]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Support/YAMLTraits.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Support / YAMLTraits.cpp
1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Support/YAMLTraits.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/Support/Casting.h"
17 #include "llvm/Support/Errc.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/Format.h"
20 #include "llvm/Support/LineIterator.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/Unicode.h"
23 #include "llvm/Support/YAMLParser.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstdint>
28 #include <cstdlib>
29 #include <cstring>
30 #include <string>
31 #include <vector>
32
33 using namespace llvm;
34 using namespace yaml;
35
36 //===----------------------------------------------------------------------===//
37 //  IO
38 //===----------------------------------------------------------------------===//
39
40 IO::IO(void *Context) : Ctxt(Context) {}
41
42 IO::~IO() = default;
43
44 void *IO::getContext() {
45   return Ctxt;
46 }
47
48 void IO::setContext(void *Context) {
49   Ctxt = Context;
50 }
51
52 //===----------------------------------------------------------------------===//
53 //  Input
54 //===----------------------------------------------------------------------===//
55
56 Input::Input(StringRef InputContent, void *Ctxt,
57              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
58     : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
59   if (DiagHandler)
60     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
61   DocIterator = Strm->begin();
62 }
63
64 Input::Input(MemoryBufferRef Input, void *Ctxt,
65              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
66     : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
67   if (DiagHandler)
68     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
69   DocIterator = Strm->begin();
70 }
71
72 Input::~Input() = default;
73
74 std::error_code Input::error() { return EC; }
75
76 // Pin the vtables to this file.
77 void Input::HNode::anchor() {}
78 void Input::EmptyHNode::anchor() {}
79 void Input::ScalarHNode::anchor() {}
80 void Input::MapHNode::anchor() {}
81 void Input::SequenceHNode::anchor() {}
82
83 bool Input::outputting() {
84   return false;
85 }
86
87 bool Input::setCurrentDocument() {
88   if (DocIterator != Strm->end()) {
89     Node *N = DocIterator->getRoot();
90     if (!N) {
91       assert(Strm->failed() && "Root is NULL iff parsing failed");
92       EC = make_error_code(errc::invalid_argument);
93       return false;
94     }
95
96     if (isa<NullNode>(N)) {
97       // Empty files are allowed and ignored
98       ++DocIterator;
99       return setCurrentDocument();
100     }
101     TopNode = this->createHNodes(N);
102     CurrentNode = TopNode.get();
103     return true;
104   }
105   return false;
106 }
107
108 bool Input::nextDocument() {
109   return ++DocIterator != Strm->end();
110 }
111
112 const Node *Input::getCurrentNode() const {
113   return CurrentNode ? CurrentNode->_node : nullptr;
114 }
115
116 bool Input::mapTag(StringRef Tag, bool Default) {
117   std::string foundTag = CurrentNode->_node->getVerbatimTag();
118   if (foundTag.empty()) {
119     // If no tag found and 'Tag' is the default, say it was found.
120     return Default;
121   }
122   // Return true iff found tag matches supplied tag.
123   return Tag.equals(foundTag);
124 }
125
126 void Input::beginMapping() {
127   if (EC)
128     return;
129   // CurrentNode can be null if the document is empty.
130   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
131   if (MN) {
132     MN->ValidKeys.clear();
133   }
134 }
135
136 std::vector<StringRef> Input::keys() {
137   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
138   std::vector<StringRef> Ret;
139   if (!MN) {
140     setError(CurrentNode, "not a mapping");
141     return Ret;
142   }
143   for (auto &P : MN->Mapping)
144     Ret.push_back(P.first());
145   return Ret;
146 }
147
148 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
149                          void *&SaveInfo) {
150   UseDefault = false;
151   if (EC)
152     return false;
153
154   // CurrentNode is null for empty documents, which is an error in case required
155   // nodes are present.
156   if (!CurrentNode) {
157     if (Required)
158       EC = make_error_code(errc::invalid_argument);
159     return false;
160   }
161
162   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
163   if (!MN) {
164     if (Required || !isa<EmptyHNode>(CurrentNode))
165       setError(CurrentNode, "not a mapping");
166     return false;
167   }
168   MN->ValidKeys.push_back(Key);
169   HNode *Value = MN->Mapping[Key].get();
170   if (!Value) {
171     if (Required)
172       setError(CurrentNode, Twine("missing required key '") + Key + "'");
173     else
174       UseDefault = true;
175     return false;
176   }
177   SaveInfo = CurrentNode;
178   CurrentNode = Value;
179   return true;
180 }
181
182 void Input::postflightKey(void *saveInfo) {
183   CurrentNode = reinterpret_cast<HNode *>(saveInfo);
184 }
185
186 void Input::endMapping() {
187   if (EC)
188     return;
189   // CurrentNode can be null if the document is empty.
190   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
191   if (!MN)
192     return;
193   for (const auto &NN : MN->Mapping) {
194     if (!is_contained(MN->ValidKeys, NN.first())) {
195       setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
196       break;
197     }
198   }
199 }
200
201 void Input::beginFlowMapping() { beginMapping(); }
202
203 void Input::endFlowMapping() { endMapping(); }
204
205 unsigned Input::beginSequence() {
206   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
207     return SQ->Entries.size();
208   if (isa<EmptyHNode>(CurrentNode))
209     return 0;
210   // Treat case where there's a scalar "null" value as an empty sequence.
211   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
212     if (isNull(SN->value()))
213       return 0;
214   }
215   // Any other type of HNode is an error.
216   setError(CurrentNode, "not a sequence");
217   return 0;
218 }
219
220 void Input::endSequence() {
221 }
222
223 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
224   if (EC)
225     return false;
226   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
227     SaveInfo = CurrentNode;
228     CurrentNode = SQ->Entries[Index].get();
229     return true;
230   }
231   return false;
232 }
233
234 void Input::postflightElement(void *SaveInfo) {
235   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
236 }
237
238 unsigned Input::beginFlowSequence() { return beginSequence(); }
239
240 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
241   if (EC)
242     return false;
243   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
244     SaveInfo = CurrentNode;
245     CurrentNode = SQ->Entries[index].get();
246     return true;
247   }
248   return false;
249 }
250
251 void Input::postflightFlowElement(void *SaveInfo) {
252   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
253 }
254
255 void Input::endFlowSequence() {
256 }
257
258 void Input::beginEnumScalar() {
259   ScalarMatchFound = false;
260 }
261
262 bool Input::matchEnumScalar(const char *Str, bool) {
263   if (ScalarMatchFound)
264     return false;
265   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
266     if (SN->value().equals(Str)) {
267       ScalarMatchFound = true;
268       return true;
269     }
270   }
271   return false;
272 }
273
274 bool Input::matchEnumFallback() {
275   if (ScalarMatchFound)
276     return false;
277   ScalarMatchFound = true;
278   return true;
279 }
280
281 void Input::endEnumScalar() {
282   if (!ScalarMatchFound) {
283     setError(CurrentNode, "unknown enumerated scalar");
284   }
285 }
286
287 bool Input::beginBitSetScalar(bool &DoClear) {
288   BitValuesUsed.clear();
289   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
290     BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
291   } else {
292     setError(CurrentNode, "expected sequence of bit values");
293   }
294   DoClear = true;
295   return true;
296 }
297
298 bool Input::bitSetMatch(const char *Str, bool) {
299   if (EC)
300     return false;
301   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
302     unsigned Index = 0;
303     for (auto &N : SQ->Entries) {
304       if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
305         if (SN->value().equals(Str)) {
306           BitValuesUsed[Index] = true;
307           return true;
308         }
309       } else {
310         setError(CurrentNode, "unexpected scalar in sequence of bit values");
311       }
312       ++Index;
313     }
314   } else {
315     setError(CurrentNode, "expected sequence of bit values");
316   }
317   return false;
318 }
319
320 void Input::endBitSetScalar() {
321   if (EC)
322     return;
323   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
324     assert(BitValuesUsed.size() == SQ->Entries.size());
325     for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
326       if (!BitValuesUsed[i]) {
327         setError(SQ->Entries[i].get(), "unknown bit value");
328         return;
329       }
330     }
331   }
332 }
333
334 void Input::scalarString(StringRef &S, QuotingType) {
335   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
336     S = SN->value();
337   } else {
338     setError(CurrentNode, "unexpected scalar");
339   }
340 }
341
342 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
343
344 void Input::setError(HNode *hnode, const Twine &message) {
345   assert(hnode && "HNode must not be NULL");
346   this->setError(hnode->_node, message);
347 }
348
349 void Input::setError(Node *node, const Twine &message) {
350   Strm->printError(node, message);
351   EC = make_error_code(errc::invalid_argument);
352 }
353
354 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
355   SmallString<128> StringStorage;
356   if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
357     StringRef KeyStr = SN->getValue(StringStorage);
358     if (!StringStorage.empty()) {
359       // Copy string to permanent storage
360       KeyStr = StringStorage.str().copy(StringAllocator);
361     }
362     return llvm::make_unique<ScalarHNode>(N, KeyStr);
363   } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
364     StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
365     return llvm::make_unique<ScalarHNode>(N, ValueCopy);
366   } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
367     auto SQHNode = llvm::make_unique<SequenceHNode>(N);
368     for (Node &SN : *SQ) {
369       auto Entry = this->createHNodes(&SN);
370       if (EC)
371         break;
372       SQHNode->Entries.push_back(std::move(Entry));
373     }
374     return std::move(SQHNode);
375   } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
376     auto mapHNode = llvm::make_unique<MapHNode>(N);
377     for (KeyValueNode &KVN : *Map) {
378       Node *KeyNode = KVN.getKey();
379       ScalarNode *Key = dyn_cast<ScalarNode>(KeyNode);
380       Node *Value = KVN.getValue();
381       if (!Key || !Value) {
382         if (!Key)
383           setError(KeyNode, "Map key must be a scalar");
384         if (!Value)
385           setError(KeyNode, "Map value must not be empty");
386         break;
387       }
388       StringStorage.clear();
389       StringRef KeyStr = Key->getValue(StringStorage);
390       if (!StringStorage.empty()) {
391         // Copy string to permanent storage
392         KeyStr = StringStorage.str().copy(StringAllocator);
393       }
394       auto ValueHNode = this->createHNodes(Value);
395       if (EC)
396         break;
397       mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
398     }
399     return std::move(mapHNode);
400   } else if (isa<NullNode>(N)) {
401     return llvm::make_unique<EmptyHNode>(N);
402   } else {
403     setError(N, "unknown node kind");
404     return nullptr;
405   }
406 }
407
408 void Input::setError(const Twine &Message) {
409   this->setError(CurrentNode, Message);
410 }
411
412 bool Input::canElideEmptySequence() {
413   return false;
414 }
415
416 //===----------------------------------------------------------------------===//
417 //  Output
418 //===----------------------------------------------------------------------===//
419
420 Output::Output(raw_ostream &yout, void *context, int WrapColumn)
421     : IO(context), Out(yout), WrapColumn(WrapColumn) {}
422
423 Output::~Output() = default;
424
425 bool Output::outputting() {
426   return true;
427 }
428
429 void Output::beginMapping() {
430   StateStack.push_back(inMapFirstKey);
431   NeedsNewLine = true;
432 }
433
434 bool Output::mapTag(StringRef Tag, bool Use) {
435   if (Use) {
436     // If this tag is being written inside a sequence we should write the start
437     // of the sequence before writing the tag, otherwise the tag won't be
438     // attached to the element in the sequence, but rather the sequence itself.
439     bool SequenceElement =
440         StateStack.size() > 1 && (StateStack[StateStack.size() - 2] == inSeq ||
441           StateStack[StateStack.size() - 2] == inFlowSeq);
442     if (SequenceElement && StateStack.back() == inMapFirstKey) {
443       this->newLineCheck();
444     } else {
445       this->output(" ");
446     }
447     this->output(Tag);
448     if (SequenceElement) {
449       // If we're writing the tag during the first element of a map, the tag
450       // takes the place of the first element in the sequence.
451       if (StateStack.back() == inMapFirstKey) {
452         StateStack.pop_back();
453         StateStack.push_back(inMapOtherKey);
454       }
455       // Tags inside maps in sequences should act as keys in the map from a
456       // formatting perspective, so we always want a newline in a sequence.
457       NeedsNewLine = true;
458     }
459   }
460   return Use;
461 }
462
463 void Output::endMapping() {
464   StateStack.pop_back();
465 }
466
467 std::vector<StringRef> Output::keys() {
468   report_fatal_error("invalid call");
469 }
470
471 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
472                           bool &UseDefault, void *&) {
473   UseDefault = false;
474   if (Required || !SameAsDefault || WriteDefaultValues) {
475     auto State = StateStack.back();
476     if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
477       flowKey(Key);
478     } else {
479       this->newLineCheck();
480       this->paddedKey(Key);
481     }
482     return true;
483   }
484   return false;
485 }
486
487 void Output::postflightKey(void *) {
488   if (StateStack.back() == inMapFirstKey) {
489     StateStack.pop_back();
490     StateStack.push_back(inMapOtherKey);
491   } else if (StateStack.back() == inFlowMapFirstKey) {
492     StateStack.pop_back();
493     StateStack.push_back(inFlowMapOtherKey);
494   }
495 }
496
497 void Output::beginFlowMapping() {
498   StateStack.push_back(inFlowMapFirstKey);
499   this->newLineCheck();
500   ColumnAtMapFlowStart = Column;
501   output("{ ");
502 }
503
504 void Output::endFlowMapping() {
505   StateStack.pop_back();
506   this->outputUpToEndOfLine(" }");
507 }
508
509 void Output::beginDocuments() {
510   this->outputUpToEndOfLine("---");
511 }
512
513 bool Output::preflightDocument(unsigned index) {
514   if (index > 0)
515     this->outputUpToEndOfLine("\n---");
516   return true;
517 }
518
519 void Output::postflightDocument() {
520 }
521
522 void Output::endDocuments() {
523   output("\n...\n");
524 }
525
526 unsigned Output::beginSequence() {
527   StateStack.push_back(inSeq);
528   NeedsNewLine = true;
529   return 0;
530 }
531
532 void Output::endSequence() {
533   StateStack.pop_back();
534 }
535
536 bool Output::preflightElement(unsigned, void *&) {
537   return true;
538 }
539
540 void Output::postflightElement(void *) {
541 }
542
543 unsigned Output::beginFlowSequence() {
544   StateStack.push_back(inFlowSeq);
545   this->newLineCheck();
546   ColumnAtFlowStart = Column;
547   output("[ ");
548   NeedFlowSequenceComma = false;
549   return 0;
550 }
551
552 void Output::endFlowSequence() {
553   StateStack.pop_back();
554   this->outputUpToEndOfLine(" ]");
555 }
556
557 bool Output::preflightFlowElement(unsigned, void *&) {
558   if (NeedFlowSequenceComma)
559     output(", ");
560   if (WrapColumn && Column > WrapColumn) {
561     output("\n");
562     for (int i = 0; i < ColumnAtFlowStart; ++i)
563       output(" ");
564     Column = ColumnAtFlowStart;
565     output("  ");
566   }
567   return true;
568 }
569
570 void Output::postflightFlowElement(void *) {
571   NeedFlowSequenceComma = true;
572 }
573
574 void Output::beginEnumScalar() {
575   EnumerationMatchFound = false;
576 }
577
578 bool Output::matchEnumScalar(const char *Str, bool Match) {
579   if (Match && !EnumerationMatchFound) {
580     this->newLineCheck();
581     this->outputUpToEndOfLine(Str);
582     EnumerationMatchFound = true;
583   }
584   return false;
585 }
586
587 bool Output::matchEnumFallback() {
588   if (EnumerationMatchFound)
589     return false;
590   EnumerationMatchFound = true;
591   return true;
592 }
593
594 void Output::endEnumScalar() {
595   if (!EnumerationMatchFound)
596     llvm_unreachable("bad runtime enum value");
597 }
598
599 bool Output::beginBitSetScalar(bool &DoClear) {
600   this->newLineCheck();
601   output("[ ");
602   NeedBitValueComma = false;
603   DoClear = false;
604   return true;
605 }
606
607 bool Output::bitSetMatch(const char *Str, bool Matches) {
608   if (Matches) {
609     if (NeedBitValueComma)
610       output(", ");
611     this->output(Str);
612     NeedBitValueComma = true;
613   }
614   return false;
615 }
616
617 void Output::endBitSetScalar() {
618   this->outputUpToEndOfLine(" ]");
619 }
620
621 void Output::scalarString(StringRef &S, QuotingType MustQuote) {
622   this->newLineCheck();
623   if (S.empty()) {
624     // Print '' for the empty string because leaving the field empty is not
625     // allowed.
626     this->outputUpToEndOfLine("''");
627     return;
628   }
629   if (MustQuote == QuotingType::None) {
630     // Only quote if we must.
631     this->outputUpToEndOfLine(S);
632     return;
633   }
634
635   unsigned i = 0;
636   unsigned j = 0;
637   unsigned End = S.size();
638   const char *Base = S.data();
639
640   const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
641   output(Quote); // Starting quote.
642
643   // When using double-quoted strings (and only in that case), non-printable characters may be
644   // present, and will be escaped using a variety of unicode-scalar and special short-form
645   // escapes. This is handled in yaml::escape.
646   if (MustQuote == QuotingType::Double) {
647     output(yaml::escape(Base, /* EscapePrintable= */ false));
648     this->outputUpToEndOfLine(Quote);
649     return;
650   }
651
652   // When using single-quoted strings, any single quote ' must be doubled to be escaped.
653   while (j < End) {
654     if (S[j] == '\'') {                    // Escape quotes.
655       output(StringRef(&Base[i], j - i));  // "flush".
656       output(StringLiteral("''"));         // Print it as ''
657       i = j + 1;
658     }
659     ++j;
660   }
661   output(StringRef(&Base[i], j - i));
662   this->outputUpToEndOfLine(Quote); // Ending quote.
663 }
664
665 void Output::blockScalarString(StringRef &S) {
666   if (!StateStack.empty())
667     newLineCheck();
668   output(" |");
669   outputNewLine();
670
671   unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
672
673   auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
674   for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
675     for (unsigned I = 0; I < Indent; ++I) {
676       output("  ");
677     }
678     output(*Lines);
679     outputNewLine();
680   }
681 }
682
683 void Output::setError(const Twine &message) {
684 }
685
686 bool Output::canElideEmptySequence() {
687   // Normally, with an optional key/value where the value is an empty sequence,
688   // the whole key/value can be not written.  But, that produces wrong yaml
689   // if the key/value is the only thing in the map and the map is used in
690   // a sequence.  This detects if the this sequence is the first key/value
691   // in map that itself is embedded in a sequnce.
692   if (StateStack.size() < 2)
693     return true;
694   if (StateStack.back() != inMapFirstKey)
695     return true;
696   return (StateStack[StateStack.size()-2] != inSeq);
697 }
698
699 void Output::output(StringRef s) {
700   Column += s.size();
701   Out << s;
702 }
703
704 void Output::outputUpToEndOfLine(StringRef s) {
705   this->output(s);
706   if (StateStack.empty() || (StateStack.back() != inFlowSeq &&
707                              StateStack.back() != inFlowMapFirstKey &&
708                              StateStack.back() != inFlowMapOtherKey))
709     NeedsNewLine = true;
710 }
711
712 void Output::outputNewLine() {
713   Out << "\n";
714   Column = 0;
715 }
716
717 // if seq at top, indent as if map, then add "- "
718 // if seq in middle, use "- " if firstKey, else use "  "
719 //
720
721 void Output::newLineCheck() {
722   if (!NeedsNewLine)
723     return;
724   NeedsNewLine = false;
725
726   this->outputNewLine();
727
728   assert(StateStack.size() > 0);
729   unsigned Indent = StateStack.size() - 1;
730   bool OutputDash = false;
731
732   if (StateStack.back() == inSeq) {
733     OutputDash = true;
734   } else if ((StateStack.size() > 1) && ((StateStack.back() == inMapFirstKey) ||
735              (StateStack.back() == inFlowSeq) ||
736              (StateStack.back() == inFlowMapFirstKey)) &&
737              (StateStack[StateStack.size() - 2] == inSeq)) {
738     --Indent;
739     OutputDash = true;
740   }
741
742   for (unsigned i = 0; i < Indent; ++i) {
743     output("  ");
744   }
745   if (OutputDash) {
746     output("- ");
747   }
748
749 }
750
751 void Output::paddedKey(StringRef key) {
752   output(key);
753   output(":");
754   const char *spaces = "                ";
755   if (key.size() < strlen(spaces))
756     output(&spaces[key.size()]);
757   else
758     output(" ");
759 }
760
761 void Output::flowKey(StringRef Key) {
762   if (StateStack.back() == inFlowMapOtherKey)
763     output(", ");
764   if (WrapColumn && Column > WrapColumn) {
765     output("\n");
766     for (int I = 0; I < ColumnAtMapFlowStart; ++I)
767       output(" ");
768     Column = ColumnAtMapFlowStart;
769     output("  ");
770   }
771   output(Key);
772   output(": ");
773 }
774
775 //===----------------------------------------------------------------------===//
776 //  traits for built-in types
777 //===----------------------------------------------------------------------===//
778
779 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
780   Out << (Val ? "true" : "false");
781 }
782
783 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
784   if (Scalar.equals("true")) {
785     Val = true;
786     return StringRef();
787   } else if (Scalar.equals("false")) {
788     Val = false;
789     return StringRef();
790   }
791   return "invalid boolean";
792 }
793
794 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
795                                      raw_ostream &Out) {
796   Out << Val;
797 }
798
799 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
800                                          StringRef &Val) {
801   Val = Scalar;
802   return StringRef();
803 }
804
805 void ScalarTraits<std::string>::output(const std::string &Val, void *,
806                                      raw_ostream &Out) {
807   Out << Val;
808 }
809
810 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
811                                          std::string &Val) {
812   Val = Scalar.str();
813   return StringRef();
814 }
815
816 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
817                                    raw_ostream &Out) {
818   // use temp uin32_t because ostream thinks uint8_t is a character
819   uint32_t Num = Val;
820   Out << Num;
821 }
822
823 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
824   unsigned long long n;
825   if (getAsUnsignedInteger(Scalar, 0, n))
826     return "invalid number";
827   if (n > 0xFF)
828     return "out of range number";
829   Val = n;
830   return StringRef();
831 }
832
833 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
834                                     raw_ostream &Out) {
835   Out << Val;
836 }
837
838 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
839                                         uint16_t &Val) {
840   unsigned long long n;
841   if (getAsUnsignedInteger(Scalar, 0, n))
842     return "invalid number";
843   if (n > 0xFFFF)
844     return "out of range number";
845   Val = n;
846   return StringRef();
847 }
848
849 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
850                                     raw_ostream &Out) {
851   Out << Val;
852 }
853
854 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
855                                         uint32_t &Val) {
856   unsigned long long n;
857   if (getAsUnsignedInteger(Scalar, 0, n))
858     return "invalid number";
859   if (n > 0xFFFFFFFFUL)
860     return "out of range number";
861   Val = n;
862   return StringRef();
863 }
864
865 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
866                                     raw_ostream &Out) {
867   Out << Val;
868 }
869
870 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
871                                         uint64_t &Val) {
872   unsigned long long N;
873   if (getAsUnsignedInteger(Scalar, 0, N))
874     return "invalid number";
875   Val = N;
876   return StringRef();
877 }
878
879 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
880   // use temp in32_t because ostream thinks int8_t is a character
881   int32_t Num = Val;
882   Out << Num;
883 }
884
885 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
886   long long N;
887   if (getAsSignedInteger(Scalar, 0, N))
888     return "invalid number";
889   if ((N > 127) || (N < -128))
890     return "out of range number";
891   Val = N;
892   return StringRef();
893 }
894
895 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
896                                    raw_ostream &Out) {
897   Out << Val;
898 }
899
900 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
901   long long N;
902   if (getAsSignedInteger(Scalar, 0, N))
903     return "invalid number";
904   if ((N > INT16_MAX) || (N < INT16_MIN))
905     return "out of range number";
906   Val = N;
907   return StringRef();
908 }
909
910 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
911                                    raw_ostream &Out) {
912   Out << Val;
913 }
914
915 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
916   long long N;
917   if (getAsSignedInteger(Scalar, 0, N))
918     return "invalid number";
919   if ((N > INT32_MAX) || (N < INT32_MIN))
920     return "out of range number";
921   Val = N;
922   return StringRef();
923 }
924
925 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
926                                    raw_ostream &Out) {
927   Out << Val;
928 }
929
930 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
931   long long N;
932   if (getAsSignedInteger(Scalar, 0, N))
933     return "invalid number";
934   Val = N;
935   return StringRef();
936 }
937
938 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
939   Out << format("%g", Val);
940 }
941
942 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
943   if (to_float(Scalar, Val))
944     return StringRef();
945   return "invalid floating point number";
946 }
947
948 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
949   Out << format("%g", Val);
950 }
951
952 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
953   if (to_float(Scalar, Val))
954     return StringRef();
955   return "invalid floating point number";
956 }
957
958 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
959   uint8_t Num = Val;
960   Out << format("0x%02X", Num);
961 }
962
963 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
964   unsigned long long n;
965   if (getAsUnsignedInteger(Scalar, 0, n))
966     return "invalid hex8 number";
967   if (n > 0xFF)
968     return "out of range hex8 number";
969   Val = n;
970   return StringRef();
971 }
972
973 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
974   uint16_t Num = Val;
975   Out << format("0x%04X", Num);
976 }
977
978 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
979   unsigned long long n;
980   if (getAsUnsignedInteger(Scalar, 0, n))
981     return "invalid hex16 number";
982   if (n > 0xFFFF)
983     return "out of range hex16 number";
984   Val = n;
985   return StringRef();
986 }
987
988 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
989   uint32_t Num = Val;
990   Out << format("0x%08X", Num);
991 }
992
993 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
994   unsigned long long n;
995   if (getAsUnsignedInteger(Scalar, 0, n))
996     return "invalid hex32 number";
997   if (n > 0xFFFFFFFFUL)
998     return "out of range hex32 number";
999   Val = n;
1000   return StringRef();
1001 }
1002
1003 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
1004   uint64_t Num = Val;
1005   Out << format("0x%016llX", Num);
1006 }
1007
1008 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
1009   unsigned long long Num;
1010   if (getAsUnsignedInteger(Scalar, 0, Num))
1011     return "invalid hex64 number";
1012   Val = Num;
1013   return StringRef();
1014 }