]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/MC/ELFObjectWriter.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / MC / ELFObjectWriter.cpp
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/ELF.h"
22 #include "llvm/MC/MCAsmBackend.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCAsmLayout.h"
25 #include "llvm/MC/MCAssembler.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCELFObjectWriter.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCFixup.h"
30 #include "llvm/MC/MCFixupKindInfo.h"
31 #include "llvm/MC/MCFragment.h"
32 #include "llvm/MC/MCObjectFileInfo.h"
33 #include "llvm/MC/MCObjectWriter.h"
34 #include "llvm/MC/MCSection.h"
35 #include "llvm/MC/MCSectionELF.h"
36 #include "llvm/MC/MCSymbol.h"
37 #include "llvm/MC/MCSymbolELF.h"
38 #include "llvm/MC/MCValue.h"
39 #include "llvm/MC/StringTableBuilder.h"
40 #include "llvm/Support/Allocator.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compression.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/Error.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Host.h"
47 #include "llvm/Support/LEB128.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/SMLoc.h"
50 #include "llvm/Support/StringSaver.h"
51 #include "llvm/Support/SwapByteOrder.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstddef>
56 #include <cstdint>
57 #include <map>
58 #include <memory>
59 #include <string>
60 #include <utility>
61 #include <vector>
62
63 using namespace llvm;
64
65 #undef  DEBUG_TYPE
66 #define DEBUG_TYPE "reloc-info"
67
68 namespace {
69
70 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
71
72 class ELFObjectWriter;
73 struct ELFWriter;
74
75 bool isDwoSection(const MCSectionELF &Sec) {
76   return Sec.getSectionName().endswith(".dwo");
77 }
78
79 class SymbolTableWriter {
80   ELFWriter &EWriter;
81   bool Is64Bit;
82
83   // indexes we are going to write to .symtab_shndx.
84   std::vector<uint32_t> ShndxIndexes;
85
86   // The numbel of symbols written so far.
87   unsigned NumWritten;
88
89   void createSymtabShndx();
90
91   template <typename T> void write(T Value);
92
93 public:
94   SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
95
96   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
97                    uint8_t other, uint32_t shndx, bool Reserved);
98
99   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
100 };
101
102 struct ELFWriter {
103   ELFObjectWriter &OWriter;
104   support::endian::Writer W;
105
106   enum DwoMode {
107     AllSections,
108     NonDwoOnly,
109     DwoOnly,
110   } Mode;
111
112   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
113   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
114                          bool Used, bool Renamed);
115
116   /// Helper struct for containing some precomputed information on symbols.
117   struct ELFSymbolData {
118     const MCSymbolELF *Symbol;
119     uint32_t SectionIndex;
120     StringRef Name;
121
122     // Support lexicographic sorting.
123     bool operator<(const ELFSymbolData &RHS) const {
124       unsigned LHSType = Symbol->getType();
125       unsigned RHSType = RHS.Symbol->getType();
126       if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
127         return false;
128       if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
129         return true;
130       if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
131         return SectionIndex < RHS.SectionIndex;
132       return Name < RHS.Name;
133     }
134   };
135
136   /// @}
137   /// @name Symbol Table Data
138   /// @{
139
140   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
141
142   /// @}
143
144   // This holds the symbol table index of the last local symbol.
145   unsigned LastLocalSymbolIndex;
146   // This holds the .strtab section index.
147   unsigned StringTableIndex;
148   // This holds the .symtab section index.
149   unsigned SymbolTableIndex;
150
151   // Sections in the order they are to be output in the section table.
152   std::vector<const MCSectionELF *> SectionTable;
153   unsigned addToSectionTable(const MCSectionELF *Sec);
154
155   // TargetObjectWriter wrappers.
156   bool is64Bit() const;
157   bool hasRelocationAddend() const;
158
159   void align(unsigned Alignment);
160
161   bool maybeWriteCompression(uint64_t Size,
162                              SmallVectorImpl<char> &CompressedContents,
163                              bool ZLibStyle, unsigned Alignment);
164
165 public:
166   ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
167             bool IsLittleEndian, DwoMode Mode)
168       : OWriter(OWriter),
169         W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {}
170
171   void WriteWord(uint64_t Word) {
172     if (is64Bit())
173       W.write<uint64_t>(Word);
174     else
175       W.write<uint32_t>(Word);
176   }
177
178   template <typename T> void write(T Val) {
179     W.write(Val);
180   }
181
182   void writeHeader(const MCAssembler &Asm);
183
184   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
185                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
186
187   // Start and end offset of each section
188   using SectionOffsetsTy =
189       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
190
191   // Map from a signature symbol to the group section index
192   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
193
194   /// Compute the symbol table data
195   ///
196   /// \param Asm - The assembler.
197   /// \param SectionIndexMap - Maps a section to its index.
198   /// \param RevGroupMap - Maps a signature symbol to the group section.
199   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
200                           const SectionIndexMapTy &SectionIndexMap,
201                           const RevGroupMapTy &RevGroupMap,
202                           SectionOffsetsTy &SectionOffsets);
203
204   void writeAddrsigSection();
205
206   MCSectionELF *createRelocationSection(MCContext &Ctx,
207                                         const MCSectionELF &Sec);
208
209   const MCSectionELF *createStringTable(MCContext &Ctx);
210
211   void writeSectionHeader(const MCAsmLayout &Layout,
212                           const SectionIndexMapTy &SectionIndexMap,
213                           const SectionOffsetsTy &SectionOffsets);
214
215   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
216                         const MCAsmLayout &Layout);
217
218   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
219                         uint64_t Address, uint64_t Offset, uint64_t Size,
220                         uint32_t Link, uint32_t Info, uint64_t Alignment,
221                         uint64_t EntrySize);
222
223   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
224
225   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
226   void writeSection(const SectionIndexMapTy &SectionIndexMap,
227                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
228                     const MCSectionELF &Section);
229 };
230
231 class ELFObjectWriter : public MCObjectWriter {
232   /// The target specific ELF writer instance.
233   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
234
235   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
236
237   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
238
239   bool EmitAddrsigSection = false;
240   std::vector<const MCSymbol *> AddrsigSyms;
241
242   bool hasRelocationAddend() const;
243
244   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
245                                 const MCSymbolRefExpr *RefA,
246                                 const MCSymbolELF *Sym, uint64_t C,
247                                 unsigned Type) const;
248
249 public:
250   ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
251       : TargetObjectWriter(std::move(MOTW)) {}
252
253   void reset() override {
254     Relocations.clear();
255     Renames.clear();
256     MCObjectWriter::reset();
257   }
258
259   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
260                                               const MCSymbol &SymA,
261                                               const MCFragment &FB, bool InSet,
262                                               bool IsPCRel) const override;
263
264   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
265                                const MCSectionELF *From,
266                                const MCSectionELF *To) {
267     return true;
268   }
269
270   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
271                         const MCFragment *Fragment, const MCFixup &Fixup,
272                         MCValue Target, uint64_t &FixedValue) override;
273
274   void executePostLayoutBinding(MCAssembler &Asm,
275                                 const MCAsmLayout &Layout) override;
276
277   void emitAddrsigSection() override { EmitAddrsigSection = true; }
278   void addAddrsigSymbol(const MCSymbol *Sym) override {
279     AddrsigSyms.push_back(Sym);
280   }
281
282   friend struct ELFWriter;
283 };
284
285 class ELFSingleObjectWriter : public ELFObjectWriter {
286   raw_pwrite_stream &OS;
287   bool IsLittleEndian;
288
289 public:
290   ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
291                         raw_pwrite_stream &OS, bool IsLittleEndian)
292       : ELFObjectWriter(std::move(MOTW)), OS(OS),
293         IsLittleEndian(IsLittleEndian) {}
294
295   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
296     return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
297         .writeObject(Asm, Layout);
298   }
299
300   friend struct ELFWriter;
301 };
302
303 class ELFDwoObjectWriter : public ELFObjectWriter {
304   raw_pwrite_stream &OS, &DwoOS;
305   bool IsLittleEndian;
306
307 public:
308   ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
309                      raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
310                      bool IsLittleEndian)
311       : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
312         IsLittleEndian(IsLittleEndian) {}
313
314   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
315                                const MCSectionELF *From,
316                                const MCSectionELF *To) override {
317     if (isDwoSection(*From)) {
318       Ctx.reportError(Loc, "A dwo section may not contain relocations");
319       return false;
320     }
321     if (To && isDwoSection(*To)) {
322       Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
323       return false;
324     }
325     return true;
326   }
327
328   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
329     uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
330                         .writeObject(Asm, Layout);
331     Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
332                 .writeObject(Asm, Layout);
333     return Size;
334   }
335 };
336
337 } // end anonymous namespace
338
339 void ELFWriter::align(unsigned Alignment) {
340   uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment);
341   W.OS.write_zeros(Padding);
342 }
343
344 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
345   SectionTable.push_back(Sec);
346   StrTabBuilder.add(Sec->getSectionName());
347   return SectionTable.size();
348 }
349
350 void SymbolTableWriter::createSymtabShndx() {
351   if (!ShndxIndexes.empty())
352     return;
353
354   ShndxIndexes.resize(NumWritten);
355 }
356
357 template <typename T> void SymbolTableWriter::write(T Value) {
358   EWriter.write(Value);
359 }
360
361 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
362     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
363
364 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
365                                     uint64_t size, uint8_t other,
366                                     uint32_t shndx, bool Reserved) {
367   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
368
369   if (LargeIndex)
370     createSymtabShndx();
371
372   if (!ShndxIndexes.empty()) {
373     if (LargeIndex)
374       ShndxIndexes.push_back(shndx);
375     else
376       ShndxIndexes.push_back(0);
377   }
378
379   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
380
381   if (Is64Bit) {
382     write(name);  // st_name
383     write(info);  // st_info
384     write(other); // st_other
385     write(Index); // st_shndx
386     write(value); // st_value
387     write(size);  // st_size
388   } else {
389     write(name);            // st_name
390     write(uint32_t(value)); // st_value
391     write(uint32_t(size));  // st_size
392     write(info);            // st_info
393     write(other);           // st_other
394     write(Index);           // st_shndx
395   }
396
397   ++NumWritten;
398 }
399
400 bool ELFWriter::is64Bit() const {
401   return OWriter.TargetObjectWriter->is64Bit();
402 }
403
404 bool ELFWriter::hasRelocationAddend() const {
405   return OWriter.hasRelocationAddend();
406 }
407
408 // Emit the ELF header.
409 void ELFWriter::writeHeader(const MCAssembler &Asm) {
410   // ELF Header
411   // ----------
412   //
413   // Note
414   // ----
415   // emitWord method behaves differently for ELF32 and ELF64, writing
416   // 4 bytes in the former and 8 in the latter.
417
418   W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
419
420   W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
421
422   // e_ident[EI_DATA]
423   W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB
424                                            : ELF::ELFDATA2MSB);
425
426   W.OS << char(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
427   // e_ident[EI_OSABI]
428   W.OS << char(OWriter.TargetObjectWriter->getOSABI());
429   W.OS << char(0);                  // e_ident[EI_ABIVERSION]
430
431   W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
432
433   W.write<uint16_t>(ELF::ET_REL);             // e_type
434
435   W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
436
437   W.write<uint32_t>(ELF::EV_CURRENT);         // e_version
438   WriteWord(0);                    // e_entry, no entry point in .o file
439   WriteWord(0);                    // e_phoff, no program header for .o
440   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
441
442   // e_flags = whatever the target wants
443   W.write<uint32_t>(Asm.getELFHeaderEFlags());
444
445   // e_ehsize = ELF header size
446   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
447                               : sizeof(ELF::Elf32_Ehdr));
448
449   W.write<uint16_t>(0);                  // e_phentsize = prog header entry size
450   W.write<uint16_t>(0);                  // e_phnum = # prog header entries = 0
451
452   // e_shentsize = Section header entry size
453   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
454                               : sizeof(ELF::Elf32_Shdr));
455
456   // e_shnum     = # of section header ents
457   W.write<uint16_t>(0);
458
459   // e_shstrndx  = Section # of '.shstrtab'
460   assert(StringTableIndex < ELF::SHN_LORESERVE);
461   W.write<uint16_t>(StringTableIndex);
462 }
463
464 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
465                                 const MCAsmLayout &Layout) {
466   if (Sym.isCommon() && Sym.isExternal())
467     return Sym.getCommonAlignment();
468
469   uint64_t Res;
470   if (!Layout.getSymbolOffset(Sym, Res))
471     return 0;
472
473   if (Layout.getAssembler().isThumbFunc(&Sym))
474     Res |= 1;
475
476   return Res;
477 }
478
479 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
480   uint8_t Type = newType;
481
482   // Propagation rules:
483   // IFUNC > FUNC > OBJECT > NOTYPE
484   // TLS_OBJECT > OBJECT > NOTYPE
485   //
486   // dont let the new type degrade the old type
487   switch (origType) {
488   default:
489     break;
490   case ELF::STT_GNU_IFUNC:
491     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
492         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
493       Type = ELF::STT_GNU_IFUNC;
494     break;
495   case ELF::STT_FUNC:
496     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
497         Type == ELF::STT_TLS)
498       Type = ELF::STT_FUNC;
499     break;
500   case ELF::STT_OBJECT:
501     if (Type == ELF::STT_NOTYPE)
502       Type = ELF::STT_OBJECT;
503     break;
504   case ELF::STT_TLS:
505     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
506         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
507       Type = ELF::STT_TLS;
508     break;
509   }
510
511   return Type;
512 }
513
514 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
515                             ELFSymbolData &MSD, const MCAsmLayout &Layout) {
516   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
517   const MCSymbolELF *Base =
518       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
519
520   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
521   // SHN_COMMON.
522   bool IsReserved = !Base || Symbol.isCommon();
523
524   // Binding and Type share the same byte as upper and lower nibbles
525   uint8_t Binding = Symbol.getBinding();
526   uint8_t Type = Symbol.getType();
527   if (Base) {
528     Type = mergeTypeForSet(Type, Base->getType());
529   }
530   uint8_t Info = (Binding << 4) | Type;
531
532   // Other and Visibility share the same byte with Visibility using the lower
533   // 2 bits
534   uint8_t Visibility = Symbol.getVisibility();
535   uint8_t Other = Symbol.getOther() | Visibility;
536
537   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
538   uint64_t Size = 0;
539
540   const MCExpr *ESize = MSD.Symbol->getSize();
541   if (!ESize && Base)
542     ESize = Base->getSize();
543
544   if (ESize) {
545     int64_t Res;
546     if (!ESize->evaluateKnownAbsolute(Res, Layout))
547       report_fatal_error("Size expression must be absolute.");
548     Size = Res;
549   }
550
551   // Write out the symbol table entry
552   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
553                      IsReserved);
554 }
555
556 // True if the assembler knows nothing about the final value of the symbol.
557 // This doesn't cover the comdat issues, since in those cases the assembler
558 // can at least know that all symbols in the section will move together.
559 static bool isWeak(const MCSymbolELF &Sym) {
560   if (Sym.getType() == ELF::STT_GNU_IFUNC)
561     return true;
562
563   switch (Sym.getBinding()) {
564   default:
565     llvm_unreachable("Unknown binding");
566   case ELF::STB_LOCAL:
567     return false;
568   case ELF::STB_GLOBAL:
569     return false;
570   case ELF::STB_WEAK:
571   case ELF::STB_GNU_UNIQUE:
572     return true;
573   }
574 }
575
576 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
577                            bool Used, bool Renamed) {
578   if (Symbol.isVariable()) {
579     const MCExpr *Expr = Symbol.getVariableValue();
580     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
581       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
582         return false;
583     }
584   }
585
586   if (Used)
587     return true;
588
589   if (Renamed)
590     return false;
591
592   if (Symbol.isVariable() && Symbol.isUndefined()) {
593     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
594     Layout.getBaseSymbol(Symbol);
595     return false;
596   }
597
598   if (Symbol.isUndefined() && !Symbol.isBindingSet())
599     return false;
600
601   if (Symbol.isTemporary())
602     return false;
603
604   if (Symbol.getType() == ELF::STT_SECTION)
605     return false;
606
607   return true;
608 }
609
610 void ELFWriter::computeSymbolTable(
611     MCAssembler &Asm, const MCAsmLayout &Layout,
612     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
613     SectionOffsetsTy &SectionOffsets) {
614   MCContext &Ctx = Asm.getContext();
615   SymbolTableWriter Writer(*this, is64Bit());
616
617   // Symbol table
618   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
619   MCSectionELF *SymtabSection =
620       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
621   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
622   SymbolTableIndex = addToSectionTable(SymtabSection);
623
624   align(SymtabSection->getAlignment());
625   uint64_t SecStart = W.OS.tell();
626
627   // The first entry is the undefined symbol entry.
628   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
629
630   std::vector<ELFSymbolData> LocalSymbolData;
631   std::vector<ELFSymbolData> ExternalSymbolData;
632
633   // Add the data for the symbols.
634   bool HasLargeSectionIndex = false;
635   for (const MCSymbol &S : Asm.symbols()) {
636     const auto &Symbol = cast<MCSymbolELF>(S);
637     bool Used = Symbol.isUsedInReloc();
638     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
639     bool isSignature = Symbol.isSignature();
640
641     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
642                     OWriter.Renames.count(&Symbol)))
643       continue;
644
645     if (Symbol.isTemporary() && Symbol.isUndefined()) {
646       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
647       continue;
648     }
649
650     ELFSymbolData MSD;
651     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
652
653     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
654     assert(Local || !Symbol.isTemporary());
655
656     if (Symbol.isAbsolute()) {
657       MSD.SectionIndex = ELF::SHN_ABS;
658     } else if (Symbol.isCommon()) {
659       assert(!Local);
660       MSD.SectionIndex = ELF::SHN_COMMON;
661     } else if (Symbol.isUndefined()) {
662       if (isSignature && !Used) {
663         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
664         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
665           HasLargeSectionIndex = true;
666       } else {
667         MSD.SectionIndex = ELF::SHN_UNDEF;
668       }
669     } else {
670       const MCSectionELF &Section =
671           static_cast<const MCSectionELF &>(Symbol.getSection());
672
673       // We may end up with a situation when section symbol is technically
674       // defined, but should not be. That happens because we explicitly
675       // pre-create few .debug_* sections to have accessors.
676       // And if these sections were not really defined in the code, but were
677       // referenced, we simply error out.
678       if (!Section.isRegistered()) {
679         assert(static_cast<const MCSymbolELF &>(Symbol).getType() ==
680                ELF::STT_SECTION);
681         Ctx.reportError(SMLoc(),
682                         "Undefined section reference: " + Symbol.getName());
683         continue;
684       }
685
686       if (Mode == NonDwoOnly && isDwoSection(Section))
687         continue;
688       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
689       assert(MSD.SectionIndex && "Invalid section index!");
690       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
691         HasLargeSectionIndex = true;
692     }
693
694     StringRef Name = Symbol.getName();
695
696     // Sections have their own string table
697     if (Symbol.getType() != ELF::STT_SECTION) {
698       MSD.Name = Name;
699       StrTabBuilder.add(Name);
700     }
701
702     if (Local)
703       LocalSymbolData.push_back(MSD);
704     else
705       ExternalSymbolData.push_back(MSD);
706   }
707
708   // This holds the .symtab_shndx section index.
709   unsigned SymtabShndxSectionIndex = 0;
710
711   if (HasLargeSectionIndex) {
712     MCSectionELF *SymtabShndxSection =
713         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
714     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
715     SymtabShndxSection->setAlignment(4);
716   }
717
718   ArrayRef<std::string> FileNames = Asm.getFileNames();
719   for (const std::string &Name : FileNames)
720     StrTabBuilder.add(Name);
721
722   StrTabBuilder.finalize();
723
724   // File symbols are emitted first and handled separately from normal symbols,
725   // i.e. a non-STT_FILE symbol with the same name may appear.
726   for (const std::string &Name : FileNames)
727     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
728                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
729                        ELF::SHN_ABS, true);
730
731   // Symbols are required to be in lexicographic order.
732   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
733   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
734
735   // Set the symbol indices. Local symbols must come before all other
736   // symbols with non-local bindings.
737   unsigned Index = FileNames.size() + 1;
738
739   for (ELFSymbolData &MSD : LocalSymbolData) {
740     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
741                                ? 0
742                                : StrTabBuilder.getOffset(MSD.Name);
743     MSD.Symbol->setIndex(Index++);
744     writeSymbol(Writer, StringIndex, MSD, Layout);
745   }
746
747   // Write the symbol table entries.
748   LastLocalSymbolIndex = Index;
749
750   for (ELFSymbolData &MSD : ExternalSymbolData) {
751     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
752     MSD.Symbol->setIndex(Index++);
753     writeSymbol(Writer, StringIndex, MSD, Layout);
754     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
755   }
756
757   uint64_t SecEnd = W.OS.tell();
758   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
759
760   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
761   if (ShndxIndexes.empty()) {
762     assert(SymtabShndxSectionIndex == 0);
763     return;
764   }
765   assert(SymtabShndxSectionIndex != 0);
766
767   SecStart = W.OS.tell();
768   const MCSectionELF *SymtabShndxSection =
769       SectionTable[SymtabShndxSectionIndex - 1];
770   for (uint32_t Index : ShndxIndexes)
771     write(Index);
772   SecEnd = W.OS.tell();
773   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
774 }
775
776 void ELFWriter::writeAddrsigSection() {
777   for (const MCSymbol *Sym : OWriter.AddrsigSyms)
778     encodeULEB128(Sym->getIndex(), W.OS);
779 }
780
781 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
782                                                  const MCSectionELF &Sec) {
783   if (OWriter.Relocations[&Sec].empty())
784     return nullptr;
785
786   const StringRef SectionName = Sec.getSectionName();
787   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
788   RelaSectionName += SectionName;
789
790   unsigned EntrySize;
791   if (hasRelocationAddend())
792     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
793   else
794     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
795
796   unsigned Flags = 0;
797   if (Sec.getFlags() & ELF::SHF_GROUP)
798     Flags = ELF::SHF_GROUP;
799
800   MCSectionELF *RelaSection = Ctx.createELFRelSection(
801       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
802       Flags, EntrySize, Sec.getGroup(), &Sec);
803   RelaSection->setAlignment(is64Bit() ? 8 : 4);
804   return RelaSection;
805 }
806
807 // Include the debug info compression header.
808 bool ELFWriter::maybeWriteCompression(
809     uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
810     unsigned Alignment) {
811   if (ZLibStyle) {
812     uint64_t HdrSize =
813         is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
814     if (Size <= HdrSize + CompressedContents.size())
815       return false;
816     // Platform specific header is followed by compressed data.
817     if (is64Bit()) {
818       // Write Elf64_Chdr header.
819       write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
820       write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
821       write(static_cast<ELF::Elf64_Xword>(Size));
822       write(static_cast<ELF::Elf64_Xword>(Alignment));
823     } else {
824       // Write Elf32_Chdr header otherwise.
825       write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
826       write(static_cast<ELF::Elf32_Word>(Size));
827       write(static_cast<ELF::Elf32_Word>(Alignment));
828     }
829     return true;
830   }
831
832   // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
833   // useful for consumers to preallocate a buffer to decompress into.
834   const StringRef Magic = "ZLIB";
835   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
836     return false;
837   W.OS << Magic;
838   support::endian::write(W.OS, Size, support::big);
839   return true;
840 }
841
842 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
843                                  const MCAsmLayout &Layout) {
844   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
845   StringRef SectionName = Section.getSectionName();
846
847   auto &MC = Asm.getContext();
848   const auto &MAI = MC.getAsmInfo();
849
850   // Compressing debug_frame requires handling alignment fragments which is
851   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
852   // for writing to arbitrary buffers) for little benefit.
853   bool CompressionEnabled =
854       MAI->compressDebugSections() != DebugCompressionType::None;
855   if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
856       SectionName == ".debug_frame") {
857     Asm.writeSectionData(W.OS, &Section, Layout);
858     return;
859   }
860
861   assert((MAI->compressDebugSections() == DebugCompressionType::Z ||
862           MAI->compressDebugSections() == DebugCompressionType::GNU) &&
863          "expected zlib or zlib-gnu style compression");
864
865   SmallVector<char, 128> UncompressedData;
866   raw_svector_ostream VecOS(UncompressedData);
867   Asm.writeSectionData(VecOS, &Section, Layout);
868
869   SmallVector<char, 128> CompressedContents;
870   if (Error E = zlib::compress(
871           StringRef(UncompressedData.data(), UncompressedData.size()),
872           CompressedContents)) {
873     consumeError(std::move(E));
874     W.OS << UncompressedData;
875     return;
876   }
877
878   bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z;
879   if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
880                              ZlibStyle, Sec.getAlignment())) {
881     W.OS << UncompressedData;
882     return;
883   }
884
885   if (ZlibStyle)
886     // Set the compressed flag. That is zlib style.
887     Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
888   else
889     // Add "z" prefix to section name. This is zlib-gnu style.
890     MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str());
891   W.OS << CompressedContents;
892 }
893
894 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
895                                  uint64_t Address, uint64_t Offset,
896                                  uint64_t Size, uint32_t Link, uint32_t Info,
897                                  uint64_t Alignment, uint64_t EntrySize) {
898   W.write<uint32_t>(Name);        // sh_name: index into string table
899   W.write<uint32_t>(Type);        // sh_type
900   WriteWord(Flags);     // sh_flags
901   WriteWord(Address);   // sh_addr
902   WriteWord(Offset);    // sh_offset
903   WriteWord(Size);      // sh_size
904   W.write<uint32_t>(Link);        // sh_link
905   W.write<uint32_t>(Info);        // sh_info
906   WriteWord(Alignment); // sh_addralign
907   WriteWord(EntrySize); // sh_entsize
908 }
909
910 void ELFWriter::writeRelocations(const MCAssembler &Asm,
911                                        const MCSectionELF &Sec) {
912   std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
913
914   // We record relocations by pushing to the end of a vector. Reverse the vector
915   // to get the relocations in the order they were created.
916   // In most cases that is not important, but it can be for special sections
917   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
918   std::reverse(Relocs.begin(), Relocs.end());
919
920   // Sort the relocation entries. MIPS needs this.
921   OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
922
923   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
924     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
925     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
926
927     if (is64Bit()) {
928       write(Entry.Offset);
929       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
930         write(uint32_t(Index));
931
932         write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
933         write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
934         write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
935         write(OWriter.TargetObjectWriter->getRType(Entry.Type));
936       } else {
937         struct ELF::Elf64_Rela ERE64;
938         ERE64.setSymbolAndType(Index, Entry.Type);
939         write(ERE64.r_info);
940       }
941       if (hasRelocationAddend())
942         write(Entry.Addend);
943     } else {
944       write(uint32_t(Entry.Offset));
945
946       struct ELF::Elf32_Rela ERE32;
947       ERE32.setSymbolAndType(Index, Entry.Type);
948       write(ERE32.r_info);
949
950       if (hasRelocationAddend())
951         write(uint32_t(Entry.Addend));
952
953       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
954         if (uint32_t RType =
955                 OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
956           write(uint32_t(Entry.Offset));
957
958           ERE32.setSymbolAndType(0, RType);
959           write(ERE32.r_info);
960           write(uint32_t(0));
961         }
962         if (uint32_t RType =
963                 OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
964           write(uint32_t(Entry.Offset));
965
966           ERE32.setSymbolAndType(0, RType);
967           write(ERE32.r_info);
968           write(uint32_t(0));
969         }
970       }
971     }
972   }
973 }
974
975 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) {
976   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
977   StrTabBuilder.write(W.OS);
978   return StrtabSection;
979 }
980
981 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
982                              uint32_t GroupSymbolIndex, uint64_t Offset,
983                              uint64_t Size, const MCSectionELF &Section) {
984   uint64_t sh_link = 0;
985   uint64_t sh_info = 0;
986
987   switch(Section.getType()) {
988   default:
989     // Nothing to do.
990     break;
991
992   case ELF::SHT_DYNAMIC:
993     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
994
995   case ELF::SHT_REL:
996   case ELF::SHT_RELA: {
997     sh_link = SymbolTableIndex;
998     assert(sh_link && ".symtab not found");
999     const MCSection *InfoSection = Section.getAssociatedSection();
1000     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
1001     break;
1002   }
1003
1004   case ELF::SHT_SYMTAB:
1005     sh_link = StringTableIndex;
1006     sh_info = LastLocalSymbolIndex;
1007     break;
1008
1009   case ELF::SHT_SYMTAB_SHNDX:
1010   case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1011   case ELF::SHT_LLVM_ADDRSIG:
1012     sh_link = SymbolTableIndex;
1013     break;
1014
1015   case ELF::SHT_GROUP:
1016     sh_link = SymbolTableIndex;
1017     sh_info = GroupSymbolIndex;
1018     break;
1019   }
1020
1021   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1022     const MCSymbol *Sym = Section.getAssociatedSymbol();
1023     const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1024     sh_link = SectionIndexMap.lookup(Sec);
1025   }
1026
1027   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1028                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1029                    sh_link, sh_info, Section.getAlignment(),
1030                    Section.getEntrySize());
1031 }
1032
1033 void ELFWriter::writeSectionHeader(
1034     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1035     const SectionOffsetsTy &SectionOffsets) {
1036   const unsigned NumSections = SectionTable.size();
1037
1038   // Null section first.
1039   uint64_t FirstSectionSize =
1040       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1041   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1042
1043   for (const MCSectionELF *Section : SectionTable) {
1044     uint32_t GroupSymbolIndex;
1045     unsigned Type = Section->getType();
1046     if (Type != ELF::SHT_GROUP)
1047       GroupSymbolIndex = 0;
1048     else
1049       GroupSymbolIndex = Section->getGroup()->getIndex();
1050
1051     const std::pair<uint64_t, uint64_t> &Offsets =
1052         SectionOffsets.find(Section)->second;
1053     uint64_t Size;
1054     if (Type == ELF::SHT_NOBITS)
1055       Size = Layout.getSectionAddressSize(Section);
1056     else
1057       Size = Offsets.second - Offsets.first;
1058
1059     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1060                  *Section);
1061   }
1062 }
1063
1064 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1065   uint64_t StartOffset = W.OS.tell();
1066
1067   MCContext &Ctx = Asm.getContext();
1068   MCSectionELF *StrtabSection =
1069       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1070   StringTableIndex = addToSectionTable(StrtabSection);
1071
1072   RevGroupMapTy RevGroupMap;
1073   SectionIndexMapTy SectionIndexMap;
1074
1075   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1076
1077   // Write out the ELF header ...
1078   writeHeader(Asm);
1079
1080   // ... then the sections ...
1081   SectionOffsetsTy SectionOffsets;
1082   std::vector<MCSectionELF *> Groups;
1083   std::vector<MCSectionELF *> Relocations;
1084   for (MCSection &Sec : Asm) {
1085     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1086     if (Mode == NonDwoOnly && isDwoSection(Section))
1087       continue;
1088     if (Mode == DwoOnly && !isDwoSection(Section))
1089       continue;
1090
1091     align(Section.getAlignment());
1092
1093     // Remember the offset into the file for this section.
1094     uint64_t SecStart = W.OS.tell();
1095
1096     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1097     writeSectionData(Asm, Section, Layout);
1098
1099     uint64_t SecEnd = W.OS.tell();
1100     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1101
1102     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1103
1104     if (SignatureSymbol) {
1105       Asm.registerSymbol(*SignatureSymbol);
1106       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1107       if (!GroupIdx) {
1108         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1109         GroupIdx = addToSectionTable(Group);
1110         Group->setAlignment(4);
1111         Groups.push_back(Group);
1112       }
1113       std::vector<const MCSectionELF *> &Members =
1114           GroupMembers[SignatureSymbol];
1115       Members.push_back(&Section);
1116       if (RelSection)
1117         Members.push_back(RelSection);
1118     }
1119
1120     SectionIndexMap[&Section] = addToSectionTable(&Section);
1121     if (RelSection) {
1122       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1123       Relocations.push_back(RelSection);
1124     }
1125
1126     OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
1127   }
1128
1129   MCSectionELF *CGProfileSection = nullptr;
1130   if (!Asm.CGProfile.empty()) {
1131     CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile",
1132                                          ELF::SHT_LLVM_CALL_GRAPH_PROFILE,
1133                                          ELF::SHF_EXCLUDE, 16, "");
1134     SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection);
1135   }
1136
1137   for (MCSectionELF *Group : Groups) {
1138     align(Group->getAlignment());
1139
1140     // Remember the offset into the file for this section.
1141     uint64_t SecStart = W.OS.tell();
1142
1143     const MCSymbol *SignatureSymbol = Group->getGroup();
1144     assert(SignatureSymbol);
1145     write(uint32_t(ELF::GRP_COMDAT));
1146     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1147       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1148       write(SecIndex);
1149     }
1150
1151     uint64_t SecEnd = W.OS.tell();
1152     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1153   }
1154
1155   if (Mode == DwoOnly) {
1156     // dwo files don't have symbol tables or relocations, but they do have
1157     // string tables.
1158     StrTabBuilder.finalize();
1159   } else {
1160     MCSectionELF *AddrsigSection;
1161     if (OWriter.EmitAddrsigSection) {
1162       AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
1163                                          ELF::SHF_EXCLUDE);
1164       addToSectionTable(AddrsigSection);
1165     }
1166
1167     // Compute symbol table information.
1168     computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1169                        SectionOffsets);
1170
1171     for (MCSectionELF *RelSection : Relocations) {
1172       align(RelSection->getAlignment());
1173
1174       // Remember the offset into the file for this section.
1175       uint64_t SecStart = W.OS.tell();
1176
1177       writeRelocations(Asm,
1178                        cast<MCSectionELF>(*RelSection->getAssociatedSection()));
1179
1180       uint64_t SecEnd = W.OS.tell();
1181       SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1182     }
1183
1184     if (OWriter.EmitAddrsigSection) {
1185       uint64_t SecStart = W.OS.tell();
1186       writeAddrsigSection();
1187       uint64_t SecEnd = W.OS.tell();
1188       SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
1189     }
1190   }
1191
1192   if (CGProfileSection) {
1193     uint64_t SecStart = W.OS.tell();
1194     for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) {
1195       W.write<uint32_t>(CGPE.From->getSymbol().getIndex());
1196       W.write<uint32_t>(CGPE.To->getSymbol().getIndex());
1197       W.write<uint64_t>(CGPE.Count);
1198     }
1199     uint64_t SecEnd = W.OS.tell();
1200     SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd);
1201   }
1202
1203   {
1204     uint64_t SecStart = W.OS.tell();
1205     const MCSectionELF *Sec = createStringTable(Ctx);
1206     uint64_t SecEnd = W.OS.tell();
1207     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1208   }
1209
1210   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1211   align(NaturalAlignment);
1212
1213   const uint64_t SectionHeaderOffset = W.OS.tell();
1214
1215   // ... then the section header table ...
1216   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1217
1218   uint16_t NumSections = support::endian::byte_swap<uint16_t>(
1219       (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
1220                                                       : SectionTable.size() + 1,
1221       W.Endian);
1222   unsigned NumSectionsOffset;
1223
1224   auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
1225   if (is64Bit()) {
1226     uint64_t Val =
1227         support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
1228     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1229                   offsetof(ELF::Elf64_Ehdr, e_shoff));
1230     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1231   } else {
1232     uint32_t Val =
1233         support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
1234     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1235                   offsetof(ELF::Elf32_Ehdr, e_shoff));
1236     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1237   }
1238   Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
1239                 NumSectionsOffset);
1240
1241   return W.OS.tell() - StartOffset;
1242 }
1243
1244 bool ELFObjectWriter::hasRelocationAddend() const {
1245   return TargetObjectWriter->hasRelocationAddend();
1246 }
1247
1248 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
1249                                                const MCAsmLayout &Layout) {
1250   // The presence of symbol versions causes undefined symbols and
1251   // versions declared with @@@ to be renamed.
1252   for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) {
1253     StringRef AliasName = P.first;
1254     const auto &Symbol = cast<MCSymbolELF>(*P.second);
1255     size_t Pos = AliasName.find('@');
1256     assert(Pos != StringRef::npos);
1257
1258     StringRef Prefix = AliasName.substr(0, Pos);
1259     StringRef Rest = AliasName.substr(Pos);
1260     StringRef Tail = Rest;
1261     if (Rest.startswith("@@@"))
1262       Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
1263
1264     auto *Alias =
1265         cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
1266     Asm.registerSymbol(*Alias);
1267     const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
1268     Alias->setVariableValue(Value);
1269
1270     // Aliases defined with .symvar copy the binding from the symbol they alias.
1271     // This is the first place we are able to copy this information.
1272     Alias->setExternal(Symbol.isExternal());
1273     Alias->setBinding(Symbol.getBinding());
1274
1275     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
1276       continue;
1277
1278     // FIXME: Get source locations for these errors or diagnose them earlier.
1279     if (Symbol.isUndefined() && Rest.startswith("@@") &&
1280         !Rest.startswith("@@@")) {
1281       Asm.getContext().reportError(SMLoc(), "versioned symbol " + AliasName +
1282                                                 " must be defined");
1283       continue;
1284     }
1285
1286     if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) {
1287       Asm.getContext().reportError(
1288           SMLoc(), llvm::Twine("multiple symbol versions defined for ") +
1289                        Symbol.getName());
1290       continue;
1291     }
1292
1293     Renames.insert(std::make_pair(&Symbol, Alias));
1294   }
1295
1296   for (const MCSymbol *&Sym : AddrsigSyms) {
1297     if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
1298       Sym = R;
1299     if (Sym->isInSection() && Sym->getName().startswith(".L"))
1300       Sym = Sym->getSection().getBeginSymbol();
1301     Sym->setUsedInReloc();
1302   }
1303 }
1304
1305 // It is always valid to create a relocation with a symbol. It is preferable
1306 // to use a relocation with a section if that is possible. Using the section
1307 // allows us to omit some local symbols from the symbol table.
1308 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
1309                                                const MCSymbolRefExpr *RefA,
1310                                                const MCSymbolELF *Sym,
1311                                                uint64_t C,
1312                                                unsigned Type) const {
1313   // A PCRel relocation to an absolute value has no symbol (or section). We
1314   // represent that with a relocation to a null section.
1315   if (!RefA)
1316     return false;
1317
1318   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
1319   switch (Kind) {
1320   default:
1321     break;
1322   // The .odp creation emits a relocation against the symbol ".TOC." which
1323   // create a R_PPC64_TOC relocation. However the relocation symbol name
1324   // in final object creation should be NULL, since the symbol does not
1325   // really exist, it is just the reference to TOC base for the current
1326   // object file. Since the symbol is undefined, returning false results
1327   // in a relocation with a null section which is the desired result.
1328   case MCSymbolRefExpr::VK_PPC_TOCBASE:
1329     return false;
1330
1331   // These VariantKind cause the relocation to refer to something other than
1332   // the symbol itself, like a linker generated table. Since the address of
1333   // symbol is not relevant, we cannot replace the symbol with the
1334   // section and patch the difference in the addend.
1335   case MCSymbolRefExpr::VK_GOT:
1336   case MCSymbolRefExpr::VK_PLT:
1337   case MCSymbolRefExpr::VK_GOTPCREL:
1338   case MCSymbolRefExpr::VK_PPC_GOT_LO:
1339   case MCSymbolRefExpr::VK_PPC_GOT_HI:
1340   case MCSymbolRefExpr::VK_PPC_GOT_HA:
1341     return true;
1342   }
1343
1344   // An undefined symbol is not in any section, so the relocation has to point
1345   // to the symbol itself.
1346   assert(Sym && "Expected a symbol");
1347   if (Sym->isUndefined())
1348     return true;
1349
1350   unsigned Binding = Sym->getBinding();
1351   switch(Binding) {
1352   default:
1353     llvm_unreachable("Invalid Binding");
1354   case ELF::STB_LOCAL:
1355     break;
1356   case ELF::STB_WEAK:
1357     // If the symbol is weak, it might be overridden by a symbol in another
1358     // file. The relocation has to point to the symbol so that the linker
1359     // can update it.
1360     return true;
1361   case ELF::STB_GLOBAL:
1362     // Global ELF symbols can be preempted by the dynamic linker. The relocation
1363     // has to point to the symbol for a reason analogous to the STB_WEAK case.
1364     return true;
1365   }
1366
1367   // If a relocation points to a mergeable section, we have to be careful.
1368   // If the offset is zero, a relocation with the section will encode the
1369   // same information. With a non-zero offset, the situation is different.
1370   // For example, a relocation can point 42 bytes past the end of a string.
1371   // If we change such a relocation to use the section, the linker would think
1372   // that it pointed to another string and subtracting 42 at runtime will
1373   // produce the wrong value.
1374   if (Sym->isInSection()) {
1375     auto &Sec = cast<MCSectionELF>(Sym->getSection());
1376     unsigned Flags = Sec.getFlags();
1377     if (Flags & ELF::SHF_MERGE) {
1378       if (C != 0)
1379         return true;
1380
1381       // It looks like gold has a bug (http://sourceware.org/PR16794) and can
1382       // only handle section relocations to mergeable sections if using RELA.
1383       if (!hasRelocationAddend())
1384         return true;
1385     }
1386
1387     // Most TLS relocations use a got, so they need the symbol. Even those that
1388     // are just an offset (@tpoff), require a symbol in gold versions before
1389     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1390     // http://sourceware.org/PR16773.
1391     if (Flags & ELF::SHF_TLS)
1392       return true;
1393   }
1394
1395   // If the symbol is a thumb function the final relocation must set the lowest
1396   // bit. With a symbol that is done by just having the symbol have that bit
1397   // set, so we would lose the bit if we relocated with the section.
1398   // FIXME: We could use the section but add the bit to the relocation value.
1399   if (Asm.isThumbFunc(Sym))
1400     return true;
1401
1402   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
1403     return true;
1404   return false;
1405 }
1406
1407 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
1408                                        const MCAsmLayout &Layout,
1409                                        const MCFragment *Fragment,
1410                                        const MCFixup &Fixup, MCValue Target,
1411                                        uint64_t &FixedValue) {
1412   MCAsmBackend &Backend = Asm.getBackend();
1413   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
1414                  MCFixupKindInfo::FKF_IsPCRel;
1415   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
1416   uint64_t C = Target.getConstant();
1417   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
1418   MCContext &Ctx = Asm.getContext();
1419
1420   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
1421     // Let A, B and C being the components of Target and R be the location of
1422     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
1423     // If it is pcrel, we want to compute (A - B + C - R).
1424
1425     // In general, ELF has no relocations for -B. It can only represent (A + C)
1426     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
1427     // replace B to implement it: (A - R - K + C)
1428     if (IsPCRel) {
1429       Ctx.reportError(
1430           Fixup.getLoc(),
1431           "No relocation available to represent this relative expression");
1432       return;
1433     }
1434
1435     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
1436
1437     if (SymB.isUndefined()) {
1438       Ctx.reportError(Fixup.getLoc(),
1439                       Twine("symbol '") + SymB.getName() +
1440                           "' can not be undefined in a subtraction expression");
1441       return;
1442     }
1443
1444     assert(!SymB.isAbsolute() && "Should have been folded");
1445     const MCSection &SecB = SymB.getSection();
1446     if (&SecB != &FixupSection) {
1447       Ctx.reportError(Fixup.getLoc(),
1448                       "Cannot represent a difference across sections");
1449       return;
1450     }
1451
1452     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
1453     uint64_t K = SymBOffset - FixupOffset;
1454     IsPCRel = true;
1455     C -= K;
1456   }
1457
1458   // We either rejected the fixup or folded B into C at this point.
1459   const MCSymbolRefExpr *RefA = Target.getSymA();
1460   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
1461
1462   bool ViaWeakRef = false;
1463   if (SymA && SymA->isVariable()) {
1464     const MCExpr *Expr = SymA->getVariableValue();
1465     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
1466       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
1467         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
1468         ViaWeakRef = true;
1469       }
1470     }
1471   }
1472
1473   unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
1474   uint64_t OriginalC = C;
1475   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
1476   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
1477     C += Layout.getSymbolOffset(*SymA);
1478
1479   uint64_t Addend = 0;
1480   if (hasRelocationAddend()) {
1481     Addend = C;
1482     C = 0;
1483   }
1484
1485   FixedValue = C;
1486
1487   const MCSectionELF *SecA = (SymA && SymA->isInSection())
1488                                  ? cast<MCSectionELF>(&SymA->getSection())
1489                                  : nullptr;
1490   if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
1491     return;
1492
1493   if (!RelocateWithSymbol) {
1494     const auto *SectionSymbol =
1495         SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
1496     if (SectionSymbol)
1497       SectionSymbol->setUsedInReloc();
1498     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
1499                            OriginalC);
1500     Relocations[&FixupSection].push_back(Rec);
1501     return;
1502   }
1503
1504   const auto *RenamedSymA = SymA;
1505   if (SymA) {
1506     if (const MCSymbolELF *R = Renames.lookup(SymA))
1507       RenamedSymA = R;
1508
1509     if (ViaWeakRef)
1510       RenamedSymA->setIsWeakrefUsedInReloc();
1511     else
1512       RenamedSymA->setUsedInReloc();
1513   }
1514   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
1515                          OriginalC);
1516   Relocations[&FixupSection].push_back(Rec);
1517 }
1518
1519 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1520     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1521     bool InSet, bool IsPCRel) const {
1522   const auto &SymA = cast<MCSymbolELF>(SA);
1523   if (IsPCRel) {
1524     assert(!InSet);
1525     if (isWeak(SymA))
1526       return false;
1527   }
1528   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1529                                                                 InSet, IsPCRel);
1530 }
1531
1532 std::unique_ptr<MCObjectWriter>
1533 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1534                             raw_pwrite_stream &OS, bool IsLittleEndian) {
1535   return llvm::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
1536                                                   IsLittleEndian);
1537 }
1538
1539 std::unique_ptr<MCObjectWriter>
1540 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1541                                raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
1542                                bool IsLittleEndian) {
1543   return llvm::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
1544                                                IsLittleEndian);
1545 }