]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Support/ThreadPool.cpp
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Support / ThreadPool.cpp
1 //==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a crude C++11 based thread pool.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Support/ThreadPool.h"
15
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/Support/Threading.h"
18 #include "llvm/Support/raw_ostream.h"
19
20 using namespace llvm;
21
22 #if LLVM_ENABLE_THREADS
23
24 // Default to hardware_concurrency
25 ThreadPool::ThreadPool() : ThreadPool(hardware_concurrency()) {}
26
27 ThreadPool::ThreadPool(unsigned ThreadCount)
28     : ActiveThreads(0), EnableFlag(true) {
29   // Create ThreadCount threads that will loop forever, wait on QueueCondition
30   // for tasks to be queued or the Pool to be destroyed.
31   Threads.reserve(ThreadCount);
32   for (unsigned ThreadID = 0; ThreadID < ThreadCount; ++ThreadID) {
33     Threads.emplace_back([&] {
34       while (true) {
35         PackagedTaskTy Task;
36         {
37           std::unique_lock<std::mutex> LockGuard(QueueLock);
38           // Wait for tasks to be pushed in the queue
39           QueueCondition.wait(LockGuard,
40                               [&] { return !EnableFlag || !Tasks.empty(); });
41           // Exit condition
42           if (!EnableFlag && Tasks.empty())
43             return;
44           // Yeah, we have a task, grab it and release the lock on the queue
45
46           // We first need to signal that we are active before popping the queue
47           // in order for wait() to properly detect that even if the queue is
48           // empty, there is still a task in flight.
49           {
50             std::unique_lock<std::mutex> LockGuard(CompletionLock);
51             ++ActiveThreads;
52           }
53           Task = std::move(Tasks.front());
54           Tasks.pop();
55         }
56         // Run the task we just grabbed
57         Task();
58
59         {
60           // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait()
61           std::unique_lock<std::mutex> LockGuard(CompletionLock);
62           --ActiveThreads;
63         }
64
65         // Notify task completion, in case someone waits on ThreadPool::wait()
66         CompletionCondition.notify_all();
67       }
68     });
69   }
70 }
71
72 void ThreadPool::wait() {
73   // Wait for all threads to complete and the queue to be empty
74   std::unique_lock<std::mutex> LockGuard(CompletionLock);
75   // The order of the checks for ActiveThreads and Tasks.empty() matters because
76   // any active threads might be modifying the Tasks queue, and this would be a
77   // race.
78   CompletionCondition.wait(LockGuard,
79                            [&] { return !ActiveThreads && Tasks.empty(); });
80 }
81
82 std::shared_future<void> ThreadPool::asyncImpl(TaskTy Task) {
83   /// Wrap the Task in a packaged_task to return a future object.
84   PackagedTaskTy PackagedTask(std::move(Task));
85   auto Future = PackagedTask.get_future();
86   {
87     // Lock the queue and push the new task
88     std::unique_lock<std::mutex> LockGuard(QueueLock);
89
90     // Don't allow enqueueing after disabling the pool
91     assert(EnableFlag && "Queuing a thread during ThreadPool destruction");
92
93     Tasks.push(std::move(PackagedTask));
94   }
95   QueueCondition.notify_one();
96   return Future.share();
97 }
98
99 // The destructor joins all threads, waiting for completion.
100 ThreadPool::~ThreadPool() {
101   {
102     std::unique_lock<std::mutex> LockGuard(QueueLock);
103     EnableFlag = false;
104   }
105   QueueCondition.notify_all();
106   for (auto &Worker : Threads)
107     Worker.join();
108 }
109
110 #else // LLVM_ENABLE_THREADS Disabled
111
112 ThreadPool::ThreadPool() : ThreadPool(0) {}
113
114 // No threads are launched, issue a warning if ThreadCount is not 0
115 ThreadPool::ThreadPool(unsigned ThreadCount)
116     : ActiveThreads(0) {
117   if (ThreadCount) {
118     errs() << "Warning: request a ThreadPool with " << ThreadCount
119            << " threads, but LLVM_ENABLE_THREADS has been turned off\n";
120   }
121 }
122
123 void ThreadPool::wait() {
124   // Sequential implementation running the tasks
125   while (!Tasks.empty()) {
126     auto Task = std::move(Tasks.front());
127     Tasks.pop();
128     Task();
129   }
130 }
131
132 std::shared_future<void> ThreadPool::asyncImpl(TaskTy Task) {
133   // Get a Future with launch::deferred execution using std::async
134   auto Future = std::async(std::launch::deferred, std::move(Task)).share();
135   // Wrap the future so that both ThreadPool::wait() can operate and the
136   // returned future can be sync'ed on.
137   PackagedTaskTy PackagedTask([Future]() { Future.get(); });
138   Tasks.push(std::move(PackagedTask));
139   return Future;
140 }
141
142 ThreadPool::~ThreadPool() {
143   wait();
144 }
145
146 #endif