]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/IR/Value.cpp
MFV r337197: 9456 ztest failure in zil_commit_waiter_timeout
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / IR / Value.cpp
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/DerivedUser.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/Statepoint.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39
40 using namespace llvm;
41
42 //===----------------------------------------------------------------------===//
43 //                                Value Class
44 //===----------------------------------------------------------------------===//
45 static inline Type *checkType(Type *Ty) {
46   assert(Ty && "Value defined with a null type: Error!");
47   return Ty;
48 }
49
50 Value::Value(Type *ty, unsigned scid)
51     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
52       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
53       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
54   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
55   // FIXME: Why isn't this in the subclass gunk??
56   // Note, we cannot call isa<CallInst> before the CallInst has been
57   // constructed.
58   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
59     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
60            "invalid CallInst type!");
61   else if (SubclassID != BasicBlockVal &&
62            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
63     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
64            "Cannot create non-first-class values except for constants!");
65   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
66                 "Value too big");
67 }
68
69 Value::~Value() {
70   // Notify all ValueHandles (if present) that this value is going away.
71   if (HasValueHandle)
72     ValueHandleBase::ValueIsDeleted(this);
73   if (isUsedByMetadata())
74     ValueAsMetadata::handleDeletion(this);
75
76 #ifndef NDEBUG      // Only in -g mode...
77   // Check to make sure that there are no uses of this value that are still
78   // around when the value is destroyed.  If there are, then we have a dangling
79   // reference and something is wrong.  This code is here to print out where
80   // the value is still being referenced.
81   //
82   if (!use_empty()) {
83     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
84     for (auto *U : users())
85       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
86   }
87 #endif
88   assert(use_empty() && "Uses remain when a value is destroyed!");
89
90   // If this value is named, destroy the name.  This should not be in a symtab
91   // at this point.
92   destroyValueName();
93 }
94
95 void Value::deleteValue() {
96   switch (getValueID()) {
97 #define HANDLE_VALUE(Name)                                                     \
98   case Value::Name##Val:                                                       \
99     delete static_cast<Name *>(this);                                          \
100     break;
101 #define HANDLE_MEMORY_VALUE(Name)                                              \
102   case Value::Name##Val:                                                       \
103     static_cast<DerivedUser *>(this)->DeleteValue(                             \
104         static_cast<DerivedUser *>(this));                                     \
105     break;
106 #define HANDLE_INSTRUCTION(Name)  /* nothing */
107 #include "llvm/IR/Value.def"
108
109 #define HANDLE_INST(N, OPC, CLASS)                                             \
110   case Value::InstructionVal + Instruction::OPC:                               \
111     delete static_cast<CLASS *>(this);                                         \
112     break;
113 #define HANDLE_USER_INST(N, OPC, CLASS)
114 #include "llvm/IR/Instruction.def"
115
116   default:
117     llvm_unreachable("attempting to delete unknown value kind");
118   }
119 }
120
121 void Value::destroyValueName() {
122   ValueName *Name = getValueName();
123   if (Name)
124     Name->Destroy();
125   setValueName(nullptr);
126 }
127
128 bool Value::hasNUses(unsigned N) const {
129   const_use_iterator UI = use_begin(), E = use_end();
130
131   for (; N; --N, ++UI)
132     if (UI == E) return false;  // Too few.
133   return UI == E;
134 }
135
136 bool Value::hasNUsesOrMore(unsigned N) const {
137   const_use_iterator UI = use_begin(), E = use_end();
138
139   for (; N; --N, ++UI)
140     if (UI == E) return false;  // Too few.
141
142   return true;
143 }
144
145 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
146   // This can be computed either by scanning the instructions in BB, or by
147   // scanning the use list of this Value. Both lists can be very long, but
148   // usually one is quite short.
149   //
150   // Scan both lists simultaneously until one is exhausted. This limits the
151   // search to the shorter list.
152   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
153   const_user_iterator UI = user_begin(), UE = user_end();
154   for (; BI != BE && UI != UE; ++BI, ++UI) {
155     // Scan basic block: Check if this Value is used by the instruction at BI.
156     if (is_contained(BI->operands(), this))
157       return true;
158     // Scan use list: Check if the use at UI is in BB.
159     const auto *User = dyn_cast<Instruction>(*UI);
160     if (User && User->getParent() == BB)
161       return true;
162   }
163   return false;
164 }
165
166 unsigned Value::getNumUses() const {
167   return (unsigned)std::distance(use_begin(), use_end());
168 }
169
170 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
171   ST = nullptr;
172   if (Instruction *I = dyn_cast<Instruction>(V)) {
173     if (BasicBlock *P = I->getParent())
174       if (Function *PP = P->getParent())
175         ST = PP->getValueSymbolTable();
176   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
177     if (Function *P = BB->getParent())
178       ST = P->getValueSymbolTable();
179   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
180     if (Module *P = GV->getParent())
181       ST = &P->getValueSymbolTable();
182   } else if (Argument *A = dyn_cast<Argument>(V)) {
183     if (Function *P = A->getParent())
184       ST = P->getValueSymbolTable();
185   } else {
186     assert(isa<Constant>(V) && "Unknown value type!");
187     return true;  // no name is setable for this.
188   }
189   return false;
190 }
191
192 ValueName *Value::getValueName() const {
193   if (!HasName) return nullptr;
194
195   LLVMContext &Ctx = getContext();
196   auto I = Ctx.pImpl->ValueNames.find(this);
197   assert(I != Ctx.pImpl->ValueNames.end() &&
198          "No name entry found!");
199
200   return I->second;
201 }
202
203 void Value::setValueName(ValueName *VN) {
204   LLVMContext &Ctx = getContext();
205
206   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
207          "HasName bit out of sync!");
208
209   if (!VN) {
210     if (HasName)
211       Ctx.pImpl->ValueNames.erase(this);
212     HasName = false;
213     return;
214   }
215
216   HasName = true;
217   Ctx.pImpl->ValueNames[this] = VN;
218 }
219
220 StringRef Value::getName() const {
221   // Make sure the empty string is still a C string. For historical reasons,
222   // some clients want to call .data() on the result and expect it to be null
223   // terminated.
224   if (!hasName())
225     return StringRef("", 0);
226   return getValueName()->getKey();
227 }
228
229 void Value::setNameImpl(const Twine &NewName) {
230   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
231   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
232     return;
233
234   // Fast path for common IRBuilder case of setName("") when there is no name.
235   if (NewName.isTriviallyEmpty() && !hasName())
236     return;
237
238   SmallString<256> NameData;
239   StringRef NameRef = NewName.toStringRef(NameData);
240   assert(NameRef.find_first_of(0) == StringRef::npos &&
241          "Null bytes are not allowed in names");
242
243   // Name isn't changing?
244   if (getName() == NameRef)
245     return;
246
247   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
248
249   // Get the symbol table to update for this object.
250   ValueSymbolTable *ST;
251   if (getSymTab(this, ST))
252     return;  // Cannot set a name on this value (e.g. constant).
253
254   if (!ST) { // No symbol table to update?  Just do the change.
255     if (NameRef.empty()) {
256       // Free the name for this value.
257       destroyValueName();
258       return;
259     }
260
261     // NOTE: Could optimize for the case the name is shrinking to not deallocate
262     // then reallocated.
263     destroyValueName();
264
265     // Create the new name.
266     setValueName(ValueName::Create(NameRef));
267     getValueName()->setValue(this);
268     return;
269   }
270
271   // NOTE: Could optimize for the case the name is shrinking to not deallocate
272   // then reallocated.
273   if (hasName()) {
274     // Remove old name.
275     ST->removeValueName(getValueName());
276     destroyValueName();
277
278     if (NameRef.empty())
279       return;
280   }
281
282   // Name is changing to something new.
283   setValueName(ST->createValueName(NameRef, this));
284 }
285
286 void Value::setName(const Twine &NewName) {
287   setNameImpl(NewName);
288   if (Function *F = dyn_cast<Function>(this))
289     F->recalculateIntrinsicID();
290 }
291
292 void Value::takeName(Value *V) {
293   ValueSymbolTable *ST = nullptr;
294   // If this value has a name, drop it.
295   if (hasName()) {
296     // Get the symtab this is in.
297     if (getSymTab(this, ST)) {
298       // We can't set a name on this value, but we need to clear V's name if
299       // it has one.
300       if (V->hasName()) V->setName("");
301       return;  // Cannot set a name on this value (e.g. constant).
302     }
303
304     // Remove old name.
305     if (ST)
306       ST->removeValueName(getValueName());
307     destroyValueName();
308   }
309
310   // Now we know that this has no name.
311
312   // If V has no name either, we're done.
313   if (!V->hasName()) return;
314
315   // Get this's symtab if we didn't before.
316   if (!ST) {
317     if (getSymTab(this, ST)) {
318       // Clear V's name.
319       V->setName("");
320       return;  // Cannot set a name on this value (e.g. constant).
321     }
322   }
323
324   // Get V's ST, this should always succed, because V has a name.
325   ValueSymbolTable *VST;
326   bool Failure = getSymTab(V, VST);
327   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
328
329   // If these values are both in the same symtab, we can do this very fast.
330   // This works even if both values have no symtab yet.
331   if (ST == VST) {
332     // Take the name!
333     setValueName(V->getValueName());
334     V->setValueName(nullptr);
335     getValueName()->setValue(this);
336     return;
337   }
338
339   // Otherwise, things are slightly more complex.  Remove V's name from VST and
340   // then reinsert it into ST.
341
342   if (VST)
343     VST->removeValueName(V->getValueName());
344   setValueName(V->getValueName());
345   V->setValueName(nullptr);
346   getValueName()->setValue(this);
347
348   if (ST)
349     ST->reinsertValue(this);
350 }
351
352 void Value::assertModuleIsMaterializedImpl() const {
353 #ifndef NDEBUG
354   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
355   if (!GV)
356     return;
357   const Module *M = GV->getParent();
358   if (!M)
359     return;
360   assert(M->isMaterialized());
361 #endif
362 }
363
364 #ifndef NDEBUG
365 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
366                      Constant *C) {
367   if (!Cache.insert(Expr).second)
368     return false;
369
370   for (auto &O : Expr->operands()) {
371     if (O == C)
372       return true;
373     auto *CE = dyn_cast<ConstantExpr>(O);
374     if (!CE)
375       continue;
376     if (contains(Cache, CE, C))
377       return true;
378   }
379   return false;
380 }
381
382 static bool contains(Value *Expr, Value *V) {
383   if (Expr == V)
384     return true;
385
386   auto *C = dyn_cast<Constant>(V);
387   if (!C)
388     return false;
389
390   auto *CE = dyn_cast<ConstantExpr>(Expr);
391   if (!CE)
392     return false;
393
394   SmallPtrSet<ConstantExpr *, 4> Cache;
395   return contains(Cache, CE, C);
396 }
397 #endif // NDEBUG
398
399 void Value::doRAUW(Value *New, bool NoMetadata) {
400   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
401   assert(!contains(New, this) &&
402          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
403   assert(New->getType() == getType() &&
404          "replaceAllUses of value with new value of different type!");
405
406   // Notify all ValueHandles (if present) that this value is going away.
407   if (HasValueHandle)
408     ValueHandleBase::ValueIsRAUWd(this, New);
409   if (!NoMetadata && isUsedByMetadata())
410     ValueAsMetadata::handleRAUW(this, New);
411
412   while (!materialized_use_empty()) {
413     Use &U = *UseList;
414     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
415     // constant because they are uniqued.
416     if (auto *C = dyn_cast<Constant>(U.getUser())) {
417       if (!isa<GlobalValue>(C)) {
418         C->handleOperandChange(this, New);
419         continue;
420       }
421     }
422
423     U.set(New);
424   }
425
426   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
427     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
428 }
429
430 void Value::replaceAllUsesWith(Value *New) {
431   doRAUW(New, false /* NoMetadata */);
432 }
433
434 void Value::replaceNonMetadataUsesWith(Value *New) {
435   doRAUW(New, true /* NoMetadata */);
436 }
437
438 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
439 // This routine leaves uses within BB.
440 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
441   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
442   assert(!contains(New, this) &&
443          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
444   assert(New->getType() == getType() &&
445          "replaceUses of value with new value of different type!");
446   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
447
448   use_iterator UI = use_begin(), E = use_end();
449   for (; UI != E;) {
450     Use &U = *UI;
451     ++UI;
452     auto *Usr = dyn_cast<Instruction>(U.getUser());
453     if (Usr && Usr->getParent() == BB)
454       continue;
455     U.set(New);
456   }
457 }
458
459 void Value::replaceUsesExceptBlockAddr(Value *New) {
460   SmallSetVector<Constant *, 4> Constants;
461   use_iterator UI = use_begin(), E = use_end();
462   for (; UI != E;) {
463     Use &U = *UI;
464     ++UI;
465
466     if (isa<BlockAddress>(U.getUser()))
467       continue;
468
469     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
470     // constant because they are uniqued.
471     if (auto *C = dyn_cast<Constant>(U.getUser())) {
472       if (!isa<GlobalValue>(C)) {
473         // Save unique users to avoid processing operand replacement
474         // more than once.
475         Constants.insert(C);
476         continue;
477       }
478     }
479
480     U.set(New);
481   }
482
483   // Process operand replacement of saved constants.
484   for (auto *C : Constants)
485     C->handleOperandChange(this, New);
486 }
487
488 namespace {
489 // Various metrics for how much to strip off of pointers.
490 enum PointerStripKind {
491   PSK_ZeroIndices,
492   PSK_ZeroIndicesAndAliases,
493   PSK_ZeroIndicesAndAliasesAndBarriers,
494   PSK_InBoundsConstantIndices,
495   PSK_InBounds
496 };
497
498 template <PointerStripKind StripKind>
499 static const Value *stripPointerCastsAndOffsets(const Value *V) {
500   if (!V->getType()->isPointerTy())
501     return V;
502
503   // Even though we don't look through PHI nodes, we could be called on an
504   // instruction in an unreachable block, which may be on a cycle.
505   SmallPtrSet<const Value *, 4> Visited;
506
507   Visited.insert(V);
508   do {
509     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
510       switch (StripKind) {
511       case PSK_ZeroIndicesAndAliases:
512       case PSK_ZeroIndicesAndAliasesAndBarriers:
513       case PSK_ZeroIndices:
514         if (!GEP->hasAllZeroIndices())
515           return V;
516         break;
517       case PSK_InBoundsConstantIndices:
518         if (!GEP->hasAllConstantIndices())
519           return V;
520         LLVM_FALLTHROUGH;
521       case PSK_InBounds:
522         if (!GEP->isInBounds())
523           return V;
524         break;
525       }
526       V = GEP->getPointerOperand();
527     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
528                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
529       V = cast<Operator>(V)->getOperand(0);
530     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
531       if (StripKind == PSK_ZeroIndices || GA->isInterposable())
532         return V;
533       V = GA->getAliasee();
534     } else {
535       if (auto CS = ImmutableCallSite(V)) {
536         if (const Value *RV = CS.getReturnedArgOperand()) {
537           V = RV;
538           continue;
539         }
540         // The result of invariant.group.barrier must alias it's argument,
541         // but it can't be marked with returned attribute, that's why it needs
542         // special case.
543         if (StripKind == PSK_ZeroIndicesAndAliasesAndBarriers &&
544             CS.getIntrinsicID() == Intrinsic::invariant_group_barrier) {
545           V = CS.getArgOperand(0);
546           continue;
547         }
548       }
549       return V;
550     }
551     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
552   } while (Visited.insert(V).second);
553
554   return V;
555 }
556 } // end anonymous namespace
557
558 const Value *Value::stripPointerCasts() const {
559   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
560 }
561
562 const Value *Value::stripPointerCastsNoFollowAliases() const {
563   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
564 }
565
566 const Value *Value::stripInBoundsConstantOffsets() const {
567   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
568 }
569
570 const Value *Value::stripPointerCastsAndBarriers() const {
571   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndBarriers>(
572       this);
573 }
574
575 const Value *
576 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
577                                                  APInt &Offset) const {
578   if (!getType()->isPointerTy())
579     return this;
580
581   assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
582                                      getType())->getAddressSpace()) &&
583          "The offset must have exactly as many bits as our pointer.");
584
585   // Even though we don't look through PHI nodes, we could be called on an
586   // instruction in an unreachable block, which may be on a cycle.
587   SmallPtrSet<const Value *, 4> Visited;
588   Visited.insert(this);
589   const Value *V = this;
590   do {
591     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
592       if (!GEP->isInBounds())
593         return V;
594       APInt GEPOffset(Offset);
595       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
596         return V;
597       Offset = GEPOffset;
598       V = GEP->getPointerOperand();
599     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
600       V = cast<Operator>(V)->getOperand(0);
601     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
602       V = GA->getAliasee();
603     } else {
604       if (auto CS = ImmutableCallSite(V))
605         if (const Value *RV = CS.getReturnedArgOperand()) {
606           V = RV;
607           continue;
608         }
609
610       return V;
611     }
612     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
613   } while (Visited.insert(V).second);
614
615   return V;
616 }
617
618 const Value *Value::stripInBoundsOffsets() const {
619   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
620 }
621
622 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
623                                                bool &CanBeNull) const {
624   assert(getType()->isPointerTy() && "must be pointer");
625
626   uint64_t DerefBytes = 0;
627   CanBeNull = false;
628   if (const Argument *A = dyn_cast<Argument>(this)) {
629     DerefBytes = A->getDereferenceableBytes();
630     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
631       Type *PT = cast<PointerType>(A->getType())->getElementType();
632       if (PT->isSized())
633         DerefBytes = DL.getTypeStoreSize(PT);
634     }
635     if (DerefBytes == 0) {
636       DerefBytes = A->getDereferenceableOrNullBytes();
637       CanBeNull = true;
638     }
639   } else if (auto CS = ImmutableCallSite(this)) {
640     DerefBytes = CS.getDereferenceableBytes(AttributeList::ReturnIndex);
641     if (DerefBytes == 0) {
642       DerefBytes = CS.getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
643       CanBeNull = true;
644     }
645   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
646     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
647       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
648       DerefBytes = CI->getLimitedValue();
649     }
650     if (DerefBytes == 0) {
651       if (MDNode *MD =
652               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
653         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
654         DerefBytes = CI->getLimitedValue();
655       }
656       CanBeNull = true;
657     }
658   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
659     if (!AI->isArrayAllocation()) {
660       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
661       CanBeNull = false;
662     }
663   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
664     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
665       // TODO: Don't outright reject hasExternalWeakLinkage but set the
666       // CanBeNull flag.
667       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
668       CanBeNull = false;
669     }
670   }
671   return DerefBytes;
672 }
673
674 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
675   assert(getType()->isPointerTy() && "must be pointer");
676
677   unsigned Align = 0;
678   if (auto *GO = dyn_cast<GlobalObject>(this)) {
679     Align = GO->getAlignment();
680     if (Align == 0) {
681       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
682         Type *ObjectType = GVar->getValueType();
683         if (ObjectType->isSized()) {
684           // If the object is defined in the current Module, we'll be giving
685           // it the preferred alignment. Otherwise, we have to assume that it
686           // may only have the minimum ABI alignment.
687           if (GVar->isStrongDefinitionForLinker())
688             Align = DL.getPreferredAlignment(GVar);
689           else
690             Align = DL.getABITypeAlignment(ObjectType);
691         }
692       }
693     }
694   } else if (const Argument *A = dyn_cast<Argument>(this)) {
695     Align = A->getParamAlignment();
696
697     if (!Align && A->hasStructRetAttr()) {
698       // An sret parameter has at least the ABI alignment of the return type.
699       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
700       if (EltTy->isSized())
701         Align = DL.getABITypeAlignment(EltTy);
702     }
703   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
704     Align = AI->getAlignment();
705     if (Align == 0) {
706       Type *AllocatedType = AI->getAllocatedType();
707       if (AllocatedType->isSized())
708         Align = DL.getPrefTypeAlignment(AllocatedType);
709     }
710   } else if (auto CS = ImmutableCallSite(this))
711     Align = CS.getAttributes().getRetAlignment();
712   else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
713     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
714       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
715       Align = CI->getLimitedValue();
716     }
717
718   return Align;
719 }
720
721 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
722                                      const BasicBlock *PredBB) const {
723   auto *PN = dyn_cast<PHINode>(this);
724   if (PN && PN->getParent() == CurBB)
725     return PN->getIncomingValueForBlock(PredBB);
726   return this;
727 }
728
729 LLVMContext &Value::getContext() const { return VTy->getContext(); }
730
731 void Value::reverseUseList() {
732   if (!UseList || !UseList->Next)
733     // No need to reverse 0 or 1 uses.
734     return;
735
736   Use *Head = UseList;
737   Use *Current = UseList->Next;
738   Head->Next = nullptr;
739   while (Current) {
740     Use *Next = Current->Next;
741     Current->Next = Head;
742     Head->setPrev(&Current->Next);
743     Head = Current;
744     Current = Next;
745   }
746   UseList = Head;
747   Head->setPrev(&UseList);
748 }
749
750 bool Value::isSwiftError() const {
751   auto *Arg = dyn_cast<Argument>(this);
752   if (Arg)
753     return Arg->hasSwiftErrorAttr();
754   auto *Alloca = dyn_cast<AllocaInst>(this);
755   if (!Alloca)
756     return false;
757   return Alloca->isSwiftError();
758 }
759
760 //===----------------------------------------------------------------------===//
761 //                             ValueHandleBase Class
762 //===----------------------------------------------------------------------===//
763
764 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
765   assert(List && "Handle list is null?");
766
767   // Splice ourselves into the list.
768   Next = *List;
769   *List = this;
770   setPrevPtr(List);
771   if (Next) {
772     Next->setPrevPtr(&Next);
773     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
774   }
775 }
776
777 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
778   assert(List && "Must insert after existing node");
779
780   Next = List->Next;
781   setPrevPtr(&List->Next);
782   List->Next = this;
783   if (Next)
784     Next->setPrevPtr(&Next);
785 }
786
787 void ValueHandleBase::AddToUseList() {
788   assert(getValPtr() && "Null pointer doesn't have a use list!");
789
790   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
791
792   if (getValPtr()->HasValueHandle) {
793     // If this value already has a ValueHandle, then it must be in the
794     // ValueHandles map already.
795     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
796     assert(Entry && "Value doesn't have any handles?");
797     AddToExistingUseList(&Entry);
798     return;
799   }
800
801   // Ok, it doesn't have any handles yet, so we must insert it into the
802   // DenseMap.  However, doing this insertion could cause the DenseMap to
803   // reallocate itself, which would invalidate all of the PrevP pointers that
804   // point into the old table.  Handle this by checking for reallocation and
805   // updating the stale pointers only if needed.
806   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
807   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
808
809   ValueHandleBase *&Entry = Handles[getValPtr()];
810   assert(!Entry && "Value really did already have handles?");
811   AddToExistingUseList(&Entry);
812   getValPtr()->HasValueHandle = true;
813
814   // If reallocation didn't happen or if this was the first insertion, don't
815   // walk the table.
816   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
817       Handles.size() == 1) {
818     return;
819   }
820
821   // Okay, reallocation did happen.  Fix the Prev Pointers.
822   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
823        E = Handles.end(); I != E; ++I) {
824     assert(I->second && I->first == I->second->getValPtr() &&
825            "List invariant broken!");
826     I->second->setPrevPtr(&I->second);
827   }
828 }
829
830 void ValueHandleBase::RemoveFromUseList() {
831   assert(getValPtr() && getValPtr()->HasValueHandle &&
832          "Pointer doesn't have a use list!");
833
834   // Unlink this from its use list.
835   ValueHandleBase **PrevPtr = getPrevPtr();
836   assert(*PrevPtr == this && "List invariant broken");
837
838   *PrevPtr = Next;
839   if (Next) {
840     assert(Next->getPrevPtr() == &Next && "List invariant broken");
841     Next->setPrevPtr(PrevPtr);
842     return;
843   }
844
845   // If the Next pointer was null, then it is possible that this was the last
846   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
847   // map.
848   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
849   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
850   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
851     Handles.erase(getValPtr());
852     getValPtr()->HasValueHandle = false;
853   }
854 }
855
856 void ValueHandleBase::ValueIsDeleted(Value *V) {
857   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
858
859   // Get the linked list base, which is guaranteed to exist since the
860   // HasValueHandle flag is set.
861   LLVMContextImpl *pImpl = V->getContext().pImpl;
862   ValueHandleBase *Entry = pImpl->ValueHandles[V];
863   assert(Entry && "Value bit set but no entries exist");
864
865   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
866   // and remove themselves from the list without breaking our iteration.  This
867   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
868   // Note that we deliberately do not the support the case when dropping a value
869   // handle results in a new value handle being permanently added to the list
870   // (as might occur in theory for CallbackVH's): the new value handle will not
871   // be processed and the checking code will mete out righteous punishment if
872   // the handle is still present once we have finished processing all the other
873   // value handles (it is fine to momentarily add then remove a value handle).
874   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
875     Iterator.RemoveFromUseList();
876     Iterator.AddToExistingUseListAfter(Entry);
877     assert(Entry->Next == &Iterator && "Loop invariant broken.");
878
879     switch (Entry->getKind()) {
880     case Assert:
881       break;
882     case Weak:
883     case WeakTracking:
884       // WeakTracking and Weak just go to null, which unlinks them
885       // from the list.
886       Entry->operator=(nullptr);
887       break;
888     case Callback:
889       // Forward to the subclass's implementation.
890       static_cast<CallbackVH*>(Entry)->deleted();
891       break;
892     }
893   }
894
895   // All callbacks, weak references, and assertingVHs should be dropped by now.
896   if (V->HasValueHandle) {
897 #ifndef NDEBUG      // Only in +Asserts mode...
898     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
899            << "\n";
900     if (pImpl->ValueHandles[V]->getKind() == Assert)
901       llvm_unreachable("An asserting value handle still pointed to this"
902                        " value!");
903
904 #endif
905     llvm_unreachable("All references to V were not removed?");
906   }
907 }
908
909 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
910   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
911   assert(Old != New && "Changing value into itself!");
912   assert(Old->getType() == New->getType() &&
913          "replaceAllUses of value with new value of different type!");
914
915   // Get the linked list base, which is guaranteed to exist since the
916   // HasValueHandle flag is set.
917   LLVMContextImpl *pImpl = Old->getContext().pImpl;
918   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
919
920   assert(Entry && "Value bit set but no entries exist");
921
922   // We use a local ValueHandleBase as an iterator so that
923   // ValueHandles can add and remove themselves from the list without
924   // breaking our iteration.  This is not really an AssertingVH; we
925   // just have to give ValueHandleBase some kind.
926   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
927     Iterator.RemoveFromUseList();
928     Iterator.AddToExistingUseListAfter(Entry);
929     assert(Entry->Next == &Iterator && "Loop invariant broken.");
930
931     switch (Entry->getKind()) {
932     case Assert:
933     case Weak:
934       // Asserting and Weak handles do not follow RAUW implicitly.
935       break;
936     case WeakTracking:
937       // Weak goes to the new value, which will unlink it from Old's list.
938       Entry->operator=(New);
939       break;
940     case Callback:
941       // Forward to the subclass's implementation.
942       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
943       break;
944     }
945   }
946
947 #ifndef NDEBUG
948   // If any new weak value handles were added while processing the
949   // list, then complain about it now.
950   if (Old->HasValueHandle)
951     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
952       switch (Entry->getKind()) {
953       case WeakTracking:
954         dbgs() << "After RAUW from " << *Old->getType() << " %"
955                << Old->getName() << " to " << *New->getType() << " %"
956                << New->getName() << "\n";
957         llvm_unreachable(
958             "A weak tracking value handle still pointed to the  old value!\n");
959       default:
960         break;
961       }
962 #endif
963 }
964
965 // Pin the vtable to this file.
966 void CallbackVH::anchor() {}