]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp
Merge ^/vendor/NetBSD/tests/dist@r312370
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AArch64 / AArch64AdvSIMDScalarPass.cpp
1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // When profitable, replace GPR targeting i64 instructions with their
10 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
11 // as minimizing the number of cross-class register copies.
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // TODO: Graph based predicate heuristics.
16 // Walking the instruction list linearly will get many, perhaps most, of
17 // the cases, but to do a truly thorough job of this, we need a more
18 // wholistic approach.
19 //
20 // This optimization is very similar in spirit to the register allocator's
21 // spill placement, only here we're determining where to place cross-class
22 // register copies rather than spills. As such, a similar approach is
23 // called for.
24 //
25 // We want to build up a set of graphs of all instructions which are candidates
26 // for transformation along with instructions which generate their inputs and
27 // consume their outputs. For each edge in the graph, we assign a weight
28 // based on whether there is a copy required there (weight zero if not) and
29 // the block frequency of the block containing the defining or using
30 // instruction, whichever is less. Our optimization is then a graph problem
31 // to minimize the total weight of all the graphs, then transform instructions
32 // and add or remove copy instructions as called for to implement the
33 // solution.
34 //===----------------------------------------------------------------------===//
35
36 #include "AArch64.h"
37 #include "AArch64InstrInfo.h"
38 #include "AArch64RegisterInfo.h"
39 #include "AArch64Subtarget.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 using namespace llvm;
50
51 #define DEBUG_TYPE "aarch64-simd-scalar"
52
53 // Allow forcing all i64 operations with equivalent SIMD instructions to use
54 // them. For stress-testing the transformation function.
55 static cl::opt<bool>
56 TransformAll("aarch64-simd-scalar-force-all",
57              cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
58              cl::init(false), cl::Hidden);
59
60 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
61 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
62 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
63
64 namespace llvm {
65 void initializeAArch64AdvSIMDScalarPass(PassRegistry &);
66 }
67
68 #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
69
70 namespace {
71 class AArch64AdvSIMDScalar : public MachineFunctionPass {
72   MachineRegisterInfo *MRI;
73   const TargetInstrInfo *TII;
74
75 private:
76   // isProfitableToTransform - Predicate function to determine whether an
77   // instruction should be transformed to its equivalent AdvSIMD scalar
78   // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
79   bool isProfitableToTransform(const MachineInstr &MI) const;
80
81   // transformInstruction - Perform the transformation of an instruction
82   // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
83   // to be the correct register class, minimizing cross-class copies.
84   void transformInstruction(MachineInstr &MI);
85
86   // processMachineBasicBlock - Main optimzation loop.
87   bool processMachineBasicBlock(MachineBasicBlock *MBB);
88
89 public:
90   static char ID; // Pass identification, replacement for typeid.
91   explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {
92     initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry());
93   }
94
95   bool runOnMachineFunction(MachineFunction &F) override;
96
97   const char *getPassName() const override {
98     return AARCH64_ADVSIMD_NAME;
99   }
100
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     AU.setPreservesCFG();
103     MachineFunctionPass::getAnalysisUsage(AU);
104   }
105 };
106 char AArch64AdvSIMDScalar::ID = 0;
107 } // end anonymous namespace
108
109 INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar",
110                 AARCH64_ADVSIMD_NAME, false, false)
111
112 static bool isGPR64(unsigned Reg, unsigned SubReg,
113                     const MachineRegisterInfo *MRI) {
114   if (SubReg)
115     return false;
116   if (TargetRegisterInfo::isVirtualRegister(Reg))
117     return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
118   return AArch64::GPR64RegClass.contains(Reg);
119 }
120
121 static bool isFPR64(unsigned Reg, unsigned SubReg,
122                     const MachineRegisterInfo *MRI) {
123   if (TargetRegisterInfo::isVirtualRegister(Reg))
124     return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
125             SubReg == 0) ||
126            (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
127             SubReg == AArch64::dsub);
128   // Physical register references just check the register class directly.
129   return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
130          (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
131 }
132
133 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
134 // copy instruction. Return zero_reg if the instruction is not a copy.
135 static MachineOperand *getSrcFromCopy(MachineInstr *MI,
136                                       const MachineRegisterInfo *MRI,
137                                       unsigned &SubReg) {
138   SubReg = 0;
139   // The "FMOV Xd, Dn" instruction is the typical form.
140   if (MI->getOpcode() == AArch64::FMOVDXr ||
141       MI->getOpcode() == AArch64::FMOVXDr)
142     return &MI->getOperand(1);
143   // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
144   // these at this stage, but it's easy to check for.
145   if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
146     SubReg = AArch64::dsub;
147     return &MI->getOperand(1);
148   }
149   // Or just a plain COPY instruction. This can be directly to/from FPR64,
150   // or it can be a dsub subreg reference to an FPR128.
151   if (MI->getOpcode() == AArch64::COPY) {
152     if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
153                 MRI) &&
154         isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
155       return &MI->getOperand(1);
156     if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
157                 MRI) &&
158         isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
159                 MRI)) {
160       SubReg = MI->getOperand(1).getSubReg();
161       return &MI->getOperand(1);
162     }
163   }
164
165   // Otherwise, this is some other kind of instruction.
166   return nullptr;
167 }
168
169 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
170 // that we're considering transforming to, return that AdvSIMD opcode. For all
171 // others, return the original opcode.
172 static unsigned getTransformOpcode(unsigned Opc) {
173   switch (Opc) {
174   default:
175     break;
176   // FIXME: Lots more possibilities.
177   case AArch64::ADDXrr:
178     return AArch64::ADDv1i64;
179   case AArch64::SUBXrr:
180     return AArch64::SUBv1i64;
181   case AArch64::ANDXrr:
182     return AArch64::ANDv8i8;
183   case AArch64::EORXrr:
184     return AArch64::EORv8i8;
185   case AArch64::ORRXrr:
186     return AArch64::ORRv8i8;
187   }
188   // No AdvSIMD equivalent, so just return the original opcode.
189   return Opc;
190 }
191
192 static bool isTransformable(const MachineInstr &MI) {
193   unsigned Opc = MI.getOpcode();
194   return Opc != getTransformOpcode(Opc);
195 }
196
197 // isProfitableToTransform - Predicate function to determine whether an
198 // instruction should be transformed to its equivalent AdvSIMD scalar
199 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
200 bool AArch64AdvSIMDScalar::isProfitableToTransform(
201     const MachineInstr &MI) const {
202   // If this instruction isn't eligible to be transformed (no SIMD equivalent),
203   // early exit since that's the common case.
204   if (!isTransformable(MI))
205     return false;
206
207   // Count the number of copies we'll need to add and approximate the number
208   // of copies that a transform will enable us to remove.
209   unsigned NumNewCopies = 3;
210   unsigned NumRemovableCopies = 0;
211
212   unsigned OrigSrc0 = MI.getOperand(1).getReg();
213   unsigned OrigSrc1 = MI.getOperand(2).getReg();
214   unsigned SubReg0;
215   unsigned SubReg1;
216   if (!MRI->def_empty(OrigSrc0)) {
217     MachineRegisterInfo::def_instr_iterator Def =
218         MRI->def_instr_begin(OrigSrc0);
219     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
220     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
221     // If the source was from a copy, we don't need to insert a new copy.
222     if (MOSrc0)
223       --NumNewCopies;
224     // If there are no other users of the original source, we can delete
225     // that instruction.
226     if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0))
227       ++NumRemovableCopies;
228   }
229   if (!MRI->def_empty(OrigSrc1)) {
230     MachineRegisterInfo::def_instr_iterator Def =
231         MRI->def_instr_begin(OrigSrc1);
232     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
233     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
234     if (MOSrc1)
235       --NumNewCopies;
236     // If there are no other users of the original source, we can delete
237     // that instruction.
238     if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1))
239       ++NumRemovableCopies;
240   }
241
242   // If any of the uses of the original instructions is a cross class copy,
243   // that's a copy that will be removable if we transform. Likewise, if
244   // any of the uses is a transformable instruction, it's likely the tranforms
245   // will chain, enabling us to save a copy there, too. This is an aggressive
246   // heuristic that approximates the graph based cost analysis described above.
247   unsigned Dst = MI.getOperand(0).getReg();
248   bool AllUsesAreCopies = true;
249   for (MachineRegisterInfo::use_instr_nodbg_iterator
250            Use = MRI->use_instr_nodbg_begin(Dst),
251            E = MRI->use_instr_nodbg_end();
252        Use != E; ++Use) {
253     unsigned SubReg;
254     if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use))
255       ++NumRemovableCopies;
256     // If the use is an INSERT_SUBREG, that's still something that can
257     // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
258     // preferable to have it use the FPR64 in most cases, as if the source
259     // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
260     // Ditto for a lane insert.
261     else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
262              Use->getOpcode() == AArch64::INSvi64gpr)
263       ;
264     else
265       AllUsesAreCopies = false;
266   }
267   // If all of the uses of the original destination register are copies to
268   // FPR64, then we won't end up having a new copy back to GPR64 either.
269   if (AllUsesAreCopies)
270     --NumNewCopies;
271
272   // If a transform will not increase the number of cross-class copies required,
273   // return true.
274   if (NumNewCopies <= NumRemovableCopies)
275     return true;
276
277   // Finally, even if we otherwise wouldn't transform, check if we're forcing
278   // transformation of everything.
279   return TransformAll;
280 }
281
282 static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI,
283                                 unsigned Dst, unsigned Src, bool IsKill) {
284   MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
285                                     TII->get(AArch64::COPY), Dst)
286                                 .addReg(Src, getKillRegState(IsKill));
287   DEBUG(dbgs() << "    adding copy: " << *MIB);
288   ++NumCopiesInserted;
289   return MIB;
290 }
291
292 // transformInstruction - Perform the transformation of an instruction
293 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
294 // to be the correct register class, minimizing cross-class copies.
295 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) {
296   DEBUG(dbgs() << "Scalar transform: " << MI);
297
298   MachineBasicBlock *MBB = MI.getParent();
299   unsigned OldOpc = MI.getOpcode();
300   unsigned NewOpc = getTransformOpcode(OldOpc);
301   assert(OldOpc != NewOpc && "transform an instruction to itself?!");
302
303   // Check if we need a copy for the source registers.
304   unsigned OrigSrc0 = MI.getOperand(1).getReg();
305   unsigned OrigSrc1 = MI.getOperand(2).getReg();
306   unsigned Src0 = 0, SubReg0;
307   unsigned Src1 = 0, SubReg1;
308   bool KillSrc0 = false, KillSrc1 = false;
309   if (!MRI->def_empty(OrigSrc0)) {
310     MachineRegisterInfo::def_instr_iterator Def =
311         MRI->def_instr_begin(OrigSrc0);
312     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
313     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
314     // If there are no other users of the original source, we can delete
315     // that instruction.
316     if (MOSrc0) {
317       Src0 = MOSrc0->getReg();
318       KillSrc0 = MOSrc0->isKill();
319       // Src0 is going to be reused, thus, it cannot be killed anymore.
320       MOSrc0->setIsKill(false);
321       if (MRI->hasOneNonDBGUse(OrigSrc0)) {
322         assert(MOSrc0 && "Can't delete copy w/o a valid original source!");
323         Def->eraseFromParent();
324         ++NumCopiesDeleted;
325       }
326     }
327   }
328   if (!MRI->def_empty(OrigSrc1)) {
329     MachineRegisterInfo::def_instr_iterator Def =
330         MRI->def_instr_begin(OrigSrc1);
331     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
332     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
333     // If there are no other users of the original source, we can delete
334     // that instruction.
335     if (MOSrc1) {
336       Src1 = MOSrc1->getReg();
337       KillSrc1 = MOSrc1->isKill();
338       // Src0 is going to be reused, thus, it cannot be killed anymore.
339       MOSrc1->setIsKill(false);
340       if (MRI->hasOneNonDBGUse(OrigSrc1)) {
341         assert(MOSrc1 && "Can't delete copy w/o a valid original source!");
342         Def->eraseFromParent();
343         ++NumCopiesDeleted;
344       }
345     }
346   }
347   // If we weren't able to reference the original source directly, create a
348   // copy.
349   if (!Src0) {
350     SubReg0 = 0;
351     Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
352     insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0);
353     KillSrc0 = true;
354   }
355   if (!Src1) {
356     SubReg1 = 0;
357     Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
358     insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1);
359     KillSrc1 = true;
360   }
361
362   // Create a vreg for the destination.
363   // FIXME: No need to do this if the ultimate user expects an FPR64.
364   // Check for that and avoid the copy if possible.
365   unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
366
367   // For now, all of the new instructions have the same simple three-register
368   // form, so no need to special case based on what instruction we're
369   // building.
370   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst)
371       .addReg(Src0, getKillRegState(KillSrc0), SubReg0)
372       .addReg(Src1, getKillRegState(KillSrc1), SubReg1);
373
374   // Now copy the result back out to a GPR.
375   // FIXME: Try to avoid this if all uses could actually just use the FPR64
376   // directly.
377   insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true);
378
379   // Erase the old instruction.
380   MI.eraseFromParent();
381
382   ++NumScalarInsnsUsed;
383 }
384
385 // processMachineBasicBlock - Main optimzation loop.
386 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
387   bool Changed = false;
388   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
389     MachineInstr &MI = *I++;
390     if (isProfitableToTransform(MI)) {
391       transformInstruction(MI);
392       Changed = true;
393     }
394   }
395   return Changed;
396 }
397
398 // runOnMachineFunction - Pass entry point from PassManager.
399 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
400   bool Changed = false;
401   DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
402
403   if (skipFunction(*mf.getFunction()))
404     return false;
405
406   MRI = &mf.getRegInfo();
407   TII = mf.getSubtarget().getInstrInfo();
408
409   // Just check things on a one-block-at-a-time basis.
410   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
411     if (processMachineBasicBlock(&*I))
412       Changed = true;
413   return Changed;
414 }
415
416 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
417 // to add the pass to the PassManager.
418 FunctionPass *llvm::createAArch64AdvSIMDScalar() {
419   return new AArch64AdvSIMDScalar();
420 }