                                      AtomicOrdering SuccessOrdering,
1545                                      AtomicOrdering FailureOrdering,
1546                                      SynchronizationScope SynchScope,
1547                                      Instruction *InsertBefore)
1548     : Instruction(
1549           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1550                           nullptr),
1551           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1552           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1553   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1554 }
1555
1556 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1557                                      AtomicOrdering SuccessOrdering,
1558                                      AtomicOrdering FailureOrdering,
1559                                      SynchronizationScope SynchScope,
1560                                      BasicBlock *InsertAtEnd)
1561     : Instruction(
1562           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1563                           nullptr),
1564           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1565           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1566   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1567 }
1568
1569 //===----------------------------------------------------------------------===//
1570 //                       AtomicRMWInst Implementation
1571 //===----------------------------------------------------------------------===//
1572
1573 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1574                          AtomicOrdering Ordering,
1575                          SynchronizationScope SynchScope) {
1576   Op<0>() = Ptr;
1577   Op<1>() = Val;
1578   setOperation(Operation);
1579   setOrdering(Ordering);
1580   setSynchScope(SynchScope);
1581
1582   assert(getOperand(0) && getOperand(1) &&
1583          "All operands must be non-null!");
1584   assert(getOperand(0)->getType()->isPointerTy() &&
1585          "Ptr must have pointer type!");
1586   assert(getOperand(1)->getType() ==
1587          cast<PointerType>(getOperand(0)->getType())->getElementType()
1588          && "Ptr must be a pointer to Val type!");
1589   assert(Ordering != AtomicOrdering::NotAtomic &&
1590          "AtomicRMW instructions must be atomic!");
1591 }
1592
1593 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1594                              AtomicOrdering Ordering,
1595                              SynchronizationScope SynchScope,
1596                              Instruction *InsertBefore)
1597   : Instruction(Val->getType(), AtomicRMW,
1598                 OperandTraits<AtomicRMWInst>::op_begin(this),
1599                 OperandTraits<AtomicRMWInst>::operands(this),
1600                 InsertBefore) {
1601   Init(Operation, Ptr, Val, Ordering, SynchScope);
1602 }
1603
1604 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1605                              AtomicOrdering Ordering,
1606                              SynchronizationScope SynchScope,
1607                              BasicBlock *InsertAtEnd)
1608   : Instruction(Val->getType(), AtomicRMW,
1609                 OperandTraits<AtomicRMWInst>::op_begin(this),
1610                 OperandTraits<AtomicRMWInst>::operands(this),
1611                 InsertAtEnd) {
1612   Init(Operation, Ptr, Val, Ordering, SynchScope);
1613 }
1614
1615 //===----------------------------------------------------------------------===//
1616 //                       FenceInst Implementation
1617 //===----------------------------------------------------------------------===//
1618
1619 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1620                      SynchronizationScope SynchScope,
1621                      Instruction *InsertBefore)
1622   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1623   setOrdering(Ordering);
1624   setSynchScope(SynchScope);
1625 }
1626
1627 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 
1628                      SynchronizationScope SynchScope,
1629                      BasicBlock *InsertAtEnd)
1630   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1631   setOrdering(Ordering);
1632   setSynchScope(SynchScope);
1633 }
1634
1635 //===----------------------------------------------------------------------===//
1636 //                       GetElementPtrInst Implementation
1637 //===----------------------------------------------------------------------===//
1638
1639 void GetElementPtrInst::anchor() {}
1640
1641 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1642                              const Twine &Name) {
1643   assert(getNumOperands() == 1 + IdxList.size() &&
1644          "NumOperands not initialized?");
1645   Op<0>() = Ptr;
1646   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1647   setName(Name);
1648 }
1649
1650 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1651     : Instruction(GEPI.getType(), GetElementPtr,
1652                   OperandTraits<GetElementPtrInst>::op_end(this) -
1653                       GEPI.getNumOperands(),
1654                   GEPI.getNumOperands()),
1655       SourceElementType(GEPI.SourceElementType),
1656       ResultElementType(GEPI.ResultElementType) {
1657   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1658   SubclassOptionalData = GEPI.SubclassOptionalData;
1659 }
1660
1661 /// getIndexedType - Returns the type of the element that would be accessed with
1662 /// a gep instruction with the specified parameters.
1663 ///
1664 /// The Idxs pointer should point to a continuous piece of memory containing the
1665 /// indices, either as Value* or uint64_t.
1666 ///
1667 /// A null type is returned if the indices are invalid for the specified
1668 /// pointer type.
1669 ///
1670 template <typename IndexTy>
1671 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1672   // Handle the special case of the empty set index set, which is always valid.
1673   if (IdxList.empty())
1674     return Agg;
1675
1676   // If there is at least one index, the top level type must be sized, otherwise
1677   // it cannot be 'stepped over'.
1678   if (!Agg->isSized())
1679     return nullptr;
1680
1681   unsigned CurIdx = 1;
1682   for (; CurIdx != IdxList.size(); ++CurIdx) {
1683     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1684     if (!CT || CT->isPointerTy()) return nullptr;
1685     IndexTy Index = IdxList[CurIdx];
1686     if (!CT->indexValid(Index)) return nullptr;
1687     Agg = CT->getTypeAtIndex(Index);
1688   }
1689   return CurIdx == IdxList.size() ? Agg : nullptr;
1690 }
1691
1692 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1693   return getIndexedTypeInternal(Ty, IdxList);
1694 }
1695
1696 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1697                                         ArrayRef<Constant *> IdxList) {
1698   return getIndexedTypeInternal(Ty, IdxList);
1699 }
1700
1701 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1702   return getIndexedTypeInternal(Ty, IdxList);
1703 }
1704
1705 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1706 /// zeros.  If so, the result pointer and the first operand have the same
1707 /// value, just potentially different types.
1708 bool GetElementPtrInst::hasAllZeroIndices() const {
1709   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1710     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1711       if (!CI->isZero()) return false;
1712     } else {
1713       return false;
1714     }
1715   }
1716   return true;
1717 }
1718
1719 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1720 /// constant integers.  If so, the result pointer and the first operand have
1721 /// a constant offset between them.
1722 bool GetElementPtrInst::hasAllConstantIndices() const {
1723   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1724     if (!isa<ConstantInt>(getOperand(i)))
1725       return false;
1726   }
1727   return true;
1728 }
1729
1730 void GetElementPtrInst::setIsInBounds(bool B) {
1731   cast<GEPOperator>(this)->setIsInBounds(B);
1732 }
1733
1734 bool GetElementPtrInst::isInBounds() const {
1735   return cast<GEPOperator>(this)->isInBounds();
1736 }
1737
1738 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1739                                                  APInt &Offset) const {
1740   // Delegate to the generic GEPOperator implementation.
1741   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1742 }
1743
1744 //===----------------------------------------------------------------------===//
1745 //                           ExtractElementInst Implementation
1746 //===----------------------------------------------------------------------===//
1747
1748 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1749                                        const Twine &Name,
1750                                        Instruction *InsertBef)
1751   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1752                 ExtractElement,
1753                 OperandTraits<ExtractElementInst>::op_begin(this),
1754                 2, InsertBef) {
1755   assert(isValidOperands(Val, Index) &&
1756          "Invalid extractelement instruction operands!");
1757   Op<0>() = Val;
1758   Op<1>() = Index;
1759   setName(Name);
1760 }
1761
1762 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1763                                        const Twine &Name,
1764                                        BasicBlock *InsertAE)
1765   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1766                 ExtractElement,
1767                 OperandTraits<ExtractElementInst>::op_begin(this),
1768                 2, InsertAE) {
1769   assert(isValidOperands(Val, Index) &&
1770          "Invalid extractelement instruction operands!");
1771
1772   Op<0>() = Val;
1773   Op<1>() = Index;
1774   setName(Name);
1775 }
1776
1777
1778 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1779   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1780     return false;
1781   return true;
1782 }
1783
1784
1785 //===----------------------------------------------------------------------===//
1786 //                           InsertElementInst Implementation
1787 //===----------------------------------------------------------------------===//
1788
1789 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1790                                      const Twine &Name,
1791                                      Instruction *InsertBef)
1792   : Instruction(Vec->getType(), InsertElement,
1793                 OperandTraits<InsertElementInst>::op_begin(this),
1794                 3, InsertBef) {
1795   assert(isValidOperands(Vec, Elt, Index) &&
1796          "Invalid insertelement instruction operands!");
1797   Op<0>() = Vec;
1798   Op<1>() = Elt;
1799   Op<2>() = Index;
1800   setName(Name);
1801 }
1802
1803 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1804                                      const Twine &Name,
1805                                      BasicBlock *InsertAE)
1806   : Instruction(Vec->getType(), InsertElement,
1807                 OperandTraits<InsertElementInst>::op_begin(this),
1808                 3, InsertAE) {
1809   assert(isValidOperands(Vec, Elt, Index) &&
1810          "Invalid insertelement instruction operands!");
1811
1812   Op<0>() = Vec;
1813   Op<1>() = Elt;
1814   Op<2>() = Index;
1815   setName(Name);
1816 }
1817
1818 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 
1819                                         const Value *Index) {
1820   if (!Vec->getType()->isVectorTy())
1821     return false;   // First operand of insertelement must be vector type.
1822   
1823   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1824     return false;// Second operand of insertelement must be vector element type.
1825     
1826   if (!Index->getType()->isIntegerTy())
1827     return false;  // Third operand of insertelement must be i32.
1828   return true;
1829 }
1830
1831
1832 //===----------------------------------------------------------------------===//
1833 //                      ShuffleVectorInst Implementation
1834 //===----------------------------------------------------------------------===//
1835
1836 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1837                                      const Twine &Name,
1838                                      Instruction *InsertBefore)
1839 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1840                 cast<VectorType>(Mask->getType())->getNumElements()),
1841               ShuffleVector,
1842               OperandTraits<ShuffleVectorInst>::op_begin(this),
1843               OperandTraits<ShuffleVectorInst>::operands(this),
1844               InsertBefore) {
1845   assert(isValidOperands(V1, V2, Mask) &&
1846          "Invalid shuffle vector instruction operands!");
1847   Op<0>() = V1;
1848   Op<1>() = V2;
1849   Op<2>() = Mask;
1850   setName(Name);
1851 }
1852
1853 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1854                                      const Twine &Name,
1855                                      BasicBlock *InsertAtEnd)
1856 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1857                 cast<VectorType>(Mask->getType())->getNumElements()),
1858               ShuffleVector,
1859               OperandTraits<ShuffleVectorInst>::op_begin(this),
1860               OperandTraits<ShuffleVectorInst>::operands(this),
1861               InsertAtEnd) {
1862   assert(isValidOperands(V1, V2, Mask) &&
1863          "Invalid shuffle vector instruction operands!");
1864
1865   Op<0>() = V1;
1866   Op<1>() = V2;
1867   Op<2>() = Mask;
1868   setName(Name);
1869 }
1870
1871 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1872                                         const Value *Mask) {
1873   // V1 and V2 must be vectors of the same type.
1874   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1875     return false;
1876   
1877   // Mask must be vector of i32.
1878   VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1879   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1880     return false;
1881
1882   // Check to see if Mask is valid.
1883   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1884     return true;
1885
1886   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1887     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1888     for (Value *Op : MV->operands()) {
1889       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1890         if (CI->uge(V1Size*2))
1891           return false;
1892       } else if (!isa<UndefValue>(Op)) {
1893         return false;
1894       }
1895     }
1896     return true;
1897   }
1898   
1899   if (const ConstantDataSequential *CDS =
1900         dyn_cast<ConstantDataSequential>(Mask)) {
1901     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1902     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1903       if (CDS->getElementAsInteger(i) >= V1Size*2)
1904         return false;
1905     return true;
1906   }
1907   
1908   // The bitcode reader can create a place holder for a forward reference
1909   // used as the shuffle mask. When this occurs, the shuffle mask will
1910   // fall into this case and fail. To avoid this error, do this bit of
1911   // ugliness to allow such a mask pass.
1912   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1913     if (CE->getOpcode() == Instruction::UserOp1)
1914       return true;
1915
1916   return false;
1917 }
1918
1919 /// getMaskValue - Return the index from the shuffle mask for the specified
1920 /// output result.  This is either -1 if the element is undef or a number less
1921 /// than 2*numelements.
1922 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1923   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1924   if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1925     return CDS->getElementAsInteger(i);
1926   Constant *C = Mask->getAggregateElement(i);
1927   if (isa<UndefValue>(C))
1928     return -1;
1929   return cast<ConstantInt>(C)->getZExtValue();
1930 }
1931
1932 /// getShuffleMask - Return the full mask for this instruction, where each
1933 /// element is the element number and undef's are returned as -1.
1934 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1935                                        SmallVectorImpl<int> &Result) {
1936   unsigned NumElts = Mask->getType()->getVectorNumElements();
1937   
1938   if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1939     for (unsigned i = 0; i != NumElts; ++i)
1940       Result.push_back(CDS->getElementAsInteger(i));
1941     return;
1942   }    
1943   for (unsigned i = 0; i != NumElts; ++i) {
1944     Constant *C = Mask->getAggregateElement(i);
1945     Result.push_back(isa<UndefValue>(C) ? -1 :
1946                      cast<ConstantInt>(C)->getZExtValue());
1947   }
1948 }
1949
1950
1951 //===----------------------------------------------------------------------===//
1952 //                             InsertValueInst Class
1953 //===----------------------------------------------------------------------===//
1954
1955 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 
1956                            const Twine &Name) {
1957   assert(getNumOperands() == 2 && "NumOperands not initialized?");
1958
1959   // There's no fundamental reason why we require at least one index
1960   // (other than weirdness with &*IdxBegin being invalid; see
1961   // getelementptr's init routine for example). But there's no
1962   // present need to support it.
1963   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1964
1965   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1966          Val->getType() && "Inserted value must match indexed type!");
1967   Op<0>() = Agg;
1968   Op<1>() = Val;
1969
1970   Indices.append(Idxs.begin(), Idxs.end());
1971   setName(Name);
1972 }
1973
1974 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1975   : Instruction(IVI.getType(), InsertValue,
1976                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1977     Indices(IVI.Indices) {
1978   Op<0>() = IVI.getOperand(0);
1979   Op<1>() = IVI.getOperand(1);
1980   SubclassOptionalData = IVI.SubclassOptionalData;
1981 }
1982
1983 //===----------------------------------------------------------------------===//
1984 //                             ExtractValueInst Class
1985 //===----------------------------------------------------------------------===//
1986
1987 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1988   assert(getNumOperands() == 1 && "NumOperands not initialized?");
1989
1990   // There's no fundamental reason why we require at least one index.
1991   // But there's no present need to support it.
1992   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1993
1994   Indices.append(Idxs.begin(), Idxs.end());
1995   setName(Name);
1996 }
1997
1998 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1999   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2000     Indices(EVI.Indices) {
2001   SubclassOptionalData = EVI.SubclassOptionalData;
2002 }
2003
2004 // getIndexedType - Returns the type of the element that would be extracted
2005 // with an extractvalue instruction with the specified parameters.
2006 //
2007 // A null type is returned if the indices are invalid for the specified
2008 // pointer type.
2009 //
2010 Type *ExtractValueInst::getIndexedType(Type *Agg,
2011                                        ArrayRef<unsigned> Idxs) {
2012   for (unsigned Index : Idxs) {
2013     // We can't use CompositeType::indexValid(Index) here.
2014     // indexValid() always returns true for arrays because getelementptr allows
2015     // out-of-bounds indices. Since we don't allow those for extractvalue and
2016     // insertvalue we need to check array indexing manually.
2017     // Since the only other types we can index into are struct types it's just
2018     // as easy to check those manually as well.
2019     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2020       if (Index >= AT->getNumElements())
2021         return nullptr;
2022     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2023       if (Index >= ST->getNumElements())
2024         return nullptr;
2025     } else {
2026       // Not a valid type to index into.
2027       return nullptr;
2028     }
2029
2030     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2031   }
2032   return const_cast<Type*>(Agg);
2033 }
2034
2035 //===----------------------------------------------------------------------===//
2036 //                             BinaryOperator Class
2037 //===----------------------------------------------------------------------===//
2038
2039 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2040                                Type *Ty, const Twine &Name,
2041                                Instruction *InsertBefore)
2042   : Instruction(Ty, iType,
2043                 OperandTraits<BinaryOperator>::op_begin(this),
2044                 OperandTraits<BinaryOperator>::operands(this),
2045                 InsertBefore) {
2046   Op<0>() = S1;
2047   Op<1>() = S2;
2048   init(iType);
2049   setName(Name);
2050 }
2051
2052 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 
2053                                Type *Ty, const Twine &Name,
2054                                BasicBlock *InsertAtEnd)
2055   : Instruction(Ty, iType,
2056                 OperandTraits<BinaryOperator>::op_begin(this),
2057                 OperandTraits<BinaryOperator>::operands(this),
2058                 InsertAtEnd) {
2059   Op<0>() = S1;
2060   Op<1>() = S2;
2061   init(iType);
2062   setName(Name);
2063 }
2064
2065
2066 void BinaryOperator::init(BinaryOps iType) {
2067   Value *LHS = getOperand(0), *RHS = getOperand(1);
2068   (void)LHS; (void)RHS; // Silence warnings.
2069   assert(LHS->getType() == RHS->getType() &&
2070          "Binary operator operand types must match!");
2071 #ifndef NDEBUG
2072   switch (iType) {
2073   case Add: case Sub:
2074   case Mul:
2075     assert(getType() == LHS->getType() &&
2076            "Arithmetic operation should return same type as operands!");
2077     assert(getType()->isIntOrIntVectorTy() &&
2078            "Tried to create an integer operation on a non-integer type!");
2079     break;
2080   case FAdd: case FSub:
2081   case FMul:
2082     assert(getType() == LHS->getType() &&
2083            "Arithmetic operation should return same type as operands!");
2084     assert(getType()->isFPOrFPVectorTy() &&
2085            "Tried to create a floating-point operation on a "
2086            "non-floating-point type!");
2087     break;
2088   case UDiv: 
2089   case SDiv: 
2090     assert(getType() == LHS->getType() &&
2091            "Arithmetic operation should return same type as operands!");
2092     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
2093             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2094            "Incorrect operand type (not integer) for S/UDIV");
2095     break;
2096   case FDiv:
2097     assert(getType() == LHS->getType() &&
2098            "Arithmetic operation should return same type as operands!");
2099     assert(getType()->isFPOrFPVectorTy() &&
2100            "Incorrect operand type (not floating point) for FDIV");
2101     break;
2102   case URem: 
2103   case SRem: 
2104     assert(getType() == LHS->getType() &&
2105            "Arithmetic operation should return same type as operands!");
2106     assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 
2107             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2108            "Incorrect operand type (not integer) for S/UREM");
2109     break;
2110   case FRem:
2111     assert(getType() == LHS->getType() &&
2112            "Arithmetic operation should return same type as operands!");
2113     assert(getType()->isFPOrFPVectorTy() &&
2114            "Incorrect operand type (not floating point) for FREM");
2115     break;
2116   case Shl:
2117   case LShr:
2118   case AShr:
2119     assert(getType() == LHS->getType() &&
2120            "Shift operation should return same type as operands!");
2121     assert((getType()->isIntegerTy() ||
2122             (getType()->isVectorTy() && 
2123              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2124            "Tried to create a shift operation on a non-integral type!");
2125     break;
2126   case And: case Or:
2127   case Xor:
2128     assert(getType() == LHS->getType() &&
2129            "Logical operation should return same type as operands!");
2130     assert((getType()->isIntegerTy() ||
2131             (getType()->isVectorTy() && 
2132              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2133            "Tried to create a logical operation on a non-integral type!");
2134     break;
2135   default:
2136     break;
2137   }
2138 #endif
2139 }
2140
2141 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2142                                        const Twine &Name,
2143                                        Instruction *InsertBefore) {
2144   assert(S1->getType() == S2->getType() &&
2145          "Cannot create binary operator with two operands of differing type!");
2146   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2147 }
2148
2149 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2150                                        const Twine &Name,
2151                                        BasicBlock *InsertAtEnd) {
2152   BinaryOperator *Res = Create(Op, S1, S2, Name);
2153   InsertAtEnd->getInstList().push_back(Res);
2154   return Res;
2155 }
2156
2157 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2158                                           Instruction *InsertBefore) {
2159   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2160   return new BinaryOperator(Instruction::Sub,
2161                             zero, Op,
2162                             Op->getType(), Name, InsertBefore);
2163 }
2164
2165 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2166                                           BasicBlock *InsertAtEnd) {
2167   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2168   return new BinaryOperator(Instruction::Sub,
2169                             zero, Op,
2170                             Op->getType(), Name, InsertAtEnd);
2171 }
2172
2173 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2174                                              Instruction *InsertBefore) {
2175   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2176   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2177 }
2178
2179 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2180                                              BasicBlock *InsertAtEnd) {
2181   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2182   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2183 }
2184
2185 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2186                                              Instruction *InsertBefore) {
2187   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2188   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2189 }
2190
2191 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2192                                              BasicBlock *InsertAtEnd) {
2193   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2194   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2195 }
2196
2197 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2198                                            Instruction *InsertBefore) {
2199   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2200   return new BinaryOperator(Instruction::FSub, zero, Op,
2201                             Op->getType(), Name, InsertBefore);
2202 }
2203
2204 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2205                                            BasicBlock *InsertAtEnd) {
2206   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2207   return new BinaryOperator(Instruction::FSub, zero, Op,
2208                             Op->getType(), Name, InsertAtEnd);
2209 }
2210
2211 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2212                                           Instruction *InsertBefore) {
2213   Constant *C = Constant::getAllOnesValue(Op->getType());
2214   return new BinaryOperator(Instruction::Xor, Op, C,
2215                             Op->getType(), Name, InsertBefore);
2216 }
2217
2218 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2219                                           BasicBlock *InsertAtEnd) {
2220   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2221   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2222                             Op->getType(), Name, InsertAtEnd);
2223 }
2224
2225
2226 // isConstantAllOnes - Helper function for several functions below
2227 static inline bool isConstantAllOnes(const Value *V) {
2228   if (const Constant *C = dyn_cast<Constant>(V))
2229     return C->isAllOnesValue();
2230   return false;
2231 }
2232
2233 bool BinaryOperator::isNeg(const Value *V) {
2234   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2235     if (Bop->getOpcode() == Instruction::Sub)
2236       if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0)))
2237         return C->isNegativeZeroValue();
2238   return false;
2239 }
2240
2241 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
2242   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2243     if (Bop->getOpcode() == Instruction::FSub)
2244       if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) {
2245         if (!IgnoreZeroSign)
2246           IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
2247         return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
2248       }
2249   return false;
2250 }
2251
2252 bool BinaryOperator::isNot(const Value *V) {
2253   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2254     return (Bop->getOpcode() == Instruction::Xor &&
2255             (isConstantAllOnes(Bop->getOperand(1)) ||
2256              isConstantAllOnes(Bop->getOperand(0))));
2257   return false;
2258 }
2259
2260 Value *BinaryOperator::getNegArgument(Value *BinOp) {
2261   return cast<BinaryOperator>(BinOp)->getOperand(1);
2262 }
2263
2264 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
2265   return getNegArgument(const_cast<Value*>(BinOp));
2266 }
2267
2268 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
2269   return cast<BinaryOperator>(BinOp)->getOperand(1);
2270 }
2271
2272 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
2273   return getFNegArgument(const_cast<Value*>(BinOp));
2274 }
2275
2276 Value *BinaryOperator::getNotArgument(Value *BinOp) {
2277   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2278   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2279   Value *Op0 = BO->getOperand(0);
2280   Value *Op1 = BO->getOperand(1);
2281   if (isConstantAllOnes(Op0)) return Op1;
2282
2283   assert(isConstantAllOnes(Op1));
2284   return Op0;
2285 }
2286
2287 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
2288   return getNotArgument(const_cast<Value*>(BinOp));
2289 }
2290
2291
2292 // swapOperands - Exchange the two operands to this instruction.  This
2293 // instruction is safe to use on any binary instruction and does not
2294 // modify the semantics of the instruction.  If the instruction is
2295 // order dependent (SetLT f.e.) the opcode is changed.
2296 //
2297 bool BinaryOperator::swapOperands() {
2298   if (!isCommutative())
2299     return true; // Can't commute operands
2300   Op<0>().swap(Op<1>());
2301   return false;
2302 }
2303
2304
2305 //===----------------------------------------------------------------------===//
2306 //                             FPMathOperator Class
2307 //===----------------------------------------------------------------------===//
2308
2309 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2310 /// An accuracy of 0.0 means that the operation should be performed with the
2311 /// default precision.
2312 float FPMathOperator::getFPAccuracy() const {
2313   const MDNode *MD =
2314       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2315   if (!MD)
2316     return 0.0;
2317   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2318   return Accuracy->getValueAPF().convertToFloat();
2319 }
2320
2321
2322 //===----------------------------------------------------------------------===//
2323 //                                CastInst Class
2324 //===----------------------------------------------------------------------===//
2325
2326 void CastInst::anchor() {}
2327
2328 // Just determine if this cast only deals with integral->integral conversion.
2329 bool CastInst::isIntegerCast() const {
2330   switch (getOpcode()) {
2331     default: return false;
2332     case Instruction::ZExt:
2333     case Instruction::SExt:
2334     case Instruction::Trunc:
2335       return true;
2336     case Instruction::BitCast:
2337       return getOperand(0)->getType()->isIntegerTy() &&
2338         getType()->isIntegerTy();
2339   }
2340 }
2341
2342 bool CastInst::isLosslessCast() const {
2343   // Only BitCast can be lossless, exit fast if we're not BitCast
2344   if (getOpcode() != Instruction::BitCast)
2345     return false;
2346
2347   // Identity cast is always lossless
2348   Type *SrcTy = getOperand(0)->getType();
2349   Type *DstTy = getType();
2350   if (SrcTy == DstTy)
2351     return true;
2352   
2353   // Pointer to pointer is always lossless.
2354   if (SrcTy->isPointerTy())
2355     return DstTy->isPointerTy();
2356   return false;  // Other types have no identity values
2357 }
2358
2359 /// This function determines if the CastInst does not require any bits to be
2360 /// changed in order to effect the cast. Essentially, it identifies cases where
2361 /// no code gen is necessary for the cast, hence the name no-op cast.  For 
2362 /// example, the following are all no-op casts:
2363 /// # bitcast i32* %x to i8*
2364 /// # bitcast <2 x i32> %x to <4 x i16> 
2365 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2366 /// @brief Determine if the described cast is a no-op.
2367 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2368                           Type *SrcTy,
2369                           Type *DestTy,
2370                           Type *IntPtrTy) {
2371   switch (Opcode) {
2372     default: llvm_unreachable("Invalid CastOp");
2373     case Instruction::Trunc:
2374     case Instruction::ZExt:
2375     case Instruction::SExt: 
2376     case Instruction::FPTrunc:
2377     case Instruction::FPExt:
2378     case Instruction::UIToFP:
2379     case Instruction::SIToFP:
2380     case Instruction::FPToUI:
2381     case Instruction::FPToSI:
2382     case Instruction::AddrSpaceCast:
2383       // TODO: Target informations may give a more accurate answer here.
2384       return false;
2385     case Instruction::BitCast:
2386       return true;  // BitCast never modifies bits.
2387     case Instruction::PtrToInt:
2388       return IntPtrTy->getScalarSizeInBits() ==
2389              DestTy->getScalarSizeInBits();
2390     case Instruction::IntToPtr:
2391       return IntPtrTy->getScalarSizeInBits() ==
2392              SrcTy->getScalarSizeInBits();
2393   }
2394 }
2395
2396 /// @brief Determine if a cast is a no-op.
2397 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2398   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2399 }
2400
2401 bool CastInst::isNoopCast(const DataLayout &DL) const {
2402   Type *PtrOpTy = nullptr;
2403   if (getOpcode() == Instruction::PtrToInt)
2404     PtrOpTy = getOperand(0)->getType();
2405   else if (getOpcode() == Instruction::IntToPtr)
2406     PtrOpTy = getType();
2407
2408   Type *IntPtrTy =
2409       PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0);
2410
2411   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2412 }
2413
2414 /// This function determines if a pair of casts can be eliminated and what
2415 /// opcode should be used in the elimination. This assumes that there are two
2416 /// instructions like this:
2417 /// *  %F = firstOpcode SrcTy %x to MidTy
2418 /// *  %S = secondOpcode MidTy %F to DstTy
2419 /// The function returns a resultOpcode so these two casts can be replaced with:
2420 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2421 /// If no such cast is permitted, the function returns 0.
2422 unsigned CastInst::isEliminableCastPair(
2423   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2424   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2425   Type *DstIntPtrTy) {
2426   // Define the 144 possibilities for these two cast instructions. The values
2427   // in this matrix determine what to do in a given situation and select the
2428   // case in the switch below.  The rows correspond to firstOp, the columns 
2429   // correspond to secondOp.  In looking at the table below, keep in mind
2430   // the following cast properties:
2431   //
2432   //          Size Compare       Source               Destination
2433   // Operator  Src ? Size   Type       Sign         Type       Sign
2434   // -------- ------------ -------------------   ---------------------
2435   // TRUNC         >       Integer      Any        Integral     Any
2436   // ZEXT          <       Integral   Unsigned     Integer      Any
2437   // SEXT          <       Integral    Signed      Integer      Any
2438   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2439   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2440   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2441   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2442   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2443   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2444   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2445   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2446   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2447   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2448   //
2449   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2450   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2451   // into "fptoui double to i64", but this loses information about the range
2452   // of the produced value (we no longer know the top-part is all zeros).
2453   // Further this conversion is often much more expensive for typical hardware,
2454   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2455   // same reason.
2456   const unsigned numCastOps =
2457     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2458   static const uint8_t CastResults[numCastOps][numCastOps] = {
2459     // T        F  F  U  S  F  F  P  I  B  A  -+
2460     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2461     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2462     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2463     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2464     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2465     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2466     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2467     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2468     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2469     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2470     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2471     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2472     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt          |
2473     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2474     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2475     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2476     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2477   };
2478
2479   // TODO: This logic could be encoded into the table above and handled in the
2480   // switch below.
2481   // If either of the casts are a bitcast from scalar to vector, disallow the
2482   // merging. However, any pair of bitcasts are allowed.
2483   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2484   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2485   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2486
2487   // Check if any of the casts convert scalars <-> vectors.
2488   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2489       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2490     if (!AreBothBitcasts)
2491       return 0;
2492
2493   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2494                             [secondOp-Instruction::CastOpsBegin];
2495   switch (ElimCase) {
2496     case 0: 
2497       // Categorically disallowed.
2498       return 0;
2499     case 1: 
2500       // Allowed, use first cast's opcode.
2501       return firstOp;
2502     case 2: 
2503       // Allowed, use second cast's opcode.
2504       return secondOp;
2505     case 3: 
2506       // No-op cast in second op implies firstOp as long as the DestTy
2507       // is integer and we are not converting between a vector and a
2508       // non-vector type.
2509       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2510         return firstOp;
2511       return 0;
2512     case 4:
2513       // No-op cast in second op implies firstOp as long as the DestTy
2514       // is floating point.
2515       if (DstTy->isFloatingPointTy())
2516         return firstOp;
2517       return 0;
2518     case 5: 
2519       // No-op cast in first op implies secondOp as long as the SrcTy
2520       // is an integer.
2521       if (SrcTy->isIntegerTy())
2522         return secondOp;
2523       return 0;
2524     case 6:
2525       // No-op cast in first op implies secondOp as long as the SrcTy
2526       // is a floating point.
2527       if (SrcTy->isFloatingPointTy())
2528         return secondOp;
2529       return 0;
2530     case 7: {
2531       // Cannot simplify if address spaces are different!
2532       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2533         return 0;
2534
2535       unsigned MidSize = MidTy->getScalarSizeInBits();
2536       // We can still fold this without knowing the actual sizes as long we
2537       // know that the intermediate pointer is the largest possible
2538       // pointer size.
2539       // FIXME: Is this always true?
2540       if (MidSize == 64)
2541         return Instruction::BitCast;
2542
2543       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2544       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2545         return 0;
2546       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2547       if (MidSize >= PtrSize)
2548         return Instruction::BitCast;
2549       return 0;
2550     }
2551     case 8: {
2552       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2553       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2554       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2555       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2556       unsigned DstSize = DstTy->getScalarSizeInBits();
2557       if (SrcSize == DstSize)
2558         return Instruction::BitCast;
2559       else if (SrcSize < DstSize)
2560         return firstOp;
2561       return secondOp;
2562     }
2563     case 9:
2564       // zext, sext -> zext, because sext can't sign extend after zext
2565       return Instruction::ZExt;
2566     case 10:
2567       // fpext followed by ftrunc is allowed if the bit size returned to is
2568       // the same as the original, in which case its just a bitcast
2569       if (SrcTy == DstTy)
2570         return Instruction::BitCast;
2571       return 0; // If the types are not the same we can't eliminate it.
2572     case 11: {
2573       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2574       if (!MidIntPtrTy)
2575         return 0;
2576       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2577       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2578       unsigned DstSize = DstTy->getScalarSizeInBits();
2579       if (SrcSize <= PtrSize && SrcSize == DstSize)
2580         return Instruction::BitCast;
2581       return 0;
2582     }
2583     case 12: {
2584       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2585       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2586       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2587         return Instruction::AddrSpaceCast;
2588       return Instruction::BitCast;
2589     }
2590     case 13:
2591       // FIXME: this state can be merged with (1), but the following assert
2592       // is useful to check the correcteness of the sequence due to semantic
2593       // change of bitcast.
2594       assert(
2595         SrcTy->isPtrOrPtrVectorTy() &&
2596         MidTy->isPtrOrPtrVectorTy() &&
2597         DstTy->isPtrOrPtrVectorTy() &&
2598         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2599         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2600         "Illegal addrspacecast, bitcast sequence!");
2601       // Allowed, use first cast's opcode
2602       return firstOp;
2603     case 14:
2604       // bitcast, addrspacecast -> addrspacecast if the element type of
2605       // bitcast's source is the same as that of addrspacecast's destination.
2606       if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
2607         return Instruction::AddrSpaceCast;
2608       return 0;
2609
2610     case 15:
2611       // FIXME: this state can be merged with (1), but the following assert
2612       // is useful to check the correcteness of the sequence due to semantic
2613       // change of bitcast.
2614       assert(
2615         SrcTy->isIntOrIntVectorTy() &&
2616         MidTy->isPtrOrPtrVectorTy() &&
2617         DstTy->isPtrOrPtrVectorTy() &&
2618         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2619         "Illegal inttoptr, bitcast sequence!");
2620       // Allowed, use first cast's opcode
2621       return firstOp;
2622     case 16:
2623       // FIXME: this state can be merged with (2), but the following assert
2624       // is useful to check the correcteness of the sequence due to semantic
2625       // change of bitcast.
2626       assert(
2627         SrcTy->isPtrOrPtrVectorTy() &&
2628         MidTy->isPtrOrPtrVectorTy() &&
2629         DstTy->isIntOrIntVectorTy() &&
2630         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2631         "Illegal bitcast, ptrtoint sequence!");
2632       // Allowed, use second cast's opcode
2633       return secondOp;
2634     case 17:
2635       // (sitofp (zext x)) -> (uitofp x)
2636       return Instruction::UIToFP;
2637     case 99: 
2638       // Cast combination can't happen (error in input). This is for all cases
2639       // where the MidTy is not the same for the two cast instructions.
2640       llvm_unreachable("Invalid Cast Combination");
2641     default:
2642       llvm_unreachable("Error in CastResults table!!!");
2643   }
2644 }
2645
2646 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 
2647   const Twine &Name, Instruction *InsertBefore) {
2648   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2649   // Construct and return the appropriate CastInst subclass
2650   switch (op) {
2651   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2652   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2653   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2654   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2655   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2656   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2657   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2658   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2659   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2660   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2661   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2662   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2663   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2664   default: llvm_unreachable("Invalid opcode provided");
2665   }
2666 }
2667
2668 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2669   const Twine &Name, BasicBlock *InsertAtEnd) {
2670   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2671   // Construct and return the appropriate CastInst subclass
2672   switch (op) {
2673   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2674   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2675   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2676   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2677   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2678   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2679   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2680   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2681   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2682   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2683   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2684   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2685   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2686   default: llvm_unreachable("Invalid opcode provided");
2687   }
2688 }
2689
2690 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2691                                         const Twine &Name,
2692                                         Instruction *InsertBefore) {
2693   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2694     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2695   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2696 }
2697
2698 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 
2699                                         const Twine &Name,
2700                                         BasicBlock *InsertAtEnd) {
2701   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2702     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2703   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2704 }
2705
2706 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2707                                         const Twine &Name,
2708                                         Instruction *InsertBefore) {
2709   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2710     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2711   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2712 }
2713
2714 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 
2715                                         const Twine &Name,
2716                                         BasicBlock *InsertAtEnd) {
2717   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2718     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2719   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2720 }
2721
2722 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2723                                          const Twine &Name,
2724                                          Instruction *InsertBefore) {
2725   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2726     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2727   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2728 }
2729
2730 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2731                                          const Twine &Name, 
2732                                          BasicBlock *InsertAtEnd) {
2733   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2734     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2735   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2736 }
2737
2738 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2739                                       const Twine &Name,
2740                                       BasicBlock *InsertAtEnd) {
2741   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2742   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2743          "Invalid cast");
2744   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2745   assert((!Ty->isVectorTy() ||
2746           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2747          "Invalid cast");
2748
2749   if (Ty->isIntOrIntVectorTy())
2750     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2751
2752   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2753 }
2754
2755 /// @brief Create a BitCast or a PtrToInt cast instruction
2756 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2757                                       const Twine &Name,
2758                                       Instruction *InsertBefore) {
2759   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2760   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2761          "Invalid cast");
2762   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2763   assert((!Ty->isVectorTy() ||
2764           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2765          "Invalid cast");
2766
2767   if (Ty->isIntOrIntVectorTy())
2768     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2769
2770   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2771 }
2772
2773 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2774   Value *S, Type *Ty,
2775   const Twine &Name,
2776   BasicBlock *InsertAtEnd) {
2777   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2778   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2779
2780   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2781     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2782
2783   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2784 }
2785
2786 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2787   Value *S, Type *Ty,
2788   const Twine &Name,
2789   Instruction *InsertBefore) {
2790   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2791   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2792
2793   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2794     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2795
2796   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2797 }
2798
2799 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2800                                            const Twine &Name,
2801                                            Instruction *InsertBefore) {
2802   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2803     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2804   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2805     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2806
2807   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2808 }
2809
2810 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2811                                       bool isSigned, const Twine &Name,
2812                                       Instruction *InsertBefore) {
2813   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2814          "Invalid integer cast");
2815   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2816   unsigned DstBits = Ty->getScalarSizeInBits();
2817   Instruction::CastOps opcode =
2818     (SrcBits == DstBits ? Instruction::BitCast :
2819      (SrcBits > DstBits ? Instruction::Trunc :
2820       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2821   return Create(opcode, C, Ty, Name, InsertBefore);
2822 }
2823
2824 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 
2825                                       bool isSigned, const Twine &Name,
2826                                       BasicBlock *InsertAtEnd) {
2827   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2828          "Invalid cast");
2829   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2830   unsigned DstBits = Ty->getScalarSizeInBits();
2831   Instruction::CastOps opcode =
2832     (SrcBits == DstBits ? Instruction::BitCast :
2833      (SrcBits > DstBits ? Instruction::Trunc :
2834       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2835   return Create(opcode, C, Ty, Name, InsertAtEnd);
2836 }
2837
2838 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2839                                  const Twine &Name, 
2840                                  Instruction *InsertBefore) {
2841   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2842          "Invalid cast");
2843   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2844   unsigned DstBits = Ty->getScalarSizeInBits();
2845   Instruction::CastOps opcode =
2846     (SrcBits == DstBits ? Instruction::BitCast :
2847      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2848   return Create(opcode, C, Ty, Name, InsertBefore);
2849 }
2850
2851 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 
2852                                  const Twine &Name, 
2853                                  BasicBlock *InsertAtEnd) {
2854   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2855          "Invalid cast");
2856   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2857   unsigned DstBits = Ty->getScalarSizeInBits();
2858   Instruction::CastOps opcode =
2859     (SrcBits == DstBits ? Instruction::BitCast :
2860      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2861   return Create(opcode, C, Ty, Name, InsertAtEnd);
2862 }
2863
2864 // Check whether it is valid to call getCastOpcode for these types.
2865 // This routine must be kept in sync with getCastOpcode.
2866 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2867   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2868     return false;
2869
2870   if (SrcTy == DestTy)
2871     return true;
2872
2873   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2874     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2875       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2876         // An element by element cast.  Valid if casting the elements is valid.
2877         SrcTy = SrcVecTy->getElementType();
2878         DestTy = DestVecTy->getElementType();
2879       }
2880
2881   // Get the bit sizes, we'll need these
2882   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2883   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2884
2885   // Run through the possibilities ...
2886   if (DestTy->isIntegerTy()) {               // Casting to integral
2887     if (SrcTy->isIntegerTy())                // Casting from integral
2888         return true;
2889     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2890       return true;
2891     if (SrcTy->isVectorTy())          // Casting from vector
2892       return DestBits == SrcBits;
2893                                       // Casting from something else
2894     return SrcTy->isPointerTy();
2895   } 
2896   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2897     if (SrcTy->isIntegerTy())                // Casting from integral
2898       return true;
2899     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2900       return true;
2901     if (SrcTy->isVectorTy())          // Casting from vector
2902       return DestBits == SrcBits;
2903                                     // Casting from something else
2904     return false;
2905   }
2906   if (DestTy->isVectorTy())         // Casting to vector
2907     return DestBits == SrcBits;
2908   if (DestTy->isPointerTy()) {        // Casting to pointer
2909     if (SrcTy->isPointerTy())                // Casting from pointer
2910       return true;
2911     return SrcTy->isIntegerTy();             // Casting from integral
2912   } 
2913   if (DestTy->isX86_MMXTy()) {
2914     if (SrcTy->isVectorTy())
2915       return DestBits == SrcBits;       // 64-bit vector to MMX
2916     return false;
2917   }                                    // Casting to something else
2918   return false;
2919 }
2920
2921 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2922   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2923     return false;
2924
2925   if (SrcTy == DestTy)
2926     return true;
2927
2928   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2929     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2930       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2931         // An element by element cast. Valid if casting the elements is valid.
2932         SrcTy = SrcVecTy->getElementType();
2933         DestTy = DestVecTy->getElementType();
2934       }
2935     }
2936   }
2937
2938   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2939     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2940       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2941     }
2942   }
2943
2944   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2945   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2946
2947   // Could still have vectors of pointers if the number of elements doesn't
2948   // match
2949   if (SrcBits == 0 || DestBits == 0)
2950     return false;
2951
2952   if (SrcBits != DestBits)
2953     return false;
2954
2955   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2956     return false;
2957
2958   return true;
2959 }
2960
2961 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2962                                           const DataLayout &DL) {
2963   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2964     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2965       return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2966   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2967     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2968       return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2969
2970   return isBitCastable(SrcTy, DestTy);
2971 }
2972
2973 // Provide a way to get a "cast" where the cast opcode is inferred from the
2974 // types and size of the operand. This, basically, is a parallel of the
2975 // logic in the castIsValid function below.  This axiom should hold:
2976 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2977 // should not assert in castIsValid. In other words, this produces a "correct"
2978 // casting opcode for the arguments passed to it.
2979 // This routine must be kept in sync with isCastable.
2980 Instruction::CastOps
2981 CastInst::getCastOpcode(
2982   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2983   Type *SrcTy = Src->getType();
2984
2985   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2986          "Only first class types are castable!");
2987
2988   if (SrcTy == DestTy)
2989     return BitCast;
2990
2991   // FIXME: Check address space sizes here
2992   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2993     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2994       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2995         // An element by element cast.  Find the appropriate opcode based on the
2996         // element types.
2997         SrcTy = SrcVecTy->getElementType();
2998         DestTy = DestVecTy->getElementType();
2999       }
3000
3001   // Get the bit sizes, we'll need these
3002   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3003   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3004
3005   // Run through the possibilities ...
3006   if (DestTy->isIntegerTy()) {                      // Casting to integral
3007     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3008       if (DestBits < SrcBits)
3009         return Trunc;                               // int -> smaller int
3010       else if (DestBits > SrcBits) {                // its an extension
3011         if (SrcIsSigned)
3012           return SExt;                              // signed -> SEXT
3013         else
3014           return ZExt;                              // unsigned -> ZEXT
3015       } else {
3016         return BitCast;                             // Same size, No-op cast
3017       }
3018     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3019       if (DestIsSigned) 
3020         return FPToSI;                              // FP -> sint
3021       else
3022         return FPToUI;                              // FP -> uint 
3023     } else if (SrcTy->isVectorTy()) {
3024       assert(DestBits == SrcBits &&
3025              "Casting vector to integer of different width");
3026       return BitCast;                             // Same size, no-op cast
3027     } else {
3028       assert(SrcTy->isPointerTy() &&
3029              "Casting from a value that is not first-class type");
3030       return PtrToInt;                              // ptr -> int
3031     }
3032   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3033     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3034       if (SrcIsSigned)
3035         return SIToFP;                              // sint -> FP
3036       else
3037         return UIToFP;                              // uint -> FP
3038     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3039       if (DestBits < SrcBits) {
3040         return FPTrunc;                             // FP -> smaller FP
3041       } else if (DestBits > SrcBits) {
3042         return FPExt;                               // FP -> larger FP
3043       } else  {
3044         return BitCast;                             // same size, no-op cast
3045       }
3046     } else if (SrcTy->isVectorTy()) {
3047       assert(DestBits == SrcBits &&
3048              "Casting vector to floating point of different width");
3049       return BitCast;                             // same size, no-op cast
3050     }
3051     llvm_unreachable("Casting pointer or non-first class to float");
3052   } else if (DestTy->isVectorTy()) {
3053     assert(DestBits == SrcBits &&
3054            "Illegal cast to vector (wrong type or size)");
3055     return BitCast;
3056   } else if (DestTy->isPointerTy()) {
3057     if (SrcTy->isPointerTy()) {
3058       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3059         return AddrSpaceCast;
3060       return BitCast;                               // ptr -> ptr
3061     } else if (SrcTy->isIntegerTy()) {
3062       return IntToPtr;                              // int -> ptr
3063     }
3064     llvm_unreachable("Casting pointer to other than pointer or int");
3065   } else if (DestTy->isX86_MMXTy()) {
3066     if (SrcTy->isVectorTy()) {
3067       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3068       return BitCast;                               // 64-bit vector to MMX
3069     }
3070     llvm_unreachable("Illegal cast to X86_MMX");
3071   }
3072   llvm_unreachable("Casting to type that is not first-class");
3073 }
3074
3075 //===----------------------------------------------------------------------===//
3076 //                    CastInst SubClass Constructors
3077 //===----------------------------------------------------------------------===//
3078
3079 /// Check that the construction parameters for a CastInst are correct. This
3080 /// could be broken out into the separate constructors but it is useful to have
3081 /// it in one place and to eliminate the redundant code for getting the sizes
3082 /// of the types involved.
3083 bool 
3084 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3085
3086   // Check for type sanity on the arguments
3087   Type *SrcTy = S->getType();
3088
3089   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3090       SrcTy->isAggregateType() || DstTy->isAggregateType())
3091     return false;
3092
3093   // Get the size of the types in bits, we'll need this later
3094   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3095   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3096
3097   // If these are vector types, get the lengths of the vectors (using zero for
3098   // scalar types means that checking that vector lengths match also checks that
3099   // scalars are not being converted to vectors or vectors to scalars).
3100   unsigned SrcLength = SrcTy->isVectorTy() ?
3101     cast<VectorType>(SrcTy)->getNumElements() : 0;
3102   unsigned DstLength = DstTy->isVectorTy() ?
3103     cast<VectorType>(DstTy)->getNumElements() : 0;
3104
3105   // Switch on the opcode provided
3106   switch (op) {
3107   default: return false; // This is an input error
3108   case Instruction::Trunc:
3109     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3110       SrcLength == DstLength && SrcBitSize > DstBitSize;
3111   case Instruction::ZExt:
3112     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3113       SrcLength == DstLength && SrcBitSize < DstBitSize;
3114   case Instruction::SExt: 
3115     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3116       SrcLength == DstLength && SrcBitSize < DstBitSize;
3117   case Instruction::FPTrunc:
3118     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3119       SrcLength == DstLength && SrcBitSize > DstBitSize;
3120   case Instruction::FPExt:
3121     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3122       SrcLength == DstLength && SrcBitSize < DstBitSize;
3123   case Instruction::UIToFP:
3124   case Instruction::SIToFP:
3125     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3126       SrcLength == DstLength;
3127   case Instruction::FPToUI:
3128   case Instruction::FPToSI:
3129     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3130       SrcLength == DstLength;
3131   case Instruction::PtrToInt:
3132     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3133       return false;
3134     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3135       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3136         return false;
3137     return SrcTy->getScalarType()->isPointerTy() &&
3138            DstTy->getScalarType()->isIntegerTy();
3139   case Instruction::IntToPtr:
3140     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3141       return false;
3142     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3143       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3144         return false;
3145     return SrcTy->getScalarType()->isIntegerTy() &&
3146            DstTy->getScalarType()->isPointerTy();
3147   case Instruction::BitCast: {
3148     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3149     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3150
3151     // BitCast implies a no-op cast of type only. No bits change.
3152     // However, you can't cast pointers to anything but pointers.
3153     if (!SrcPtrTy != !DstPtrTy)
3154       return false;
3155
3156     // For non-pointer cases, the cast is okay if the source and destination bit
3157     // widths are identical.
3158     if (!SrcPtrTy)
3159       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3160
3161     // If both are pointers then the address spaces must match.
3162     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3163       return false;
3164
3165     // A vector of pointers must have the same number of elements.
3166     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3167       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3168         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3169
3170       return false;
3171     }
3172
3173     return true;
3174   }
3175   case Instruction::AddrSpaceCast: {
3176     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3177     if (!SrcPtrTy)
3178       return false;
3179
3180     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3181     if (!DstPtrTy)
3182       return false;
3183
3184     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3185       return false;
3186
3187     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3188       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3189         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3190
3191       return false;
3192     }
3193
3194     return true;
3195   }
3196   }
3197 }
3198
3199 TruncInst::TruncInst(
3200   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3201 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3202   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3203 }
3204
3205 TruncInst::TruncInst(
3206   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3207 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
3208   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3209 }
3210
3211 ZExtInst::ZExtInst(
3212   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3213 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
3214   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3215 }
3216
3217 ZExtInst::ZExtInst(
3218   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3219 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
3220   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3221 }
3222 SExtInst::SExtInst(
3223   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3224 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
3225   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3226 }
3227
3228 SExtInst::SExtInst(
3229   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3230 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
3231   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3232 }
3233
3234 FPTruncInst::FPTruncInst(
3235   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3236 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
3237   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3238 }
3239
3240 FPTruncInst::FPTruncInst(
3241   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3242 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
3243   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3244 }
3245
3246 FPExtInst::FPExtInst(
3247   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3248 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
3249   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3250 }
3251
3252 FPExtInst::FPExtInst(
3253   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3254 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
3255   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3256 }
3257
3258 UIToFPInst::UIToFPInst(
3259   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3260 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
3261   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3262 }
3263
3264 UIToFPInst::UIToFPInst(
3265   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3266 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
3267   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3268 }
3269
3270 SIToFPInst::SIToFPInst(
3271   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3272 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
3273   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3274 }
3275
3276 SIToFPInst::SIToFPInst(
3277   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3278 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
3279   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3280 }
3281
3282 FPToUIInst::FPToUIInst(
3283   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3284 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
3285   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3286 }
3287
3288 FPToUIInst::FPToUIInst(
3289   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3290 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
3291   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3292 }
3293
3294 FPToSIInst::FPToSIInst(
3295   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3296 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
3297   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3298 }
3299
3300 FPToSIInst::FPToSIInst(
3301   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3302 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
3303   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3304 }
3305
3306 PtrToIntInst::PtrToIntInst(
3307   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3308 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
3309   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3310 }
3311
3312 PtrToIntInst::PtrToIntInst(
3313   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3314 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
3315   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3316 }
3317
3318 IntToPtrInst::IntToPtrInst(
3319   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3320 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
3321   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3322 }
3323
3324 IntToPtrInst::IntToPtrInst(
3325   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3326 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
3327   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3328 }
3329
3330 BitCastInst::BitCastInst(
3331   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3332 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
3333   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3334 }
3335
3336 BitCastInst::BitCastInst(
3337   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3338 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
3339   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3340 }
3341
3342 AddrSpaceCastInst::AddrSpaceCastInst(
3343   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3344 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3345   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3346 }
3347
3348 AddrSpaceCastInst::AddrSpaceCastInst(
3349   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3350 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3351   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3352 }
3353
3354 //===----------------------------------------------------------------------===//
3355 //                               CmpInst Classes
3356 //===----------------------------------------------------------------------===//
3357
3358 void CmpInst::anchor() {}
3359
3360 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3361                  Value *RHS, const Twine &Name, Instruction *InsertBefore)
3362   : Instruction(ty, op,
3363                 OperandTraits<CmpInst>::op_begin(this),
3364                 OperandTraits<CmpInst>::operands(this),
3365                 InsertBefore) {
3366     Op<0>() = LHS;
3367     Op<1>() = RHS;
3368   setPredicate((Predicate)predicate);
3369   setName(Name);
3370 }
3371
3372 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3373                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3374   : Instruction(ty, op,
3375                 OperandTraits<CmpInst>::op_begin(this),
3376                 OperandTraits<CmpInst>::operands(this),
3377                 InsertAtEnd) {
3378   Op<0>() = LHS;
3379   Op<1>() = RHS;
3380   setPredicate((Predicate)predicate);
3381   setName(Name);
3382 }
3383
3384 CmpInst *
3385 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3386                 const Twine &Name, Instruction *InsertBefore) {
3387   if (Op == Instruction::ICmp) {
3388     if (InsertBefore)
3389       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3390                           S1, S2, Name);
3391     else
3392       return new ICmpInst(CmpInst::Predicate(predicate),
3393                           S1, S2, Name);
3394   }
3395   
3396   if (InsertBefore)
3397     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3398                         S1, S2, Name);
3399   else
3400     return new FCmpInst(CmpInst::Predicate(predicate),
3401                         S1, S2, Name);
3402 }
3403
3404 CmpInst *
3405 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3406                 const Twine &Name, BasicBlock *InsertAtEnd) {
3407   if (Op == Instruction::ICmp) {
3408     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3409                         S1, S2, Name);
3410   }
3411   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3412                       S1, S2, Name);
3413 }
3414
3415 void CmpInst::swapOperands() {
3416   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3417     IC->swapOperands();
3418   else
3419     cast<FCmpInst>(this)->swapOperands();
3420 }
3421
3422 bool CmpInst::isCommutative() const {
3423   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3424     return IC->isCommutative();
3425   return cast<FCmpInst>(this)->isCommutative();
3426 }
3427
3428 bool CmpInst::isEquality() const {
3429   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3430     return IC->isEquality();
3431   return cast<FCmpInst>(this)->isEquality();
3432 }
3433
3434
3435 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3436   switch (pred) {
3437     default: llvm_unreachable("Unknown cmp predicate!");
3438     case ICMP_EQ: return ICMP_NE;
3439     case ICMP_NE: return ICMP_EQ;
3440     case ICMP_UGT: return ICMP_ULE;
3441     case ICMP_ULT: return ICMP_UGE;
3442     case ICMP_UGE: return ICMP_ULT;
3443     case ICMP_ULE: return ICMP_UGT;
3444     case ICMP_SGT: return ICMP_SLE;
3445     case ICMP_SLT: return ICMP_SGE;
3446     case ICMP_SGE: return ICMP_SLT;
3447     case ICMP_SLE: return ICMP_SGT;
3448
3449     case FCMP_OEQ: return FCMP_UNE;
3450     case FCMP_ONE: return FCMP_UEQ;
3451     case FCMP_OGT: return FCMP_ULE;
3452     case FCMP_OLT: return FCMP_UGE;
3453     case FCMP_OGE: return FCMP_ULT;
3454     case FCMP_OLE: return FCMP_UGT;
3455     case FCMP_UEQ: return FCMP_ONE;
3456     case FCMP_UNE: return FCMP_OEQ;
3457     case FCMP_UGT: return FCMP_OLE;
3458     case FCMP_ULT: return FCMP_OGE;
3459     case FCMP_UGE: return FCMP_OLT;
3460     case FCMP_ULE: return FCMP_OGT;
3461     case FCMP_ORD: return FCMP_UNO;
3462     case FCMP_UNO: return FCMP_ORD;
3463     case FCMP_TRUE: return FCMP_FALSE;
3464     case FCMP_FALSE: return FCMP_TRUE;
3465   }
3466 }
3467
3468 void ICmpInst::anchor() {}
3469
3470 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3471   switch (pred) {
3472     default: llvm_unreachable("Unknown icmp predicate!");
3473     case ICMP_EQ: case ICMP_NE: 
3474     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 
3475        return pred;
3476     case ICMP_UGT: return ICMP_SGT;
3477     case ICMP_ULT: return ICMP_SLT;
3478     case ICMP_UGE: return ICMP_SGE;
3479     case ICMP_ULE: return ICMP_SLE;
3480   }
3481 }
3482
3483 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3484   switch (pred) {
3485     default: llvm_unreachable("Unknown icmp predicate!");
3486     case ICMP_EQ: case ICMP_NE: 
3487     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 
3488        return pred;
3489     case ICMP_SGT: return ICMP_UGT;
3490     case ICMP_SLT: return ICMP_ULT;
3491     case ICMP_SGE: return ICMP_UGE;
3492     case ICMP_SLE: return ICMP_ULE;
3493   }
3494 }
3495
3496 /// Initialize a set of values that all satisfy the condition with C.
3497 ///
3498 ConstantRange 
3499 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3500   APInt Lower(C);
3501   APInt Upper(C);
3502   uint32_t BitWidth = C.getBitWidth();
3503   switch (pred) {
3504   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3505   case ICmpInst::ICMP_EQ: ++Upper; break;
3506   case ICmpInst::ICMP_NE: ++Lower; break;
3507   case ICmpInst::ICMP_ULT:
3508     Lower = APInt::getMinValue(BitWidth);
3509     // Check for an empty-set condition.
3510     if (Lower == Upper)
3511       return ConstantRange(BitWidth, /*isFullSet=*/false);
3512     break;
3513   case ICmpInst::ICMP_SLT:
3514     Lower = APInt::getSignedMinValue(BitWidth);
3515     // Check for an empty-set condition.
3516     if (Lower == Upper)
3517       return ConstantRange(BitWidth, /*isFullSet=*/false);
3518     break;
3519   case ICmpInst::ICMP_UGT: 
3520     ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3521     // Check for an empty-set condition.
3522     if (Lower == Upper)
3523       return ConstantRange(BitWidth, /*isFullSet=*/false);
3524     break;
3525   case ICmpInst::ICMP_SGT:
3526     ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3527     // Check for an empty-set condition.
3528     if (Lower == Upper)
3529       return ConstantRange(BitWidth, /*isFullSet=*/false);
3530     break;
3531   case ICmpInst::ICMP_ULE: 
3532     Lower = APInt::getMinValue(BitWidth); ++Upper; 
3533     // Check for a full-set condition.
3534     if (Lower == Upper)
3535       return ConstantRange(BitWidth, /*isFullSet=*/true);
3536     break;
3537   case ICmpInst::ICMP_SLE: 
3538     Lower = APInt::getSignedMinValue(BitWidth); ++Upper; 
3539     // Check for a full-set condition.
3540     if (Lower == Upper)
3541       return ConstantRange(BitWidth, /*isFullSet=*/true);
3542     break;
3543   case ICmpInst::ICMP_UGE:
3544     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3545     // Check for a full-set condition.
3546     if (Lower == Upper)
3547       return ConstantRange(BitWidth, /*isFullSet=*/true);
3548     break;
3549   case ICmpInst::ICMP_SGE:
3550     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3551     // Check for a full-set condition.
3552     if (Lower == Upper)
3553       return ConstantRange(BitWidth, /*isFullSet=*/true);
3554     break;
3555   }
3556   return ConstantRange(Lower, Upper);
3557 }
3558
3559 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3560   switch (pred) {
3561     default: llvm_unreachable("Unknown cmp predicate!");
3562     case ICMP_EQ: case ICMP_NE:
3563       return pred;
3564     case ICMP_SGT: return ICMP_SLT;
3565     case ICMP_SLT: return ICMP_SGT;
3566     case ICMP_SGE: return ICMP_SLE;
3567     case ICMP_SLE: return ICMP_SGE;
3568     case ICMP_UGT: return ICMP_ULT;
3569     case ICMP_ULT: return ICMP_UGT;
3570     case ICMP_UGE: return ICMP_ULE;
3571     case ICMP_ULE: return ICMP_UGE;
3572   
3573     case FCMP_FALSE: case FCMP_TRUE:
3574     case FCMP_OEQ: case FCMP_ONE:
3575     case FCMP_UEQ: case FCMP_UNE:
3576     case FCMP_ORD: case FCMP_UNO:
3577       return pred;
3578     case FCMP_OGT: return FCMP_OLT;
3579     case FCMP_OLT: return FCMP_OGT;
3580     case FCMP_OGE: return FCMP_OLE;
3581     case FCMP_OLE: return FCMP_OGE;
3582     case FCMP_UGT: return FCMP_ULT;
3583     case FCMP_ULT: return FCMP_UGT;
3584     case FCMP_UGE: return FCMP_ULE;
3585     case FCMP_ULE: return FCMP_UGE;
3586   }
3587 }
3588
3589 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3590   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3591
3592   switch (pred) {
3593   default:
3594     llvm_unreachable("Unknown predicate!");
3595   case CmpInst::ICMP_ULT:
3596     return CmpInst::ICMP_SLT;
3597   case CmpInst::ICMP_ULE:
3598     return CmpInst::ICMP_SLE;
3599   case CmpInst::ICMP_UGT:
3600     return CmpInst::ICMP_SGT;
3601   case CmpInst::ICMP_UGE:
3602     return CmpInst::ICMP_SGE;
3603   }
3604 }
3605
3606 bool CmpInst::isUnsigned(Predicate predicate) {
3607   switch (predicate) {
3608     default: return false;
3609     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 
3610     case ICmpInst::ICMP_UGE: return true;
3611   }
3612 }
3613
3614 bool CmpInst::isSigned(Predicate predicate) {
3615   switch (predicate) {
3616     default: return false;
3617     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 
3618     case ICmpInst::ICMP_SGE: return true;
3619   }
3620 }
3621
3622 bool CmpInst::isOrdered(Predicate predicate) {
3623   switch (predicate) {
3624     default: return false;
3625     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 
3626     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 
3627     case FCmpInst::FCMP_ORD: return true;
3628   }
3629 }
3630       
3631 bool CmpInst::isUnordered(Predicate predicate) {
3632   switch (predicate) {
3633     default: return false;
3634     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 
3635     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 
3636     case FCmpInst::FCMP_UNO: return true;
3637   }
3638 }
3639
3640 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3641   switch(predicate) {
3642     default: return false;
3643     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3644     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3645   }
3646 }
3647
3648 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3649   switch(predicate) {
3650   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3651   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3652   default: return false;
3653   }
3654 }
3655
3656 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3657   // If the predicates match, then we know the first condition implies the
3658   // second is true.
3659   if (Pred1 == Pred2)
3660     return true;
3661
3662   switch (Pred1) {
3663   default:
3664     break;
3665   case ICMP_EQ:
3666     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3667     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3668            Pred2 == ICMP_SLE;
3669   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3670     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3671   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3672     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3673   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3674     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3675   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3676     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3677   }
3678   return false;
3679 }
3680
3681 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3682   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3683 }
3684
3685 //===----------------------------------------------------------------------===//
3686 //                        SwitchInst Implementation
3687 //===----------------------------------------------------------------------===//
3688
3689 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3690   assert(Value && Default && NumReserved);
3691   ReservedSpace = NumReserved;
3692   setNumHungOffUseOperands(2);
3693   allocHungoffUses(ReservedSpace);
3694
3695   Op<0>() = Value;
3696   Op<1>() = Default;
3697 }
3698
3699 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3700 /// switch on and a default destination.  The number of additional cases can
3701 /// be specified here to make memory allocation more efficient.  This
3702 /// constructor can also autoinsert before another instruction.
3703 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3704                        Instruction *InsertBefore)
3705   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3706                    nullptr, 0, InsertBefore) {
3707   init(Value, Default, 2+NumCases*2);
3708 }
3709
3710 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3711 /// switch on and a default destination.  The number of additional cases can
3712 /// be specified here to make memory allocation more efficient.  This
3713 /// constructor also autoinserts at the end of the specified BasicBlock.
3714 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3715                        BasicBlock *InsertAtEnd)
3716   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3717                    nullptr, 0, InsertAtEnd) {
3718   init(Value, Default, 2+NumCases*2);
3719 }
3720
3721 SwitchInst::SwitchInst(const SwitchInst &SI)
3722   : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3723   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3724   setNumHungOffUseOperands(SI.getNumOperands());
3725   Use *OL = getOperandList();
3726   const Use *InOL = SI.getOperandList();
3727   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3728     OL[i] = InOL[i];
3729     OL[i+1] = InOL[i+1];
3730   }
3731   SubclassOptionalData = SI.SubclassOptionalData;
3732 }
3733
3734
3735 /// addCase - Add an entry to the switch instruction...
3736 ///
3737 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3738   unsigned NewCaseIdx = getNumCases();
3739   unsigned OpNo = getNumOperands();
3740   if (OpNo+2 > ReservedSpace)
3741     growOperands();  // Get more space!
3742   // Initialize some new operands.
3743   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3744   setNumHungOffUseOperands(OpNo+2);
3745   CaseIt Case(this, NewCaseIdx);
3746   Case.setValue(OnVal);
3747   Case.setSuccessor(Dest);
3748 }
3749
3750 /// removeCase - This method removes the specified case and its successor
3751 /// from the switch instruction.
3752 void SwitchInst::removeCase(CaseIt i) {
3753   unsigned idx = i.getCaseIndex();
3754   
3755   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3756
3757   unsigned NumOps = getNumOperands();
3758   Use *OL = getOperandList();
3759
3760   // Overwrite this case with the end of the list.
3761   if (2 + (idx + 1) * 2 != NumOps) {
3762     OL[2 + idx * 2] = OL[NumOps - 2];
3763     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3764   }
3765
3766   // Nuke the last value.
3767   OL[NumOps-2].set(nullptr);
3768   OL[NumOps-2+1].set(nullptr);
3769   setNumHungOffUseOperands(NumOps-2);
3770 }
3771
3772 /// growOperands - grow operands - This grows the operand list in response
3773 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3774 ///
3775 void SwitchInst::growOperands() {
3776   unsigned e = getNumOperands();
3777   unsigned NumOps = e*3;
3778
3779   ReservedSpace = NumOps;
3780   growHungoffUses(ReservedSpace);
3781 }
3782
3783
3784 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3785   return getSuccessor(idx);
3786 }
3787 unsigned SwitchInst::getNumSuccessorsV() const {
3788   return getNumSuccessors();
3789 }
3790 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3791   setSuccessor(idx, B);
3792 }
3793
3794 //===----------------------------------------------------------------------===//
3795 //                        IndirectBrInst Implementation
3796 //===----------------------------------------------------------------------===//
3797
3798 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3799   assert(Address && Address->getType()->isPointerTy() &&
3800          "Address of indirectbr must be a pointer");
3801   ReservedSpace = 1+NumDests;
3802   setNumHungOffUseOperands(1);
3803   allocHungoffUses(ReservedSpace);
3804
3805   Op<0>() = Address;
3806 }
3807
3808
3809 /// growOperands - grow operands - This grows the operand list in response
3810 /// to a push_back style of operation.  This grows the number of ops by 2 times.
3811 ///
3812 void IndirectBrInst::growOperands() {
3813   unsigned e = getNumOperands();
3814   unsigned NumOps = e*2;
3815   
3816   ReservedSpace = NumOps;
3817   growHungoffUses(ReservedSpace);
3818 }
3819
3820 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3821                                Instruction *InsertBefore)
3822 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3823                  nullptr, 0, InsertBefore) {
3824   init(Address, NumCases);
3825 }
3826
3827 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3828                                BasicBlock *InsertAtEnd)
3829 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3830                  nullptr, 0, InsertAtEnd) {
3831   init(Address, NumCases);
3832 }
3833
3834 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3835     : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3836                      nullptr, IBI.getNumOperands()) {
3837   allocHungoffUses(IBI.getNumOperands());
3838   Use *OL = getOperandList();
3839   const Use *InOL = IBI.getOperandList();
3840   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3841     OL[i] = InOL[i];
3842   SubclassOptionalData = IBI.SubclassOptionalData;
3843 }
3844
3845 /// addDestination - Add a destination.
3846 ///
3847 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3848   unsigned OpNo = getNumOperands();
3849   if (OpNo+1 > ReservedSpace)
3850     growOperands();  // Get more space!
3851   // Initialize some new operands.
3852   assert(OpNo < ReservedSpace && "Growing didn't work!");
3853   setNumHungOffUseOperands(OpNo+1);
3854   getOperandList()[OpNo] = DestBB;
3855 }
3856
3857 /// removeDestination - This method removes the specified successor from the
3858 /// indirectbr instruction.
3859 void IndirectBrInst::removeDestination(unsigned idx) {
3860   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3861   
3862   unsigned NumOps = getNumOperands();
3863   Use *OL = getOperandList();
3864
3865   // Replace this value with the last one.
3866   OL[idx+1] = OL[NumOps-1];
3867   
3868   // Nuke the last value.
3869   OL[NumOps-1].set(nullptr);
3870   setNumHungOffUseOperands(NumOps-1);
3871 }
3872
3873 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3874   return getSuccessor(idx);
3875 }
3876 unsigned IndirectBrInst::getNumSuccessorsV() const {
3877   return getNumSuccessors();
3878 }
3879 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3880   setSuccessor(idx, B);
3881 }
3882
3883 //===----------------------------------------------------------------------===//
3884 //                           cloneImpl() implementations
3885 //===----------------------------------------------------------------------===//
3886
3887 // Define these methods here so vtables don't get emitted into every translation
3888 // unit that uses these classes.
3889
3890 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3891   return new (getNumOperands()) GetElementPtrInst(*this);
3892 }
3893
3894 BinaryOperator *BinaryOperator::cloneImpl() const {
3895   return Create(getOpcode(), Op<0>(), Op<1>());
3896 }
3897
3898 FCmpInst *FCmpInst::cloneImpl() const {
3899   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3900 }
3901
3902 ICmpInst *ICmpInst::cloneImpl() const {
3903   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3904 }
3905
3906 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3907   return new ExtractValueInst(*this);
3908 }
3909
3910 InsertValueInst *InsertValueInst::cloneImpl() const {
3911   return new InsertValueInst(*this);
3912 }
3913
3914 AllocaInst *AllocaInst::cloneImpl() const {
3915   AllocaInst *Result = new AllocaInst(getAllocatedType(),
3916                                       (Value *)getOperand(0), getAlignment());
3917   Result->setUsedWithInAlloca(isUsedWithInAlloca());
3918   Result->setSwiftError(isSwiftError());
3919   return Result;
3920 }
3921
3922 LoadInst *LoadInst::cloneImpl() const {
3923   return new LoadInst(getOperand(0), Twine(), isVolatile(),
3924                       getAlignment(), getOrdering(), getSynchScope());
3925 }
3926
3927 StoreInst *StoreInst::cloneImpl() const {
3928   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3929                        getAlignment(), getOrdering(), getSynchScope());
3930   
3931 }
3932
3933 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3934   AtomicCmpXchgInst *Result =
3935     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3936                           getSuccessOrdering(), getFailureOrdering(),
3937                           getSynchScope());
3938   Result->setVolatile(isVolatile());
3939   Result->setWeak(isWeak());
3940   return Result;
3941 }
3942
3943 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3944   AtomicRMWInst *Result =
3945     new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3946                       getOrdering(), getSynchScope());
3947   Result->setVolatile(isVolatile());
3948   return Result;
3949 }
3950
3951 FenceInst *FenceInst::cloneImpl() const {
3952   return new FenceInst(getContext(), getOrdering(), getSynchScope());
3953 }
3954
3955 TruncInst *TruncInst::cloneImpl() const {
3956   return new TruncInst(getOperand(0), getType());
3957 }
3958
3959 ZExtInst *ZExtInst::cloneImpl() const {
3960   return new ZExtInst(getOperand(0), getType());
3961 }
3962
3963 SExtInst *SExtInst::cloneImpl() const {
3964   return new SExtInst(getOperand(0), getType());
3965 }
3966
3967 FPTruncInst *FPTruncInst::cloneImpl() const {
3968   return new FPTruncInst(getOperand(0), getType());
3969 }
3970
3971 FPExtInst *FPExtInst::cloneImpl() const {
3972   return new FPExtInst(getOperand(0), getType());
3973 }
3974
3975 UIToFPInst *UIToFPInst::cloneImpl() const {
3976   return new UIToFPInst(getOperand(0), getType());
3977 }
3978
3979 SIToFPInst *SIToFPInst::cloneImpl() const {
3980   return new SIToFPInst(getOperand(0), getType());
3981 }
3982
3983 FPToUIInst *FPToUIInst::cloneImpl() const {
3984   return new FPToUIInst(getOperand(0), getType());
3985 }
3986
3987 FPToSIInst *FPToSIInst::cloneImpl() const {
3988   return new FPToSIInst(getOperand(0), getType());
3989 }
3990
3991 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3992   return new PtrToIntInst(getOperand(0), getType());
3993 }
3994
3995 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3996   return new IntToPtrInst(getOperand(0), getType());
3997 }
3998
3999 BitCastInst *BitCastInst::cloneImpl() const {
4000   return new BitCastInst(getOperand(0), getType());
4001 }
4002
4003 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4004   return new AddrSpaceCastInst(getOperand(0), getType());
4005 }
4006
4007 CallInst *CallInst::cloneImpl() const {
4008   if (hasOperandBundles()) {
4009     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4010     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4011   }
4012   return  new(getNumOperands()) CallInst(*this);
4013 }
4014
4015 SelectInst *SelectInst::cloneImpl() const {
4016   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4017 }
4018
4019 VAArgInst *VAArgInst::cloneImpl() const {
4020   return new VAArgInst(getOperand(0), getType());
4021 }
4022
4023 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4024   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4025 }
4026
4027 InsertElementInst *InsertElementInst::cloneImpl() const {
4028   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4029 }
4030
4031 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4032   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4033 }
4034
4035 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4036
4037 LandingPadInst *LandingPadInst::cloneImpl() const {
4038   return new LandingPadInst(*this);
4039 }
4040
4041 ReturnInst *ReturnInst::cloneImpl() const {
4042   return new(getNumOperands()) ReturnInst(*this);
4043 }
4044
4045 BranchInst *BranchInst::cloneImpl() const {
4046   return new(getNumOperands()) BranchInst(*this);
4047 }
4048
4049 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4050
4051 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4052   return new IndirectBrInst(*this);
4053 }
4054
4055 InvokeInst *InvokeInst::cloneImpl() const {
4056   if (hasOperandBundles()) {
4057     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4058     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4059   }
4060   return new(getNumOperands()) InvokeInst(*this);
4061 }
4062
4063 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4064
4065 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4066   return new (getNumOperands()) CleanupReturnInst(*this);
4067 }
4068
4069 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4070   return new (getNumOperands()) CatchReturnInst(*this);
4071 }
4072
4073 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4074   return new CatchSwitchInst(*this);
4075 }
4076
4077 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4078   return new (getNumOperands()) FuncletPadInst(*this);
4079 }
4080
4081 UnreachableInst *UnreachableInst::cloneImpl() const {
4082   LLVMContext &Context = getContext();
4083   return new UnreachableInst(Context);
4084 }