]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/MC/ELFObjectWriter.cpp
MFV r329793, r329795:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / MC / ELFObjectWriter.cpp
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/ELF.h"
22 #include "llvm/MC/MCAsmBackend.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCAsmLayout.h"
25 #include "llvm/MC/MCAssembler.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCELFObjectWriter.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCFixup.h"
30 #include "llvm/MC/MCFixupKindInfo.h"
31 #include "llvm/MC/MCFragment.h"
32 #include "llvm/MC/MCObjectWriter.h"
33 #include "llvm/MC/MCSection.h"
34 #include "llvm/MC/MCSectionELF.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/MC/MCSymbolELF.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/MC/StringTableBuilder.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compression.h"
42 #include "llvm/Support/Endian.h"
43 #include "llvm/Support/Error.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Host.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SMLoc.h"
48 #include "llvm/Support/StringSaver.h"
49 #include "llvm/Support/SwapByteOrder.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstddef>
54 #include <cstdint>
55 #include <map>
56 #include <memory>
57 #include <string>
58 #include <utility>
59 #include <vector>
60
61 using namespace llvm;
62
63 #undef  DEBUG_TYPE
64 #define DEBUG_TYPE "reloc-info"
65
66 namespace {
67
68 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
69
70 class ELFObjectWriter;
71
72 class SymbolTableWriter {
73   ELFObjectWriter &EWriter;
74   bool Is64Bit;
75
76   // indexes we are going to write to .symtab_shndx.
77   std::vector<uint32_t> ShndxIndexes;
78
79   // The numbel of symbols written so far.
80   unsigned NumWritten;
81
82   void createSymtabShndx();
83
84   template <typename T> void write(T Value);
85
86 public:
87   SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
88
89   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
90                    uint8_t other, uint32_t shndx, bool Reserved);
91
92   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
93 };
94
95 class ELFObjectWriter : public MCObjectWriter {
96   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
97   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
98                          bool Used, bool Renamed);
99
100   /// Helper struct for containing some precomputed information on symbols.
101   struct ELFSymbolData {
102     const MCSymbolELF *Symbol;
103     uint32_t SectionIndex;
104     StringRef Name;
105
106     // Support lexicographic sorting.
107     bool operator<(const ELFSymbolData &RHS) const {
108       unsigned LHSType = Symbol->getType();
109       unsigned RHSType = RHS.Symbol->getType();
110       if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
111         return false;
112       if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
113         return true;
114       if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
115         return SectionIndex < RHS.SectionIndex;
116       return Name < RHS.Name;
117     }
118   };
119
120   /// The target specific ELF writer instance.
121   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
122
123   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
124
125   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
126
127   /// @}
128   /// @name Symbol Table Data
129   /// @{
130
131   BumpPtrAllocator Alloc;
132   StringSaver VersionSymSaver{Alloc};
133   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
134
135   /// @}
136
137   // This holds the symbol table index of the last local symbol.
138   unsigned LastLocalSymbolIndex;
139   // This holds the .strtab section index.
140   unsigned StringTableIndex;
141   // This holds the .symtab section index.
142   unsigned SymbolTableIndex;
143
144   // Sections in the order they are to be output in the section table.
145   std::vector<const MCSectionELF *> SectionTable;
146   unsigned addToSectionTable(const MCSectionELF *Sec);
147
148   // TargetObjectWriter wrappers.
149   bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
150   bool hasRelocationAddend() const {
151     return TargetObjectWriter->hasRelocationAddend();
152   }
153   unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
154                         const MCFixup &Fixup, bool IsPCRel) const {
155     return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
156   }
157
158   void align(unsigned Alignment);
159
160   bool maybeWriteCompression(uint64_t Size,
161                              SmallVectorImpl<char> &CompressedContents,
162                              bool ZLibStyle, unsigned Alignment);
163
164 public:
165   ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
166                   raw_pwrite_stream &OS, bool IsLittleEndian)
167       : MCObjectWriter(OS, IsLittleEndian),
168         TargetObjectWriter(std::move(MOTW)) {}
169
170   ~ELFObjectWriter() override = default;
171
172   void reset() override {
173     Renames.clear();
174     Relocations.clear();
175     StrTabBuilder.clear();
176     SectionTable.clear();
177     MCObjectWriter::reset();
178   }
179
180   void WriteWord(uint64_t W) {
181     if (is64Bit())
182       write64(W);
183     else
184       write32(W);
185   }
186
187   template <typename T> void write(T Val) {
188     if (IsLittleEndian)
189       support::endian::Writer<support::little>(getStream()).write(Val);
190     else
191       support::endian::Writer<support::big>(getStream()).write(Val);
192   }
193
194   void writeHeader(const MCAssembler &Asm);
195
196   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
197                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
198
199   // Start and end offset of each section
200   using SectionOffsetsTy =
201       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
202
203   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
204                                 const MCSymbolRefExpr *RefA,
205                                 const MCSymbol *Sym, uint64_t C,
206                                 unsigned Type) const;
207
208   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
209                         const MCFragment *Fragment, const MCFixup &Fixup,
210                         MCValue Target, uint64_t &FixedValue) override;
211
212   // Map from a signature symbol to the group section index
213   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
214
215   /// Compute the symbol table data
216   ///
217   /// \param Asm - The assembler.
218   /// \param SectionIndexMap - Maps a section to its index.
219   /// \param RevGroupMap - Maps a signature symbol to the group section.
220   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
221                           const SectionIndexMapTy &SectionIndexMap,
222                           const RevGroupMapTy &RevGroupMap,
223                           SectionOffsetsTy &SectionOffsets);
224
225   MCSectionELF *createRelocationSection(MCContext &Ctx,
226                                         const MCSectionELF &Sec);
227
228   const MCSectionELF *createStringTable(MCContext &Ctx);
229
230   void executePostLayoutBinding(MCAssembler &Asm,
231                                 const MCAsmLayout &Layout) override;
232
233   void writeSectionHeader(const MCAsmLayout &Layout,
234                           const SectionIndexMapTy &SectionIndexMap,
235                           const SectionOffsetsTy &SectionOffsets);
236
237   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
238                         const MCAsmLayout &Layout);
239
240   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
241                         uint64_t Address, uint64_t Offset, uint64_t Size,
242                         uint32_t Link, uint32_t Info, uint64_t Alignment,
243                         uint64_t EntrySize);
244
245   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
246
247   using MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl;
248   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
249                                               const MCSymbol &SymA,
250                                               const MCFragment &FB, bool InSet,
251                                               bool IsPCRel) const override;
252
253   void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
254   void writeSection(const SectionIndexMapTy &SectionIndexMap,
255                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
256                     const MCSectionELF &Section);
257 };
258
259 } // end anonymous namespace
260
261 void ELFObjectWriter::align(unsigned Alignment) {
262   uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
263   WriteZeros(Padding);
264 }
265
266 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
267   SectionTable.push_back(Sec);
268   StrTabBuilder.add(Sec->getSectionName());
269   return SectionTable.size();
270 }
271
272 void SymbolTableWriter::createSymtabShndx() {
273   if (!ShndxIndexes.empty())
274     return;
275
276   ShndxIndexes.resize(NumWritten);
277 }
278
279 template <typename T> void SymbolTableWriter::write(T Value) {
280   EWriter.write(Value);
281 }
282
283 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
284     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
285
286 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
287                                     uint64_t size, uint8_t other,
288                                     uint32_t shndx, bool Reserved) {
289   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
290
291   if (LargeIndex)
292     createSymtabShndx();
293
294   if (!ShndxIndexes.empty()) {
295     if (LargeIndex)
296       ShndxIndexes.push_back(shndx);
297     else
298       ShndxIndexes.push_back(0);
299   }
300
301   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
302
303   if (Is64Bit) {
304     write(name);  // st_name
305     write(info);  // st_info
306     write(other); // st_other
307     write(Index); // st_shndx
308     write(value); // st_value
309     write(size);  // st_size
310   } else {
311     write(name);            // st_name
312     write(uint32_t(value)); // st_value
313     write(uint32_t(size));  // st_size
314     write(info);            // st_info
315     write(other);           // st_other
316     write(Index);           // st_shndx
317   }
318
319   ++NumWritten;
320 }
321
322 // Emit the ELF header.
323 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
324   // ELF Header
325   // ----------
326   //
327   // Note
328   // ----
329   // emitWord method behaves differently for ELF32 and ELF64, writing
330   // 4 bytes in the former and 8 in the latter.
331
332   writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
333
334   write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
335
336   // e_ident[EI_DATA]
337   write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
338
339   write8(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
340   // e_ident[EI_OSABI]
341   write8(TargetObjectWriter->getOSABI());
342   write8(0);                  // e_ident[EI_ABIVERSION]
343
344   WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
345
346   write16(ELF::ET_REL);             // e_type
347
348   write16(TargetObjectWriter->getEMachine()); // e_machine = target
349
350   write32(ELF::EV_CURRENT);         // e_version
351   WriteWord(0);                    // e_entry, no entry point in .o file
352   WriteWord(0);                    // e_phoff, no program header for .o
353   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
354
355   // e_flags = whatever the target wants
356   write32(Asm.getELFHeaderEFlags());
357
358   // e_ehsize = ELF header size
359   write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
360
361   write16(0);                  // e_phentsize = prog header entry size
362   write16(0);                  // e_phnum = # prog header entries = 0
363
364   // e_shentsize = Section header entry size
365   write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
366
367   // e_shnum     = # of section header ents
368   write16(0);
369
370   // e_shstrndx  = Section # of '.shstrtab'
371   assert(StringTableIndex < ELF::SHN_LORESERVE);
372   write16(StringTableIndex);
373 }
374
375 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
376                                       const MCAsmLayout &Layout) {
377   if (Sym.isCommon() && Sym.isExternal())
378     return Sym.getCommonAlignment();
379
380   uint64_t Res;
381   if (!Layout.getSymbolOffset(Sym, Res))
382     return 0;
383
384   if (Layout.getAssembler().isThumbFunc(&Sym))
385     Res |= 1;
386
387   return Res;
388 }
389
390 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
391                                                const MCAsmLayout &Layout) {
392   // The presence of symbol versions causes undefined symbols and
393   // versions declared with @@@ to be renamed.
394   for (const MCSymbol &A : Asm.symbols()) {
395     const auto &Alias = cast<MCSymbolELF>(A);
396     // Not an alias.
397     if (!Alias.isVariable())
398       continue;
399     auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
400     if (!Ref)
401       continue;
402     const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
403
404     StringRef AliasName = Alias.getName();
405     size_t Pos = AliasName.find('@');
406     if (Pos == StringRef::npos)
407       continue;
408
409     // Aliases defined with .symvar copy the binding from the symbol they alias.
410     // This is the first place we are able to copy this information.
411     Alias.setExternal(Symbol.isExternal());
412     Alias.setBinding(Symbol.getBinding());
413
414     StringRef Rest = AliasName.substr(Pos);
415     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
416       continue;
417
418     // FIXME: produce a better error message.
419     if (Symbol.isUndefined() && Rest.startswith("@@") &&
420         !Rest.startswith("@@@"))
421       report_fatal_error("A @@ version cannot be undefined");
422
423     Renames.insert(std::make_pair(&Symbol, &Alias));
424   }
425 }
426
427 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
428   uint8_t Type = newType;
429
430   // Propagation rules:
431   // IFUNC > FUNC > OBJECT > NOTYPE
432   // TLS_OBJECT > OBJECT > NOTYPE
433   //
434   // dont let the new type degrade the old type
435   switch (origType) {
436   default:
437     break;
438   case ELF::STT_GNU_IFUNC:
439     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
440         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
441       Type = ELF::STT_GNU_IFUNC;
442     break;
443   case ELF::STT_FUNC:
444     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
445         Type == ELF::STT_TLS)
446       Type = ELF::STT_FUNC;
447     break;
448   case ELF::STT_OBJECT:
449     if (Type == ELF::STT_NOTYPE)
450       Type = ELF::STT_OBJECT;
451     break;
452   case ELF::STT_TLS:
453     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
454         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
455       Type = ELF::STT_TLS;
456     break;
457   }
458
459   return Type;
460 }
461
462 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
463                                   uint32_t StringIndex, ELFSymbolData &MSD,
464                                   const MCAsmLayout &Layout) {
465   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
466   const MCSymbolELF *Base =
467       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
468
469   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
470   // SHN_COMMON.
471   bool IsReserved = !Base || Symbol.isCommon();
472
473   // Binding and Type share the same byte as upper and lower nibbles
474   uint8_t Binding = Symbol.getBinding();
475   uint8_t Type = Symbol.getType();
476   if (Base) {
477     Type = mergeTypeForSet(Type, Base->getType());
478   }
479   uint8_t Info = (Binding << 4) | Type;
480
481   // Other and Visibility share the same byte with Visibility using the lower
482   // 2 bits
483   uint8_t Visibility = Symbol.getVisibility();
484   uint8_t Other = Symbol.getOther() | Visibility;
485
486   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
487   uint64_t Size = 0;
488
489   const MCExpr *ESize = MSD.Symbol->getSize();
490   if (!ESize && Base)
491     ESize = Base->getSize();
492
493   if (ESize) {
494     int64_t Res;
495     if (!ESize->evaluateKnownAbsolute(Res, Layout))
496       report_fatal_error("Size expression must be absolute.");
497     Size = Res;
498   }
499
500   // Write out the symbol table entry
501   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
502                      IsReserved);
503 }
504
505 // It is always valid to create a relocation with a symbol. It is preferable
506 // to use a relocation with a section if that is possible. Using the section
507 // allows us to omit some local symbols from the symbol table.
508 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
509                                                const MCSymbolRefExpr *RefA,
510                                                const MCSymbol *S, uint64_t C,
511                                                unsigned Type) const {
512   const auto *Sym = cast_or_null<MCSymbolELF>(S);
513   // A PCRel relocation to an absolute value has no symbol (or section). We
514   // represent that with a relocation to a null section.
515   if (!RefA)
516     return false;
517
518   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
519   switch (Kind) {
520   default:
521     break;
522   // The .odp creation emits a relocation against the symbol ".TOC." which
523   // create a R_PPC64_TOC relocation. However the relocation symbol name
524   // in final object creation should be NULL, since the symbol does not
525   // really exist, it is just the reference to TOC base for the current
526   // object file. Since the symbol is undefined, returning false results
527   // in a relocation with a null section which is the desired result.
528   case MCSymbolRefExpr::VK_PPC_TOCBASE:
529     return false;
530
531   // These VariantKind cause the relocation to refer to something other than
532   // the symbol itself, like a linker generated table. Since the address of
533   // symbol is not relevant, we cannot replace the symbol with the
534   // section and patch the difference in the addend.
535   case MCSymbolRefExpr::VK_GOT:
536   case MCSymbolRefExpr::VK_PLT:
537   case MCSymbolRefExpr::VK_GOTPCREL:
538   case MCSymbolRefExpr::VK_PPC_GOT_LO:
539   case MCSymbolRefExpr::VK_PPC_GOT_HI:
540   case MCSymbolRefExpr::VK_PPC_GOT_HA:
541     return true;
542   }
543
544   // An undefined symbol is not in any section, so the relocation has to point
545   // to the symbol itself.
546   assert(Sym && "Expected a symbol");
547   if (Sym->isUndefined())
548     return true;
549
550   unsigned Binding = Sym->getBinding();
551   switch(Binding) {
552   default:
553     llvm_unreachable("Invalid Binding");
554   case ELF::STB_LOCAL:
555     break;
556   case ELF::STB_WEAK:
557     // If the symbol is weak, it might be overridden by a symbol in another
558     // file. The relocation has to point to the symbol so that the linker
559     // can update it.
560     return true;
561   case ELF::STB_GLOBAL:
562     // Global ELF symbols can be preempted by the dynamic linker. The relocation
563     // has to point to the symbol for a reason analogous to the STB_WEAK case.
564     return true;
565   }
566
567   // If a relocation points to a mergeable section, we have to be careful.
568   // If the offset is zero, a relocation with the section will encode the
569   // same information. With a non-zero offset, the situation is different.
570   // For example, a relocation can point 42 bytes past the end of a string.
571   // If we change such a relocation to use the section, the linker would think
572   // that it pointed to another string and subtracting 42 at runtime will
573   // produce the wrong value.
574   if (Sym->isInSection()) {
575     auto &Sec = cast<MCSectionELF>(Sym->getSection());
576     unsigned Flags = Sec.getFlags();
577     if (Flags & ELF::SHF_MERGE) {
578       if (C != 0)
579         return true;
580
581       // It looks like gold has a bug (http://sourceware.org/PR16794) and can
582       // only handle section relocations to mergeable sections if using RELA.
583       if (!hasRelocationAddend())
584         return true;
585     }
586
587     // Most TLS relocations use a got, so they need the symbol. Even those that
588     // are just an offset (@tpoff), require a symbol in gold versions before
589     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
590     // http://sourceware.org/PR16773.
591     if (Flags & ELF::SHF_TLS)
592       return true;
593   }
594
595   // If the symbol is a thumb function the final relocation must set the lowest
596   // bit. With a symbol that is done by just having the symbol have that bit
597   // set, so we would lose the bit if we relocated with the section.
598   // FIXME: We could use the section but add the bit to the relocation value.
599   if (Asm.isThumbFunc(Sym))
600     return true;
601
602   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
603     return true;
604   return false;
605 }
606
607 // True if the assembler knows nothing about the final value of the symbol.
608 // This doesn't cover the comdat issues, since in those cases the assembler
609 // can at least know that all symbols in the section will move together.
610 static bool isWeak(const MCSymbolELF &Sym) {
611   if (Sym.getType() == ELF::STT_GNU_IFUNC)
612     return true;
613
614   switch (Sym.getBinding()) {
615   default:
616     llvm_unreachable("Unknown binding");
617   case ELF::STB_LOCAL:
618     return false;
619   case ELF::STB_GLOBAL:
620     return false;
621   case ELF::STB_WEAK:
622   case ELF::STB_GNU_UNIQUE:
623     return true;
624   }
625 }
626
627 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
628                                        const MCAsmLayout &Layout,
629                                        const MCFragment *Fragment,
630                                        const MCFixup &Fixup, MCValue Target,
631                                        uint64_t &FixedValue) {
632   MCAsmBackend &Backend = Asm.getBackend();
633   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
634                  MCFixupKindInfo::FKF_IsPCRel;
635   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
636   uint64_t C = Target.getConstant();
637   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
638   MCContext &Ctx = Asm.getContext();
639
640   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
641     // Let A, B and C being the components of Target and R be the location of
642     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
643     // If it is pcrel, we want to compute (A - B + C - R).
644
645     // In general, ELF has no relocations for -B. It can only represent (A + C)
646     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
647     // replace B to implement it: (A - R - K + C)
648     if (IsPCRel) {
649       Ctx.reportError(
650           Fixup.getLoc(),
651           "No relocation available to represent this relative expression");
652       return;
653     }
654
655     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
656
657     if (SymB.isUndefined()) {
658       Ctx.reportError(Fixup.getLoc(),
659                       Twine("symbol '") + SymB.getName() +
660                           "' can not be undefined in a subtraction expression");
661       return;
662     }
663
664     assert(!SymB.isAbsolute() && "Should have been folded");
665     const MCSection &SecB = SymB.getSection();
666     if (&SecB != &FixupSection) {
667       Ctx.reportError(Fixup.getLoc(),
668                       "Cannot represent a difference across sections");
669       return;
670     }
671
672     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
673     uint64_t K = SymBOffset - FixupOffset;
674     IsPCRel = true;
675     C -= K;
676   }
677
678   // We either rejected the fixup or folded B into C at this point.
679   const MCSymbolRefExpr *RefA = Target.getSymA();
680   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
681
682   bool ViaWeakRef = false;
683   if (SymA && SymA->isVariable()) {
684     const MCExpr *Expr = SymA->getVariableValue();
685     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
686       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
687         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
688         ViaWeakRef = true;
689       }
690     }
691   }
692
693   unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
694   uint64_t OriginalC = C;
695   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
696   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
697     C += Layout.getSymbolOffset(*SymA);
698
699   uint64_t Addend = 0;
700   if (hasRelocationAddend()) {
701     Addend = C;
702     C = 0;
703   }
704
705   FixedValue = C;
706
707   if (!RelocateWithSymbol) {
708     const MCSection *SecA =
709         (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
710     auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
711     const auto *SectionSymbol =
712         ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
713     if (SectionSymbol)
714       SectionSymbol->setUsedInReloc();
715     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
716                            OriginalC);
717     Relocations[&FixupSection].push_back(Rec);
718     return;
719   }
720
721   const auto *RenamedSymA = SymA;
722   if (SymA) {
723     if (const MCSymbolELF *R = Renames.lookup(SymA))
724       RenamedSymA = R;
725
726     if (ViaWeakRef)
727       RenamedSymA->setIsWeakrefUsedInReloc();
728     else
729       RenamedSymA->setUsedInReloc();
730   }
731   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
732                          OriginalC);
733   Relocations[&FixupSection].push_back(Rec);
734 }
735
736 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
737                                  const MCSymbolELF &Symbol, bool Used,
738                                  bool Renamed) {
739   if (Symbol.isVariable()) {
740     const MCExpr *Expr = Symbol.getVariableValue();
741     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
742       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
743         return false;
744     }
745   }
746
747   if (Used)
748     return true;
749
750   if (Renamed)
751     return false;
752
753   if (Symbol.isVariable() && Symbol.isUndefined()) {
754     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
755     Layout.getBaseSymbol(Symbol);
756     return false;
757   }
758
759   if (Symbol.isUndefined() && !Symbol.isBindingSet())
760     return false;
761
762   if (Symbol.isTemporary())
763     return false;
764
765   if (Symbol.getType() == ELF::STT_SECTION)
766     return false;
767
768   return true;
769 }
770
771 void ELFObjectWriter::computeSymbolTable(
772     MCAssembler &Asm, const MCAsmLayout &Layout,
773     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
774     SectionOffsetsTy &SectionOffsets) {
775   MCContext &Ctx = Asm.getContext();
776   SymbolTableWriter Writer(*this, is64Bit());
777
778   // Symbol table
779   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
780   MCSectionELF *SymtabSection =
781       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
782   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
783   SymbolTableIndex = addToSectionTable(SymtabSection);
784
785   align(SymtabSection->getAlignment());
786   uint64_t SecStart = getStream().tell();
787
788   // The first entry is the undefined symbol entry.
789   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
790
791   std::vector<ELFSymbolData> LocalSymbolData;
792   std::vector<ELFSymbolData> ExternalSymbolData;
793
794   // Add the data for the symbols.
795   bool HasLargeSectionIndex = false;
796   for (const MCSymbol &S : Asm.symbols()) {
797     const auto &Symbol = cast<MCSymbolELF>(S);
798     bool Used = Symbol.isUsedInReloc();
799     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
800     bool isSignature = Symbol.isSignature();
801
802     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
803                     Renames.count(&Symbol)))
804       continue;
805
806     if (Symbol.isTemporary() && Symbol.isUndefined()) {
807       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
808       continue;
809     }
810
811     ELFSymbolData MSD;
812     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
813
814     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
815     assert(Local || !Symbol.isTemporary());
816
817     if (Symbol.isAbsolute()) {
818       MSD.SectionIndex = ELF::SHN_ABS;
819     } else if (Symbol.isCommon()) {
820       assert(!Local);
821       MSD.SectionIndex = ELF::SHN_COMMON;
822     } else if (Symbol.isUndefined()) {
823       if (isSignature && !Used) {
824         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
825         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
826           HasLargeSectionIndex = true;
827       } else {
828         MSD.SectionIndex = ELF::SHN_UNDEF;
829       }
830     } else {
831       const MCSectionELF &Section =
832           static_cast<const MCSectionELF &>(Symbol.getSection());
833       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
834       assert(MSD.SectionIndex && "Invalid section index!");
835       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
836         HasLargeSectionIndex = true;
837     }
838
839     // The @@@ in symbol version is replaced with @ in undefined symbols and @@
840     // in defined ones.
841     //
842     // FIXME: All name handling should be done before we get to the writer,
843     // including dealing with GNU-style version suffixes.  Fixing this isn't
844     // trivial.
845     //
846     // We thus have to be careful to not perform the symbol version replacement
847     // blindly:
848     //
849     // The ELF format is used on Windows by the MCJIT engine.  Thus, on
850     // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
851     // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
852     // C++ name mangling can legally have "@@@" as a sub-string. In that case,
853     // the EFLObjectWriter should not interpret the "@@@" sub-string as
854     // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
855     // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
856     // "__imp_?" or "__imp_@?".
857     //
858     // It would have been interesting to perform the MS mangling prefix check
859     // only when the target triple is of the form *-pc-windows-elf. But, it
860     // seems that this information is not easily accessible from the
861     // ELFObjectWriter.
862     StringRef Name = Symbol.getName();
863     SmallString<32> Buf;
864     if (!Name.startswith("?") && !Name.startswith("@?") &&
865         !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
866       // This symbol isn't following the MSVC C++ name mangling convention. We
867       // can thus safely interpret the @@@ in symbol names as specifying symbol
868       // versioning.
869       size_t Pos = Name.find("@@@");
870       if (Pos != StringRef::npos) {
871         Buf += Name.substr(0, Pos);
872         unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
873         Buf += Name.substr(Pos + Skip);
874         Name = VersionSymSaver.save(Buf.c_str());
875       }
876     }
877
878     // Sections have their own string table
879     if (Symbol.getType() != ELF::STT_SECTION) {
880       MSD.Name = Name;
881       StrTabBuilder.add(Name);
882     }
883
884     if (Local)
885       LocalSymbolData.push_back(MSD);
886     else
887       ExternalSymbolData.push_back(MSD);
888   }
889
890   // This holds the .symtab_shndx section index.
891   unsigned SymtabShndxSectionIndex = 0;
892
893   if (HasLargeSectionIndex) {
894     MCSectionELF *SymtabShndxSection =
895         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
896     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
897     SymtabShndxSection->setAlignment(4);
898   }
899
900   ArrayRef<std::string> FileNames = Asm.getFileNames();
901   for (const std::string &Name : FileNames)
902     StrTabBuilder.add(Name);
903
904   StrTabBuilder.finalize();
905
906   // File symbols are emitted first and handled separately from normal symbols,
907   // i.e. a non-STT_FILE symbol with the same name may appear.
908   for (const std::string &Name : FileNames)
909     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
910                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
911                        ELF::SHN_ABS, true);
912
913   // Symbols are required to be in lexicographic order.
914   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
915   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
916
917   // Set the symbol indices. Local symbols must come before all other
918   // symbols with non-local bindings.
919   unsigned Index = FileNames.size() + 1;
920
921   for (ELFSymbolData &MSD : LocalSymbolData) {
922     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
923                                ? 0
924                                : StrTabBuilder.getOffset(MSD.Name);
925     MSD.Symbol->setIndex(Index++);
926     writeSymbol(Writer, StringIndex, MSD, Layout);
927   }
928
929   // Write the symbol table entries.
930   LastLocalSymbolIndex = Index;
931
932   for (ELFSymbolData &MSD : ExternalSymbolData) {
933     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
934     MSD.Symbol->setIndex(Index++);
935     writeSymbol(Writer, StringIndex, MSD, Layout);
936     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
937   }
938
939   uint64_t SecEnd = getStream().tell();
940   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
941
942   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
943   if (ShndxIndexes.empty()) {
944     assert(SymtabShndxSectionIndex == 0);
945     return;
946   }
947   assert(SymtabShndxSectionIndex != 0);
948
949   SecStart = getStream().tell();
950   const MCSectionELF *SymtabShndxSection =
951       SectionTable[SymtabShndxSectionIndex - 1];
952   for (uint32_t Index : ShndxIndexes)
953     write(Index);
954   SecEnd = getStream().tell();
955   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
956 }
957
958 MCSectionELF *
959 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
960                                          const MCSectionELF &Sec) {
961   if (Relocations[&Sec].empty())
962     return nullptr;
963
964   const StringRef SectionName = Sec.getSectionName();
965   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
966   RelaSectionName += SectionName;
967
968   unsigned EntrySize;
969   if (hasRelocationAddend())
970     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
971   else
972     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
973
974   unsigned Flags = 0;
975   if (Sec.getFlags() & ELF::SHF_GROUP)
976     Flags = ELF::SHF_GROUP;
977
978   MCSectionELF *RelaSection = Ctx.createELFRelSection(
979       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
980       Flags, EntrySize, Sec.getGroup(), &Sec);
981   RelaSection->setAlignment(is64Bit() ? 8 : 4);
982   return RelaSection;
983 }
984
985 // Include the debug info compression header.
986 bool ELFObjectWriter::maybeWriteCompression(
987     uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
988     unsigned Alignment) {
989   if (ZLibStyle) {
990     uint64_t HdrSize =
991         is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
992     if (Size <= HdrSize + CompressedContents.size())
993       return false;
994     // Platform specific header is followed by compressed data.
995     if (is64Bit()) {
996       // Write Elf64_Chdr header.
997       write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
998       write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
999       write(static_cast<ELF::Elf64_Xword>(Size));
1000       write(static_cast<ELF::Elf64_Xword>(Alignment));
1001     } else {
1002       // Write Elf32_Chdr header otherwise.
1003       write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
1004       write(static_cast<ELF::Elf32_Word>(Size));
1005       write(static_cast<ELF::Elf32_Word>(Alignment));
1006     }
1007     return true;
1008   }
1009
1010   // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
1011   // useful for consumers to preallocate a buffer to decompress into.
1012   const StringRef Magic = "ZLIB";
1013   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
1014     return false;
1015   write(ArrayRef<char>(Magic.begin(), Magic.size()));
1016   writeBE64(Size);
1017   return true;
1018 }
1019
1020 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
1021                                        const MCAsmLayout &Layout) {
1022   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1023   StringRef SectionName = Section.getSectionName();
1024
1025   auto &MC = Asm.getContext();
1026   const auto &MAI = MC.getAsmInfo();
1027
1028   // Compressing debug_frame requires handling alignment fragments which is
1029   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
1030   // for writing to arbitrary buffers) for little benefit.
1031   bool CompressionEnabled =
1032       MAI->compressDebugSections() != DebugCompressionType::None;
1033   if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
1034       SectionName == ".debug_frame") {
1035     Asm.writeSectionData(&Section, Layout);
1036     return;
1037   }
1038
1039   assert((MAI->compressDebugSections() == DebugCompressionType::Z ||
1040           MAI->compressDebugSections() == DebugCompressionType::GNU) &&
1041          "expected zlib or zlib-gnu style compression");
1042
1043   SmallVector<char, 128> UncompressedData;
1044   raw_svector_ostream VecOS(UncompressedData);
1045   raw_pwrite_stream &OldStream = getStream();
1046   setStream(VecOS);
1047   Asm.writeSectionData(&Section, Layout);
1048   setStream(OldStream);
1049
1050   SmallVector<char, 128> CompressedContents;
1051   if (Error E = zlib::compress(
1052           StringRef(UncompressedData.data(), UncompressedData.size()),
1053           CompressedContents)) {
1054     consumeError(std::move(E));
1055     getStream() << UncompressedData;
1056     return;
1057   }
1058
1059   bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z;
1060   if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
1061                              ZlibStyle, Sec.getAlignment())) {
1062     getStream() << UncompressedData;
1063     return;
1064   }
1065
1066   if (ZlibStyle)
1067     // Set the compressed flag. That is zlib style.
1068     Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
1069   else
1070     // Add "z" prefix to section name. This is zlib-gnu style.
1071     MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str());
1072   getStream() << CompressedContents;
1073 }
1074
1075 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1076                                        uint64_t Flags, uint64_t Address,
1077                                        uint64_t Offset, uint64_t Size,
1078                                        uint32_t Link, uint32_t Info,
1079                                        uint64_t Alignment,
1080                                        uint64_t EntrySize) {
1081   write32(Name);        // sh_name: index into string table
1082   write32(Type);        // sh_type
1083   WriteWord(Flags);     // sh_flags
1084   WriteWord(Address);   // sh_addr
1085   WriteWord(Offset);    // sh_offset
1086   WriteWord(Size);      // sh_size
1087   write32(Link);        // sh_link
1088   write32(Info);        // sh_info
1089   WriteWord(Alignment); // sh_addralign
1090   WriteWord(EntrySize); // sh_entsize
1091 }
1092
1093 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
1094                                        const MCSectionELF &Sec) {
1095   std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
1096
1097   // We record relocations by pushing to the end of a vector. Reverse the vector
1098   // to get the relocations in the order they were created.
1099   // In most cases that is not important, but it can be for special sections
1100   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
1101   std::reverse(Relocs.begin(), Relocs.end());
1102
1103   // Sort the relocation entries. MIPS needs this.
1104   TargetObjectWriter->sortRelocs(Asm, Relocs);
1105
1106   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1107     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1108     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
1109
1110     if (is64Bit()) {
1111       write(Entry.Offset);
1112       if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
1113         write(uint32_t(Index));
1114
1115         write(TargetObjectWriter->getRSsym(Entry.Type));
1116         write(TargetObjectWriter->getRType3(Entry.Type));
1117         write(TargetObjectWriter->getRType2(Entry.Type));
1118         write(TargetObjectWriter->getRType(Entry.Type));
1119       } else {
1120         struct ELF::Elf64_Rela ERE64;
1121         ERE64.setSymbolAndType(Index, Entry.Type);
1122         write(ERE64.r_info);
1123       }
1124       if (hasRelocationAddend())
1125         write(Entry.Addend);
1126     } else {
1127       write(uint32_t(Entry.Offset));
1128
1129       struct ELF::Elf32_Rela ERE32;
1130       ERE32.setSymbolAndType(Index, Entry.Type);
1131       write(ERE32.r_info);
1132
1133       if (hasRelocationAddend())
1134         write(uint32_t(Entry.Addend));
1135
1136       if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
1137         if (uint32_t RType = TargetObjectWriter->getRType2(Entry.Type)) {
1138           write(uint32_t(Entry.Offset));
1139
1140           ERE32.setSymbolAndType(0, RType);
1141           write(ERE32.r_info);
1142           write(uint32_t(0));
1143         }
1144         if (uint32_t RType = TargetObjectWriter->getRType3(Entry.Type)) {
1145           write(uint32_t(Entry.Offset));
1146
1147           ERE32.setSymbolAndType(0, RType);
1148           write(ERE32.r_info);
1149           write(uint32_t(0));
1150         }
1151       }
1152     }
1153   }
1154 }
1155
1156 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1157   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1158   StrTabBuilder.write(getStream());
1159   return StrtabSection;
1160 }
1161
1162 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1163                                    uint32_t GroupSymbolIndex, uint64_t Offset,
1164                                    uint64_t Size, const MCSectionELF &Section) {
1165   uint64_t sh_link = 0;
1166   uint64_t sh_info = 0;
1167
1168   switch(Section.getType()) {
1169   default:
1170     // Nothing to do.
1171     break;
1172
1173   case ELF::SHT_DYNAMIC:
1174     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1175
1176   case ELF::SHT_REL:
1177   case ELF::SHT_RELA: {
1178     sh_link = SymbolTableIndex;
1179     assert(sh_link && ".symtab not found");
1180     const MCSection *InfoSection = Section.getAssociatedSection();
1181     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
1182     break;
1183   }
1184
1185   case ELF::SHT_SYMTAB:
1186   case ELF::SHT_DYNSYM:
1187     sh_link = StringTableIndex;
1188     sh_info = LastLocalSymbolIndex;
1189     break;
1190
1191   case ELF::SHT_SYMTAB_SHNDX:
1192     sh_link = SymbolTableIndex;
1193     break;
1194
1195   case ELF::SHT_GROUP:
1196     sh_link = SymbolTableIndex;
1197     sh_info = GroupSymbolIndex;
1198     break;
1199   }
1200
1201   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1202     const MCSymbol *Sym = Section.getAssociatedSymbol();
1203     const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1204     sh_link = SectionIndexMap.lookup(Sec);
1205   }
1206
1207   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1208                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1209                    sh_link, sh_info, Section.getAlignment(),
1210                    Section.getEntrySize());
1211 }
1212
1213 void ELFObjectWriter::writeSectionHeader(
1214     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1215     const SectionOffsetsTy &SectionOffsets) {
1216   const unsigned NumSections = SectionTable.size();
1217
1218   // Null section first.
1219   uint64_t FirstSectionSize =
1220       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1221   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1222
1223   for (const MCSectionELF *Section : SectionTable) {
1224     uint32_t GroupSymbolIndex;
1225     unsigned Type = Section->getType();
1226     if (Type != ELF::SHT_GROUP)
1227       GroupSymbolIndex = 0;
1228     else
1229       GroupSymbolIndex = Section->getGroup()->getIndex();
1230
1231     const std::pair<uint64_t, uint64_t> &Offsets =
1232         SectionOffsets.find(Section)->second;
1233     uint64_t Size;
1234     if (Type == ELF::SHT_NOBITS)
1235       Size = Layout.getSectionAddressSize(Section);
1236     else
1237       Size = Offsets.second - Offsets.first;
1238
1239     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1240                  *Section);
1241   }
1242 }
1243
1244 void ELFObjectWriter::writeObject(MCAssembler &Asm,
1245                                   const MCAsmLayout &Layout) {
1246   MCContext &Ctx = Asm.getContext();
1247   MCSectionELF *StrtabSection =
1248       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1249   StringTableIndex = addToSectionTable(StrtabSection);
1250
1251   RevGroupMapTy RevGroupMap;
1252   SectionIndexMapTy SectionIndexMap;
1253
1254   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1255
1256   // Write out the ELF header ...
1257   writeHeader(Asm);
1258
1259   // ... then the sections ...
1260   SectionOffsetsTy SectionOffsets;
1261   std::vector<MCSectionELF *> Groups;
1262   std::vector<MCSectionELF *> Relocations;
1263   for (MCSection &Sec : Asm) {
1264     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1265
1266     align(Section.getAlignment());
1267
1268     // Remember the offset into the file for this section.
1269     uint64_t SecStart = getStream().tell();
1270
1271     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1272     writeSectionData(Asm, Section, Layout);
1273
1274     uint64_t SecEnd = getStream().tell();
1275     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1276
1277     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1278
1279     if (SignatureSymbol) {
1280       Asm.registerSymbol(*SignatureSymbol);
1281       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1282       if (!GroupIdx) {
1283         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1284         GroupIdx = addToSectionTable(Group);
1285         Group->setAlignment(4);
1286         Groups.push_back(Group);
1287       }
1288       std::vector<const MCSectionELF *> &Members =
1289           GroupMembers[SignatureSymbol];
1290       Members.push_back(&Section);
1291       if (RelSection)
1292         Members.push_back(RelSection);
1293     }
1294
1295     SectionIndexMap[&Section] = addToSectionTable(&Section);
1296     if (RelSection) {
1297       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1298       Relocations.push_back(RelSection);
1299     }
1300   }
1301
1302   for (MCSectionELF *Group : Groups) {
1303     align(Group->getAlignment());
1304
1305     // Remember the offset into the file for this section.
1306     uint64_t SecStart = getStream().tell();
1307
1308     const MCSymbol *SignatureSymbol = Group->getGroup();
1309     assert(SignatureSymbol);
1310     write(uint32_t(ELF::GRP_COMDAT));
1311     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1312       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1313       write(SecIndex);
1314     }
1315
1316     uint64_t SecEnd = getStream().tell();
1317     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1318   }
1319
1320   // Compute symbol table information.
1321   computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1322
1323   for (MCSectionELF *RelSection : Relocations) {
1324     align(RelSection->getAlignment());
1325
1326     // Remember the offset into the file for this section.
1327     uint64_t SecStart = getStream().tell();
1328
1329     writeRelocations(Asm,
1330                      cast<MCSectionELF>(*RelSection->getAssociatedSection()));
1331
1332     uint64_t SecEnd = getStream().tell();
1333     SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1334   }
1335
1336   {
1337     uint64_t SecStart = getStream().tell();
1338     const MCSectionELF *Sec = createStringTable(Ctx);
1339     uint64_t SecEnd = getStream().tell();
1340     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1341   }
1342
1343   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1344   align(NaturalAlignment);
1345
1346   const uint64_t SectionHeaderOffset = getStream().tell();
1347
1348   // ... then the section header table ...
1349   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1350
1351   uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1352                              ? (uint16_t)ELF::SHN_UNDEF
1353                              : SectionTable.size() + 1;
1354   if (sys::IsLittleEndianHost != IsLittleEndian)
1355     sys::swapByteOrder(NumSections);
1356   unsigned NumSectionsOffset;
1357
1358   if (is64Bit()) {
1359     uint64_t Val = SectionHeaderOffset;
1360     if (sys::IsLittleEndianHost != IsLittleEndian)
1361       sys::swapByteOrder(Val);
1362     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1363                        offsetof(ELF::Elf64_Ehdr, e_shoff));
1364     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1365   } else {
1366     uint32_t Val = SectionHeaderOffset;
1367     if (sys::IsLittleEndianHost != IsLittleEndian)
1368       sys::swapByteOrder(Val);
1369     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1370                        offsetof(ELF::Elf32_Ehdr, e_shoff));
1371     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1372   }
1373   getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1374                      sizeof(NumSections), NumSectionsOffset);
1375 }
1376
1377 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1378     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1379     bool InSet, bool IsPCRel) const {
1380   const auto &SymA = cast<MCSymbolELF>(SA);
1381   if (IsPCRel) {
1382     assert(!InSet);
1383     if (isWeak(SymA))
1384       return false;
1385   }
1386   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1387                                                                 InSet, IsPCRel);
1388 }
1389
1390 std::unique_ptr<MCObjectWriter>
1391 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1392                             raw_pwrite_stream &OS, bool IsLittleEndian) {
1393   return llvm::make_unique<ELFObjectWriter>(std::move(MOTW), OS,
1394                                             IsLittleEndian);
1395 }