]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Support/YAMLTraits.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Support / YAMLTraits.cpp
1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Support/YAMLTraits.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/Support/Casting.h"
17 #include "llvm/Support/Errc.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/Format.h"
20 #include "llvm/Support/LineIterator.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/Unicode.h"
23 #include "llvm/Support/YAMLParser.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstdint>
28 #include <cstdlib>
29 #include <cstring>
30 #include <string>
31 #include <vector>
32
33 using namespace llvm;
34 using namespace yaml;
35
36 //===----------------------------------------------------------------------===//
37 //  IO
38 //===----------------------------------------------------------------------===//
39
40 IO::IO(void *Context) : Ctxt(Context) {}
41
42 IO::~IO() = default;
43
44 void *IO::getContext() {
45   return Ctxt;
46 }
47
48 void IO::setContext(void *Context) {
49   Ctxt = Context;
50 }
51
52 //===----------------------------------------------------------------------===//
53 //  Input
54 //===----------------------------------------------------------------------===//
55
56 Input::Input(StringRef InputContent, void *Ctxt,
57              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
58     : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
59   if (DiagHandler)
60     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
61   DocIterator = Strm->begin();
62 }
63
64 Input::Input(MemoryBufferRef Input, void *Ctxt,
65              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
66     : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
67   if (DiagHandler)
68     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
69   DocIterator = Strm->begin();
70 }
71
72 Input::~Input() = default;
73
74 std::error_code Input::error() { return EC; }
75
76 // Pin the vtables to this file.
77 void Input::HNode::anchor() {}
78 void Input::EmptyHNode::anchor() {}
79 void Input::ScalarHNode::anchor() {}
80 void Input::MapHNode::anchor() {}
81 void Input::SequenceHNode::anchor() {}
82
83 bool Input::outputting() {
84   return false;
85 }
86
87 bool Input::setCurrentDocument() {
88   if (DocIterator != Strm->end()) {
89     Node *N = DocIterator->getRoot();
90     if (!N) {
91       assert(Strm->failed() && "Root is NULL iff parsing failed");
92       EC = make_error_code(errc::invalid_argument);
93       return false;
94     }
95
96     if (isa<NullNode>(N)) {
97       // Empty files are allowed and ignored
98       ++DocIterator;
99       return setCurrentDocument();
100     }
101     TopNode = createHNodes(N);
102     CurrentNode = TopNode.get();
103     return true;
104   }
105   return false;
106 }
107
108 bool Input::nextDocument() {
109   return ++DocIterator != Strm->end();
110 }
111
112 const Node *Input::getCurrentNode() const {
113   return CurrentNode ? CurrentNode->_node : nullptr;
114 }
115
116 bool Input::mapTag(StringRef Tag, bool Default) {
117   std::string foundTag = CurrentNode->_node->getVerbatimTag();
118   if (foundTag.empty()) {
119     // If no tag found and 'Tag' is the default, say it was found.
120     return Default;
121   }
122   // Return true iff found tag matches supplied tag.
123   return Tag.equals(foundTag);
124 }
125
126 void Input::beginMapping() {
127   if (EC)
128     return;
129   // CurrentNode can be null if the document is empty.
130   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
131   if (MN) {
132     MN->ValidKeys.clear();
133   }
134 }
135
136 std::vector<StringRef> Input::keys() {
137   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
138   std::vector<StringRef> Ret;
139   if (!MN) {
140     setError(CurrentNode, "not a mapping");
141     return Ret;
142   }
143   for (auto &P : MN->Mapping)
144     Ret.push_back(P.first());
145   return Ret;
146 }
147
148 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
149                          void *&SaveInfo) {
150   UseDefault = false;
151   if (EC)
152     return false;
153
154   // CurrentNode is null for empty documents, which is an error in case required
155   // nodes are present.
156   if (!CurrentNode) {
157     if (Required)
158       EC = make_error_code(errc::invalid_argument);
159     return false;
160   }
161
162   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
163   if (!MN) {
164     if (Required || !isa<EmptyHNode>(CurrentNode))
165       setError(CurrentNode, "not a mapping");
166     return false;
167   }
168   MN->ValidKeys.push_back(Key);
169   HNode *Value = MN->Mapping[Key].get();
170   if (!Value) {
171     if (Required)
172       setError(CurrentNode, Twine("missing required key '") + Key + "'");
173     else
174       UseDefault = true;
175     return false;
176   }
177   SaveInfo = CurrentNode;
178   CurrentNode = Value;
179   return true;
180 }
181
182 void Input::postflightKey(void *saveInfo) {
183   CurrentNode = reinterpret_cast<HNode *>(saveInfo);
184 }
185
186 void Input::endMapping() {
187   if (EC)
188     return;
189   // CurrentNode can be null if the document is empty.
190   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
191   if (!MN)
192     return;
193   for (const auto &NN : MN->Mapping) {
194     if (!is_contained(MN->ValidKeys, NN.first())) {
195       setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
196       break;
197     }
198   }
199 }
200
201 void Input::beginFlowMapping() { beginMapping(); }
202
203 void Input::endFlowMapping() { endMapping(); }
204
205 unsigned Input::beginSequence() {
206   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
207     return SQ->Entries.size();
208   if (isa<EmptyHNode>(CurrentNode))
209     return 0;
210   // Treat case where there's a scalar "null" value as an empty sequence.
211   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
212     if (isNull(SN->value()))
213       return 0;
214   }
215   // Any other type of HNode is an error.
216   setError(CurrentNode, "not a sequence");
217   return 0;
218 }
219
220 void Input::endSequence() {
221 }
222
223 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
224   if (EC)
225     return false;
226   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
227     SaveInfo = CurrentNode;
228     CurrentNode = SQ->Entries[Index].get();
229     return true;
230   }
231   return false;
232 }
233
234 void Input::postflightElement(void *SaveInfo) {
235   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
236 }
237
238 unsigned Input::beginFlowSequence() { return beginSequence(); }
239
240 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
241   if (EC)
242     return false;
243   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
244     SaveInfo = CurrentNode;
245     CurrentNode = SQ->Entries[index].get();
246     return true;
247   }
248   return false;
249 }
250
251 void Input::postflightFlowElement(void *SaveInfo) {
252   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
253 }
254
255 void Input::endFlowSequence() {
256 }
257
258 void Input::beginEnumScalar() {
259   ScalarMatchFound = false;
260 }
261
262 bool Input::matchEnumScalar(const char *Str, bool) {
263   if (ScalarMatchFound)
264     return false;
265   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
266     if (SN->value().equals(Str)) {
267       ScalarMatchFound = true;
268       return true;
269     }
270   }
271   return false;
272 }
273
274 bool Input::matchEnumFallback() {
275   if (ScalarMatchFound)
276     return false;
277   ScalarMatchFound = true;
278   return true;
279 }
280
281 void Input::endEnumScalar() {
282   if (!ScalarMatchFound) {
283     setError(CurrentNode, "unknown enumerated scalar");
284   }
285 }
286
287 bool Input::beginBitSetScalar(bool &DoClear) {
288   BitValuesUsed.clear();
289   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
290     BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
291   } else {
292     setError(CurrentNode, "expected sequence of bit values");
293   }
294   DoClear = true;
295   return true;
296 }
297
298 bool Input::bitSetMatch(const char *Str, bool) {
299   if (EC)
300     return false;
301   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
302     unsigned Index = 0;
303     for (auto &N : SQ->Entries) {
304       if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
305         if (SN->value().equals(Str)) {
306           BitValuesUsed[Index] = true;
307           return true;
308         }
309       } else {
310         setError(CurrentNode, "unexpected scalar in sequence of bit values");
311       }
312       ++Index;
313     }
314   } else {
315     setError(CurrentNode, "expected sequence of bit values");
316   }
317   return false;
318 }
319
320 void Input::endBitSetScalar() {
321   if (EC)
322     return;
323   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
324     assert(BitValuesUsed.size() == SQ->Entries.size());
325     for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
326       if (!BitValuesUsed[i]) {
327         setError(SQ->Entries[i].get(), "unknown bit value");
328         return;
329       }
330     }
331   }
332 }
333
334 void Input::scalarString(StringRef &S, QuotingType) {
335   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
336     S = SN->value();
337   } else {
338     setError(CurrentNode, "unexpected scalar");
339   }
340 }
341
342 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
343
344 void Input::scalarTag(std::string &Tag) {
345   Tag = CurrentNode->_node->getVerbatimTag();
346 }
347
348 void Input::setError(HNode *hnode, const Twine &message) {
349   assert(hnode && "HNode must not be NULL");
350   setError(hnode->_node, message);
351 }
352
353 NodeKind Input::getNodeKind() {
354   if (isa<ScalarHNode>(CurrentNode))
355     return NodeKind::Scalar;
356   else if (isa<MapHNode>(CurrentNode))
357     return NodeKind::Map;
358   else if (isa<SequenceHNode>(CurrentNode))
359     return NodeKind::Sequence;
360   llvm_unreachable("Unsupported node kind");
361 }
362
363 void Input::setError(Node *node, const Twine &message) {
364   Strm->printError(node, message);
365   EC = make_error_code(errc::invalid_argument);
366 }
367
368 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
369   SmallString<128> StringStorage;
370   if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
371     StringRef KeyStr = SN->getValue(StringStorage);
372     if (!StringStorage.empty()) {
373       // Copy string to permanent storage
374       KeyStr = StringStorage.str().copy(StringAllocator);
375     }
376     return llvm::make_unique<ScalarHNode>(N, KeyStr);
377   } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
378     StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
379     return llvm::make_unique<ScalarHNode>(N, ValueCopy);
380   } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
381     auto SQHNode = llvm::make_unique<SequenceHNode>(N);
382     for (Node &SN : *SQ) {
383       auto Entry = createHNodes(&SN);
384       if (EC)
385         break;
386       SQHNode->Entries.push_back(std::move(Entry));
387     }
388     return std::move(SQHNode);
389   } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
390     auto mapHNode = llvm::make_unique<MapHNode>(N);
391     for (KeyValueNode &KVN : *Map) {
392       Node *KeyNode = KVN.getKey();
393       ScalarNode *Key = dyn_cast<ScalarNode>(KeyNode);
394       Node *Value = KVN.getValue();
395       if (!Key || !Value) {
396         if (!Key)
397           setError(KeyNode, "Map key must be a scalar");
398         if (!Value)
399           setError(KeyNode, "Map value must not be empty");
400         break;
401       }
402       StringStorage.clear();
403       StringRef KeyStr = Key->getValue(StringStorage);
404       if (!StringStorage.empty()) {
405         // Copy string to permanent storage
406         KeyStr = StringStorage.str().copy(StringAllocator);
407       }
408       auto ValueHNode = createHNodes(Value);
409       if (EC)
410         break;
411       mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
412     }
413     return std::move(mapHNode);
414   } else if (isa<NullNode>(N)) {
415     return llvm::make_unique<EmptyHNode>(N);
416   } else {
417     setError(N, "unknown node kind");
418     return nullptr;
419   }
420 }
421
422 void Input::setError(const Twine &Message) {
423   setError(CurrentNode, Message);
424 }
425
426 bool Input::canElideEmptySequence() {
427   return false;
428 }
429
430 //===----------------------------------------------------------------------===//
431 //  Output
432 //===----------------------------------------------------------------------===//
433
434 Output::Output(raw_ostream &yout, void *context, int WrapColumn)
435     : IO(context), Out(yout), WrapColumn(WrapColumn) {}
436
437 Output::~Output() = default;
438
439 bool Output::outputting() {
440   return true;
441 }
442
443 void Output::beginMapping() {
444   StateStack.push_back(inMapFirstKey);
445   NeedsNewLine = true;
446 }
447
448 bool Output::mapTag(StringRef Tag, bool Use) {
449   if (Use) {
450     // If this tag is being written inside a sequence we should write the start
451     // of the sequence before writing the tag, otherwise the tag won't be
452     // attached to the element in the sequence, but rather the sequence itself.
453     bool SequenceElement = false;
454     if (StateStack.size() > 1) {
455       auto &E = StateStack[StateStack.size() - 2];
456       SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
457     }
458     if (SequenceElement && StateStack.back() == inMapFirstKey) {
459       newLineCheck();
460     } else {
461       output(" ");
462     }
463     output(Tag);
464     if (SequenceElement) {
465       // If we're writing the tag during the first element of a map, the tag
466       // takes the place of the first element in the sequence.
467       if (StateStack.back() == inMapFirstKey) {
468         StateStack.pop_back();
469         StateStack.push_back(inMapOtherKey);
470       }
471       // Tags inside maps in sequences should act as keys in the map from a
472       // formatting perspective, so we always want a newline in a sequence.
473       NeedsNewLine = true;
474     }
475   }
476   return Use;
477 }
478
479 void Output::endMapping() {
480   // If we did not map anything, we should explicitly emit an empty map
481   if (StateStack.back() == inMapFirstKey)
482     output("{}");
483   StateStack.pop_back();
484 }
485
486 std::vector<StringRef> Output::keys() {
487   report_fatal_error("invalid call");
488 }
489
490 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
491                           bool &UseDefault, void *&) {
492   UseDefault = false;
493   if (Required || !SameAsDefault || WriteDefaultValues) {
494     auto State = StateStack.back();
495     if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
496       flowKey(Key);
497     } else {
498       newLineCheck();
499       paddedKey(Key);
500     }
501     return true;
502   }
503   return false;
504 }
505
506 void Output::postflightKey(void *) {
507   if (StateStack.back() == inMapFirstKey) {
508     StateStack.pop_back();
509     StateStack.push_back(inMapOtherKey);
510   } else if (StateStack.back() == inFlowMapFirstKey) {
511     StateStack.pop_back();
512     StateStack.push_back(inFlowMapOtherKey);
513   }
514 }
515
516 void Output::beginFlowMapping() {
517   StateStack.push_back(inFlowMapFirstKey);
518   newLineCheck();
519   ColumnAtMapFlowStart = Column;
520   output("{ ");
521 }
522
523 void Output::endFlowMapping() {
524   StateStack.pop_back();
525   outputUpToEndOfLine(" }");
526 }
527
528 void Output::beginDocuments() {
529   outputUpToEndOfLine("---");
530 }
531
532 bool Output::preflightDocument(unsigned index) {
533   if (index > 0)
534     outputUpToEndOfLine("\n---");
535   return true;
536 }
537
538 void Output::postflightDocument() {
539 }
540
541 void Output::endDocuments() {
542   output("\n...\n");
543 }
544
545 unsigned Output::beginSequence() {
546   StateStack.push_back(inSeqFirstElement);
547   NeedsNewLine = true;
548   return 0;
549 }
550
551 void Output::endSequence() {
552   // If we did not emit anything, we should explicitly emit an empty sequence
553   if (StateStack.back() == inSeqFirstElement)
554     output("[]");
555   StateStack.pop_back();
556 }
557
558 bool Output::preflightElement(unsigned, void *&) {
559   return true;
560 }
561
562 void Output::postflightElement(void *) {
563   if (StateStack.back() == inSeqFirstElement) {
564     StateStack.pop_back();
565     StateStack.push_back(inSeqOtherElement);
566   } else if (StateStack.back() == inFlowSeqFirstElement) {
567     StateStack.pop_back();
568     StateStack.push_back(inFlowSeqOtherElement);
569   }
570 }
571
572 unsigned Output::beginFlowSequence() {
573   StateStack.push_back(inFlowSeqFirstElement);
574   newLineCheck();
575   ColumnAtFlowStart = Column;
576   output("[ ");
577   NeedFlowSequenceComma = false;
578   return 0;
579 }
580
581 void Output::endFlowSequence() {
582   StateStack.pop_back();
583   outputUpToEndOfLine(" ]");
584 }
585
586 bool Output::preflightFlowElement(unsigned, void *&) {
587   if (NeedFlowSequenceComma)
588     output(", ");
589   if (WrapColumn && Column > WrapColumn) {
590     output("\n");
591     for (int i = 0; i < ColumnAtFlowStart; ++i)
592       output(" ");
593     Column = ColumnAtFlowStart;
594     output("  ");
595   }
596   return true;
597 }
598
599 void Output::postflightFlowElement(void *) {
600   NeedFlowSequenceComma = true;
601 }
602
603 void Output::beginEnumScalar() {
604   EnumerationMatchFound = false;
605 }
606
607 bool Output::matchEnumScalar(const char *Str, bool Match) {
608   if (Match && !EnumerationMatchFound) {
609     newLineCheck();
610     outputUpToEndOfLine(Str);
611     EnumerationMatchFound = true;
612   }
613   return false;
614 }
615
616 bool Output::matchEnumFallback() {
617   if (EnumerationMatchFound)
618     return false;
619   EnumerationMatchFound = true;
620   return true;
621 }
622
623 void Output::endEnumScalar() {
624   if (!EnumerationMatchFound)
625     llvm_unreachable("bad runtime enum value");
626 }
627
628 bool Output::beginBitSetScalar(bool &DoClear) {
629   newLineCheck();
630   output("[ ");
631   NeedBitValueComma = false;
632   DoClear = false;
633   return true;
634 }
635
636 bool Output::bitSetMatch(const char *Str, bool Matches) {
637   if (Matches) {
638     if (NeedBitValueComma)
639       output(", ");
640     output(Str);
641     NeedBitValueComma = true;
642   }
643   return false;
644 }
645
646 void Output::endBitSetScalar() {
647   outputUpToEndOfLine(" ]");
648 }
649
650 void Output::scalarString(StringRef &S, QuotingType MustQuote) {
651   newLineCheck();
652   if (S.empty()) {
653     // Print '' for the empty string because leaving the field empty is not
654     // allowed.
655     outputUpToEndOfLine("''");
656     return;
657   }
658   if (MustQuote == QuotingType::None) {
659     // Only quote if we must.
660     outputUpToEndOfLine(S);
661     return;
662   }
663
664   unsigned i = 0;
665   unsigned j = 0;
666   unsigned End = S.size();
667   const char *Base = S.data();
668
669   const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
670   output(Quote); // Starting quote.
671
672   // When using double-quoted strings (and only in that case), non-printable characters may be
673   // present, and will be escaped using a variety of unicode-scalar and special short-form
674   // escapes. This is handled in yaml::escape.
675   if (MustQuote == QuotingType::Double) {
676     output(yaml::escape(Base, /* EscapePrintable= */ false));
677     outputUpToEndOfLine(Quote);
678     return;
679   }
680
681   // When using single-quoted strings, any single quote ' must be doubled to be escaped.
682   while (j < End) {
683     if (S[j] == '\'') {                    // Escape quotes.
684       output(StringRef(&Base[i], j - i));  // "flush".
685       output(StringLiteral("''"));         // Print it as ''
686       i = j + 1;
687     }
688     ++j;
689   }
690   output(StringRef(&Base[i], j - i));
691   outputUpToEndOfLine(Quote); // Ending quote.
692 }
693
694 void Output::blockScalarString(StringRef &S) {
695   if (!StateStack.empty())
696     newLineCheck();
697   output(" |");
698   outputNewLine();
699
700   unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
701
702   auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
703   for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
704     for (unsigned I = 0; I < Indent; ++I) {
705       output("  ");
706     }
707     output(*Lines);
708     outputNewLine();
709   }
710 }
711
712 void Output::scalarTag(std::string &Tag) {
713   if (Tag.empty())
714     return;
715   newLineCheck();
716   output(Tag);
717   output(" ");
718 }
719
720 void Output::setError(const Twine &message) {
721 }
722
723 bool Output::canElideEmptySequence() {
724   // Normally, with an optional key/value where the value is an empty sequence,
725   // the whole key/value can be not written.  But, that produces wrong yaml
726   // if the key/value is the only thing in the map and the map is used in
727   // a sequence.  This detects if the this sequence is the first key/value
728   // in map that itself is embedded in a sequnce.
729   if (StateStack.size() < 2)
730     return true;
731   if (StateStack.back() != inMapFirstKey)
732     return true;
733   return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
734 }
735
736 void Output::output(StringRef s) {
737   Column += s.size();
738   Out << s;
739 }
740
741 void Output::outputUpToEndOfLine(StringRef s) {
742   output(s);
743   if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
744                              !inFlowMapAnyKey(StateStack.back())))
745     NeedsNewLine = true;
746 }
747
748 void Output::outputNewLine() {
749   Out << "\n";
750   Column = 0;
751 }
752
753 // if seq at top, indent as if map, then add "- "
754 // if seq in middle, use "- " if firstKey, else use "  "
755 //
756
757 void Output::newLineCheck() {
758   if (!NeedsNewLine)
759     return;
760   NeedsNewLine = false;
761
762   outputNewLine();
763
764   if (StateStack.size() == 0)
765     return;
766
767   unsigned Indent = StateStack.size() - 1;
768   bool OutputDash = false;
769
770   if (StateStack.back() == inSeqFirstElement ||
771       StateStack.back() == inSeqOtherElement) {
772     OutputDash = true;
773   } else if ((StateStack.size() > 1) &&
774              ((StateStack.back() == inMapFirstKey) ||
775               inFlowSeqAnyElement(StateStack.back()) ||
776               (StateStack.back() == inFlowMapFirstKey)) &&
777              inSeqAnyElement(StateStack[StateStack.size() - 2])) {
778     --Indent;
779     OutputDash = true;
780   }
781
782   for (unsigned i = 0; i < Indent; ++i) {
783     output("  ");
784   }
785   if (OutputDash) {
786     output("- ");
787   }
788
789 }
790
791 void Output::paddedKey(StringRef key) {
792   output(key);
793   output(":");
794   const char *spaces = "                ";
795   if (key.size() < strlen(spaces))
796     output(&spaces[key.size()]);
797   else
798     output(" ");
799 }
800
801 void Output::flowKey(StringRef Key) {
802   if (StateStack.back() == inFlowMapOtherKey)
803     output(", ");
804   if (WrapColumn && Column > WrapColumn) {
805     output("\n");
806     for (int I = 0; I < ColumnAtMapFlowStart; ++I)
807       output(" ");
808     Column = ColumnAtMapFlowStart;
809     output("  ");
810   }
811   output(Key);
812   output(": ");
813 }
814
815 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
816
817 bool Output::inSeqAnyElement(InState State) {
818   return State == inSeqFirstElement || State == inSeqOtherElement;
819 }
820
821 bool Output::inFlowSeqAnyElement(InState State) {
822   return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
823 }
824
825 bool Output::inMapAnyKey(InState State) {
826   return State == inMapFirstKey || State == inMapOtherKey;
827 }
828
829 bool Output::inFlowMapAnyKey(InState State) {
830   return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
831 }
832
833 //===----------------------------------------------------------------------===//
834 //  traits for built-in types
835 //===----------------------------------------------------------------------===//
836
837 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
838   Out << (Val ? "true" : "false");
839 }
840
841 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
842   if (Scalar.equals("true")) {
843     Val = true;
844     return StringRef();
845   } else if (Scalar.equals("false")) {
846     Val = false;
847     return StringRef();
848   }
849   return "invalid boolean";
850 }
851
852 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
853                                      raw_ostream &Out) {
854   Out << Val;
855 }
856
857 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
858                                          StringRef &Val) {
859   Val = Scalar;
860   return StringRef();
861 }
862
863 void ScalarTraits<std::string>::output(const std::string &Val, void *,
864                                      raw_ostream &Out) {
865   Out << Val;
866 }
867
868 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
869                                          std::string &Val) {
870   Val = Scalar.str();
871   return StringRef();
872 }
873
874 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
875                                    raw_ostream &Out) {
876   // use temp uin32_t because ostream thinks uint8_t is a character
877   uint32_t Num = Val;
878   Out << Num;
879 }
880
881 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
882   unsigned long long n;
883   if (getAsUnsignedInteger(Scalar, 0, n))
884     return "invalid number";
885   if (n > 0xFF)
886     return "out of range number";
887   Val = n;
888   return StringRef();
889 }
890
891 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
892                                     raw_ostream &Out) {
893   Out << Val;
894 }
895
896 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
897                                         uint16_t &Val) {
898   unsigned long long n;
899   if (getAsUnsignedInteger(Scalar, 0, n))
900     return "invalid number";
901   if (n > 0xFFFF)
902     return "out of range number";
903   Val = n;
904   return StringRef();
905 }
906
907 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
908                                     raw_ostream &Out) {
909   Out << Val;
910 }
911
912 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
913                                         uint32_t &Val) {
914   unsigned long long n;
915   if (getAsUnsignedInteger(Scalar, 0, n))
916     return "invalid number";
917   if (n > 0xFFFFFFFFUL)
918     return "out of range number";
919   Val = n;
920   return StringRef();
921 }
922
923 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
924                                     raw_ostream &Out) {
925   Out << Val;
926 }
927
928 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
929                                         uint64_t &Val) {
930   unsigned long long N;
931   if (getAsUnsignedInteger(Scalar, 0, N))
932     return "invalid number";
933   Val = N;
934   return StringRef();
935 }
936
937 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
938   // use temp in32_t because ostream thinks int8_t is a character
939   int32_t Num = Val;
940   Out << Num;
941 }
942
943 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
944   long long N;
945   if (getAsSignedInteger(Scalar, 0, N))
946     return "invalid number";
947   if ((N > 127) || (N < -128))
948     return "out of range number";
949   Val = N;
950   return StringRef();
951 }
952
953 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
954                                    raw_ostream &Out) {
955   Out << Val;
956 }
957
958 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
959   long long N;
960   if (getAsSignedInteger(Scalar, 0, N))
961     return "invalid number";
962   if ((N > INT16_MAX) || (N < INT16_MIN))
963     return "out of range number";
964   Val = N;
965   return StringRef();
966 }
967
968 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
969                                    raw_ostream &Out) {
970   Out << Val;
971 }
972
973 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
974   long long N;
975   if (getAsSignedInteger(Scalar, 0, N))
976     return "invalid number";
977   if ((N > INT32_MAX) || (N < INT32_MIN))
978     return "out of range number";
979   Val = N;
980   return StringRef();
981 }
982
983 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
984                                    raw_ostream &Out) {
985   Out << Val;
986 }
987
988 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
989   long long N;
990   if (getAsSignedInteger(Scalar, 0, N))
991     return "invalid number";
992   Val = N;
993   return StringRef();
994 }
995
996 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
997   Out << format("%g", Val);
998 }
999
1000 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
1001   if (to_float(Scalar, Val))
1002     return StringRef();
1003   return "invalid floating point number";
1004 }
1005
1006 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
1007   Out << format("%g", Val);
1008 }
1009
1010 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
1011   if (to_float(Scalar, Val))
1012     return StringRef();
1013   return "invalid floating point number";
1014 }
1015
1016 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
1017   uint8_t Num = Val;
1018   Out << format("0x%02X", Num);
1019 }
1020
1021 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
1022   unsigned long long n;
1023   if (getAsUnsignedInteger(Scalar, 0, n))
1024     return "invalid hex8 number";
1025   if (n > 0xFF)
1026     return "out of range hex8 number";
1027   Val = n;
1028   return StringRef();
1029 }
1030
1031 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
1032   uint16_t Num = Val;
1033   Out << format("0x%04X", Num);
1034 }
1035
1036 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
1037   unsigned long long n;
1038   if (getAsUnsignedInteger(Scalar, 0, n))
1039     return "invalid hex16 number";
1040   if (n > 0xFFFF)
1041     return "out of range hex16 number";
1042   Val = n;
1043   return StringRef();
1044 }
1045
1046 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
1047   uint32_t Num = Val;
1048   Out << format("0x%08X", Num);
1049 }
1050
1051 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
1052   unsigned long long n;
1053   if (getAsUnsignedInteger(Scalar, 0, n))
1054     return "invalid hex32 number";
1055   if (n > 0xFFFFFFFFUL)
1056     return "out of range hex32 number";
1057   Val = n;
1058   return StringRef();
1059 }
1060
1061 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
1062   uint64_t Num = Val;
1063   Out << format("0x%016llX", Num);
1064 }
1065
1066 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
1067   unsigned long long Num;
1068   if (getAsUnsignedInteger(Scalar, 0, Num))
1069     return "invalid hex64 number";
1070   Val = Num;
1071   return StringRef();
1072 }