]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.td
Merge lldb trunk r338150, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AArch64 / AArch64InstrInfo.td
1 //=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // AArch64 Instruction definitions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // ARM Instruction Predicate Definitions.
16 //
17 def HasV8_1a         : Predicate<"Subtarget->hasV8_1aOps()">,
18                                  AssemblerPredicate<"HasV8_1aOps", "armv8.1a">;
19 def HasV8_2a         : Predicate<"Subtarget->hasV8_2aOps()">,
20                                  AssemblerPredicate<"HasV8_2aOps", "armv8.2a">;
21 def HasV8_3a         : Predicate<"Subtarget->hasV8_3aOps()">,
22                                  AssemblerPredicate<"HasV8_3aOps", "armv8.3a">;
23 def HasV8_4a         : Predicate<"Subtarget->hasV8_4aOps()">,
24                                  AssemblerPredicate<"HasV8_4aOps", "armv8.4a">;
25 def HasFPARMv8       : Predicate<"Subtarget->hasFPARMv8()">,
26                                AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
27 def HasNEON          : Predicate<"Subtarget->hasNEON()">,
28                                  AssemblerPredicate<"FeatureNEON", "neon">;
29 def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
30                                  AssemblerPredicate<"FeatureCrypto", "crypto">;
31 def HasSM4           : Predicate<"Subtarget->hasSM4()">,
32                                  AssemblerPredicate<"FeatureSM4", "sm4">;
33 def HasSHA3          : Predicate<"Subtarget->hasSHA3()">,
34                                  AssemblerPredicate<"FeatureSHA3", "sha3">;
35 def HasSHA2          : Predicate<"Subtarget->hasSHA2()">,
36                                  AssemblerPredicate<"FeatureSHA2", "sha2">;
37 def HasAES           : Predicate<"Subtarget->hasAES()">,
38                                  AssemblerPredicate<"FeatureAES", "aes">;
39 def HasDotProd       : Predicate<"Subtarget->hasDotProd()">,
40                                  AssemblerPredicate<"FeatureDotProd", "dotprod">;
41 def HasCRC           : Predicate<"Subtarget->hasCRC()">,
42                                  AssemblerPredicate<"FeatureCRC", "crc">;
43 def HasLSE           : Predicate<"Subtarget->hasLSE()">,
44                                  AssemblerPredicate<"FeatureLSE", "lse">;
45 def HasRAS           : Predicate<"Subtarget->hasRAS()">,
46                                  AssemblerPredicate<"FeatureRAS", "ras">;
47 def HasRDM           : Predicate<"Subtarget->hasRDM()">,
48                                  AssemblerPredicate<"FeatureRDM", "rdm">;
49 def HasPerfMon       : Predicate<"Subtarget->hasPerfMon()">;
50 def HasFullFP16      : Predicate<"Subtarget->hasFullFP16()">,
51                                  AssemblerPredicate<"FeatureFullFP16", "fullfp16">;
52 def HasSPE           : Predicate<"Subtarget->hasSPE()">,
53                                  AssemblerPredicate<"FeatureSPE", "spe">;
54 def HasFuseAES       : Predicate<"Subtarget->hasFuseAES()">,
55                                  AssemblerPredicate<"FeatureFuseAES",
56                                  "fuse-aes">;
57 def HasSVE           : Predicate<"Subtarget->hasSVE()">,
58                                  AssemblerPredicate<"FeatureSVE", "sve">;
59 def HasRCPC          : Predicate<"Subtarget->hasRCPC()">,
60                                  AssemblerPredicate<"FeatureRCPC", "rcpc">;
61
62 def IsLE             : Predicate<"Subtarget->isLittleEndian()">;
63 def IsBE             : Predicate<"!Subtarget->isLittleEndian()">;
64 def UseAlternateSExtLoadCVTF32
65     : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
66
67 def UseNegativeImmediates
68     : Predicate<"false">, AssemblerPredicate<"!FeatureNoNegativeImmediates",
69                                              "NegativeImmediates">;
70
71
72 //===----------------------------------------------------------------------===//
73 // AArch64-specific DAG Nodes.
74 //
75
76 // SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
77 def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
78                                               [SDTCisSameAs<0, 2>,
79                                                SDTCisSameAs<0, 3>,
80                                                SDTCisInt<0>, SDTCisVT<1, i32>]>;
81
82 // SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
83 def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
84                                             [SDTCisSameAs<0, 1>,
85                                              SDTCisSameAs<0, 2>,
86                                              SDTCisInt<0>,
87                                              SDTCisVT<3, i32>]>;
88
89 // SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
90 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
91                                             [SDTCisSameAs<0, 2>,
92                                              SDTCisSameAs<0, 3>,
93                                              SDTCisInt<0>,
94                                              SDTCisVT<1, i32>,
95                                              SDTCisVT<4, i32>]>;
96
97 def SDT_AArch64Brcond  : SDTypeProfile<0, 3,
98                                      [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
99                                       SDTCisVT<2, i32>]>;
100 def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
101 def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
102                                         SDTCisVT<2, OtherVT>]>;
103
104
105 def SDT_AArch64CSel  : SDTypeProfile<1, 4,
106                                    [SDTCisSameAs<0, 1>,
107                                     SDTCisSameAs<0, 2>,
108                                     SDTCisInt<3>,
109                                     SDTCisVT<4, i32>]>;
110 def SDT_AArch64CCMP : SDTypeProfile<1, 5,
111                                     [SDTCisVT<0, i32>,
112                                      SDTCisInt<1>,
113                                      SDTCisSameAs<1, 2>,
114                                      SDTCisInt<3>,
115                                      SDTCisInt<4>,
116                                      SDTCisVT<5, i32>]>;
117 def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
118                                      [SDTCisVT<0, i32>,
119                                       SDTCisFP<1>,
120                                       SDTCisSameAs<1, 2>,
121                                       SDTCisInt<3>,
122                                       SDTCisInt<4>,
123                                       SDTCisVT<5, i32>]>;
124 def SDT_AArch64FCmp   : SDTypeProfile<0, 2,
125                                    [SDTCisFP<0>,
126                                     SDTCisSameAs<0, 1>]>;
127 def SDT_AArch64Dup   : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
128 def SDT_AArch64DupLane   : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
129 def SDT_AArch64Zip   : SDTypeProfile<1, 2, [SDTCisVec<0>,
130                                           SDTCisSameAs<0, 1>,
131                                           SDTCisSameAs<0, 2>]>;
132 def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
133 def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
134 def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
135                                            SDTCisInt<2>, SDTCisInt<3>]>;
136 def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
137 def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
138                                           SDTCisSameAs<0,2>, SDTCisInt<3>]>;
139 def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
140
141 def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
142 def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
143 def SDT_AArch64fcmp  : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
144 def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
145                                            SDTCisSameAs<0,2>]>;
146 def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
147                                            SDTCisSameAs<0,2>,
148                                            SDTCisSameAs<0,3>]>;
149 def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
150 def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
151
152 def SDT_AArch64ITOF  : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
153
154 def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
155                                                  SDTCisPtrTy<1>]>;
156
157 // Generates the general dynamic sequences, i.e.
158 //  adrp  x0, :tlsdesc:var
159 //  ldr   x1, [x0, #:tlsdesc_lo12:var]
160 //  add   x0, x0, #:tlsdesc_lo12:var
161 //  .tlsdesccall var
162 //  blr   x1
163
164 // (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
165 // number of operands (the variable)
166 def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
167                                           [SDTCisPtrTy<0>]>;
168
169 def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
170                                         [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
171                                          SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
172                                          SDTCisSameAs<1, 4>]>;
173
174
175 // Node definitions.
176 def AArch64adrp          : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
177 def AArch64addlow        : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
178 def AArch64LOADgot       : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
179 def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
180                                 SDCallSeqStart<[ SDTCisVT<0, i32>,
181                                                  SDTCisVT<1, i32> ]>,
182                                 [SDNPHasChain, SDNPOutGlue]>;
183 def AArch64callseq_end   : SDNode<"ISD::CALLSEQ_END",
184                                 SDCallSeqEnd<[ SDTCisVT<0, i32>,
185                                                SDTCisVT<1, i32> ]>,
186                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
187 def AArch64call          : SDNode<"AArch64ISD::CALL",
188                                 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
189                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
190                                  SDNPVariadic]>;
191 def AArch64brcond        : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
192                                 [SDNPHasChain]>;
193 def AArch64cbz           : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
194                                 [SDNPHasChain]>;
195 def AArch64cbnz           : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
196                                 [SDNPHasChain]>;
197 def AArch64tbz           : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
198                                 [SDNPHasChain]>;
199 def AArch64tbnz           : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
200                                 [SDNPHasChain]>;
201
202
203 def AArch64csel          : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
204 def AArch64csinv         : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
205 def AArch64csneg         : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
206 def AArch64csinc         : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
207 def AArch64retflag       : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
208                                 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
209 def AArch64adc       : SDNode<"AArch64ISD::ADC",  SDTBinaryArithWithFlagsIn >;
210 def AArch64sbc       : SDNode<"AArch64ISD::SBC",  SDTBinaryArithWithFlagsIn>;
211 def AArch64add_flag  : SDNode<"AArch64ISD::ADDS",  SDTBinaryArithWithFlagsOut,
212                             [SDNPCommutative]>;
213 def AArch64sub_flag  : SDNode<"AArch64ISD::SUBS",  SDTBinaryArithWithFlagsOut>;
214 def AArch64and_flag  : SDNode<"AArch64ISD::ANDS",  SDTBinaryArithWithFlagsOut,
215                             [SDNPCommutative]>;
216 def AArch64adc_flag  : SDNode<"AArch64ISD::ADCS",  SDTBinaryArithWithFlagsInOut>;
217 def AArch64sbc_flag  : SDNode<"AArch64ISD::SBCS",  SDTBinaryArithWithFlagsInOut>;
218
219 def AArch64ccmp      : SDNode<"AArch64ISD::CCMP",  SDT_AArch64CCMP>;
220 def AArch64ccmn      : SDNode<"AArch64ISD::CCMN",  SDT_AArch64CCMP>;
221 def AArch64fccmp     : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
222
223 def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
224
225 def AArch64fcmp      : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
226
227 def AArch64dup       : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
228 def AArch64duplane8  : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
229 def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
230 def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
231 def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
232
233 def AArch64zip1      : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
234 def AArch64zip2      : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
235 def AArch64uzp1      : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
236 def AArch64uzp2      : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
237 def AArch64trn1      : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
238 def AArch64trn2      : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
239
240 def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
241 def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
242 def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
243 def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
244 def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
245 def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
246 def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
247
248 def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
249 def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
250 def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
251 def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
252
253 def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
254 def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
255 def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
256 def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
257 def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
258 def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
259 def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
260 def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
261
262 def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
263 def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
264 def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>;
265
266 def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
267 def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
268 def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
269 def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
270 def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
271
272 def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
273 def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
274 def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
275
276 def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
277 def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
278 def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
279 def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
280 def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
281 def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
282                         (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
283
284 def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
285 def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
286 def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
287 def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
288 def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
289
290 def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
291 def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
292
293 def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
294
295 def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
296                   [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
297
298 def AArch64Prefetch        : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
299                                [SDNPHasChain, SDNPSideEffect]>;
300
301 def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
302 def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
303
304 def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
305                                     SDT_AArch64TLSDescCallSeq,
306                                     [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
307                                      SDNPVariadic]>;
308
309
310 def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
311                                  SDT_AArch64WrapperLarge>;
312
313 def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
314
315 def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
316                                     SDTCisSameAs<1, 2>]>;
317 def AArch64smull    : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
318 def AArch64umull    : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
319
320 def AArch64frecpe   : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
321 def AArch64frecps   : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
322 def AArch64frsqrte  : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
323 def AArch64frsqrts  : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;
324
325 def AArch64saddv    : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
326 def AArch64uaddv    : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
327 def AArch64sminv    : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
328 def AArch64uminv    : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
329 def AArch64smaxv    : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
330 def AArch64umaxv    : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
331
332 //===----------------------------------------------------------------------===//
333
334 //===----------------------------------------------------------------------===//
335
336 // AArch64 Instruction Predicate Definitions.
337 // We could compute these on a per-module basis but doing so requires accessing
338 // the Function object through the <Target>Subtarget and objections were raised
339 // to that (see post-commit review comments for r301750).
340 let RecomputePerFunction = 1 in {
341   def ForCodeSize   : Predicate<"MF->getFunction().optForSize()">;
342   def NotForCodeSize   : Predicate<"!MF->getFunction().optForSize()">;
343   // Avoid generating STRQro if it is slow, unless we're optimizing for code size.
344   def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || MF->getFunction().optForSize()">;
345 }
346
347 include "AArch64InstrFormats.td"
348 include "SVEInstrFormats.td"
349
350 //===----------------------------------------------------------------------===//
351
352 //===----------------------------------------------------------------------===//
353 // Miscellaneous instructions.
354 //===----------------------------------------------------------------------===//
355
356 let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
357 // We set Sched to empty list because we expect these instructions to simply get
358 // removed in most cases.
359 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
360                               [(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
361                               Sched<[]>;
362 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
363                             [(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
364                             Sched<[]>;
365 } // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
366
367 let isReMaterializable = 1, isCodeGenOnly = 1 in {
368 // FIXME: The following pseudo instructions are only needed because remat
369 // cannot handle multiple instructions.  When that changes, they can be
370 // removed, along with the AArch64Wrapper node.
371
372 let AddedComplexity = 10 in
373 def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
374                      [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
375               Sched<[WriteLDAdr]>;
376
377 // The MOVaddr instruction should match only when the add is not folded
378 // into a load or store address.
379 def MOVaddr
380     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
381              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
382                                             tglobaladdr:$low))]>,
383       Sched<[WriteAdrAdr]>;
384 def MOVaddrJT
385     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
386              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
387                                              tjumptable:$low))]>,
388       Sched<[WriteAdrAdr]>;
389 def MOVaddrCP
390     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
391              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
392                                              tconstpool:$low))]>,
393       Sched<[WriteAdrAdr]>;
394 def MOVaddrBA
395     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
396              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
397                                              tblockaddress:$low))]>,
398       Sched<[WriteAdrAdr]>;
399 def MOVaddrTLS
400     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
401              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
402                                             tglobaltlsaddr:$low))]>,
403       Sched<[WriteAdrAdr]>;
404 def MOVaddrEXT
405     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
406              [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
407                                             texternalsym:$low))]>,
408       Sched<[WriteAdrAdr]>;
409 // Normally AArch64addlow either gets folded into a following ldr/str,
410 // or together with an adrp into MOVaddr above. For cases with TLS, it
411 // might appear without either of them, so allow lowering it into a plain
412 // add.
413 def ADDlowTLS
414     : Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
415              [(set GPR64:$dst, (AArch64addlow GPR64:$src,
416                                             tglobaltlsaddr:$low))]>,
417       Sched<[WriteAdr]>;
418
419 } // isReMaterializable, isCodeGenOnly
420
421 def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
422           (LOADgot tglobaltlsaddr:$addr)>;
423
424 def : Pat<(AArch64LOADgot texternalsym:$addr),
425           (LOADgot texternalsym:$addr)>;
426
427 def : Pat<(AArch64LOADgot tconstpool:$addr),
428           (LOADgot tconstpool:$addr)>;
429
430 //===----------------------------------------------------------------------===//
431 // System instructions.
432 //===----------------------------------------------------------------------===//
433
434 def HINT : HintI<"hint">;
435 def : InstAlias<"nop",  (HINT 0b000)>;
436 def : InstAlias<"yield",(HINT 0b001)>;
437 def : InstAlias<"wfe",  (HINT 0b010)>;
438 def : InstAlias<"wfi",  (HINT 0b011)>;
439 def : InstAlias<"sev",  (HINT 0b100)>;
440 def : InstAlias<"sevl", (HINT 0b101)>;
441 def : InstAlias<"esb",  (HINT 0b10000)>, Requires<[HasRAS]>;
442 def : InstAlias<"csdb", (HINT 20)>;
443
444 // v8.2a Statistical Profiling extension
445 def : InstAlias<"psb $op",  (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
446
447 // As far as LLVM is concerned this writes to the system's exclusive monitors.
448 let mayLoad = 1, mayStore = 1 in
449 def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
450
451 // NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
452 // model patterns with sufficiently fine granularity.
453 let mayLoad = ?, mayStore = ? in {
454 def DMB   : CRmSystemI<barrier_op, 0b101, "dmb",
455                        [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
456
457 def DSB   : CRmSystemI<barrier_op, 0b100, "dsb",
458                        [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
459
460 def ISB   : CRmSystemI<barrier_op, 0b110, "isb",
461                        [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
462
463 def TSB   : CRmSystemI<barrier_op, 0b010, "tsb", []> {
464   let CRm        = 0b0010;
465   let Inst{12}   = 0;
466   let Predicates = [HasV8_4a];
467 }
468 }
469
470 // ARMv8.2 Dot Product
471 let Predicates = [HasDotProd] in {
472 defm SDOT : SIMDThreeSameVectorDot<0, "sdot", int_aarch64_neon_sdot>;
473 defm UDOT : SIMDThreeSameVectorDot<1, "udot", int_aarch64_neon_udot>;
474 defm SDOTlane : SIMDThreeSameVectorDotIndex<0, "sdot", int_aarch64_neon_sdot>;
475 defm UDOTlane : SIMDThreeSameVectorDotIndex<1, "udot", int_aarch64_neon_udot>;
476 }
477
478 // Armv8.2-A Crypto extensions
479 let Predicates = [HasSHA3] in {
480 def SHA512H   : CryptoRRRTied<0b0, 0b00, "sha512h">;
481 def SHA512H2  : CryptoRRRTied<0b0, 0b01, "sha512h2">;
482 def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
483 def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
484 def RAX1      : CryptoRRR_2D<0b0,0b11, "rax1">;
485 def EOR3      : CryptoRRRR_16B<0b00, "eor3">;
486 def BCAX      : CryptoRRRR_16B<0b01, "bcax">;
487 def XAR       : CryptoRRRi6<"xar">;
488 } // HasSHA3
489
490 let Predicates = [HasSM4] in {
491 def SM3TT1A   : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
492 def SM3TT1B   : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
493 def SM3TT2A   : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
494 def SM3TT2B   : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
495 def SM3SS1    : CryptoRRRR_4S<0b10, "sm3ss1">;
496 def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
497 def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
498 def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
499 def SM4E      : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
500 } // HasSM4
501
502 let Predicates = [HasRCPC] in {
503   // v8.3 Release Consistent Processor Consistent support, optional in v8.2.
504   def LDAPRB  : RCPCLoad<0b00, "ldaprb", GPR32>;
505   def LDAPRH  : RCPCLoad<0b01, "ldaprh", GPR32>;
506   def LDAPRW  : RCPCLoad<0b10, "ldapr", GPR32>;
507   def LDAPRX  : RCPCLoad<0b11, "ldapr", GPR64>;
508 }
509
510 // v8.3a complex add and multiply-accumulate. No predicate here, that is done
511 // inside the multiclass as the FP16 versions need different predicates.
512 defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
513                                                "fcmla", null_frag>;
514 defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
515                                            "fcadd", null_frag>;
516 defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
517                                        null_frag>;
518
519 // v8.3a Pointer Authentication
520 // These instructions inhabit part of the hint space and so can be used for
521 // armv8 targets
522 let Uses = [LR], Defs = [LR] in {
523   def PACIAZ   : SystemNoOperands<0b000, "paciaz">;
524   def PACIBZ   : SystemNoOperands<0b010, "pacibz">;
525   def AUTIAZ   : SystemNoOperands<0b100, "autiaz">;
526   def AUTIBZ   : SystemNoOperands<0b110, "autibz">;
527 }
528 let Uses = [LR, SP], Defs = [LR] in {
529   def PACIASP  : SystemNoOperands<0b001, "paciasp">;
530   def PACIBSP  : SystemNoOperands<0b011, "pacibsp">;
531   def AUTIASP  : SystemNoOperands<0b101, "autiasp">;
532   def AUTIBSP  : SystemNoOperands<0b111, "autibsp">;
533 }
534 let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
535   def PACIA1716  : SystemNoOperands<0b000, "pacia1716">;
536   def PACIB1716  : SystemNoOperands<0b010, "pacib1716">;
537   def AUTIA1716  : SystemNoOperands<0b100, "autia1716">;
538   def AUTIB1716  : SystemNoOperands<0b110, "autib1716">;
539 }
540
541 let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
542   def XPACLRI   : SystemNoOperands<0b111, "xpaclri">;
543 }
544
545 // These pointer authentication isntructions require armv8.3a
546 let Predicates = [HasV8_3a] in {
547   multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
548     def IA   : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
549     def IB   : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
550     def DA   : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
551     def DB   : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
552     def IZA  : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
553     def DZA  : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
554     def IZB  : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
555     def DZB  : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
556   }
557
558   defm PAC : SignAuth<0b000, 0b010, "pac">;
559   defm AUT : SignAuth<0b001, 0b011, "aut">;
560
561   def XPACI : SignAuthZero<0b100, 0b00, "xpaci">;
562   def XPACD : SignAuthZero<0b100, 0b01, "xpacd">;
563   def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;
564
565   // Combined Instructions
566   def BRAA    : AuthBranchTwoOperands<0, 0, "braa">;
567   def BRAB    : AuthBranchTwoOperands<0, 1, "brab">;
568   def BLRAA   : AuthBranchTwoOperands<1, 0, "blraa">;
569   def BLRAB   : AuthBranchTwoOperands<1, 1, "blrab">;
570
571   def BRAAZ   : AuthOneOperand<0b000, 0, "braaz">;
572   def BRABZ   : AuthOneOperand<0b000, 1, "brabz">;
573   def BLRAAZ  : AuthOneOperand<0b001, 0, "blraaz">;
574   def BLRABZ  : AuthOneOperand<0b001, 1, "blrabz">;
575
576   let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
577     def RETAA   : AuthReturn<0b010, 0, "retaa">;
578     def RETAB   : AuthReturn<0b010, 1, "retab">;
579     def ERETAA  : AuthReturn<0b100, 0, "eretaa">;
580     def ERETAB  : AuthReturn<0b100, 1, "eretab">;
581   }
582
583   defm LDRAA  : AuthLoad<0, "ldraa", simm10Scaled>;
584   defm LDRAB  : AuthLoad<1, "ldrab", simm10Scaled>;
585
586   // v8.3a floating point conversion for javascript
587   let Predicates = [HasV8_3a, HasFPARMv8] in
588   def FJCVTZS  : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
589                                         "fjcvtzs", []> {
590     let Inst{31} = 0;
591   }
592
593 } // HasV8_3a
594
595 // v8.4 Flag manipulation instructions
596 let Predicates = [HasV8_4a] in {
597 def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
598   let Inst{20-5} = 0b0000001000000000;
599 }
600 def SETF8  : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
601 def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
602 def RMIF   : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
603                         "{\t$Rn, $imm, $mask}">;
604 } // HasV8_4a
605
606 def : InstAlias<"clrex", (CLREX 0xf)>;
607 def : InstAlias<"isb", (ISB 0xf)>;
608
609 def MRS    : MRSI;
610 def MSR    : MSRI;
611 def MSRpstateImm1 : MSRpstateImm0_1;
612 def MSRpstateImm4 : MSRpstateImm0_15;
613
614 // The thread pointer (on Linux, at least, where this has been implemented) is
615 // TPIDR_EL0.
616 def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
617                        [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;
618
619 // The cycle counter PMC register is PMCCNTR_EL0.
620 let Predicates = [HasPerfMon] in
621 def : Pat<(readcyclecounter), (MRS 0xdce8)>;
622
623 // FPCR register
624 def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;
625
626 // Generic system instructions
627 def SYSxt  : SystemXtI<0, "sys">;
628 def SYSLxt : SystemLXtI<1, "sysl">;
629
630 def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
631                 (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
632                  sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
633
634 //===----------------------------------------------------------------------===//
635 // Move immediate instructions.
636 //===----------------------------------------------------------------------===//
637
638 defm MOVK : InsertImmediate<0b11, "movk">;
639 defm MOVN : MoveImmediate<0b00, "movn">;
640
641 let PostEncoderMethod = "fixMOVZ" in
642 defm MOVZ : MoveImmediate<0b10, "movz">;
643
644 // First group of aliases covers an implicit "lsl #0".
645 def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0), 0>;
646 def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0), 0>;
647 def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>;
648 def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>;
649 def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>;
650 def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>;
651
652 // Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
653 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
654 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
655 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
656 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
657
658 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
659 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
660 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
661 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
662
663 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48), 0>;
664 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32), 0>;
665 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16), 0>;
666 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0), 0>;
667
668 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
669 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
670
671 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
672 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
673
674 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16), 0>;
675 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0), 0>;
676
677 // Final group of aliases covers true "mov $Rd, $imm" cases.
678 multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
679                           int width, int shift> {
680   def _asmoperand : AsmOperandClass {
681     let Name = basename # width # "_lsl" # shift # "MovAlias";
682     let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
683                                # shift # ">";
684     let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
685   }
686
687   def _movimm : Operand<i32> {
688     let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
689   }
690
691   def : InstAlias<"mov $Rd, $imm",
692                   (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
693 }
694
695 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
696 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
697
698 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
699 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
700 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
701 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
702
703 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
704 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
705
706 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
707 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
708 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
709 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
710
711 let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
712     isAsCheapAsAMove = 1 in {
713 // FIXME: The following pseudo instructions are only needed because remat
714 // cannot handle multiple instructions.  When that changes, we can select
715 // directly to the real instructions and get rid of these pseudos.
716
717 def MOVi32imm
718     : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
719              [(set GPR32:$dst, imm:$src)]>,
720       Sched<[WriteImm]>;
721 def MOVi64imm
722     : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
723              [(set GPR64:$dst, imm:$src)]>,
724       Sched<[WriteImm]>;
725 } // isReMaterializable, isCodeGenOnly
726
727 // If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
728 // eventual expansion code fewer bits to worry about getting right. Marshalling
729 // the types is a little tricky though:
730 def i64imm_32bit : ImmLeaf<i64, [{
731   return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
732 }]>;
733
734 def s64imm_32bit : ImmLeaf<i64, [{
735   int64_t Imm64 = static_cast<int64_t>(Imm);
736   return Imm64 >= std::numeric_limits<int32_t>::min() &&
737          Imm64 <= std::numeric_limits<int32_t>::max();
738 }]>;
739
740 def trunc_imm : SDNodeXForm<imm, [{
741   return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
742 }]>;
743
744 def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
745   GISDNodeXFormEquiv<trunc_imm>;
746
747 def : Pat<(i64 i64imm_32bit:$src),
748           (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
749
750 // Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
751 def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
752 return CurDAG->getTargetConstant(
753   N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
754 }]>;
755
756 def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
757 return CurDAG->getTargetConstant(
758   N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
759 }]>;
760
761
762 def : Pat<(f32 fpimm:$in),
763   (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
764 def : Pat<(f64 fpimm:$in),
765   (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
766
767
768 // Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
769 // sequences.
770 def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
771                              tglobaladdr:$g1, tglobaladdr:$g0),
772           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
773                                   tglobaladdr:$g1, 16),
774                           tglobaladdr:$g2, 32),
775                   tglobaladdr:$g3, 48)>;
776
777 def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
778                              tblockaddress:$g1, tblockaddress:$g0),
779           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
780                                   tblockaddress:$g1, 16),
781                           tblockaddress:$g2, 32),
782                   tblockaddress:$g3, 48)>;
783
784 def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
785                              tconstpool:$g1, tconstpool:$g0),
786           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
787                                   tconstpool:$g1, 16),
788                           tconstpool:$g2, 32),
789                   tconstpool:$g3, 48)>;
790
791 def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
792                              tjumptable:$g1, tjumptable:$g0),
793           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
794                                   tjumptable:$g1, 16),
795                           tjumptable:$g2, 32),
796                   tjumptable:$g3, 48)>;
797
798
799 //===----------------------------------------------------------------------===//
800 // Arithmetic instructions.
801 //===----------------------------------------------------------------------===//
802
803 // Add/subtract with carry.
804 defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
805 defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
806
807 def : InstAlias<"ngc $dst, $src",  (SBCWr  GPR32:$dst, WZR, GPR32:$src)>;
808 def : InstAlias<"ngc $dst, $src",  (SBCXr  GPR64:$dst, XZR, GPR64:$src)>;
809 def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
810 def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
811
812 // Add/subtract
813 defm ADD : AddSub<0, "add", "sub", add>;
814 defm SUB : AddSub<1, "sub", "add">;
815
816 def : InstAlias<"mov $dst, $src",
817                 (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
818 def : InstAlias<"mov $dst, $src",
819                 (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
820 def : InstAlias<"mov $dst, $src",
821                 (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
822 def : InstAlias<"mov $dst, $src",
823                 (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
824
825 defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
826 defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
827
828 // Use SUBS instead of SUB to enable CSE between SUBS and SUB.
829 def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
830           (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
831 def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
832           (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
833 def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
834           (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
835 def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
836           (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
837 def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
838           (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
839 def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
840           (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
841 let AddedComplexity = 1 in {
842 def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3),
843           (SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>;
844 def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3),
845           (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>;
846 }
847
848 // Because of the immediate format for add/sub-imm instructions, the
849 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
850 //  These patterns capture that transformation.
851 let AddedComplexity = 1 in {
852 def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
853           (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
854 def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
855           (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
856 def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
857           (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
858 def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
859           (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
860 }
861
862 // Because of the immediate format for add/sub-imm instructions, the
863 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
864 //  These patterns capture that transformation.
865 let AddedComplexity = 1 in {
866 def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
867           (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
868 def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
869           (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
870 def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
871           (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
872 def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
873           (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
874 }
875
876 def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
877 def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
878 def : InstAlias<"neg $dst, $src$shift",
879                 (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
880 def : InstAlias<"neg $dst, $src$shift",
881                 (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
882
883 def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
884 def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
885 def : InstAlias<"negs $dst, $src$shift",
886                 (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
887 def : InstAlias<"negs $dst, $src$shift",
888                 (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
889
890
891 // Unsigned/Signed divide
892 defm UDIV : Div<0, "udiv", udiv>;
893 defm SDIV : Div<1, "sdiv", sdiv>;
894
895 def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
896 def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
897 def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
898 def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;
899
900 // Variable shift
901 defm ASRV : Shift<0b10, "asr", sra>;
902 defm LSLV : Shift<0b00, "lsl", shl>;
903 defm LSRV : Shift<0b01, "lsr", srl>;
904 defm RORV : Shift<0b11, "ror", rotr>;
905
906 def : ShiftAlias<"asrv", ASRVWr, GPR32>;
907 def : ShiftAlias<"asrv", ASRVXr, GPR64>;
908 def : ShiftAlias<"lslv", LSLVWr, GPR32>;
909 def : ShiftAlias<"lslv", LSLVXr, GPR64>;
910 def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
911 def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
912 def : ShiftAlias<"rorv", RORVWr, GPR32>;
913 def : ShiftAlias<"rorv", RORVXr, GPR64>;
914
915 // Multiply-add
916 let AddedComplexity = 5 in {
917 defm MADD : MulAccum<0, "madd", add>;
918 defm MSUB : MulAccum<1, "msub", sub>;
919
920 def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
921           (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
922 def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
923           (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
924
925 def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
926           (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
927 def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
928           (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
929 def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
930           (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
931 def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
932           (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
933 } // AddedComplexity = 5
934
935 let AddedComplexity = 5 in {
936 def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
937 def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
938 def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
939 def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
940
941 def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
942           (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
943 def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
944           (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
945
946 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
947           (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
948 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
949           (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
950
951 def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
952           (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
953 def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
954           (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
955 def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
956           (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
957                      (MOVi32imm (trunc_imm imm:$C)), XZR)>;
958
959 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
960           (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
961 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
962           (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
963 def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
964           (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
965                      (MOVi32imm (trunc_imm imm:$C)), XZR)>;
966
967 def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
968           (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
969 def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
970           (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
971 def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
972                     GPR64:$Ra)),
973           (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
974                      (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
975
976 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
977           (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
978 def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
979           (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
980 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
981                                     (s64imm_32bit:$C)))),
982           (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
983                      (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
984 } // AddedComplexity = 5
985
986 def : MulAccumWAlias<"mul", MADDWrrr>;
987 def : MulAccumXAlias<"mul", MADDXrrr>;
988 def : MulAccumWAlias<"mneg", MSUBWrrr>;
989 def : MulAccumXAlias<"mneg", MSUBXrrr>;
990 def : WideMulAccumAlias<"smull", SMADDLrrr>;
991 def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
992 def : WideMulAccumAlias<"umull", UMADDLrrr>;
993 def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
994
995 // Multiply-high
996 def SMULHrr : MulHi<0b010, "smulh", mulhs>;
997 def UMULHrr : MulHi<0b110, "umulh", mulhu>;
998
999 // CRC32
1000 def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
1001 def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
1002 def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
1003 def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
1004
1005 def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
1006 def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
1007 def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
1008 def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
1009
1010 // v8.1 atomic CAS
1011 defm CAS   : CompareAndSwap<0, 0, "">;
1012 defm CASA  : CompareAndSwap<1, 0, "a">;
1013 defm CASL  : CompareAndSwap<0, 1, "l">;
1014 defm CASAL : CompareAndSwap<1, 1, "al">;
1015
1016 // v8.1 atomic CASP
1017 defm CASP   : CompareAndSwapPair<0, 0, "">;
1018 defm CASPA  : CompareAndSwapPair<1, 0, "a">;
1019 defm CASPL  : CompareAndSwapPair<0, 1, "l">;
1020 defm CASPAL : CompareAndSwapPair<1, 1, "al">;
1021
1022 // v8.1 atomic SWP
1023 defm SWP   : Swap<0, 0, "">;
1024 defm SWPA  : Swap<1, 0, "a">;
1025 defm SWPL  : Swap<0, 1, "l">;
1026 defm SWPAL : Swap<1, 1, "al">;
1027
1028 // v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
1029 defm LDADD   : LDOPregister<0b000, "add", 0, 0, "">;
1030 defm LDADDA  : LDOPregister<0b000, "add", 1, 0, "a">;
1031 defm LDADDL  : LDOPregister<0b000, "add", 0, 1, "l">;
1032 defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
1033
1034 defm LDCLR   : LDOPregister<0b001, "clr", 0, 0, "">;
1035 defm LDCLRA  : LDOPregister<0b001, "clr", 1, 0, "a">;
1036 defm LDCLRL  : LDOPregister<0b001, "clr", 0, 1, "l">;
1037 defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
1038
1039 defm LDEOR   : LDOPregister<0b010, "eor", 0, 0, "">;
1040 defm LDEORA  : LDOPregister<0b010, "eor", 1, 0, "a">;
1041 defm LDEORL  : LDOPregister<0b010, "eor", 0, 1, "l">;
1042 defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
1043
1044 defm LDSET   : LDOPregister<0b011, "set", 0, 0, "">;
1045 defm LDSETA  : LDOPregister<0b011, "set", 1, 0, "a">;
1046 defm LDSETL  : LDOPregister<0b011, "set", 0, 1, "l">;
1047 defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
1048
1049 defm LDSMAX   : LDOPregister<0b100, "smax", 0, 0, "">;
1050 defm LDSMAXA  : LDOPregister<0b100, "smax", 1, 0, "a">;
1051 defm LDSMAXL  : LDOPregister<0b100, "smax", 0, 1, "l">;
1052 defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
1053
1054 defm LDSMIN   : LDOPregister<0b101, "smin", 0, 0, "">;
1055 defm LDSMINA  : LDOPregister<0b101, "smin", 1, 0, "a">;
1056 defm LDSMINL  : LDOPregister<0b101, "smin", 0, 1, "l">;
1057 defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
1058
1059 defm LDUMAX   : LDOPregister<0b110, "umax", 0, 0, "">;
1060 defm LDUMAXA  : LDOPregister<0b110, "umax", 1, 0, "a">;
1061 defm LDUMAXL  : LDOPregister<0b110, "umax", 0, 1, "l">;
1062 defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
1063
1064 defm LDUMIN   : LDOPregister<0b111, "umin", 0, 0, "">;
1065 defm LDUMINA  : LDOPregister<0b111, "umin", 1, 0, "a">;
1066 defm LDUMINL  : LDOPregister<0b111, "umin", 0, 1, "l">;
1067 defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
1068
1069 // v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
1070 defm : STOPregister<"stadd","LDADD">; // STADDx
1071 defm : STOPregister<"stclr","LDCLR">; // STCLRx
1072 defm : STOPregister<"steor","LDEOR">; // STEORx
1073 defm : STOPregister<"stset","LDSET">; // STSETx
1074 defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
1075 defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
1076 defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
1077 defm : STOPregister<"stumin","LDUMIN">;// STUMINx
1078
1079 //===----------------------------------------------------------------------===//
1080 // Logical instructions.
1081 //===----------------------------------------------------------------------===//
1082
1083 // (immediate)
1084 defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
1085 defm AND  : LogicalImm<0b00, "and", and, "bic">;
1086 defm EOR  : LogicalImm<0b10, "eor", xor, "eon">;
1087 defm ORR  : LogicalImm<0b01, "orr", or, "orn">;
1088
1089 // FIXME: these aliases *are* canonical sometimes (when movz can't be
1090 // used). Actually, it seems to be working right now, but putting logical_immXX
1091 // here is a bit dodgy on the AsmParser side too.
1092 def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
1093                                           logical_imm32:$imm), 0>;
1094 def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
1095                                           logical_imm64:$imm), 0>;
1096
1097
1098 // (register)
1099 defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
1100 defm BICS : LogicalRegS<0b11, 1, "bics",
1101                         BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
1102 defm AND  : LogicalReg<0b00, 0, "and", and>;
1103 defm BIC  : LogicalReg<0b00, 1, "bic",
1104                        BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
1105 defm EON  : LogicalReg<0b10, 1, "eon",
1106                        BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
1107 defm EOR  : LogicalReg<0b10, 0, "eor", xor>;
1108 defm ORN  : LogicalReg<0b01, 1, "orn",
1109                        BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
1110 defm ORR  : LogicalReg<0b01, 0, "orr", or>;
1111
1112 def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
1113 def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
1114
1115 def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
1116 def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
1117
1118 def : InstAlias<"mvn $Wd, $Wm$sh",
1119                 (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
1120 def : InstAlias<"mvn $Xd, $Xm$sh",
1121                 (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
1122
1123 def : InstAlias<"tst $src1, $src2",
1124                 (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
1125 def : InstAlias<"tst $src1, $src2",
1126                 (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
1127
1128 def : InstAlias<"tst $src1, $src2",
1129                         (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
1130 def : InstAlias<"tst $src1, $src2",
1131                         (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
1132
1133 def : InstAlias<"tst $src1, $src2$sh",
1134                (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
1135 def : InstAlias<"tst $src1, $src2$sh",
1136                (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
1137
1138
1139 def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
1140 def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
1141
1142
1143 //===----------------------------------------------------------------------===//
1144 // One operand data processing instructions.
1145 //===----------------------------------------------------------------------===//
1146
1147 defm CLS    : OneOperandData<0b101, "cls">;
1148 defm CLZ    : OneOperandData<0b100, "clz", ctlz>;
1149 defm RBIT   : OneOperandData<0b000, "rbit", bitreverse>;
1150
1151 def  REV16Wr : OneWRegData<0b001, "rev16",
1152                                   UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
1153 def  REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
1154
1155 def : Pat<(cttz GPR32:$Rn),
1156           (CLZWr (RBITWr GPR32:$Rn))>;
1157 def : Pat<(cttz GPR64:$Rn),
1158           (CLZXr (RBITXr GPR64:$Rn))>;
1159 def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
1160                 (i32 1))),
1161           (CLSWr GPR32:$Rn)>;
1162 def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
1163                 (i64 1))),
1164           (CLSXr GPR64:$Rn)>;
1165
1166 // Unlike the other one operand instructions, the instructions with the "rev"
1167 // mnemonic do *not* just different in the size bit, but actually use different
1168 // opcode bits for the different sizes.
1169 def REVWr   : OneWRegData<0b010, "rev", bswap>;
1170 def REVXr   : OneXRegData<0b011, "rev", bswap>;
1171 def REV32Xr : OneXRegData<0b010, "rev32",
1172                                  UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
1173
1174 def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
1175
1176 // The bswap commutes with the rotr so we want a pattern for both possible
1177 // orders.
1178 def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
1179 def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
1180
1181 //===----------------------------------------------------------------------===//
1182 // Bitfield immediate extraction instruction.
1183 //===----------------------------------------------------------------------===//
1184 let hasSideEffects = 0 in
1185 defm EXTR : ExtractImm<"extr">;
1186 def : InstAlias<"ror $dst, $src, $shift",
1187             (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
1188 def : InstAlias<"ror $dst, $src, $shift",
1189             (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
1190
1191 def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
1192           (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
1193 def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
1194           (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
1195
1196 //===----------------------------------------------------------------------===//
1197 // Other bitfield immediate instructions.
1198 //===----------------------------------------------------------------------===//
1199 let hasSideEffects = 0 in {
1200 defm BFM  : BitfieldImmWith2RegArgs<0b01, "bfm">;
1201 defm SBFM : BitfieldImm<0b00, "sbfm">;
1202 defm UBFM : BitfieldImm<0b10, "ubfm">;
1203 }
1204
1205 def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
1206   uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
1207   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1208 }]>;
1209
1210 def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
1211   uint64_t enc = 31 - N->getZExtValue();
1212   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1213 }]>;
1214
1215 // min(7, 31 - shift_amt)
1216 def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
1217   uint64_t enc = 31 - N->getZExtValue();
1218   enc = enc > 7 ? 7 : enc;
1219   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1220 }]>;
1221
1222 // min(15, 31 - shift_amt)
1223 def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1224   uint64_t enc = 31 - N->getZExtValue();
1225   enc = enc > 15 ? 15 : enc;
1226   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1227 }]>;
1228
1229 def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
1230   uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
1231   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1232 }]>;
1233
1234 def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
1235   uint64_t enc = 63 - N->getZExtValue();
1236   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1237 }]>;
1238
1239 // min(7, 63 - shift_amt)
1240 def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
1241   uint64_t enc = 63 - N->getZExtValue();
1242   enc = enc > 7 ? 7 : enc;
1243   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1244 }]>;
1245
1246 // min(15, 63 - shift_amt)
1247 def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1248   uint64_t enc = 63 - N->getZExtValue();
1249   enc = enc > 15 ? 15 : enc;
1250   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1251 }]>;
1252
1253 // min(31, 63 - shift_amt)
1254 def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
1255   uint64_t enc = 63 - N->getZExtValue();
1256   enc = enc > 31 ? 31 : enc;
1257   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1258 }]>;
1259
1260 def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
1261           (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
1262                               (i64 (i32shift_b imm0_31:$imm)))>;
1263 def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
1264           (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
1265                               (i64 (i64shift_b imm0_63:$imm)))>;
1266
1267 let AddedComplexity = 10 in {
1268 def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
1269           (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1270 def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
1271           (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1272 }
1273
1274 def : InstAlias<"asr $dst, $src, $shift",
1275                 (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1276 def : InstAlias<"asr $dst, $src, $shift",
1277                 (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1278 def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1279 def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1280 def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1281 def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1282 def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1283
1284 def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
1285           (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1286 def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
1287           (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1288
1289 def : InstAlias<"lsr $dst, $src, $shift",
1290                 (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1291 def : InstAlias<"lsr $dst, $src, $shift",
1292                 (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1293 def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1294 def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1295 def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1296 def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1297 def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1298
1299 //===----------------------------------------------------------------------===//
1300 // Conditional comparison instructions.
1301 //===----------------------------------------------------------------------===//
1302 defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
1303 defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
1304
1305 //===----------------------------------------------------------------------===//
1306 // Conditional select instructions.
1307 //===----------------------------------------------------------------------===//
1308 defm CSEL  : CondSelect<0, 0b00, "csel">;
1309
1310 def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
1311 defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
1312 defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
1313 defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
1314
1315 def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1316           (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1317 def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1318           (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1319 def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1320           (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1321 def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1322           (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1323 def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1324           (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1325 def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1326           (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1327
1328 def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
1329           (CSINCWr WZR, WZR, (i32 imm:$cc))>;
1330 def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
1331           (CSINCXr XZR, XZR, (i32 imm:$cc))>;
1332 def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
1333           (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
1334 def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
1335           (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
1336 def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
1337           (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1338 def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
1339           (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1340 def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
1341           (CSINVWr WZR, WZR, (i32 imm:$cc))>;
1342 def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
1343           (CSINVXr XZR, XZR, (i32 imm:$cc))>;
1344 def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
1345           (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
1346 def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
1347           (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
1348 def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
1349           (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1350 def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
1351           (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1352
1353 // The inverse of the condition code from the alias instruction is what is used
1354 // in the aliased instruction. The parser all ready inverts the condition code
1355 // for these aliases.
1356 def : InstAlias<"cset $dst, $cc",
1357                 (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1358 def : InstAlias<"cset $dst, $cc",
1359                 (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1360
1361 def : InstAlias<"csetm $dst, $cc",
1362                 (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1363 def : InstAlias<"csetm $dst, $cc",
1364                 (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1365
1366 def : InstAlias<"cinc $dst, $src, $cc",
1367                 (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1368 def : InstAlias<"cinc $dst, $src, $cc",
1369                 (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1370
1371 def : InstAlias<"cinv $dst, $src, $cc",
1372                 (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1373 def : InstAlias<"cinv $dst, $src, $cc",
1374                 (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1375
1376 def : InstAlias<"cneg $dst, $src, $cc",
1377                 (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1378 def : InstAlias<"cneg $dst, $src, $cc",
1379                 (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1380
1381 //===----------------------------------------------------------------------===//
1382 // PC-relative instructions.
1383 //===----------------------------------------------------------------------===//
1384 let isReMaterializable = 1 in {
1385 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
1386 def ADR  : ADRI<0, "adr", adrlabel, []>;
1387 } // hasSideEffects = 0
1388
1389 def ADRP : ADRI<1, "adrp", adrplabel,
1390                 [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
1391 } // isReMaterializable = 1
1392
1393 // page address of a constant pool entry, block address
1394 def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
1395 def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
1396 def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;
1397
1398 //===----------------------------------------------------------------------===//
1399 // Unconditional branch (register) instructions.
1400 //===----------------------------------------------------------------------===//
1401
1402 let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
1403 def RET  : BranchReg<0b0010, "ret", []>;
1404 def DRPS : SpecialReturn<0b0101, "drps">;
1405 def ERET : SpecialReturn<0b0100, "eret">;
1406 } // isReturn = 1, isTerminator = 1, isBarrier = 1
1407
1408 // Default to the LR register.
1409 def : InstAlias<"ret", (RET LR)>;
1410
1411 let isCall = 1, Defs = [LR], Uses = [SP] in {
1412 def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>;
1413 } // isCall
1414
1415 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
1416 def BR  : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
1417 } // isBranch, isTerminator, isBarrier, isIndirectBranch
1418
1419 // Create a separate pseudo-instruction for codegen to use so that we don't
1420 // flag lr as used in every function. It'll be restored before the RET by the
1421 // epilogue if it's legitimately used.
1422 def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
1423                    Sched<[WriteBrReg]> {
1424   let isTerminator = 1;
1425   let isBarrier = 1;
1426   let isReturn = 1;
1427 }
1428
1429 // This is a directive-like pseudo-instruction. The purpose is to insert an
1430 // R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
1431 // (which in the usual case is a BLR).
1432 let hasSideEffects = 1 in
1433 def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
1434   let AsmString = ".tlsdesccall $sym";
1435 }
1436
1437 // FIXME: maybe the scratch register used shouldn't be fixed to X1?
1438 // FIXME: can "hasSideEffects be dropped?
1439 let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
1440     isCodeGenOnly = 1 in
1441 def TLSDESC_CALLSEQ
1442     : Pseudo<(outs), (ins i64imm:$sym),
1443              [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
1444       Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
1445 def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
1446           (TLSDESC_CALLSEQ texternalsym:$sym)>;
1447
1448 //===----------------------------------------------------------------------===//
1449 // Conditional branch (immediate) instruction.
1450 //===----------------------------------------------------------------------===//
1451 def Bcc : BranchCond;
1452
1453 //===----------------------------------------------------------------------===//
1454 // Compare-and-branch instructions.
1455 //===----------------------------------------------------------------------===//
1456 defm CBZ  : CmpBranch<0, "cbz", AArch64cbz>;
1457 defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
1458
1459 //===----------------------------------------------------------------------===//
1460 // Test-bit-and-branch instructions.
1461 //===----------------------------------------------------------------------===//
1462 defm TBZ  : TestBranch<0, "tbz", AArch64tbz>;
1463 defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
1464
1465 //===----------------------------------------------------------------------===//
1466 // Unconditional branch (immediate) instructions.
1467 //===----------------------------------------------------------------------===//
1468 let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
1469 def B  : BranchImm<0, "b", [(br bb:$addr)]>;
1470 } // isBranch, isTerminator, isBarrier
1471
1472 let isCall = 1, Defs = [LR], Uses = [SP] in {
1473 def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
1474 } // isCall
1475 def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
1476
1477 //===----------------------------------------------------------------------===//
1478 // Exception generation instructions.
1479 //===----------------------------------------------------------------------===//
1480 let isTrap = 1 in {
1481 def BRK   : ExceptionGeneration<0b001, 0b00, "brk">;
1482 }
1483 def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
1484 def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
1485 def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
1486 def HLT   : ExceptionGeneration<0b010, 0b00, "hlt">;
1487 def HVC   : ExceptionGeneration<0b000, 0b10, "hvc">;
1488 def SMC   : ExceptionGeneration<0b000, 0b11, "smc">;
1489 def SVC   : ExceptionGeneration<0b000, 0b01, "svc">;
1490
1491 // DCPSn defaults to an immediate operand of zero if unspecified.
1492 def : InstAlias<"dcps1", (DCPS1 0)>;
1493 def : InstAlias<"dcps2", (DCPS2 0)>;
1494 def : InstAlias<"dcps3", (DCPS3 0)>;
1495
1496 //===----------------------------------------------------------------------===//
1497 // Load instructions.
1498 //===----------------------------------------------------------------------===//
1499
1500 // Pair (indexed, offset)
1501 defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
1502 defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
1503 defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
1504 defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
1505 defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;
1506
1507 defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;
1508
1509 // Pair (pre-indexed)
1510 def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
1511 def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
1512 def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
1513 def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
1514 def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
1515
1516 def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
1517
1518 // Pair (post-indexed)
1519 def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
1520 def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
1521 def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
1522 def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
1523 def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
1524
1525 def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
1526
1527
1528 // Pair (no allocate)
1529 defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
1530 defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
1531 defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
1532 defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
1533 defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;
1534
1535 //---
1536 // (register offset)
1537 //---
1538
1539 // Integer
1540 defm LDRBB : Load8RO<0b00,  0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
1541 defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
1542 defm LDRW  : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
1543 defm LDRX  : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
1544
1545 // Floating-point
1546 defm LDRB : Load8RO<0b00,   1, 0b01, FPR8Op,   "ldr", untyped, load>;
1547 defm LDRH : Load16RO<0b01,  1, 0b01, FPR16Op,  "ldr", f16, load>;
1548 defm LDRS : Load32RO<0b10,  1, 0b01, FPR32Op,  "ldr", f32, load>;
1549 defm LDRD : Load64RO<0b11,  1, 0b01, FPR64Op,  "ldr", f64, load>;
1550 defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;
1551
1552 // Load sign-extended half-word
1553 defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
1554 defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
1555
1556 // Load sign-extended byte
1557 defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
1558 defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
1559
1560 // Load sign-extended word
1561 defm LDRSW  : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
1562
1563 // Pre-fetch.
1564 defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
1565
1566 // For regular load, we do not have any alignment requirement.
1567 // Thus, it is safe to directly map the vector loads with interesting
1568 // addressing modes.
1569 // FIXME: We could do the same for bitconvert to floating point vectors.
1570 multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
1571                               ValueType ScalTy, ValueType VecTy,
1572                               Instruction LOADW, Instruction LOADX,
1573                               SubRegIndex sub> {
1574   def : Pat<(VecTy (scalar_to_vector (ScalTy
1575               (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
1576             (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
1577                            (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
1578                            sub)>;
1579
1580   def : Pat<(VecTy (scalar_to_vector (ScalTy
1581               (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
1582             (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
1583                            (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
1584                            sub)>;
1585 }
1586
1587 let AddedComplexity = 10 in {
1588 defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v8i8,  LDRBroW, LDRBroX, bsub>;
1589 defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v16i8, LDRBroW, LDRBroX, bsub>;
1590
1591 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
1592 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
1593
1594 defm : ScalToVecROLoadPat<ro16, load,       i32, v4f16, LDRHroW, LDRHroX, hsub>;
1595 defm : ScalToVecROLoadPat<ro16, load,       i32, v8f16, LDRHroW, LDRHroX, hsub>;
1596
1597 defm : ScalToVecROLoadPat<ro32, load,       i32, v2i32, LDRSroW, LDRSroX, ssub>;
1598 defm : ScalToVecROLoadPat<ro32, load,       i32, v4i32, LDRSroW, LDRSroX, ssub>;
1599
1600 defm : ScalToVecROLoadPat<ro32, load,       f32, v2f32, LDRSroW, LDRSroX, ssub>;
1601 defm : ScalToVecROLoadPat<ro32, load,       f32, v4f32, LDRSroW, LDRSroX, ssub>;
1602
1603 defm : ScalToVecROLoadPat<ro64, load,       i64, v2i64, LDRDroW, LDRDroX, dsub>;
1604
1605 defm : ScalToVecROLoadPat<ro64, load,       f64, v2f64, LDRDroW, LDRDroX, dsub>;
1606
1607
1608 def : Pat <(v1i64 (scalar_to_vector (i64
1609                       (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
1610                                            ro_Wextend64:$extend))))),
1611            (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
1612
1613 def : Pat <(v1i64 (scalar_to_vector (i64
1614                       (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
1615                                            ro_Xextend64:$extend))))),
1616            (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
1617 }
1618
1619 // Match all load 64 bits width whose type is compatible with FPR64
1620 multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
1621                         Instruction LOADW, Instruction LOADX> {
1622
1623   def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1624             (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
1625
1626   def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1627             (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
1628 }
1629
1630 let AddedComplexity = 10 in {
1631 let Predicates = [IsLE] in {
1632   // We must do vector loads with LD1 in big-endian.
1633   defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
1634   defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
1635   defm : VecROLoadPat<ro64, v8i8,  LDRDroW, LDRDroX>;
1636   defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
1637   defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
1638 }
1639
1640 defm : VecROLoadPat<ro64, v1i64,  LDRDroW, LDRDroX>;
1641 defm : VecROLoadPat<ro64, v1f64,  LDRDroW, LDRDroX>;
1642
1643 // Match all load 128 bits width whose type is compatible with FPR128
1644 let Predicates = [IsLE] in {
1645   // We must do vector loads with LD1 in big-endian.
1646   defm : VecROLoadPat<ro128, v2i64,  LDRQroW, LDRQroX>;
1647   defm : VecROLoadPat<ro128, v2f64,  LDRQroW, LDRQroX>;
1648   defm : VecROLoadPat<ro128, v4i32,  LDRQroW, LDRQroX>;
1649   defm : VecROLoadPat<ro128, v4f32,  LDRQroW, LDRQroX>;
1650   defm : VecROLoadPat<ro128, v8i16,  LDRQroW, LDRQroX>;
1651   defm : VecROLoadPat<ro128, v8f16,  LDRQroW, LDRQroX>;
1652   defm : VecROLoadPat<ro128, v16i8,  LDRQroW, LDRQroX>;
1653 }
1654 } // AddedComplexity = 10
1655
1656 // zextload -> i64
1657 multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
1658                             Instruction INSTW, Instruction INSTX> {
1659   def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1660             (SUBREG_TO_REG (i64 0),
1661                            (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
1662                            sub_32)>;
1663
1664   def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1665             (SUBREG_TO_REG (i64 0),
1666                            (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
1667                            sub_32)>;
1668 }
1669
1670 let AddedComplexity = 10 in {
1671   defm : ExtLoadTo64ROPat<ro8,  zextloadi8,  LDRBBroW, LDRBBroX>;
1672   defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
1673   defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW,  LDRWroX>;
1674
1675   // zextloadi1 -> zextloadi8
1676   defm : ExtLoadTo64ROPat<ro8,  zextloadi1,  LDRBBroW, LDRBBroX>;
1677
1678   // extload -> zextload
1679   defm : ExtLoadTo64ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
1680   defm : ExtLoadTo64ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
1681   defm : ExtLoadTo64ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
1682
1683   // extloadi1 -> zextloadi8
1684   defm : ExtLoadTo64ROPat<ro8,  extloadi1,   LDRBBroW, LDRBBroX>;
1685 }
1686
1687
1688 // zextload -> i64
1689 multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
1690                             Instruction INSTW, Instruction INSTX> {
1691   def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
1692             (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
1693
1694   def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
1695             (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
1696
1697 }
1698
1699 let AddedComplexity = 10 in {
1700   // extload -> zextload
1701   defm : ExtLoadTo32ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
1702   defm : ExtLoadTo32ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
1703   defm : ExtLoadTo32ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
1704
1705   // zextloadi1 -> zextloadi8
1706   defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
1707 }
1708
1709 //---
1710 // (unsigned immediate)
1711 //---
1712 defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
1713                    [(set GPR64z:$Rt,
1714                          (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
1715 defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
1716                    [(set GPR32z:$Rt,
1717                          (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
1718 defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
1719                    [(set FPR8Op:$Rt,
1720                          (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
1721 defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
1722                    [(set (f16 FPR16Op:$Rt),
1723                          (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
1724 defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
1725                    [(set (f32 FPR32Op:$Rt),
1726                          (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
1727 defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
1728                    [(set (f64 FPR64Op:$Rt),
1729                          (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
1730 defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
1731                  [(set (f128 FPR128Op:$Rt),
1732                        (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
1733
1734 // For regular load, we do not have any alignment requirement.
1735 // Thus, it is safe to directly map the vector loads with interesting
1736 // addressing modes.
1737 // FIXME: We could do the same for bitconvert to floating point vectors.
1738 def : Pat <(v8i8 (scalar_to_vector (i32
1739                (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
1740            (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
1741                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
1742 def : Pat <(v16i8 (scalar_to_vector (i32
1743                (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
1744            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
1745                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
1746 def : Pat <(v4i16 (scalar_to_vector (i32
1747                (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
1748            (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
1749                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
1750 def : Pat <(v8i16 (scalar_to_vector (i32
1751                (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
1752            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
1753                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
1754 def : Pat <(v2i32 (scalar_to_vector (i32
1755                (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
1756            (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
1757                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
1758 def : Pat <(v4i32 (scalar_to_vector (i32
1759                (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
1760            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
1761                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
1762 def : Pat <(v1i64 (scalar_to_vector (i64
1763                (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
1764            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1765 def : Pat <(v2i64 (scalar_to_vector (i64
1766                (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
1767            (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
1768                           (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
1769
1770 // Match all load 64 bits width whose type is compatible with FPR64
1771 let Predicates = [IsLE] in {
1772   // We must use LD1 to perform vector loads in big-endian.
1773   def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1774             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1775   def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1776             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1777   def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1778             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1779   def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1780             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1781   def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1782             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1783 }
1784 def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1785           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1786 def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
1787           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
1788
1789 // Match all load 128 bits width whose type is compatible with FPR128
1790 let Predicates = [IsLE] in {
1791   // We must use LD1 to perform vector loads in big-endian.
1792   def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1793             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1794   def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1795             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1796   def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1797             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1798   def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1799             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1800   def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1801             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1802   def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1803             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1804   def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1805             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1806 }
1807 def : Pat<(f128  (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
1808           (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
1809
1810 defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
1811                     [(set GPR32:$Rt,
1812                           (zextloadi16 (am_indexed16 GPR64sp:$Rn,
1813                                                      uimm12s2:$offset)))]>;
1814 defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
1815                     [(set GPR32:$Rt,
1816                           (zextloadi8 (am_indexed8 GPR64sp:$Rn,
1817                                                    uimm12s1:$offset)))]>;
1818 // zextload -> i64
1819 def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1820     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1821 def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1822     (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
1823
1824 // zextloadi1 -> zextloadi8
1825 def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1826           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1827 def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1828     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1829
1830 // extload -> zextload
1831 def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1832           (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
1833 def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1834           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1835 def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1836           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
1837 def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
1838     (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
1839 def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
1840     (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
1841 def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1842     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1843 def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
1844     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
1845
1846 // load sign-extended half-word
1847 defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
1848                      [(set GPR32:$Rt,
1849                            (sextloadi16 (am_indexed16 GPR64sp:$Rn,
1850                                                       uimm12s2:$offset)))]>;
1851 defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
1852                      [(set GPR64:$Rt,
1853                            (sextloadi16 (am_indexed16 GPR64sp:$Rn,
1854                                                       uimm12s2:$offset)))]>;
1855
1856 // load sign-extended byte
1857 defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
1858                      [(set GPR32:$Rt,
1859                            (sextloadi8 (am_indexed8 GPR64sp:$Rn,
1860                                                     uimm12s1:$offset)))]>;
1861 defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
1862                      [(set GPR64:$Rt,
1863                            (sextloadi8 (am_indexed8 GPR64sp:$Rn,
1864                                                     uimm12s1:$offset)))]>;
1865
1866 // load sign-extended word
1867 defm LDRSW  : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
1868                      [(set GPR64:$Rt,
1869                            (sextloadi32 (am_indexed32 GPR64sp:$Rn,
1870                                                       uimm12s4:$offset)))]>;
1871
1872 // load zero-extended word
1873 def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
1874       (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
1875
1876 // Pre-fetch.
1877 def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
1878                         [(AArch64Prefetch imm:$Rt,
1879                                         (am_indexed64 GPR64sp:$Rn,
1880                                                       uimm12s8:$offset))]>;
1881
1882 def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
1883
1884 //---
1885 // (literal)
1886 def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr">;
1887 def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr">;
1888 def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr">;
1889 def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr">;
1890 def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr">;
1891
1892 // load sign-extended word
1893 def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw">;
1894
1895 // prefetch
1896 def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
1897 //                   [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
1898
1899 //---
1900 // (unscaled immediate)
1901 defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
1902                     [(set GPR64z:$Rt,
1903                           (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
1904 defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
1905                     [(set GPR32z:$Rt,
1906                           (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
1907 defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
1908                     [(set FPR8Op:$Rt,
1909                           (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
1910 defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
1911                     [(set FPR16Op:$Rt,
1912                           (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1913 defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
1914                     [(set (f32 FPR32Op:$Rt),
1915                           (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
1916 defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
1917                     [(set (f64 FPR64Op:$Rt),
1918                           (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
1919 defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
1920                     [(set (f128 FPR128Op:$Rt),
1921                           (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
1922
1923 defm LDURHH
1924     : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
1925              [(set GPR32:$Rt,
1926                     (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1927 defm LDURBB
1928     : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
1929              [(set GPR32:$Rt,
1930                     (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
1931
1932 // Match all load 64 bits width whose type is compatible with FPR64
1933 let Predicates = [IsLE] in {
1934   def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1935             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1936   def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1937             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1938   def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1939             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1940   def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1941             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1942   def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1943             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1944 }
1945 def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1946           (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1947 def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
1948           (LDURDi GPR64sp:$Rn, simm9:$offset)>;
1949
1950 // Match all load 128 bits width whose type is compatible with FPR128
1951 let Predicates = [IsLE] in {
1952   def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1953             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1954   def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1955             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1956   def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1957             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1958   def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1959             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1960   def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1961             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1962   def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1963             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1964   def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
1965             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
1966 }
1967
1968 //  anyext -> zext
1969 def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1970           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
1971 def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1972           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1973 def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1974           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1975 def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
1976     (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1977 def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1978     (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1979 def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1980     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1981 def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1982     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1983 // unscaled zext
1984 def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1985           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
1986 def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1987           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1988 def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1989           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
1990 def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
1991     (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1992 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
1993     (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1994 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1995     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1996 def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
1997     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
1998
1999
2000 //---
2001 // LDR mnemonics fall back to LDUR for negative or unaligned offsets.
2002
2003 // Define new assembler match classes as we want to only match these when
2004 // the don't otherwise match the scaled addressing mode for LDR/STR. Don't
2005 // associate a DiagnosticType either, as we want the diagnostic for the
2006 // canonical form (the scaled operand) to take precedence.
2007 class SImm9OffsetOperand<int Width> : AsmOperandClass {
2008   let Name = "SImm9OffsetFB" # Width;
2009   let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
2010   let RenderMethod = "addImmOperands";
2011 }
2012
2013 def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
2014 def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
2015 def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
2016 def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
2017 def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
2018
2019 def simm9_offset_fb8 : Operand<i64> {
2020   let ParserMatchClass = SImm9OffsetFB8Operand;
2021 }
2022 def simm9_offset_fb16 : Operand<i64> {
2023   let ParserMatchClass = SImm9OffsetFB16Operand;
2024 }
2025 def simm9_offset_fb32 : Operand<i64> {
2026   let ParserMatchClass = SImm9OffsetFB32Operand;
2027 }
2028 def simm9_offset_fb64 : Operand<i64> {
2029   let ParserMatchClass = SImm9OffsetFB64Operand;
2030 }
2031 def simm9_offset_fb128 : Operand<i64> {
2032   let ParserMatchClass = SImm9OffsetFB128Operand;
2033 }
2034
2035 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2036                 (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2037 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2038                 (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2039 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2040                 (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2041 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2042                 (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2043 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2044                 (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2045 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2046                 (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2047 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2048                (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
2049
2050 // zextload -> i64
2051 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2052   (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2053 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2054   (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2055
2056 // load sign-extended half-word
2057 defm LDURSHW
2058     : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
2059                [(set GPR32:$Rt,
2060                     (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2061 defm LDURSHX
2062     : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
2063               [(set GPR64:$Rt,
2064                     (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2065
2066 // load sign-extended byte
2067 defm LDURSBW
2068     : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
2069                 [(set GPR32:$Rt,
2070                       (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2071 defm LDURSBX
2072     : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
2073                 [(set GPR64:$Rt,
2074                       (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2075
2076 // load sign-extended word
2077 defm LDURSW
2078     : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
2079               [(set GPR64:$Rt,
2080                     (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2081
2082 // zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
2083 def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
2084                 (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2085 def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
2086                 (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2087 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2088                 (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2089 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2090                 (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2091 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2092                 (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2093 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2094                 (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2095 def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
2096                 (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2097
2098 // Pre-fetch.
2099 defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
2100                   [(AArch64Prefetch imm:$Rt,
2101                                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2102
2103 //---
2104 // (unscaled immediate, unprivileged)
2105 defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
2106 defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
2107
2108 defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
2109 defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
2110
2111 // load sign-extended half-word
2112 defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
2113 defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
2114
2115 // load sign-extended byte
2116 defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
2117 defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
2118
2119 // load sign-extended word
2120 defm LDTRSW  : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
2121
2122 //---
2123 // (immediate pre-indexed)
2124 def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
2125 def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
2126 def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
2127 def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
2128 def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
2129 def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
2130 def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
2131
2132 // load sign-extended half-word
2133 def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
2134 def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
2135
2136 // load sign-extended byte
2137 def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
2138 def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
2139
2140 // load zero-extended byte
2141 def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
2142 def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
2143
2144 // load sign-extended word
2145 def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
2146
2147 //---
2148 // (immediate post-indexed)
2149 def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
2150 def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
2151 def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
2152 def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
2153 def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
2154 def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
2155 def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
2156
2157 // load sign-extended half-word
2158 def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
2159 def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
2160
2161 // load sign-extended byte
2162 def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
2163 def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
2164
2165 // load zero-extended byte
2166 def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
2167 def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
2168
2169 // load sign-extended word
2170 def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
2171
2172 //===----------------------------------------------------------------------===//
2173 // Store instructions.
2174 //===----------------------------------------------------------------------===//
2175
2176 // Pair (indexed, offset)
2177 // FIXME: Use dedicated range-checked addressing mode operand here.
2178 defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
2179 defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
2180 defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
2181 defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
2182 defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;
2183
2184 // Pair (pre-indexed)
2185 def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
2186 def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
2187 def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
2188 def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
2189 def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
2190
2191 // Pair (pre-indexed)
2192 def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
2193 def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
2194 def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
2195 def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
2196 def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
2197
2198 // Pair (no allocate)
2199 defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
2200 defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
2201 defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
2202 defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
2203 defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;
2204
2205 //---
2206 // (Register offset)
2207
2208 // Integer
2209 defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
2210 defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
2211 defm STRW  : Store32RO<0b10, 0, 0b00, GPR32, "str",  i32, store>;
2212 defm STRX  : Store64RO<0b11, 0, 0b00, GPR64, "str",  i64, store>;
2213
2214
2215 // Floating-point
2216 defm STRB : Store8RO< 0b00,  1, 0b00, FPR8Op,   "str", untyped, store>;
2217 defm STRH : Store16RO<0b01,  1, 0b00, FPR16Op,  "str", f16,     store>;
2218 defm STRS : Store32RO<0b10,  1, 0b00, FPR32Op,  "str", f32,     store>;
2219 defm STRD : Store64RO<0b11,  1, 0b00, FPR64Op,  "str", f64,     store>;
2220 defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128,    store>;
2221
2222 let Predicates = [UseSTRQro], AddedComplexity = 10 in {
2223   def : Pat<(store (f128 FPR128:$Rt),
2224                         (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
2225                                         ro_Wextend128:$extend)),
2226             (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
2227   def : Pat<(store (f128 FPR128:$Rt),
2228                         (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
2229                                         ro_Xextend128:$extend)),
2230             (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
2231 }
2232
2233 multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
2234                                  Instruction STRW, Instruction STRX> {
2235
2236   def : Pat<(storeop GPR64:$Rt,
2237                      (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2238             (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
2239                   GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2240
2241   def : Pat<(storeop GPR64:$Rt,
2242                      (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2243             (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
2244                   GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2245 }
2246
2247 let AddedComplexity = 10 in {
2248   // truncstore i64
2249   defm : TruncStoreFrom64ROPat<ro8,  truncstorei8,  STRBBroW, STRBBroX>;
2250   defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
2251   defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW,  STRWroX>;
2252 }
2253
2254 multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
2255                          Instruction STRW, Instruction STRX> {
2256   def : Pat<(store (VecTy FPR:$Rt),
2257                    (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2258             (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2259
2260   def : Pat<(store (VecTy FPR:$Rt),
2261                    (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2262             (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2263 }
2264
2265 let AddedComplexity = 10 in {
2266 // Match all store 64 bits width whose type is compatible with FPR64
2267 let Predicates = [IsLE] in {
2268   // We must use ST1 to store vectors in big-endian.
2269   defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
2270   defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
2271   defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
2272   defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
2273   defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
2274 }
2275
2276 defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
2277 defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
2278
2279 // Match all store 128 bits width whose type is compatible with FPR128
2280 let Predicates = [IsLE, UseSTRQro] in {
2281   // We must use ST1 to store vectors in big-endian.
2282   defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
2283   defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
2284   defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
2285   defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
2286   defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
2287   defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
2288   defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
2289 }
2290 } // AddedComplexity = 10
2291
2292 // Match stores from lane 0 to the appropriate subreg's store.
2293 multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
2294                               ValueType VecTy, ValueType STy,
2295                               SubRegIndex SubRegIdx,
2296                               Instruction STRW, Instruction STRX> {
2297
2298   def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2299                      (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2300             (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2301                   GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2302
2303   def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2304                      (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2305             (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2306                   GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2307 }
2308
2309 let AddedComplexity = 19 in {
2310   defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
2311   defm : VecROStoreLane0Pat<ro16,         store, v8f16, f16, hsub, STRHroW, STRHroX>;
2312   defm : VecROStoreLane0Pat<ro32,         store, v4i32, i32, ssub, STRSroW, STRSroX>;
2313   defm : VecROStoreLane0Pat<ro32,         store, v4f32, f32, ssub, STRSroW, STRSroX>;
2314   defm : VecROStoreLane0Pat<ro64,         store, v2i64, i64, dsub, STRDroW, STRDroX>;
2315   defm : VecROStoreLane0Pat<ro64,         store, v2f64, f64, dsub, STRDroW, STRDroX>;
2316 }
2317
2318 //---
2319 // (unsigned immediate)
2320 defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
2321                    [(store GPR64z:$Rt,
2322                             (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
2323 defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
2324                     [(store GPR32z:$Rt,
2325                             (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
2326 defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
2327                     [(store FPR8Op:$Rt,
2328                             (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
2329 defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
2330                     [(store (f16 FPR16Op:$Rt),
2331                             (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
2332 defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
2333                     [(store (f32 FPR32Op:$Rt),
2334                             (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
2335 defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
2336                     [(store (f64 FPR64Op:$Rt),
2337                             (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
2338 defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;
2339
2340 defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
2341                      [(truncstorei16 GPR32z:$Rt,
2342                                      (am_indexed16 GPR64sp:$Rn,
2343                                                    uimm12s2:$offset))]>;
2344 defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1,  "strb",
2345                      [(truncstorei8 GPR32z:$Rt,
2346                                     (am_indexed8 GPR64sp:$Rn,
2347                                                  uimm12s1:$offset))]>;
2348
2349 let AddedComplexity = 10 in {
2350
2351 // Match all store 64 bits width whose type is compatible with FPR64
2352 def : Pat<(store (v1i64 FPR64:$Rt),
2353                  (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2354           (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2355 def : Pat<(store (v1f64 FPR64:$Rt),
2356                  (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2357           (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2358
2359 let Predicates = [IsLE] in {
2360   // We must use ST1 to store vectors in big-endian.
2361   def : Pat<(store (v2f32 FPR64:$Rt),
2362                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2363             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2364   def : Pat<(store (v8i8 FPR64:$Rt),
2365                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2366             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2367   def : Pat<(store (v4i16 FPR64:$Rt),
2368                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2369             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2370   def : Pat<(store (v2i32 FPR64:$Rt),
2371                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2372             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2373   def : Pat<(store (v4f16 FPR64:$Rt),
2374                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
2375             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
2376 }
2377
2378 // Match all store 128 bits width whose type is compatible with FPR128
2379 def : Pat<(store (f128  FPR128:$Rt),
2380                  (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2381           (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2382
2383 let Predicates = [IsLE] in {
2384   // We must use ST1 to store vectors in big-endian.
2385   def : Pat<(store (v4f32 FPR128:$Rt),
2386                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2387             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2388   def : Pat<(store (v2f64 FPR128:$Rt),
2389                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2390             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2391   def : Pat<(store (v16i8 FPR128:$Rt),
2392                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2393             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2394   def : Pat<(store (v8i16 FPR128:$Rt),
2395                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2396             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2397   def : Pat<(store (v4i32 FPR128:$Rt),
2398                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2399             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2400   def : Pat<(store (v2i64 FPR128:$Rt),
2401                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2402             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2403   def : Pat<(store (v8f16 FPR128:$Rt),
2404                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
2405             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
2406 }
2407
2408 // truncstore i64
2409 def : Pat<(truncstorei32 GPR64:$Rt,
2410                          (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
2411   (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
2412 def : Pat<(truncstorei16 GPR64:$Rt,
2413                          (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
2414   (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
2415 def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
2416   (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
2417
2418 } // AddedComplexity = 10
2419
2420 // Match stores from lane 0 to the appropriate subreg's store.
2421 multiclass VecStoreLane0Pat<Operand UIAddrMode, SDPatternOperator storeop,
2422                             ValueType VTy, ValueType STy,
2423                             SubRegIndex SubRegIdx, Operand IndexType,
2424                             Instruction STR> {
2425   def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
2426                      (UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
2427             (STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2428                  GPR64sp:$Rn, IndexType:$offset)>;
2429 }
2430
2431 let AddedComplexity = 19 in {
2432   defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
2433   defm : VecStoreLane0Pat<am_indexed16,         store, v8f16, f16, hsub, uimm12s2, STRHui>;
2434   defm : VecStoreLane0Pat<am_indexed32,         store, v4i32, i32, ssub, uimm12s4, STRSui>;
2435   defm : VecStoreLane0Pat<am_indexed32,         store, v4f32, f32, ssub, uimm12s4, STRSui>;
2436   defm : VecStoreLane0Pat<am_indexed64,         store, v2i64, i64, dsub, uimm12s8, STRDui>;
2437   defm : VecStoreLane0Pat<am_indexed64,         store, v2f64, f64, dsub, uimm12s8, STRDui>;
2438 }
2439
2440 //---
2441 // (unscaled immediate)
2442 defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
2443                          [(store GPR64z:$Rt,
2444                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2445 defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
2446                          [(store GPR32z:$Rt,
2447                                  (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
2448 defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
2449                          [(store FPR8Op:$Rt,
2450                                  (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
2451 defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
2452                          [(store (f16 FPR16Op:$Rt),
2453                                  (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
2454 defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
2455                          [(store (f32 FPR32Op:$Rt),
2456                                  (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
2457 defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
2458                          [(store (f64 FPR64Op:$Rt),
2459                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2460 defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
2461                          [(store (f128 FPR128Op:$Rt),
2462                                  (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
2463 defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
2464                          [(truncstorei16 GPR32z:$Rt,
2465                                  (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
2466 defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
2467                          [(truncstorei8 GPR32z:$Rt,
2468                                   (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
2469
2470 // Armv8.4 LDAPR & STLR with Immediate Offset instruction
2471 let Predicates = [HasV8_4a] in {
2472 defm STLURB     : BaseStoreUnscaleV84<"stlurb",  0b00, 0b00, GPR32>;
2473 defm STLURH     : BaseStoreUnscaleV84<"stlurh",  0b01, 0b00, GPR32>;
2474 defm STLURW     : BaseStoreUnscaleV84<"stlur",   0b10, 0b00, GPR32>;
2475 defm STLURX     : BaseStoreUnscaleV84<"stlur",   0b11, 0b00, GPR64>;
2476 defm LDAPURB    : BaseLoadUnscaleV84<"ldapurb",  0b00, 0b01, GPR32>;
2477 defm LDAPURSBW  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
2478 defm LDAPURSBX  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
2479 defm LDAPURH    : BaseLoadUnscaleV84<"ldapurh",  0b01, 0b01, GPR32>;
2480 defm LDAPURSHW  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
2481 defm LDAPURSHX  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
2482 defm LDAPUR     : BaseLoadUnscaleV84<"ldapur",   0b10, 0b01, GPR32>;
2483 defm LDAPURSW   : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
2484 defm LDAPURX    : BaseLoadUnscaleV84<"ldapur",   0b11, 0b01, GPR64>;
2485 }
2486
2487 // Match all store 64 bits width whose type is compatible with FPR64
2488 def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2489           (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2490 def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2491           (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2492
2493 let AddedComplexity = 10 in {
2494
2495 let Predicates = [IsLE] in {
2496   // We must use ST1 to store vectors in big-endian.
2497   def : Pat<(store (v2f32 FPR64:$Rt),
2498                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2499             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2500   def : Pat<(store (v8i8 FPR64:$Rt),
2501                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2502             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2503   def : Pat<(store (v4i16 FPR64:$Rt),
2504                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2505             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2506   def : Pat<(store (v2i32 FPR64:$Rt),
2507                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2508             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2509   def : Pat<(store (v4f16 FPR64:$Rt),
2510                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
2511             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2512 }
2513
2514 // Match all store 128 bits width whose type is compatible with FPR128
2515 def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2516           (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2517
2518 let Predicates = [IsLE] in {
2519   // We must use ST1 to store vectors in big-endian.
2520   def : Pat<(store (v4f32 FPR128:$Rt),
2521                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2522             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2523   def : Pat<(store (v2f64 FPR128:$Rt),
2524                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2525             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2526   def : Pat<(store (v16i8 FPR128:$Rt),
2527                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2528             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2529   def : Pat<(store (v8i16 FPR128:$Rt),
2530                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2531             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2532   def : Pat<(store (v4i32 FPR128:$Rt),
2533                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2534             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2535   def : Pat<(store (v2i64 FPR128:$Rt),
2536                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2537             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2538   def : Pat<(store (v2f64 FPR128:$Rt),
2539                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2540             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2541   def : Pat<(store (v8f16 FPR128:$Rt),
2542                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
2543             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
2544 }
2545
2546 } // AddedComplexity = 10
2547
2548 // unscaled i64 truncating stores
2549 def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
2550   (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2551 def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
2552   (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2553 def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
2554   (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
2555
2556 // Match stores from lane 0 to the appropriate subreg's store.
2557 multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
2558                              ValueType VTy, ValueType STy,
2559                              SubRegIndex SubRegIdx, Instruction STR> {
2560   defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
2561 }
2562
2563 let AddedComplexity = 19 in {
2564   defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
2565   defm : VecStoreULane0Pat<store,         v8f16, f16, hsub, STURHi>;
2566   defm : VecStoreULane0Pat<store,         v4i32, i32, ssub, STURSi>;
2567   defm : VecStoreULane0Pat<store,         v4f32, f32, ssub, STURSi>;
2568   defm : VecStoreULane0Pat<store,         v2i64, i64, dsub, STURDi>;
2569   defm : VecStoreULane0Pat<store,         v2f64, f64, dsub, STURDi>;
2570 }
2571
2572 //---
2573 // STR mnemonics fall back to STUR for negative or unaligned offsets.
2574 def : InstAlias<"str $Rt, [$Rn, $offset]",
2575                 (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2576 def : InstAlias<"str $Rt, [$Rn, $offset]",
2577                 (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2578 def : InstAlias<"str $Rt, [$Rn, $offset]",
2579                 (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2580 def : InstAlias<"str $Rt, [$Rn, $offset]",
2581                 (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2582 def : InstAlias<"str $Rt, [$Rn, $offset]",
2583                 (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2584 def : InstAlias<"str $Rt, [$Rn, $offset]",
2585                 (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2586 def : InstAlias<"str $Rt, [$Rn, $offset]",
2587                 (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
2588
2589 def : InstAlias<"strb $Rt, [$Rn, $offset]",
2590                 (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2591 def : InstAlias<"strh $Rt, [$Rn, $offset]",
2592                 (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2593
2594 //---
2595 // (unscaled immediate, unprivileged)
2596 defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
2597 defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
2598
2599 defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
2600 defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
2601
2602 //---
2603 // (immediate pre-indexed)
2604 def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str",  pre_store, i32>;
2605 def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str",  pre_store, i64>;
2606 def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op,  "str",  pre_store, untyped>;
2607 def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str",  pre_store, f16>;
2608 def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str",  pre_store, f32>;
2609 def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str",  pre_store, f64>;
2610 def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;
2611
2612 def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8,  i32>;
2613 def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;
2614
2615 // truncstore i64
2616 def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2617   (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2618            simm9:$off)>;
2619 def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2620   (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2621             simm9:$off)>;
2622 def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2623   (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2624             simm9:$off)>;
2625
2626 def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2627           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2628 def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2629           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2630 def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2631           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2632 def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2633           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2634 def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2635           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2636 def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2637           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2638 def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2639           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2640
2641 def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2642           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2643 def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2644           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2645 def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2646           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2647 def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2648           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2649 def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2650           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2651 def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2652           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2653 def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2654           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2655
2656 //---
2657 // (immediate post-indexed)
2658 def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z,  "str", post_store, i32>;
2659 def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z,  "str", post_store, i64>;
2660 def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op,   "str", post_store, untyped>;
2661 def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op,  "str", post_store, f16>;
2662 def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op,  "str", post_store, f32>;
2663 def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op,  "str", post_store, f64>;
2664 def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;
2665
2666 def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
2667 def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;
2668
2669 // truncstore i64
2670 def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2671   (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2672             simm9:$off)>;
2673 def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2674   (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2675              simm9:$off)>;
2676 def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
2677   (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
2678              simm9:$off)>;
2679
2680 def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2681           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2682 def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2683           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2684 def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2685           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2686 def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2687           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2688 def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2689           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2690 def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2691           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2692 def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
2693           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
2694
2695 def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2696           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2697 def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2698           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2699 def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2700           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2701 def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2702           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2703 def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2704           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2705 def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2706           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2707 def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
2708           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
2709
2710 //===----------------------------------------------------------------------===//
2711 // Load/store exclusive instructions.
2712 //===----------------------------------------------------------------------===//
2713
2714 def LDARW  : LoadAcquire   <0b10, 1, 1, 0, 1, GPR32, "ldar">;
2715 def LDARX  : LoadAcquire   <0b11, 1, 1, 0, 1, GPR64, "ldar">;
2716 def LDARB  : LoadAcquire   <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
2717 def LDARH  : LoadAcquire   <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
2718
2719 def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
2720 def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
2721 def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
2722 def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
2723
2724 def LDXRW  : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
2725 def LDXRX  : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
2726 def LDXRB  : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
2727 def LDXRH  : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
2728
2729 def STLRW  : StoreRelease  <0b10, 1, 0, 0, 1, GPR32, "stlr">;
2730 def STLRX  : StoreRelease  <0b11, 1, 0, 0, 1, GPR64, "stlr">;
2731 def STLRB  : StoreRelease  <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
2732 def STLRH  : StoreRelease  <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
2733
2734 def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
2735 def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
2736 def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
2737 def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
2738
2739 def STXRW  : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
2740 def STXRX  : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
2741 def STXRB  : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
2742 def STXRH  : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
2743
2744 def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
2745 def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
2746
2747 def LDXPW  : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
2748 def LDXPX  : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
2749
2750 def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
2751 def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
2752
2753 def STXPW  : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
2754 def STXPX  : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
2755
2756 let Predicates = [HasV8_1a] in {
2757   // v8.1a "Limited Order Region" extension load-acquire instructions
2758   def LDLARW  : LoadAcquire   <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
2759   def LDLARX  : LoadAcquire   <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
2760   def LDLARB  : LoadAcquire   <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
2761   def LDLARH  : LoadAcquire   <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
2762
2763   // v8.1a "Limited Order Region" extension store-release instructions
2764   def STLLRW  : StoreRelease   <0b10, 1, 0, 0, 0, GPR32, "stllr">;
2765   def STLLRX  : StoreRelease   <0b11, 1, 0, 0, 0, GPR64, "stllr">;
2766   def STLLRB  : StoreRelease   <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
2767   def STLLRH  : StoreRelease   <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
2768 }
2769
2770 //===----------------------------------------------------------------------===//
2771 // Scaled floating point to integer conversion instructions.
2772 //===----------------------------------------------------------------------===//
2773
2774 defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
2775 defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
2776 defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
2777 defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
2778 defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
2779 defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
2780 defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
2781 defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
2782 defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
2783 defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
2784 defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
2785 defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
2786
2787 multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
2788   def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
2789   def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
2790   def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
2791   def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
2792   def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
2793   def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
2794
2795   def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
2796             (!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
2797   def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
2798             (!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
2799   def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
2800             (!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
2801   def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
2802             (!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
2803   def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
2804             (!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
2805   def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
2806             (!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
2807 }
2808
2809 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
2810 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
2811
2812 multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
2813   def : Pat<(i32 (to_int (round f32:$Rn))),
2814             (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
2815   def : Pat<(i64 (to_int (round f32:$Rn))),
2816             (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
2817   def : Pat<(i32 (to_int (round f64:$Rn))),
2818             (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
2819   def : Pat<(i64 (to_int (round f64:$Rn))),
2820             (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
2821 }
2822
2823 defm : FPToIntegerPats<fp_to_sint, fceil,  "FCVTPS">;
2824 defm : FPToIntegerPats<fp_to_uint, fceil,  "FCVTPU">;
2825 defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
2826 defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
2827 defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
2828 defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
2829 defm : FPToIntegerPats<fp_to_sint, fround, "FCVTAS">;
2830 defm : FPToIntegerPats<fp_to_uint, fround, "FCVTAU">;
2831
2832 //===----------------------------------------------------------------------===//
2833 // Scaled integer to floating point conversion instructions.
2834 //===----------------------------------------------------------------------===//
2835
2836 defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
2837 defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
2838
2839 //===----------------------------------------------------------------------===//
2840 // Unscaled integer to floating point conversion instruction.
2841 //===----------------------------------------------------------------------===//
2842
2843 defm FMOV : UnscaledConversion<"fmov">;
2844
2845 // Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
2846 let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
2847 def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
2848     Sched<[WriteF]>, Requires<[HasFullFP16]>;
2849 def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
2850     Sched<[WriteF]>;
2851 def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
2852     Sched<[WriteF]>;
2853 }
2854 // Similarly add aliases
2855 def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
2856     Requires<[HasFullFP16]>;
2857 def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
2858 def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;
2859
2860 //===----------------------------------------------------------------------===//
2861 // Floating point conversion instruction.
2862 //===----------------------------------------------------------------------===//
2863
2864 defm FCVT : FPConversion<"fcvt">;
2865
2866 //===----------------------------------------------------------------------===//
2867 // Floating point single operand instructions.
2868 //===----------------------------------------------------------------------===//
2869
2870 defm FABS   : SingleOperandFPData<0b0001, "fabs", fabs>;
2871 defm FMOV   : SingleOperandFPData<0b0000, "fmov">;
2872 defm FNEG   : SingleOperandFPData<0b0010, "fneg", fneg>;
2873 defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
2874 defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
2875 defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
2876 defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
2877 defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
2878
2879 def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
2880           (FRINTNDr FPR64:$Rn)>;
2881
2882 defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
2883 defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
2884
2885 let SchedRW = [WriteFDiv] in {
2886 defm FSQRT  : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
2887 }
2888
2889 //===----------------------------------------------------------------------===//
2890 // Floating point two operand instructions.
2891 //===----------------------------------------------------------------------===//
2892
2893 defm FADD   : TwoOperandFPData<0b0010, "fadd", fadd>;
2894 let SchedRW = [WriteFDiv] in {
2895 defm FDIV   : TwoOperandFPData<0b0001, "fdiv", fdiv>;
2896 }
2897 defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
2898 defm FMAX   : TwoOperandFPData<0b0100, "fmax", fmaxnan>;
2899 defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
2900 defm FMIN   : TwoOperandFPData<0b0101, "fmin", fminnan>;
2901 let SchedRW = [WriteFMul] in {
2902 defm FMUL   : TwoOperandFPData<0b0000, "fmul", fmul>;
2903 defm FNMUL  : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
2904 }
2905 defm FSUB   : TwoOperandFPData<0b0011, "fsub", fsub>;
2906
2907 def : Pat<(v1f64 (fmaxnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2908           (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
2909 def : Pat<(v1f64 (fminnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2910           (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
2911 def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2912           (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
2913 def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
2914           (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
2915
2916 //===----------------------------------------------------------------------===//
2917 // Floating point three operand instructions.
2918 //===----------------------------------------------------------------------===//
2919
2920 defm FMADD  : ThreeOperandFPData<0, 0, "fmadd", fma>;
2921 defm FMSUB  : ThreeOperandFPData<0, 1, "fmsub",
2922      TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
2923 defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
2924      TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
2925 defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
2926      TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
2927
2928 // The following def pats catch the case where the LHS of an FMA is negated.
2929 // The TriOpFrag above catches the case where the middle operand is negated.
2930
2931 // N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
2932 // the NEON variant.
2933 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
2934           (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2935
2936 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
2937           (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2938
2939 // We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and
2940 // "(-a) + b*(-c)".
2941 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
2942           (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2943
2944 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
2945           (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2946
2947 def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
2948           (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
2949
2950 def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
2951           (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
2952
2953 //===----------------------------------------------------------------------===//
2954 // Floating point comparison instructions.
2955 //===----------------------------------------------------------------------===//
2956
2957 defm FCMPE : FPComparison<1, "fcmpe">;
2958 defm FCMP  : FPComparison<0, "fcmp", AArch64fcmp>;
2959
2960 //===----------------------------------------------------------------------===//
2961 // Floating point conditional comparison instructions.
2962 //===----------------------------------------------------------------------===//
2963
2964 defm FCCMPE : FPCondComparison<1, "fccmpe">;
2965 defm FCCMP  : FPCondComparison<0, "fccmp", AArch64fccmp>;
2966
2967 //===----------------------------------------------------------------------===//
2968 // Floating point conditional select instruction.
2969 //===----------------------------------------------------------------------===//
2970
2971 defm FCSEL : FPCondSelect<"fcsel">;
2972
2973 // CSEL instructions providing f128 types need to be handled by a
2974 // pseudo-instruction since the eventual code will need to introduce basic
2975 // blocks and control flow.
2976 def F128CSEL : Pseudo<(outs FPR128:$Rd),
2977                       (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
2978                       [(set (f128 FPR128:$Rd),
2979                             (AArch64csel FPR128:$Rn, FPR128:$Rm,
2980                                        (i32 imm:$cond), NZCV))]> {
2981   let Uses = [NZCV];
2982   let usesCustomInserter = 1;
2983   let hasNoSchedulingInfo = 1;
2984 }
2985
2986
2987 //===----------------------------------------------------------------------===//
2988 // Floating point immediate move.
2989 //===----------------------------------------------------------------------===//
2990
2991 let isReMaterializable = 1 in {
2992 defm FMOV : FPMoveImmediate<"fmov">;
2993 }
2994
2995 //===----------------------------------------------------------------------===//
2996 // Advanced SIMD two vector instructions.
2997 //===----------------------------------------------------------------------===//
2998
2999 defm UABDL   : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
3000                                           int_aarch64_neon_uabd>;
3001 // Match UABDL in log2-shuffle patterns.
3002 def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
3003                            (zext (v8i8 V64:$opB))))),
3004           (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
3005 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
3006                (v8i16 (add (sub (zext (v8i8 V64:$opA)),
3007                                 (zext (v8i8 V64:$opB))),
3008                            (AArch64vashr v8i16:$src, (i32 15))))),
3009           (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
3010 def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
3011                            (zext (extract_high_v16i8 V128:$opB))))),
3012           (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
3013 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
3014                (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
3015                                 (zext (extract_high_v16i8 V128:$opB))),
3016                            (AArch64vashr v8i16:$src, (i32 15))))),
3017           (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
3018 def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
3019                            (zext (v4i16 V64:$opB))))),
3020           (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
3021 def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
3022                            (zext (extract_high_v8i16 V128:$opB))))),
3023           (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
3024 def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
3025                            (zext (v2i32 V64:$opB))))),
3026           (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
3027 def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
3028                            (zext (extract_high_v4i32 V128:$opB))))),
3029           (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
3030
3031 defm ABS    : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
3032 defm CLS    : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
3033 defm CLZ    : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
3034 defm CMEQ   : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
3035 defm CMGE   : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
3036 defm CMGT   : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
3037 defm CMLE   : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
3038 defm CMLT   : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
3039 defm CNT    : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
3040 defm FABS   : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
3041
3042 defm FCMEQ  : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
3043 defm FCMGE  : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
3044 defm FCMGT  : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
3045 defm FCMLE  : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
3046 defm FCMLT  : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
3047 defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
3048 defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
3049 defm FCVTL  : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
3050 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
3051           (FCVTLv4i16 V64:$Rn)>;
3052 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
3053                                                               (i64 4)))),
3054           (FCVTLv8i16 V128:$Rn)>;
3055 def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
3056 def : Pat<(v2f64 (fpextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
3057                                                     (i64 2))))),
3058           (FCVTLv4i32 V128:$Rn)>;
3059
3060 def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
3061 def : Pat<(v4f32 (fpextend (v4f16 (extract_subvector (v8f16 V128:$Rn),
3062                                                     (i64 4))))),
3063           (FCVTLv8i16 V128:$Rn)>;
3064
3065 defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
3066 defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
3067 defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
3068 defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
3069 defm FCVTN  : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
3070 def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
3071           (FCVTNv4i16 V128:$Rn)>;
3072 def : Pat<(concat_vectors V64:$Rd,
3073                           (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
3074           (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
3075 def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
3076 def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
3077 def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
3078           (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
3079 defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
3080 defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
3081 defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
3082                                         int_aarch64_neon_fcvtxn>;
3083 defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
3084 defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
3085
3086 def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
3087 def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
3088 def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
3089 def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
3090 def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
3091
3092 def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
3093 def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
3094 def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
3095 def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
3096 def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
3097
3098 defm FNEG   : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
3099 defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
3100 defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
3101 defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
3102 defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
3103 defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
3104 defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
3105 defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
3106 defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
3107 defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
3108 defm FSQRT  : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
3109 defm NEG    : SIMDTwoVectorBHSD<1, 0b01011, "neg",
3110                                UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
3111 defm NOT    : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
3112 // Aliases for MVN -> NOT.
3113 def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
3114                 (NOTv8i8 V64:$Vd, V64:$Vn)>;
3115 def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
3116                 (NOTv16i8 V128:$Vd, V128:$Vn)>;
3117
3118 def : Pat<(AArch64neg (v8i8  V64:$Rn)),  (NEGv8i8  V64:$Rn)>;
3119 def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
3120 def : Pat<(AArch64neg (v4i16 V64:$Rn)),  (NEGv4i16 V64:$Rn)>;
3121 def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
3122 def : Pat<(AArch64neg (v2i32 V64:$Rn)),  (NEGv2i32 V64:$Rn)>;
3123 def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
3124 def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
3125
3126 def : Pat<(AArch64not (v8i8 V64:$Rn)),   (NOTv8i8  V64:$Rn)>;
3127 def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3128 def : Pat<(AArch64not (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3129 def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3130 def : Pat<(AArch64not (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3131 def : Pat<(AArch64not (v1i64 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3132 def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3133 def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3134
3135 def : Pat<(vnot (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3136 def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3137 def : Pat<(vnot (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3138 def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3139 def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3140
3141 defm RBIT   : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
3142 defm REV16  : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
3143 defm REV32  : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
3144 defm REV64  : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
3145 defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
3146        BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
3147 defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
3148 defm SCVTF  : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
3149 defm SHLL   : SIMDVectorLShiftLongBySizeBHS;
3150 defm SQABS  : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
3151 defm SQNEG  : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
3152 defm SQXTN  : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
3153 defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
3154 defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
3155 defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
3156        BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
3157 defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
3158                     int_aarch64_neon_uaddlp>;
3159 defm UCVTF  : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
3160 defm UQXTN  : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
3161 defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
3162 defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
3163 defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
3164 defm XTN    : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
3165
3166 def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
3167 def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
3168 def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
3169 def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
3170 def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
3171 def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
3172
3173 // Patterns for vector long shift (by element width). These need to match all
3174 // three of zext, sext and anyext so it's easier to pull the patterns out of the
3175 // definition.
3176 multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
3177   def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
3178             (SHLLv8i8 V64:$Rn)>;
3179   def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
3180             (SHLLv16i8 V128:$Rn)>;
3181   def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
3182             (SHLLv4i16 V64:$Rn)>;
3183   def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
3184             (SHLLv8i16 V128:$Rn)>;
3185   def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
3186             (SHLLv2i32 V64:$Rn)>;
3187   def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
3188             (SHLLv4i32 V128:$Rn)>;
3189 }
3190
3191 defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
3192 defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
3193 defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
3194
3195 //===----------------------------------------------------------------------===//
3196 // Advanced SIMD three vector instructions.
3197 //===----------------------------------------------------------------------===//
3198
3199 defm ADD     : SIMDThreeSameVector<0, 0b10000, "add", add>;
3200 defm ADDP    : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
3201 defm CMEQ    : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
3202 defm CMGE    : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
3203 defm CMGT    : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
3204 defm CMHI    : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
3205 defm CMHS    : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
3206 defm CMTST   : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
3207 defm FABD    : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
3208 let Predicates = [HasNEON] in {
3209 foreach VT = [ v2f32, v4f32, v2f64 ] in
3210 def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
3211 }
3212 let Predicates = [HasNEON, HasFullFP16] in {
3213 foreach VT = [ v4f16, v8f16 ] in
3214 def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
3215 }
3216 defm FACGE   : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
3217 defm FACGT   : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
3218 defm FADDP   : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_addp>;
3219 defm FADD    : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
3220 defm FCMEQ   : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
3221 defm FCMGE   : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
3222 defm FCMGT   : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
3223 defm FDIV    : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
3224 defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
3225 defm FMAXNM  : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
3226 defm FMAXP   : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
3227 defm FMAX    : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaxnan>;
3228 defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
3229 defm FMINNM  : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
3230 defm FMINP   : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
3231 defm FMIN    : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminnan>;
3232
3233 // NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
3234 // instruction expects the addend first, while the fma intrinsic puts it last.
3235 defm FMLA     : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
3236             TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
3237 defm FMLS     : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
3238             TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
3239
3240 // The following def pats catch the case where the LHS of an FMA is negated.
3241 // The TriOpFrag above catches the case where the middle operand is negated.
3242 def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
3243           (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
3244
3245 def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
3246           (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
3247
3248 def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
3249           (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
3250
3251 defm FMULX    : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
3252 defm FMUL     : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
3253 defm FRECPS   : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
3254 defm FRSQRTS  : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
3255 defm FSUB     : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
3256 defm MLA      : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla",
3257                       TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >;
3258 defm MLS      : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls",
3259                       TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >;
3260 defm MUL      : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
3261 defm PMUL     : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
3262 defm SABA     : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
3263       TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
3264 defm SABD     : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
3265 defm SHADD    : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
3266 defm SHSUB    : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
3267 defm SMAXP    : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
3268 defm SMAX     : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
3269 defm SMINP    : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
3270 defm SMIN     : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
3271 defm SQADD    : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
3272 defm SQDMULH  : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
3273 defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
3274 defm SQRSHL   : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
3275 defm SQSHL    : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
3276 defm SQSUB    : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
3277 defm SRHADD   : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>;
3278 defm SRSHL    : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
3279 defm SSHL     : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
3280 defm SUB      : SIMDThreeSameVector<1,0b10000,"sub", sub>;
3281 defm UABA     : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
3282       TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
3283 defm UABD     : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
3284 defm UHADD    : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
3285 defm UHSUB    : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
3286 defm UMAXP    : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
3287 defm UMAX     : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
3288 defm UMINP    : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
3289 defm UMIN     : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
3290 defm UQADD    : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
3291 defm UQRSHL   : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
3292 defm UQSHL    : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
3293 defm UQSUB    : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
3294 defm URHADD   : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>;
3295 defm URSHL    : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
3296 defm USHL     : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
3297 defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
3298                                                   int_aarch64_neon_sqadd>;
3299 defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
3300                                                     int_aarch64_neon_sqsub>;
3301
3302 defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
3303 defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
3304                                   BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
3305 defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
3306 defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
3307 defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
3308     TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
3309 defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
3310 defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
3311                                   BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
3312 defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
3313
3314
3315 def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
3316           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3317 def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
3318           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3319 def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
3320           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3321 def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
3322           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
3323
3324 def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
3325           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3326 def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
3327           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3328 def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
3329           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3330 def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
3331           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
3332
3333 def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
3334                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
3335 def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
3336                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3337 def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
3338                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3339 def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
3340                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
3341
3342 def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
3343                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
3344 def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
3345                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
3346 def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
3347                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
3348 def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
3349                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
3350
3351 def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
3352                 "|cmls.8b\t$dst, $src1, $src2}",
3353                 (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3354 def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
3355                 "|cmls.16b\t$dst, $src1, $src2}",
3356                 (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3357 def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
3358                 "|cmls.4h\t$dst, $src1, $src2}",
3359                 (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3360 def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
3361                 "|cmls.8h\t$dst, $src1, $src2}",
3362                 (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3363 def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
3364                 "|cmls.2s\t$dst, $src1, $src2}",
3365                 (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3366 def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
3367                 "|cmls.4s\t$dst, $src1, $src2}",
3368                 (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3369 def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
3370                 "|cmls.2d\t$dst, $src1, $src2}",
3371                 (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3372
3373 def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
3374                 "|cmlo.8b\t$dst, $src1, $src2}",
3375                 (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3376 def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
3377                 "|cmlo.16b\t$dst, $src1, $src2}",
3378                 (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3379 def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
3380                 "|cmlo.4h\t$dst, $src1, $src2}",
3381                 (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3382 def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
3383                 "|cmlo.8h\t$dst, $src1, $src2}",
3384                 (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3385 def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
3386                 "|cmlo.2s\t$dst, $src1, $src2}",
3387                 (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3388 def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
3389                 "|cmlo.4s\t$dst, $src1, $src2}",
3390                 (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3391 def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
3392                 "|cmlo.2d\t$dst, $src1, $src2}",
3393                 (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3394
3395 def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
3396                 "|cmle.8b\t$dst, $src1, $src2}",
3397                 (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3398 def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
3399                 "|cmle.16b\t$dst, $src1, $src2}",
3400                 (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3401 def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
3402                 "|cmle.4h\t$dst, $src1, $src2}",
3403                 (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3404 def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
3405                 "|cmle.8h\t$dst, $src1, $src2}",
3406                 (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3407 def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
3408                 "|cmle.2s\t$dst, $src1, $src2}",
3409                 (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3410 def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
3411                 "|cmle.4s\t$dst, $src1, $src2}",
3412                 (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3413 def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
3414                 "|cmle.2d\t$dst, $src1, $src2}",
3415                 (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3416
3417 def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
3418                 "|cmlt.8b\t$dst, $src1, $src2}",
3419                 (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
3420 def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
3421                 "|cmlt.16b\t$dst, $src1, $src2}",
3422                 (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
3423 def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
3424                 "|cmlt.4h\t$dst, $src1, $src2}",
3425                 (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
3426 def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
3427                 "|cmlt.8h\t$dst, $src1, $src2}",
3428                 (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
3429 def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
3430                 "|cmlt.2s\t$dst, $src1, $src2}",
3431                 (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
3432 def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
3433                 "|cmlt.4s\t$dst, $src1, $src2}",
3434                 (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
3435 def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
3436                 "|cmlt.2d\t$dst, $src1, $src2}",
3437                 (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
3438
3439 let Predicates = [HasNEON, HasFullFP16] in {
3440 def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
3441                 "|fcmle.4h\t$dst, $src1, $src2}",
3442                 (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3443 def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
3444                 "|fcmle.8h\t$dst, $src1, $src2}",
3445                 (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3446 }
3447 def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
3448                 "|fcmle.2s\t$dst, $src1, $src2}",
3449                 (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3450 def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
3451                 "|fcmle.4s\t$dst, $src1, $src2}",
3452                 (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3453 def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
3454                 "|fcmle.2d\t$dst, $src1, $src2}",
3455                 (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3456
3457 let Predicates = [HasNEON, HasFullFP16] in {
3458 def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
3459                 "|fcmlt.4h\t$dst, $src1, $src2}",
3460                 (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3461 def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
3462                 "|fcmlt.8h\t$dst, $src1, $src2}",
3463                 (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3464 }
3465 def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
3466                 "|fcmlt.2s\t$dst, $src1, $src2}",
3467                 (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3468 def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
3469                 "|fcmlt.4s\t$dst, $src1, $src2}",
3470                 (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3471 def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
3472                 "|fcmlt.2d\t$dst, $src1, $src2}",
3473                 (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3474
3475 let Predicates = [HasNEON, HasFullFP16] in {
3476 def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
3477                 "|facle.4h\t$dst, $src1, $src2}",
3478                 (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3479 def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
3480                 "|facle.8h\t$dst, $src1, $src2}",
3481                 (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3482 }
3483 def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
3484                 "|facle.2s\t$dst, $src1, $src2}",
3485                 (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3486 def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
3487                 "|facle.4s\t$dst, $src1, $src2}",
3488                 (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3489 def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
3490                 "|facle.2d\t$dst, $src1, $src2}",
3491                 (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3492
3493 let Predicates = [HasNEON, HasFullFP16] in {
3494 def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
3495                 "|faclt.4h\t$dst, $src1, $src2}",
3496                 (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
3497 def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
3498                 "|faclt.8h\t$dst, $src1, $src2}",
3499                 (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
3500 }
3501 def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
3502                 "|faclt.2s\t$dst, $src1, $src2}",
3503                 (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
3504 def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
3505                 "|faclt.4s\t$dst, $src1, $src2}",
3506                 (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
3507 def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
3508                 "|faclt.2d\t$dst, $src1, $src2}",
3509                 (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
3510
3511 //===----------------------------------------------------------------------===//
3512 // Advanced SIMD three scalar instructions.
3513 //===----------------------------------------------------------------------===//
3514
3515 defm ADD      : SIMDThreeScalarD<0, 0b10000, "add", add>;
3516 defm CMEQ     : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
3517 defm CMGE     : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
3518 defm CMGT     : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
3519 defm CMHI     : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
3520 defm CMHS     : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
3521 defm CMTST    : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
3522 defm FABD     : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
3523 def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3524           (FABD64 FPR64:$Rn, FPR64:$Rm)>;
3525 let Predicates = [HasFullFP16] in {
3526 def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
3527 }
3528 def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
3529 def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
3530 defm FACGE    : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
3531                                      int_aarch64_neon_facge>;
3532 defm FACGT    : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
3533                                      int_aarch64_neon_facgt>;
3534 defm FCMEQ    : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
3535 defm FCMGE    : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
3536 defm FCMGT    : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
3537 defm FMULX    : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
3538 defm FRECPS   : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
3539 defm FRSQRTS  : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
3540 defm SQADD    : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
3541 defm SQDMULH  : SIMDThreeScalarHS<  0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
3542 defm SQRDMULH : SIMDThreeScalarHS<  1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
3543 defm SQRSHL   : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
3544 defm SQSHL    : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
3545 defm SQSUB    : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
3546 defm SRSHL    : SIMDThreeScalarD<   0, 0b01010, "srshl", int_aarch64_neon_srshl>;
3547 defm SSHL     : SIMDThreeScalarD<   0, 0b01000, "sshl", int_aarch64_neon_sshl>;
3548 defm SUB      : SIMDThreeScalarD<   1, 0b10000, "sub", sub>;
3549 defm UQADD    : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
3550 defm UQRSHL   : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
3551 defm UQSHL    : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
3552 defm UQSUB    : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
3553 defm URSHL    : SIMDThreeScalarD<   1, 0b01010, "urshl", int_aarch64_neon_urshl>;
3554 defm USHL     : SIMDThreeScalarD<   1, 0b01000, "ushl", int_aarch64_neon_ushl>;
3555 let Predicates = [HasRDM] in {
3556   defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
3557   defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
3558   def : Pat<(i32 (int_aarch64_neon_sqadd
3559                    (i32 FPR32:$Rd),
3560                    (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
3561                                                    (i32 FPR32:$Rm))))),
3562             (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3563   def : Pat<(i32 (int_aarch64_neon_sqsub
3564                    (i32 FPR32:$Rd),
3565                    (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
3566                                                    (i32 FPR32:$Rm))))),
3567             (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3568 }
3569
3570 def : InstAlias<"cmls $dst, $src1, $src2",
3571                 (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3572 def : InstAlias<"cmle $dst, $src1, $src2",
3573                 (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3574 def : InstAlias<"cmlo $dst, $src1, $src2",
3575                 (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3576 def : InstAlias<"cmlt $dst, $src1, $src2",
3577                 (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3578 def : InstAlias<"fcmle $dst, $src1, $src2",
3579                 (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3580 def : InstAlias<"fcmle $dst, $src1, $src2",
3581                 (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3582 def : InstAlias<"fcmlt $dst, $src1, $src2",
3583                 (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3584 def : InstAlias<"fcmlt $dst, $src1, $src2",
3585                 (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3586 def : InstAlias<"facle $dst, $src1, $src2",
3587                 (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3588 def : InstAlias<"facle $dst, $src1, $src2",
3589                 (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3590 def : InstAlias<"faclt $dst, $src1, $src2",
3591                 (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
3592 def : InstAlias<"faclt $dst, $src1, $src2",
3593                 (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
3594
3595 //===----------------------------------------------------------------------===//
3596 // Advanced SIMD three scalar instructions (mixed operands).
3597 //===----------------------------------------------------------------------===//
3598 defm SQDMULL  : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
3599                                        int_aarch64_neon_sqdmulls_scalar>;
3600 defm SQDMLAL  : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
3601 defm SQDMLSL  : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
3602
3603 def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
3604                    (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
3605                                                         (i32 FPR32:$Rm))))),
3606           (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3607 def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
3608                    (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
3609                                                         (i32 FPR32:$Rm))))),
3610           (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
3611
3612 //===----------------------------------------------------------------------===//
3613 // Advanced SIMD two scalar instructions.
3614 //===----------------------------------------------------------------------===//
3615
3616 defm ABS    : SIMDTwoScalarD<    0, 0b01011, "abs", abs>;
3617 defm CMEQ   : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
3618 defm CMGE   : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
3619 defm CMGT   : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
3620 defm CMLE   : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
3621 defm CMLT   : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
3622 defm FCMEQ  : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
3623 defm FCMGE  : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
3624 defm FCMGT  : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
3625 defm FCMLE  : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
3626 defm FCMLT  : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
3627 defm FCVTAS : SIMDFPTwoScalar<   0, 0, 0b11100, "fcvtas">;
3628 defm FCVTAU : SIMDFPTwoScalar<   1, 0, 0b11100, "fcvtau">;
3629 defm FCVTMS : SIMDFPTwoScalar<   0, 0, 0b11011, "fcvtms">;
3630 defm FCVTMU : SIMDFPTwoScalar<   1, 0, 0b11011, "fcvtmu">;
3631 defm FCVTNS : SIMDFPTwoScalar<   0, 0, 0b11010, "fcvtns">;
3632 defm FCVTNU : SIMDFPTwoScalar<   1, 0, 0b11010, "fcvtnu">;
3633 defm FCVTPS : SIMDFPTwoScalar<   0, 1, 0b11010, "fcvtps">;
3634 defm FCVTPU : SIMDFPTwoScalar<   1, 1, 0b11010, "fcvtpu">;
3635 def  FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
3636 defm FCVTZS : SIMDFPTwoScalar<   0, 1, 0b11011, "fcvtzs">;
3637 defm FCVTZU : SIMDFPTwoScalar<   1, 1, 0b11011, "fcvtzu">;
3638 defm FRECPE : SIMDFPTwoScalar<   0, 1, 0b11101, "frecpe">;
3639 defm FRECPX : SIMDFPTwoScalar<   0, 1, 0b11111, "frecpx">;
3640 defm FRSQRTE : SIMDFPTwoScalar<  1, 1, 0b11101, "frsqrte">;
3641 defm NEG    : SIMDTwoScalarD<    1, 0b01011, "neg",
3642                                  UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
3643 defm SCVTF  : SIMDFPTwoScalarCVT<   0, 0, 0b11101, "scvtf", AArch64sitof>;
3644 defm SQABS  : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
3645 defm SQNEG  : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
3646 defm SQXTN  : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
3647 defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
3648 defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
3649                                      int_aarch64_neon_suqadd>;
3650 defm UCVTF  : SIMDFPTwoScalarCVT<   1, 0, 0b11101, "ucvtf", AArch64uitof>;
3651 defm UQXTN  : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
3652 defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
3653                                     int_aarch64_neon_usqadd>;
3654
3655 def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
3656
3657 def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
3658           (FCVTASv1i64 FPR64:$Rn)>;
3659 def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
3660           (FCVTAUv1i64 FPR64:$Rn)>;
3661 def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
3662           (FCVTMSv1i64 FPR64:$Rn)>;
3663 def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
3664           (FCVTMUv1i64 FPR64:$Rn)>;
3665 def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
3666           (FCVTNSv1i64 FPR64:$Rn)>;
3667 def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
3668           (FCVTNUv1i64 FPR64:$Rn)>;
3669 def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
3670           (FCVTPSv1i64 FPR64:$Rn)>;
3671 def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
3672           (FCVTPUv1i64 FPR64:$Rn)>;
3673
3674 def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
3675           (FRECPEv1f16 FPR16:$Rn)>;
3676 def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
3677           (FRECPEv1i32 FPR32:$Rn)>;
3678 def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
3679           (FRECPEv1i64 FPR64:$Rn)>;
3680 def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
3681           (FRECPEv1i64 FPR64:$Rn)>;
3682
3683 def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
3684           (FRECPEv1i32 FPR32:$Rn)>;
3685 def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
3686           (FRECPEv2f32 V64:$Rn)>;
3687 def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
3688           (FRECPEv4f32 FPR128:$Rn)>;
3689 def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
3690           (FRECPEv1i64 FPR64:$Rn)>;
3691 def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
3692           (FRECPEv1i64 FPR64:$Rn)>;
3693 def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
3694           (FRECPEv2f64 FPR128:$Rn)>;
3695
3696 def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
3697           (FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
3698 def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
3699           (FRECPSv2f32 V64:$Rn, V64:$Rm)>;
3700 def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
3701           (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
3702 def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
3703           (FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
3704 def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
3705           (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;
3706
3707 def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
3708           (FRECPXv1f16 FPR16:$Rn)>;
3709 def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
3710           (FRECPXv1i32 FPR32:$Rn)>;
3711 def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
3712           (FRECPXv1i64 FPR64:$Rn)>;
3713
3714 def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
3715           (FRSQRTEv1f16 FPR16:$Rn)>;
3716 def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
3717           (FRSQRTEv1i32 FPR32:$Rn)>;
3718 def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
3719           (FRSQRTEv1i64 FPR64:$Rn)>;
3720 def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
3721           (FRSQRTEv1i64 FPR64:$Rn)>;
3722
3723 def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
3724           (FRSQRTEv1i32 FPR32:$Rn)>;
3725 def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
3726           (FRSQRTEv2f32 V64:$Rn)>;
3727 def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
3728           (FRSQRTEv4f32 FPR128:$Rn)>;
3729 def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
3730           (FRSQRTEv1i64 FPR64:$Rn)>;
3731 def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
3732           (FRSQRTEv1i64 FPR64:$Rn)>;
3733 def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
3734           (FRSQRTEv2f64 FPR128:$Rn)>;
3735
3736 def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
3737           (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
3738 def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
3739           (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
3740 def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
3741           (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
3742 def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
3743           (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
3744 def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
3745           (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;
3746
3747 // If an integer is about to be converted to a floating point value,
3748 // just load it on the floating point unit.
3749 // Here are the patterns for 8 and 16-bits to float.
3750 // 8-bits -> float.
3751 multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
3752                              SDPatternOperator loadop, Instruction UCVTF,
3753                              ROAddrMode ro, Instruction LDRW, Instruction LDRX,
3754                              SubRegIndex sub> {
3755   def : Pat<(DstTy (uint_to_fp (SrcTy
3756                      (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
3757                                       ro.Wext:$extend))))),
3758            (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
3759                                  (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
3760                                  sub))>;
3761
3762   def : Pat<(DstTy (uint_to_fp (SrcTy
3763                      (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
3764                                       ro.Wext:$extend))))),
3765            (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
3766                                  (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
3767                                  sub))>;
3768 }
3769
3770 defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
3771                          UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
3772 def : Pat <(f32 (uint_to_fp (i32
3773                (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
3774            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3775                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
3776 def : Pat <(f32 (uint_to_fp (i32
3777                      (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
3778            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3779                           (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
3780 // 16-bits -> float.
3781 defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
3782                          UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
3783 def : Pat <(f32 (uint_to_fp (i32
3784                   (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
3785            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3786                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
3787 def : Pat <(f32 (uint_to_fp (i32
3788                   (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
3789            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
3790                           (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
3791 // 32-bits are handled in target specific dag combine:
3792 // performIntToFpCombine.
3793 // 64-bits integer to 32-bits floating point, not possible with
3794 // UCVTF on floating point registers (both source and destination
3795 // must have the same size).
3796
3797 // Here are the patterns for 8, 16, 32, and 64-bits to double.
3798 // 8-bits -> double.
3799 defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
3800                          UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
3801 def : Pat <(f64 (uint_to_fp (i32
3802                     (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
3803            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3804                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
3805 def : Pat <(f64 (uint_to_fp (i32
3806                   (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
3807            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3808                           (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
3809 // 16-bits -> double.
3810 defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
3811                          UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
3812 def : Pat <(f64 (uint_to_fp (i32
3813                   (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
3814            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3815                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
3816 def : Pat <(f64 (uint_to_fp (i32
3817                   (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
3818            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3819                           (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
3820 // 32-bits -> double.
3821 defm : UIntToFPROLoadPat<f64, i32, load,
3822                          UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
3823 def : Pat <(f64 (uint_to_fp (i32
3824                   (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
3825            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3826                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
3827 def : Pat <(f64 (uint_to_fp (i32
3828                   (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
3829            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
3830                           (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
3831 // 64-bits -> double are handled in target specific dag combine:
3832 // performIntToFpCombine.
3833
3834 //===----------------------------------------------------------------------===//
3835 // Advanced SIMD three different-sized vector instructions.
3836 //===----------------------------------------------------------------------===//
3837
3838 defm ADDHN  : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
3839 defm SUBHN  : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
3840 defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
3841 defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
3842 defm PMULL  : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
3843 defm SABAL  : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
3844                                              int_aarch64_neon_sabd>;
3845 defm SABDL   : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
3846                                           int_aarch64_neon_sabd>;
3847 defm SADDL   : SIMDLongThreeVectorBHS<   0, 0b0000, "saddl",
3848             BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
3849 defm SADDW   : SIMDWideThreeVectorBHS<   0, 0b0001, "saddw",
3850                  BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
3851 defm SMLAL   : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
3852     TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
3853 defm SMLSL   : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
3854     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
3855 defm SMULL   : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
3856 defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
3857                                                int_aarch64_neon_sqadd>;
3858 defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
3859                                                int_aarch64_neon_sqsub>;
3860 defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
3861                                      int_aarch64_neon_sqdmull>;
3862 defm SSUBL   : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
3863                  BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
3864 defm SSUBW   : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
3865                  BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
3866 defm UABAL   : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
3867                                               int_aarch64_neon_uabd>;
3868 defm UADDL   : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
3869                  BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
3870 defm UADDW   : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
3871                  BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
3872 defm UMLAL   : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
3873     TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
3874 defm UMLSL   : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
3875     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
3876 defm UMULL   : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
3877 defm USUBL   : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
3878                  BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
3879 defm USUBW   : SIMDWideThreeVectorBHS<   1, 0b0011, "usubw",
3880                  BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
3881
3882 // Additional patterns for SMULL and UMULL
3883 multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
3884   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
3885   def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
3886             (INST8B V64:$Rn, V64:$Rm)>;
3887   def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
3888             (INST4H V64:$Rn, V64:$Rm)>;
3889   def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
3890             (INST2S V64:$Rn, V64:$Rm)>;
3891 }
3892
3893 defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
3894   SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
3895 defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
3896   UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
3897
3898 // Patterns for smull2/umull2.
3899 multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
3900   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
3901   def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
3902                            (extract_high_v16i8 V128:$Rm))),
3903              (INST8B V128:$Rn, V128:$Rm)>;
3904   def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
3905                            (extract_high_v8i16 V128:$Rm))),
3906              (INST4H V128:$Rn, V128:$Rm)>;
3907   def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
3908                            (extract_high_v4i32 V128:$Rm))),
3909              (INST2S V128:$Rn, V128:$Rm)>;
3910 }
3911
3912 defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
3913   SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
3914 defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
3915   UMULLv8i16_v4i32, UMULLv4i32_v2i64>;
3916
3917 // Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
3918 multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
3919   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
3920   def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
3921             (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
3922   def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
3923             (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
3924   def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
3925             (INST2S  V128:$Rd, V64:$Rn, V64:$Rm)>;
3926 }
3927
3928 defm : Neon_mulacc_widen_patterns<
3929   TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
3930   SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
3931 defm : Neon_mulacc_widen_patterns<
3932   TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
3933   UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
3934 defm : Neon_mulacc_widen_patterns<
3935   TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
3936   SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
3937 defm : Neon_mulacc_widen_patterns<
3938   TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
3939   UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
3940
3941 // Patterns for 64-bit pmull
3942 def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
3943           (PMULLv1i64 V64:$Rn, V64:$Rm)>;
3944 def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
3945                                     (extractelt (v2i64 V128:$Rm), (i64 1))),
3946           (PMULLv2i64 V128:$Rn, V128:$Rm)>;
3947
3948 // CodeGen patterns for addhn and subhn instructions, which can actually be
3949 // written in LLVM IR without too much difficulty.
3950
3951 // ADDHN
3952 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
3953           (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
3954 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3955                                            (i32 16))))),
3956           (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
3957 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3958                                            (i32 32))))),
3959           (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
3960 def : Pat<(concat_vectors (v8i8 V64:$Rd),
3961                           (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3962                                                     (i32 8))))),
3963           (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3964                             V128:$Rn, V128:$Rm)>;
3965 def : Pat<(concat_vectors (v4i16 V64:$Rd),
3966                           (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3967                                                     (i32 16))))),
3968           (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3969                             V128:$Rn, V128:$Rm)>;
3970 def : Pat<(concat_vectors (v2i32 V64:$Rd),
3971                           (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
3972                                                     (i32 32))))),
3973           (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3974                             V128:$Rn, V128:$Rm)>;
3975
3976 // SUBHN
3977 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
3978           (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
3979 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3980                                            (i32 16))))),
3981           (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
3982 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3983                                            (i32 32))))),
3984           (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
3985 def : Pat<(concat_vectors (v8i8 V64:$Rd),
3986                           (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3987                                                     (i32 8))))),
3988           (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3989                             V128:$Rn, V128:$Rm)>;
3990 def : Pat<(concat_vectors (v4i16 V64:$Rd),
3991                           (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3992                                                     (i32 16))))),
3993           (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3994                             V128:$Rn, V128:$Rm)>;
3995 def : Pat<(concat_vectors (v2i32 V64:$Rd),
3996                           (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
3997                                                     (i32 32))))),
3998           (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
3999                             V128:$Rn, V128:$Rm)>;
4000
4001 //----------------------------------------------------------------------------
4002 // AdvSIMD bitwise extract from vector instruction.
4003 //----------------------------------------------------------------------------
4004
4005 defm EXT : SIMDBitwiseExtract<"ext">;
4006
4007 def : Pat<(v4i16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4008           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4009 def : Pat<(v8i16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4010           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4011 def : Pat<(v2i32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4012           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4013 def : Pat<(v2f32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4014           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4015 def : Pat<(v4i32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4016           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4017 def : Pat<(v4f32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4018           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4019 def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4020           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4021 def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4022           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4023 def : Pat<(v4f16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4024           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4025 def : Pat<(v8f16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4026           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4027
4028 // We use EXT to handle extract_subvector to copy the upper 64-bits of a
4029 // 128-bit vector.
4030 def : Pat<(v8i8  (extract_subvector V128:$Rn, (i64 8))),
4031           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4032 def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))),
4033           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4034 def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
4035           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4036 def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
4037           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4038 def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 4))),
4039           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4040 def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
4041           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4042 def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
4043           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4044
4045
4046 //----------------------------------------------------------------------------
4047 // AdvSIMD zip vector
4048 //----------------------------------------------------------------------------
4049
4050 defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
4051 defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
4052 defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
4053 defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
4054 defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
4055 defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
4056
4057 //----------------------------------------------------------------------------
4058 // AdvSIMD TBL/TBX instructions
4059 //----------------------------------------------------------------------------
4060
4061 defm TBL : SIMDTableLookup<    0, "tbl">;
4062 defm TBX : SIMDTableLookupTied<1, "tbx">;
4063
4064 def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
4065           (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
4066 def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
4067           (TBLv16i8One V128:$Ri, V128:$Rn)>;
4068
4069 def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
4070                   (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
4071           (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
4072 def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
4073                    (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
4074           (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
4075
4076
4077 //----------------------------------------------------------------------------
4078 // AdvSIMD scalar CPY instruction
4079 //----------------------------------------------------------------------------
4080
4081 defm CPY : SIMDScalarCPY<"cpy">;
4082
4083 //----------------------------------------------------------------------------
4084 // AdvSIMD scalar pairwise instructions
4085 //----------------------------------------------------------------------------
4086
4087 defm ADDP    : SIMDPairwiseScalarD<0, 0b11011, "addp">;
4088 defm FADDP   : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
4089 defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
4090 defm FMAXP   : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
4091 defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
4092 defm FMINP   : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
4093 def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
4094           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
4095 def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
4096           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
4097 def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
4098           (FADDPv2i32p V64:$Rn)>;
4099 def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
4100           (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
4101 def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
4102           (FADDPv2i64p V128:$Rn)>;
4103 def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
4104           (FMAXNMPv2i32p V64:$Rn)>;
4105 def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
4106           (FMAXNMPv2i64p V128:$Rn)>;
4107 def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
4108           (FMAXPv2i32p V64:$Rn)>;
4109 def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
4110           (FMAXPv2i64p V128:$Rn)>;
4111 def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
4112           (FMINNMPv2i32p V64:$Rn)>;
4113 def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
4114           (FMINNMPv2i64p V128:$Rn)>;
4115 def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
4116           (FMINPv2i32p V64:$Rn)>;
4117 def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
4118           (FMINPv2i64p V128:$Rn)>;
4119
4120 //----------------------------------------------------------------------------
4121 // AdvSIMD INS/DUP instructions
4122 //----------------------------------------------------------------------------
4123
4124 def DUPv8i8gpr  : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
4125 def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
4126 def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
4127 def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
4128 def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
4129 def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
4130 def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
4131
4132 def DUPv2i64lane : SIMDDup64FromElement;
4133 def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
4134 def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
4135 def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
4136 def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
4137 def DUPv8i8lane  : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
4138 def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
4139
4140 def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
4141           (v2f32 (DUPv2i32lane
4142             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
4143             (i64 0)))>;
4144 def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
4145           (v4f32 (DUPv4i32lane
4146             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
4147             (i64 0)))>;
4148 def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
4149           (v2f64 (DUPv2i64lane
4150             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
4151             (i64 0)))>;
4152 def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
4153           (v4f16 (DUPv4i16lane
4154             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4155             (i64 0)))>;
4156 def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
4157           (v8f16 (DUPv8i16lane
4158             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4159             (i64 0)))>;
4160
4161 def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
4162           (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
4163 def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
4164           (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
4165
4166 def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
4167           (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
4168 def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
4169          (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
4170 def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
4171           (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
4172
4173 // If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
4174 // instruction even if the types don't match: we just have to remap the lane
4175 // carefully. N.b. this trick only applies to truncations.
4176 def VecIndex_x2 : SDNodeXForm<imm, [{
4177   return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
4178 }]>;
4179 def VecIndex_x4 : SDNodeXForm<imm, [{
4180   return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
4181 }]>;
4182 def VecIndex_x8 : SDNodeXForm<imm, [{
4183   return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
4184 }]>;
4185
4186 multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
4187                             ValueType Src128VT, ValueType ScalVT,
4188                             Instruction DUP, SDNodeXForm IdxXFORM> {
4189   def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
4190                                                      imm:$idx)))),
4191             (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
4192
4193   def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
4194                                                      imm:$idx)))),
4195             (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
4196 }
4197
4198 defm : DUPWithTruncPats<v8i8,   v4i16, v8i16, i32, DUPv8i8lane,  VecIndex_x2>;
4199 defm : DUPWithTruncPats<v8i8,   v2i32, v4i32, i32, DUPv8i8lane,  VecIndex_x4>;
4200 defm : DUPWithTruncPats<v4i16,  v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
4201
4202 defm : DUPWithTruncPats<v16i8,  v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
4203 defm : DUPWithTruncPats<v16i8,  v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
4204 defm : DUPWithTruncPats<v8i16,  v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
4205
4206 multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
4207                                SDNodeXForm IdxXFORM> {
4208   def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
4209                                                          imm:$idx))))),
4210             (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
4211
4212   def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
4213                                                        imm:$idx))))),
4214             (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
4215 }
4216
4217 defm : DUPWithTrunci64Pats<v8i8,  DUPv8i8lane,   VecIndex_x8>;
4218 defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane,  VecIndex_x4>;
4219 defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane,  VecIndex_x2>;
4220
4221 defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
4222 defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
4223 defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
4224
4225 // SMOV and UMOV definitions, with some extra patterns for convenience
4226 defm SMOV : SMov;
4227 defm UMOV : UMov;
4228
4229 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
4230           (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
4231 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
4232           (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
4233 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4234           (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
4235 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4236           (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
4237 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
4238           (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
4239 def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
4240           (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
4241
4242 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
4243             VectorIndexB:$idx)))), i8),
4244           (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
4245 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
4246             VectorIndexH:$idx)))), i16),
4247           (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
4248
4249 // Extracting i8 or i16 elements will have the zero-extend transformed to
4250 // an 'and' mask by type legalization since neither i8 nor i16 are legal types
4251 // for AArch64. Match these patterns here since UMOV already zeroes out the high
4252 // bits of the destination register.
4253 def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
4254                (i32 0xff)),
4255           (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
4256 def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
4257                (i32 0xffff)),
4258           (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
4259
4260 defm INS : SIMDIns;
4261
4262 def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
4263           (SUBREG_TO_REG (i32 0),
4264                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4265 def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
4266           (SUBREG_TO_REG (i32 0),
4267                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4268
4269 def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
4270           (SUBREG_TO_REG (i32 0),
4271                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4272 def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
4273           (SUBREG_TO_REG (i32 0),
4274                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
4275
4276 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
4277           (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4278 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
4279           (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4280
4281 def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
4282             (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
4283                                   (i32 FPR32:$Rn), ssub))>;
4284 def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
4285             (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4286                                   (i32 FPR32:$Rn), ssub))>;
4287
4288 def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
4289             (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
4290                                   (i64 FPR64:$Rn), dsub))>;
4291
4292 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
4293           (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4294 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
4295           (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
4296
4297 def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
4298           (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
4299 def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
4300           (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
4301
4302 def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
4303           (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
4304
4305 def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
4306             (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
4307           (EXTRACT_SUBREG
4308             (INSvi16lane
4309               (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
4310               VectorIndexS:$imm,
4311               (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
4312               (i64 0)),
4313             dsub)>;
4314
4315 def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
4316             (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
4317           (INSvi16lane
4318             V128:$Rn, VectorIndexH:$imm,
4319             (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
4320             (i64 0))>;
4321
4322 def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
4323             (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
4324           (EXTRACT_SUBREG
4325             (INSvi32lane
4326               (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
4327               VectorIndexS:$imm,
4328               (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
4329               (i64 0)),
4330             dsub)>;
4331 def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
4332             (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
4333           (INSvi32lane
4334             V128:$Rn, VectorIndexS:$imm,
4335             (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
4336             (i64 0))>;
4337 def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
4338             (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
4339           (INSvi64lane
4340             V128:$Rn, VectorIndexD:$imm,
4341             (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
4342             (i64 0))>;
4343
4344 // Copy an element at a constant index in one vector into a constant indexed
4345 // element of another.
4346 // FIXME refactor to a shared class/dev parameterized on vector type, vector
4347 // index type and INS extension
4348 def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
4349                    (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
4350                    VectorIndexB:$idx2)),
4351           (v16i8 (INSvi8lane
4352                    V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
4353           )>;
4354 def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
4355                    (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
4356                    VectorIndexH:$idx2)),
4357           (v8i16 (INSvi16lane
4358                    V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
4359           )>;
4360 def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
4361                    (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
4362                    VectorIndexS:$idx2)),
4363           (v4i32 (INSvi32lane
4364                    V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
4365           )>;
4366 def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
4367                    (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
4368                    VectorIndexD:$idx2)),
4369           (v2i64 (INSvi64lane
4370                    V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
4371           )>;
4372
4373 multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
4374                                 ValueType VTScal, Instruction INS> {
4375   def : Pat<(VT128 (vector_insert V128:$src,
4376                         (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
4377                         imm:$Immd)),
4378             (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
4379
4380   def : Pat<(VT128 (vector_insert V128:$src,
4381                         (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
4382                         imm:$Immd)),
4383             (INS V128:$src, imm:$Immd,
4384                  (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
4385
4386   def : Pat<(VT64 (vector_insert V64:$src,
4387                         (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
4388                         imm:$Immd)),
4389             (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
4390                                  imm:$Immd, V128:$Rn, imm:$Immn),
4391                             dsub)>;
4392
4393   def : Pat<(VT64 (vector_insert V64:$src,
4394                         (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
4395                         imm:$Immd)),
4396             (EXTRACT_SUBREG
4397                 (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
4398                      (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
4399                 dsub)>;
4400 }
4401
4402 defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
4403 defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
4404 defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
4405
4406
4407 // Floating point vector extractions are codegen'd as either a sequence of
4408 // subregister extractions, or a MOV (aka CPY here, alias for DUP) if
4409 // the lane number is anything other than zero.
4410 def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
4411           (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
4412 def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
4413           (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
4414 def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
4415           (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
4416
4417 def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
4418           (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
4419 def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
4420           (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
4421 def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
4422           (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
4423
4424 // All concat_vectors operations are canonicalised to act on i64 vectors for
4425 // AArch64. In the general case we need an instruction, which had just as well be
4426 // INS.
4427 class ConcatPat<ValueType DstTy, ValueType SrcTy>
4428   : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
4429         (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
4430                      (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
4431
4432 def : ConcatPat<v2i64, v1i64>;
4433 def : ConcatPat<v2f64, v1f64>;
4434 def : ConcatPat<v4i32, v2i32>;
4435 def : ConcatPat<v4f32, v2f32>;
4436 def : ConcatPat<v8i16, v4i16>;
4437 def : ConcatPat<v8f16, v4f16>;
4438 def : ConcatPat<v16i8, v8i8>;
4439
4440 // If the high lanes are undef, though, we can just ignore them:
4441 class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
4442   : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
4443         (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
4444
4445 def : ConcatUndefPat<v2i64, v1i64>;
4446 def : ConcatUndefPat<v2f64, v1f64>;
4447 def : ConcatUndefPat<v4i32, v2i32>;
4448 def : ConcatUndefPat<v4f32, v2f32>;
4449 def : ConcatUndefPat<v8i16, v4i16>;
4450 def : ConcatUndefPat<v16i8, v8i8>;
4451
4452 //----------------------------------------------------------------------------
4453 // AdvSIMD across lanes instructions
4454 //----------------------------------------------------------------------------
4455
4456 defm ADDV    : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
4457 defm SMAXV   : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
4458 defm SMINV   : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
4459 defm UMAXV   : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
4460 defm UMINV   : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
4461 defm SADDLV  : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
4462 defm UADDLV  : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
4463 defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
4464 defm FMAXV   : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
4465 defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
4466 defm FMINV   : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
4467
4468 // Patterns for across-vector intrinsics, that have a node equivalent, that
4469 // returns a vector (with only the low lane defined) instead of a scalar.
4470 // In effect, opNode is the same as (scalar_to_vector (IntNode)).
4471 multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
4472                                     SDPatternOperator opNode> {
4473 // If a lane instruction caught the vector_extract around opNode, we can
4474 // directly match the latter to the instruction.
4475 def : Pat<(v8i8 (opNode V64:$Rn)),
4476           (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
4477            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
4478 def : Pat<(v16i8 (opNode V128:$Rn)),
4479           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4480            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
4481 def : Pat<(v4i16 (opNode V64:$Rn)),
4482           (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
4483            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
4484 def : Pat<(v8i16 (opNode V128:$Rn)),
4485           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
4486            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
4487 def : Pat<(v4i32 (opNode V128:$Rn)),
4488           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4489            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
4490
4491
4492 // If none did, fallback to the explicit patterns, consuming the vector_extract.
4493 def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
4494             (i32 0)), (i64 0))),
4495           (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
4496             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
4497             bsub), ssub)>;
4498 def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
4499           (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4500             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
4501             bsub), ssub)>;
4502 def : Pat<(i32 (vector_extract (insert_subvector undef,
4503             (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
4504           (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
4505             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
4506             hsub), ssub)>;
4507 def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
4508           (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
4509             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
4510             hsub), ssub)>;
4511 def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
4512           (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
4513             (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
4514             ssub), ssub)>;
4515
4516 }
4517
4518 multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
4519                                           SDPatternOperator opNode>
4520     : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
4521 // If there is a sign extension after this intrinsic, consume it as smov already
4522 // performed it
4523 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
4524             (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
4525           (i32 (SMOVvi8to32
4526             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4527               (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
4528             (i64 0)))>;
4529 def : Pat<(i32 (sext_inreg (i32 (vector_extract
4530             (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
4531           (i32 (SMOVvi8to32
4532             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4533              (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
4534             (i64 0)))>;
4535 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
4536             (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
4537           (i32 (SMOVvi16to32
4538            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4539             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
4540            (i64 0)))>;
4541 def : Pat<(i32 (sext_inreg (i32 (vector_extract
4542             (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
4543           (i32 (SMOVvi16to32
4544             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4545              (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
4546             (i64 0)))>;
4547 }
4548
4549 multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
4550                                             SDPatternOperator opNode>
4551     : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
4552 // If there is a masking operation keeping only what has been actually
4553 // generated, consume it.
4554 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
4555             (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
4556       (i32 (EXTRACT_SUBREG
4557         (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4558           (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
4559         ssub))>;
4560 def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
4561             maski8_or_more)),
4562         (i32 (EXTRACT_SUBREG
4563           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4564             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
4565           ssub))>;
4566 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
4567             (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
4568           (i32 (EXTRACT_SUBREG
4569             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4570               (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
4571             ssub))>;
4572 def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
4573             maski16_or_more)),
4574         (i32 (EXTRACT_SUBREG
4575           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4576             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
4577           ssub))>;
4578 }
4579
4580 defm : SIMDAcrossLanesSignedIntrinsic<"ADDV",  AArch64saddv>;
4581 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
4582 def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
4583           (ADDPv2i32 V64:$Rn, V64:$Rn)>;
4584
4585 defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
4586 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
4587 def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
4588           (ADDPv2i32 V64:$Rn, V64:$Rn)>;
4589
4590 defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
4591 def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
4592           (SMAXPv2i32 V64:$Rn, V64:$Rn)>;
4593
4594 defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
4595 def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
4596           (SMINPv2i32 V64:$Rn, V64:$Rn)>;
4597
4598 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
4599 def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
4600           (UMAXPv2i32 V64:$Rn, V64:$Rn)>;
4601
4602 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
4603 def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
4604           (UMINPv2i32 V64:$Rn, V64:$Rn)>;
4605
4606 multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
4607   def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
4608         (i32 (SMOVvi16to32
4609           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4610             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
4611           (i64 0)))>;
4612 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
4613         (i32 (SMOVvi16to32
4614           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4615            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
4616           (i64 0)))>;
4617
4618 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
4619           (i32 (EXTRACT_SUBREG
4620            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4621             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
4622            ssub))>;
4623 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
4624         (i32 (EXTRACT_SUBREG
4625           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4626            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
4627           ssub))>;
4628
4629 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
4630         (i64 (EXTRACT_SUBREG
4631           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4632            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
4633           dsub))>;
4634 }
4635
4636 multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
4637                                                 Intrinsic intOp> {
4638   def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
4639         (i32 (EXTRACT_SUBREG
4640           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4641             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
4642           ssub))>;
4643 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
4644         (i32 (EXTRACT_SUBREG
4645           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4646             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
4647           ssub))>;
4648
4649 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
4650           (i32 (EXTRACT_SUBREG
4651             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4652               (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
4653             ssub))>;
4654 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
4655         (i32 (EXTRACT_SUBREG
4656           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4657             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
4658           ssub))>;
4659
4660 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
4661         (i64 (EXTRACT_SUBREG
4662           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4663             (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
4664           dsub))>;
4665 }
4666
4667 defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
4668 defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
4669
4670 // The vaddlv_s32 intrinsic gets mapped to SADDLP.
4671 def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
4672           (i64 (EXTRACT_SUBREG
4673             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4674               (SADDLPv2i32_v1i64 V64:$Rn), dsub),
4675             dsub))>;
4676 // The vaddlv_u32 intrinsic gets mapped to UADDLP.
4677 def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
4678           (i64 (EXTRACT_SUBREG
4679             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
4680               (UADDLPv2i32_v1i64 V64:$Rn), dsub),
4681             dsub))>;
4682
4683 //------------------------------------------------------------------------------
4684 // AdvSIMD modified immediate instructions
4685 //------------------------------------------------------------------------------
4686
4687 // AdvSIMD BIC
4688 defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
4689 // AdvSIMD ORR
4690 defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
4691
4692 def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4693 def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4694 def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4695 def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4696
4697 def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4698 def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4699 def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4700 def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4701
4702 def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4703 def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4704 def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4705 def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4706
4707 def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
4708 def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
4709 def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
4710 def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
4711
4712 // AdvSIMD FMOV
4713 def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
4714                                               "fmov", ".2d",
4715                        [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4716 def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64,  fpimm8,
4717                                               "fmov", ".2s",
4718                        [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4719 def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
4720                                               "fmov", ".4s",
4721                        [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4722 let Predicates = [HasNEON, HasFullFP16] in {
4723 def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64,  fpimm8,
4724                                               "fmov", ".4h",
4725                        [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4726 def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
4727                                               "fmov", ".8h",
4728                        [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
4729 } // Predicates = [HasNEON, HasFullFP16]
4730
4731 // AdvSIMD MOVI
4732
4733 // EDIT byte mask: scalar
4734 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4735 def MOVID      : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
4736                     [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
4737 // The movi_edit node has the immediate value already encoded, so we use
4738 // a plain imm0_255 here.
4739 def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
4740           (MOVID imm0_255:$shift)>;
4741
4742 def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>;
4743 def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>;
4744 def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>;
4745 def : Pat<(v8i8  immAllZerosV), (MOVID (i32 0))>;
4746
4747 def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>;
4748 def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>;
4749 def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>;
4750 def : Pat<(v8i8  immAllOnesV), (MOVID (i32 255))>;
4751
4752 // EDIT byte mask: 2d
4753
4754 // The movi_edit node has the immediate value already encoded, so we use
4755 // a plain imm0_255 in the pattern
4756 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4757 def MOVIv2d_ns   : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
4758                                                 simdimmtype10,
4759                                                 "movi", ".2d",
4760                    [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
4761
4762 def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4763 def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4764 def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4765 def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
4766
4767 def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4768 def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4769 def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4770 def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
4771
4772 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
4773 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4774 defm MOVI      : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
4775
4776 def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4777 def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4778 def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4779 def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4780
4781 def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4782 def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4783 def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4784 def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4785
4786 def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4787           (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
4788 def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4789           (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
4790 def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4791           (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
4792 def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
4793           (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
4794
4795 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
4796 // EDIT per word: 2s & 4s with MSL shifter
4797 def MOVIv2s_msl  : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
4798                       [(set (v2i32 V64:$Rd),
4799                             (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4800 def MOVIv4s_msl  : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
4801                       [(set (v4i32 V128:$Rd),
4802                             (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4803
4804 // Per byte: 8b & 16b
4805 def MOVIv8b_ns   : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64,  imm0_255,
4806                                                  "movi", ".8b",
4807                        [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
4808
4809 def MOVIv16b_ns  : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
4810                                                  "movi", ".16b",
4811                        [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
4812 }
4813
4814 // AdvSIMD MVNI
4815
4816 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
4817 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
4818 defm MVNI      : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
4819
4820 def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4821 def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4822 def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4823 def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4824
4825 def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
4826 def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
4827 def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
4828 def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
4829
4830 def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4831           (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
4832 def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4833           (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
4834 def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4835           (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
4836 def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
4837           (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
4838
4839 // EDIT per word: 2s & 4s with MSL shifter
4840 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
4841 def MVNIv2s_msl   : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
4842                       [(set (v2i32 V64:$Rd),
4843                             (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4844 def MVNIv4s_msl   : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
4845                       [(set (v4i32 V128:$Rd),
4846                             (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
4847 }
4848
4849 //----------------------------------------------------------------------------
4850 // AdvSIMD indexed element
4851 //----------------------------------------------------------------------------
4852
4853 let hasSideEffects = 0 in {
4854   defm FMLA  : SIMDFPIndexedTied<0, 0b0001, "fmla">;
4855   defm FMLS  : SIMDFPIndexedTied<0, 0b0101, "fmls">;
4856 }
4857
4858 // NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
4859 // instruction expects the addend first, while the intrinsic expects it last.
4860
4861 // On the other hand, there are quite a few valid combinatorial options due to
4862 // the commutativity of multiplication and the fact that (-x) * y = x * (-y).
4863 defm : SIMDFPIndexedTiedPatterns<"FMLA",
4864            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
4865 defm : SIMDFPIndexedTiedPatterns<"FMLA",
4866            TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
4867
4868 defm : SIMDFPIndexedTiedPatterns<"FMLS",
4869            TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
4870 defm : SIMDFPIndexedTiedPatterns<"FMLS",
4871            TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
4872 defm : SIMDFPIndexedTiedPatterns<"FMLS",
4873            TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
4874 defm : SIMDFPIndexedTiedPatterns<"FMLS",
4875            TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
4876
4877 multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
4878   // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
4879   // and DUP scalar.
4880   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4881                            (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
4882                                            VectorIndexS:$idx))),
4883             (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
4884   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4885                            (v2f32 (AArch64duplane32
4886                                       (v4f32 (insert_subvector undef,
4887                                                  (v2f32 (fneg V64:$Rm)),
4888                                                  (i32 0))),
4889                                       VectorIndexS:$idx)))),
4890             (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
4891                                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
4892                                VectorIndexS:$idx)>;
4893   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
4894                            (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
4895             (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
4896                 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
4897
4898   // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
4899   // and DUP scalar.
4900   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4901                            (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
4902                                            VectorIndexS:$idx))),
4903             (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
4904                                VectorIndexS:$idx)>;
4905   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4906                            (v4f32 (AArch64duplane32
4907                                       (v4f32 (insert_subvector undef,
4908                                                  (v2f32 (fneg V64:$Rm)),
4909                                                  (i32 0))),
4910                                       VectorIndexS:$idx)))),
4911             (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
4912                                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
4913                                VectorIndexS:$idx)>;
4914   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
4915                            (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
4916             (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
4917                 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
4918
4919   // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
4920   // (DUPLANE from 64-bit would be trivial).
4921   def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
4922                            (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
4923                                            VectorIndexD:$idx))),
4924             (FMLSv2i64_indexed
4925                 V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
4926   def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
4927                            (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
4928             (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
4929                 (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
4930
4931   // 2 variants for 32-bit scalar version: extract from .2s or from .4s
4932   def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
4933                          (vector_extract (v4f32 (fneg V128:$Rm)),
4934                                          VectorIndexS:$idx))),
4935             (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
4936                 V128:$Rm, VectorIndexS:$idx)>;
4937   def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
4938                          (vector_extract (v4f32 (insert_subvector undef,
4939                                                     (v2f32 (fneg V64:$Rm)),
4940                                                     (i32 0))),
4941                                          VectorIndexS:$idx))),
4942             (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
4943                 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
4944
4945   // 1 variant for 64-bit scalar version: extract from .1d or from .2d
4946   def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
4947                          (vector_extract (v2f64 (fneg V128:$Rm)),
4948                                          VectorIndexS:$idx))),
4949             (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
4950                 V128:$Rm, VectorIndexS:$idx)>;
4951 }
4952
4953 defm : FMLSIndexedAfterNegPatterns<
4954            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
4955 defm : FMLSIndexedAfterNegPatterns<
4956            TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
4957
4958 defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
4959 defm FMUL  : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
4960
4961 def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
4962           (FMULv2i32_indexed V64:$Rn,
4963             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
4964             (i64 0))>;
4965 def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
4966           (FMULv4i32_indexed V128:$Rn,
4967             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
4968             (i64 0))>;
4969 def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
4970           (FMULv2i64_indexed V128:$Rn,
4971             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
4972             (i64 0))>;
4973
4974 defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
4975 defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
4976 defm MLA   : SIMDVectorIndexedHSTied<1, 0b0000, "mla",
4977               TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>;
4978 defm MLS   : SIMDVectorIndexedHSTied<1, 0b0100, "mls",
4979               TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>;
4980 defm MUL   : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
4981 defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
4982     TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4983 defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
4984     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4985 defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
4986                 int_aarch64_neon_smull>;
4987 defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
4988                                            int_aarch64_neon_sqadd>;
4989 defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
4990                                            int_aarch64_neon_sqsub>;
4991 defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
4992                                           int_aarch64_neon_sqadd>;
4993 defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
4994                                           int_aarch64_neon_sqsub>;
4995 defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
4996 defm UMLAL   : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
4997     TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4998 defm UMLSL   : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
4999     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
5000 defm UMULL   : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
5001                 int_aarch64_neon_umull>;
5002
5003 // A scalar sqdmull with the second operand being a vector lane can be
5004 // handled directly with the indexed instruction encoding.
5005 def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
5006                                           (vector_extract (v4i32 V128:$Vm),
5007                                                            VectorIndexS:$idx)),
5008           (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
5009
5010 //----------------------------------------------------------------------------
5011 // AdvSIMD scalar shift instructions
5012 //----------------------------------------------------------------------------
5013 defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
5014 defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
5015 defm SCVTF  : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
5016 defm UCVTF  : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
5017 // Codegen patterns for the above. We don't put these directly on the
5018 // instructions because TableGen's type inference can't handle the truth.
5019 // Having the same base pattern for fp <--> int totally freaks it out.
5020 def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
5021           (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
5022 def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
5023           (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
5024 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
5025           (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
5026 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
5027           (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
5028 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
5029                                             vecshiftR64:$imm)),
5030           (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
5031 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
5032                                             vecshiftR64:$imm)),
5033           (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
5034 def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
5035           (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
5036 def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
5037           (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5038 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
5039                                             vecshiftR64:$imm)),
5040           (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5041 def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
5042           (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5043 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
5044                                             vecshiftR64:$imm)),
5045           (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5046 def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
5047           (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
5048
5049 // Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.
5050
5051 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
5052           (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5053 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
5054           (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5055 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
5056             (and FPR32:$Rn, (i32 65535)),
5057             vecshiftR16:$imm)),
5058           (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5059 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
5060           (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5061 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
5062           (UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
5063 def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
5064           (i32 (INSERT_SUBREG
5065             (i32 (IMPLICIT_DEF)),
5066             (FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
5067             hsub))>;
5068 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
5069           (i64 (INSERT_SUBREG
5070             (i64 (IMPLICIT_DEF)),
5071             (FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
5072             hsub))>;
5073 def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
5074           (i32 (INSERT_SUBREG
5075             (i32 (IMPLICIT_DEF)),
5076             (FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
5077             hsub))>;
5078 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
5079           (i64 (INSERT_SUBREG
5080             (i64 (IMPLICIT_DEF)),
5081             (FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
5082             hsub))>;
5083
5084 defm SHL      : SIMDScalarLShiftD<   0, 0b01010, "shl", AArch64vshl>;
5085 defm SLI      : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
5086 defm SQRSHRN  : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
5087                                      int_aarch64_neon_sqrshrn>;
5088 defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
5089                                      int_aarch64_neon_sqrshrun>;
5090 defm SQSHLU   : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
5091 defm SQSHL    : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
5092 defm SQSHRN   : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
5093                                      int_aarch64_neon_sqshrn>;
5094 defm SQSHRUN  : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
5095                                      int_aarch64_neon_sqshrun>;
5096 defm SRI      : SIMDScalarRShiftDTied<   1, 0b01000, "sri">;
5097 defm SRSHR    : SIMDScalarRShiftD<   0, 0b00100, "srshr", AArch64srshri>;
5098 defm SRSRA    : SIMDScalarRShiftDTied<   0, 0b00110, "srsra",
5099     TriOpFrag<(add node:$LHS,
5100                    (AArch64srshri node:$MHS, node:$RHS))>>;
5101 defm SSHR     : SIMDScalarRShiftD<   0, 0b00000, "sshr", AArch64vashr>;
5102 defm SSRA     : SIMDScalarRShiftDTied<   0, 0b00010, "ssra",
5103     TriOpFrag<(add node:$LHS,
5104                    (AArch64vashr node:$MHS, node:$RHS))>>;
5105 defm UQRSHRN  : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
5106                                      int_aarch64_neon_uqrshrn>;
5107 defm UQSHL    : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
5108 defm UQSHRN   : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
5109                                      int_aarch64_neon_uqshrn>;
5110 defm URSHR    : SIMDScalarRShiftD<   1, 0b00100, "urshr", AArch64urshri>;
5111 defm URSRA    : SIMDScalarRShiftDTied<   1, 0b00110, "ursra",
5112     TriOpFrag<(add node:$LHS,
5113                    (AArch64urshri node:$MHS, node:$RHS))>>;
5114 defm USHR     : SIMDScalarRShiftD<   1, 0b00000, "ushr", AArch64vlshr>;
5115 defm USRA     : SIMDScalarRShiftDTied<   1, 0b00010, "usra",
5116     TriOpFrag<(add node:$LHS,
5117                    (AArch64vlshr node:$MHS, node:$RHS))>>;
5118
5119 //----------------------------------------------------------------------------
5120 // AdvSIMD vector shift instructions
5121 //----------------------------------------------------------------------------
5122 defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
5123 defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
5124 defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
5125                                    int_aarch64_neon_vcvtfxs2fp>;
5126 defm RSHRN   : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
5127                                          int_aarch64_neon_rshrn>;
5128 defm SHL     : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
5129 defm SHRN    : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
5130                           BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
5131 defm SLI     : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>;
5132 def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
5133                                       (i32 vecshiftL64:$imm))),
5134           (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
5135 defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
5136                                          int_aarch64_neon_sqrshrn>;
5137 defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
5138                                          int_aarch64_neon_sqrshrun>;
5139 defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
5140 defm SQSHL  : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
5141 defm SQSHRN  : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
5142                                          int_aarch64_neon_sqshrn>;
5143 defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
5144                                          int_aarch64_neon_sqshrun>;
5145 defm SRI     : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>;
5146 def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
5147                                       (i32 vecshiftR64:$imm))),
5148           (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
5149 defm SRSHR   : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
5150 defm SRSRA   : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
5151                  TriOpFrag<(add node:$LHS,
5152                                 (AArch64srshri node:$MHS, node:$RHS))> >;
5153 defm SSHLL   : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
5154                 BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
5155
5156 defm SSHR    : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
5157 defm SSRA    : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
5158                 TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
5159 defm UCVTF   : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
5160                         int_aarch64_neon_vcvtfxu2fp>;
5161 defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
5162                                          int_aarch64_neon_uqrshrn>;
5163 defm UQSHL   : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
5164 defm UQSHRN  : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
5165                                          int_aarch64_neon_uqshrn>;
5166 defm URSHR   : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
5167 defm URSRA   : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
5168                 TriOpFrag<(add node:$LHS,
5169                                (AArch64urshri node:$MHS, node:$RHS))> >;
5170 defm USHLL   : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
5171                 BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
5172 defm USHR    : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
5173 defm USRA    : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
5174                 TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
5175
5176 // SHRN patterns for when a logical right shift was used instead of arithmetic
5177 // (the immediate guarantees no sign bits actually end up in the result so it
5178 // doesn't matter).
5179 def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
5180           (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
5181 def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
5182           (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
5183 def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
5184           (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
5185
5186 def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
5187                                  (trunc (AArch64vlshr (v8i16 V128:$Rn),
5188                                                     vecshiftR16Narrow:$imm)))),
5189           (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5190                            V128:$Rn, vecshiftR16Narrow:$imm)>;
5191 def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
5192                                  (trunc (AArch64vlshr (v4i32 V128:$Rn),
5193                                                     vecshiftR32Narrow:$imm)))),
5194           (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5195                            V128:$Rn, vecshiftR32Narrow:$imm)>;
5196 def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
5197                                  (trunc (AArch64vlshr (v2i64 V128:$Rn),
5198                                                     vecshiftR64Narrow:$imm)))),
5199           (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
5200                            V128:$Rn, vecshiftR32Narrow:$imm)>;
5201
5202 // Vector sign and zero extensions are implemented with SSHLL and USSHLL.
5203 // Anyexts are implemented as zexts.
5204 def : Pat<(v8i16 (sext   (v8i8 V64:$Rn))),  (SSHLLv8i8_shift  V64:$Rn, (i32 0))>;
5205 def : Pat<(v8i16 (zext   (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
5206 def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
5207 def : Pat<(v4i32 (sext   (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
5208 def : Pat<(v4i32 (zext   (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
5209 def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
5210 def : Pat<(v2i64 (sext   (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
5211 def : Pat<(v2i64 (zext   (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
5212 def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
5213 // Also match an extend from the upper half of a 128 bit source register.
5214 def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5215           (USHLLv16i8_shift V128:$Rn, (i32 0))>;
5216 def : Pat<(v8i16 (zext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5217           (USHLLv16i8_shift V128:$Rn, (i32 0))>;
5218 def : Pat<(v8i16 (sext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
5219           (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
5220 def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5221           (USHLLv8i16_shift V128:$Rn, (i32 0))>;
5222 def : Pat<(v4i32 (zext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5223           (USHLLv8i16_shift V128:$Rn, (i32 0))>;
5224 def : Pat<(v4i32 (sext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
5225           (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
5226 def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5227           (USHLLv4i32_shift V128:$Rn, (i32 0))>;
5228 def : Pat<(v2i64 (zext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5229           (USHLLv4i32_shift V128:$Rn, (i32 0))>;
5230 def : Pat<(v2i64 (sext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
5231           (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
5232
5233 // Vector shift sxtl aliases
5234 def : InstAlias<"sxtl.8h $dst, $src1",
5235                 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5236 def : InstAlias<"sxtl $dst.8h, $src1.8b",
5237                 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5238 def : InstAlias<"sxtl.4s $dst, $src1",
5239                 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5240 def : InstAlias<"sxtl $dst.4s, $src1.4h",
5241                 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5242 def : InstAlias<"sxtl.2d $dst, $src1",
5243                 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5244 def : InstAlias<"sxtl $dst.2d, $src1.2s",
5245                 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5246
5247 // Vector shift sxtl2 aliases
5248 def : InstAlias<"sxtl2.8h $dst, $src1",
5249                 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5250 def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
5251                 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5252 def : InstAlias<"sxtl2.4s $dst, $src1",
5253                 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5254 def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
5255                 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5256 def : InstAlias<"sxtl2.2d $dst, $src1",
5257                 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5258 def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
5259                 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5260
5261 // Vector shift uxtl aliases
5262 def : InstAlias<"uxtl.8h $dst, $src1",
5263                 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5264 def : InstAlias<"uxtl $dst.8h, $src1.8b",
5265                 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
5266 def : InstAlias<"uxtl.4s $dst, $src1",
5267                 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5268 def : InstAlias<"uxtl $dst.4s, $src1.4h",
5269                 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
5270 def : InstAlias<"uxtl.2d $dst, $src1",
5271                 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5272 def : InstAlias<"uxtl $dst.2d, $src1.2s",
5273                 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
5274
5275 // Vector shift uxtl2 aliases
5276 def : InstAlias<"uxtl2.8h $dst, $src1",
5277                 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5278 def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
5279                 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
5280 def : InstAlias<"uxtl2.4s $dst, $src1",
5281                 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5282 def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
5283                 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
5284 def : InstAlias<"uxtl2.2d $dst, $src1",
5285                 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5286 def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
5287                 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
5288
5289 // If an integer is about to be converted to a floating point value,
5290 // just load it on the floating point unit.
5291 // These patterns are more complex because floating point loads do not
5292 // support sign extension.
5293 // The sign extension has to be explicitly added and is only supported for
5294 // one step: byte-to-half, half-to-word, word-to-doubleword.
5295 // SCVTF GPR -> FPR is 9 cycles.
5296 // SCVTF FPR -> FPR is 4 cyclces.
5297 // (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
5298 // Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
5299 // and still being faster.
5300 // However, this is not good for code size.
5301 // 8-bits -> float. 2 sizes step-up.
5302 class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
5303   : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
5304         (SCVTFv1i32 (f32 (EXTRACT_SUBREG
5305                             (SSHLLv4i16_shift
5306                               (f64
5307                                 (EXTRACT_SUBREG
5308                                   (SSHLLv8i8_shift
5309                                     (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5310                                         INST,
5311                                         bsub),
5312                                     0),
5313                                   dsub)),
5314                                0),
5315                              ssub)))>,
5316     Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
5317
5318 def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
5319                           (LDRBroW  GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
5320 def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
5321                           (LDRBroX  GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
5322 def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
5323                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
5324 def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
5325                           (LDURBi GPR64sp:$Rn, simm9:$offset)>;
5326
5327 // 16-bits -> float. 1 size step-up.
5328 class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
5329   : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
5330         (SCVTFv1i32 (f32 (EXTRACT_SUBREG
5331                             (SSHLLv4i16_shift
5332                                 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5333                                   INST,
5334                                   hsub),
5335                                 0),
5336                             ssub)))>, Requires<[NotForCodeSize]>;
5337
5338 def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
5339                            (LDRHroW   GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
5340 def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
5341                            (LDRHroX   GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
5342 def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
5343                            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
5344 def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
5345                            (LDURHi GPR64sp:$Rn, simm9:$offset)>;
5346
5347 // 32-bits to 32-bits are handled in target specific dag combine:
5348 // performIntToFpCombine.
5349 // 64-bits integer to 32-bits floating point, not possible with
5350 // SCVTF on floating point registers (both source and destination
5351 // must have the same size).
5352
5353 // Here are the patterns for 8, 16, 32, and 64-bits to double.
5354 // 8-bits -> double. 3 size step-up: give up.
5355 // 16-bits -> double. 2 size step.
5356 class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
5357   : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
5358            (SCVTFv1i64 (f64 (EXTRACT_SUBREG
5359                               (SSHLLv2i32_shift
5360                                  (f64
5361                                   (EXTRACT_SUBREG
5362                                     (SSHLLv4i16_shift
5363                                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5364                                         INST,
5365                                         hsub),
5366                                      0),
5367                                    dsub)),
5368                                0),
5369                              dsub)))>,
5370     Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
5371
5372 def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
5373                            (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
5374 def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
5375                            (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
5376 def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
5377                            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
5378 def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
5379                            (LDURHi GPR64sp:$Rn, simm9:$offset)>;
5380 // 32-bits -> double. 1 size step-up.
5381 class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
5382   : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
5383            (SCVTFv1i64 (f64 (EXTRACT_SUBREG
5384                               (SSHLLv2i32_shift
5385                                 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
5386                                   INST,
5387                                   ssub),
5388                                0),
5389                              dsub)))>, Requires<[NotForCodeSize]>;
5390
5391 def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
5392                            (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
5393 def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
5394                            (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
5395 def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
5396                            (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
5397 def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
5398                            (LDURSi GPR64sp:$Rn, simm9:$offset)>;
5399
5400 // 64-bits -> double are handled in target specific dag combine:
5401 // performIntToFpCombine.
5402
5403
5404 //----------------------------------------------------------------------------
5405 // AdvSIMD Load-Store Structure
5406 //----------------------------------------------------------------------------
5407 defm LD1 : SIMDLd1Multiple<"ld1">;
5408 defm LD2 : SIMDLd2Multiple<"ld2">;
5409 defm LD3 : SIMDLd3Multiple<"ld3">;
5410 defm LD4 : SIMDLd4Multiple<"ld4">;
5411
5412 defm ST1 : SIMDSt1Multiple<"st1">;
5413 defm ST2 : SIMDSt2Multiple<"st2">;
5414 defm ST3 : SIMDSt3Multiple<"st3">;
5415 defm ST4 : SIMDSt4Multiple<"st4">;
5416
5417 class Ld1Pat<ValueType ty, Instruction INST>
5418   : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
5419
5420 def : Ld1Pat<v16i8, LD1Onev16b>;
5421 def : Ld1Pat<v8i16, LD1Onev8h>;
5422 def : Ld1Pat<v4i32, LD1Onev4s>;
5423 def : Ld1Pat<v2i64, LD1Onev2d>;
5424 def : Ld1Pat<v8i8,  LD1Onev8b>;
5425 def : Ld1Pat<v4i16, LD1Onev4h>;
5426 def : Ld1Pat<v2i32, LD1Onev2s>;
5427 def : Ld1Pat<v1i64, LD1Onev1d>;
5428
5429 class St1Pat<ValueType ty, Instruction INST>
5430   : Pat<(store ty:$Vt, GPR64sp:$Rn),
5431         (INST ty:$Vt, GPR64sp:$Rn)>;
5432
5433 def : St1Pat<v16i8, ST1Onev16b>;
5434 def : St1Pat<v8i16, ST1Onev8h>;
5435 def : St1Pat<v4i32, ST1Onev4s>;
5436 def : St1Pat<v2i64, ST1Onev2d>;
5437 def : St1Pat<v8i8,  ST1Onev8b>;
5438 def : St1Pat<v4i16, ST1Onev4h>;
5439 def : St1Pat<v2i32, ST1Onev2s>;
5440 def : St1Pat<v1i64, ST1Onev1d>;
5441
5442 //---
5443 // Single-element
5444 //---
5445
5446 defm LD1R          : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
5447 defm LD2R          : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
5448 defm LD3R          : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
5449 defm LD4R          : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
5450 let mayLoad = 1, hasSideEffects = 0 in {
5451 defm LD1 : SIMDLdSingleBTied<0, 0b000,       "ld1", VecListOneb,   GPR64pi1>;
5452 defm LD1 : SIMDLdSingleHTied<0, 0b010, 0,    "ld1", VecListOneh,   GPR64pi2>;
5453 defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes,   GPR64pi4>;
5454 defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned,   GPR64pi8>;
5455 defm LD2 : SIMDLdSingleBTied<1, 0b000,       "ld2", VecListTwob,   GPR64pi2>;
5456 defm LD2 : SIMDLdSingleHTied<1, 0b010, 0,    "ld2", VecListTwoh,   GPR64pi4>;
5457 defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos,   GPR64pi8>;
5458 defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod,   GPR64pi16>;
5459 defm LD3 : SIMDLdSingleBTied<0, 0b001,       "ld3", VecListThreeb, GPR64pi3>;
5460 defm LD3 : SIMDLdSingleHTied<0, 0b011, 0,    "ld3", VecListThreeh, GPR64pi6>;
5461 defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
5462 defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
5463 defm LD4 : SIMDLdSingleBTied<1, 0b001,       "ld4", VecListFourb,  GPR64pi4>;
5464 defm LD4 : SIMDLdSingleHTied<1, 0b011, 0,    "ld4", VecListFourh,  GPR64pi8>;
5465 defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours,  GPR64pi16>;
5466 defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd,  GPR64pi32>;
5467 }
5468
5469 def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
5470           (LD1Rv8b GPR64sp:$Rn)>;
5471 def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
5472           (LD1Rv16b GPR64sp:$Rn)>;
5473 def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
5474           (LD1Rv4h GPR64sp:$Rn)>;
5475 def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
5476           (LD1Rv8h GPR64sp:$Rn)>;
5477 def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
5478           (LD1Rv2s GPR64sp:$Rn)>;
5479 def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
5480           (LD1Rv4s GPR64sp:$Rn)>;
5481 def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
5482           (LD1Rv2d GPR64sp:$Rn)>;
5483 def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
5484           (LD1Rv1d GPR64sp:$Rn)>;
5485 // Grab the floating point version too
5486 def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
5487           (LD1Rv2s GPR64sp:$Rn)>;
5488 def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
5489           (LD1Rv4s GPR64sp:$Rn)>;
5490 def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
5491           (LD1Rv2d GPR64sp:$Rn)>;
5492 def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
5493           (LD1Rv1d GPR64sp:$Rn)>;
5494 def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
5495           (LD1Rv4h GPR64sp:$Rn)>;
5496 def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
5497           (LD1Rv8h GPR64sp:$Rn)>;
5498
5499 class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
5500                     ValueType VTy, ValueType STy, Instruction LD1>
5501   : Pat<(vector_insert (VTy VecListOne128:$Rd),
5502            (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
5503         (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
5504
5505 def : Ld1Lane128Pat<extloadi8,  VectorIndexB, v16i8, i32, LD1i8>;
5506 def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
5507 def : Ld1Lane128Pat<load,       VectorIndexS, v4i32, i32, LD1i32>;
5508 def : Ld1Lane128Pat<load,       VectorIndexS, v4f32, f32, LD1i32>;
5509 def : Ld1Lane128Pat<load,       VectorIndexD, v2i64, i64, LD1i64>;
5510 def : Ld1Lane128Pat<load,       VectorIndexD, v2f64, f64, LD1i64>;
5511 def : Ld1Lane128Pat<load,       VectorIndexH, v8f16, f16, LD1i16>;
5512
5513 class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
5514                    ValueType VTy, ValueType STy, Instruction LD1>
5515   : Pat<(vector_insert (VTy VecListOne64:$Rd),
5516            (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
5517         (EXTRACT_SUBREG
5518             (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
5519                           VecIndex:$idx, GPR64sp:$Rn),
5520             dsub)>;
5521
5522 def : Ld1Lane64Pat<extloadi8,  VectorIndexB, v8i8,  i32, LD1i8>;
5523 def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
5524 def : Ld1Lane64Pat<load,       VectorIndexS, v2i32, i32, LD1i32>;
5525 def : Ld1Lane64Pat<load,       VectorIndexS, v2f32, f32, LD1i32>;
5526 def : Ld1Lane64Pat<load,       VectorIndexH, v4f16, f16, LD1i16>;
5527
5528
5529 defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
5530 defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
5531 defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
5532 defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
5533
5534 // Stores
5535 defm ST1 : SIMDStSingleB<0, 0b000,       "st1", VecListOneb, GPR64pi1>;
5536 defm ST1 : SIMDStSingleH<0, 0b010, 0,    "st1", VecListOneh, GPR64pi2>;
5537 defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
5538 defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
5539
5540 let AddedComplexity = 19 in
5541 class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
5542                     ValueType VTy, ValueType STy, Instruction ST1>
5543   : Pat<(scalar_store
5544              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5545              GPR64sp:$Rn),
5546         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
5547
5548 def : St1Lane128Pat<truncstorei8,  VectorIndexB, v16i8, i32, ST1i8>;
5549 def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
5550 def : St1Lane128Pat<store,         VectorIndexS, v4i32, i32, ST1i32>;
5551 def : St1Lane128Pat<store,         VectorIndexS, v4f32, f32, ST1i32>;
5552 def : St1Lane128Pat<store,         VectorIndexD, v2i64, i64, ST1i64>;
5553 def : St1Lane128Pat<store,         VectorIndexD, v2f64, f64, ST1i64>;
5554 def : St1Lane128Pat<store,         VectorIndexH, v8f16, f16, ST1i16>;
5555
5556 let AddedComplexity = 19 in
5557 class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
5558                    ValueType VTy, ValueType STy, Instruction ST1>
5559   : Pat<(scalar_store
5560              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5561              GPR64sp:$Rn),
5562         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5563              VecIndex:$idx, GPR64sp:$Rn)>;
5564
5565 def : St1Lane64Pat<truncstorei8,  VectorIndexB, v8i8, i32, ST1i8>;
5566 def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
5567 def : St1Lane64Pat<store,         VectorIndexS, v2i32, i32, ST1i32>;
5568 def : St1Lane64Pat<store,         VectorIndexS, v2f32, f32, ST1i32>;
5569 def : St1Lane64Pat<store,         VectorIndexH, v4f16, f16, ST1i16>;
5570
5571 multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
5572                              ValueType VTy, ValueType STy, Instruction ST1,
5573                              int offset> {
5574   def : Pat<(scalar_store
5575               (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5576               GPR64sp:$Rn, offset),
5577         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5578              VecIndex:$idx, GPR64sp:$Rn, XZR)>;
5579
5580   def : Pat<(scalar_store
5581               (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
5582               GPR64sp:$Rn, GPR64:$Rm),
5583         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
5584              VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
5585 }
5586
5587 defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
5588 defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
5589                         2>;
5590 defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
5591 defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
5592 defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
5593 defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
5594 defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
5595
5596 multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
5597                              ValueType VTy, ValueType STy, Instruction ST1,
5598                              int offset> {
5599   def : Pat<(scalar_store
5600               (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5601               GPR64sp:$Rn, offset),
5602         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
5603
5604   def : Pat<(scalar_store
5605               (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
5606               GPR64sp:$Rn, GPR64:$Rm),
5607         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
5608 }
5609
5610 defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
5611                          1>;
5612 defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
5613                          2>;
5614 defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
5615 defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
5616 defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
5617 defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
5618 defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
5619
5620 let mayStore = 1, hasSideEffects = 0 in {
5621 defm ST2 : SIMDStSingleB<1, 0b000,       "st2", VecListTwob,   GPR64pi2>;
5622 defm ST2 : SIMDStSingleH<1, 0b010, 0,    "st2", VecListTwoh,   GPR64pi4>;
5623 defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos,   GPR64pi8>;
5624 defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod,   GPR64pi16>;
5625 defm ST3 : SIMDStSingleB<0, 0b001,       "st3", VecListThreeb, GPR64pi3>;
5626 defm ST3 : SIMDStSingleH<0, 0b011, 0,    "st3", VecListThreeh, GPR64pi6>;
5627 defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
5628 defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
5629 defm ST4 : SIMDStSingleB<1, 0b001,       "st4", VecListFourb,  GPR64pi4>;
5630 defm ST4 : SIMDStSingleH<1, 0b011, 0,    "st4", VecListFourh,  GPR64pi8>;
5631 defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours,  GPR64pi16>;
5632 defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd,  GPR64pi32>;
5633 }
5634
5635 defm ST1 : SIMDLdSt1SingleAliases<"st1">;
5636 defm ST2 : SIMDLdSt2SingleAliases<"st2">;
5637 defm ST3 : SIMDLdSt3SingleAliases<"st3">;
5638 defm ST4 : SIMDLdSt4SingleAliases<"st4">;
5639
5640 //----------------------------------------------------------------------------
5641 // Crypto extensions
5642 //----------------------------------------------------------------------------
5643
5644 let Predicates = [HasAES] in {
5645 def AESErr   : AESTiedInst<0b0100, "aese",   int_aarch64_crypto_aese>;
5646 def AESDrr   : AESTiedInst<0b0101, "aesd",   int_aarch64_crypto_aesd>;
5647 def AESMCrr  : AESInst<    0b0110, "aesmc",  int_aarch64_crypto_aesmc>;
5648 def AESIMCrr : AESInst<    0b0111, "aesimc", int_aarch64_crypto_aesimc>;
5649 }
5650
5651 // Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
5652 // for AES fusion on some CPUs.
5653 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
5654 def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
5655                         Sched<[WriteV]>;
5656 def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
5657                          Sched<[WriteV]>;
5658 }
5659
5660 // Only use constrained versions of AES(I)MC instructions if they are paired with
5661 // AESE/AESD.
5662 def : Pat<(v16i8 (int_aarch64_crypto_aesmc
5663             (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
5664                                             (v16i8 V128:$src2))))),
5665           (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
5666                                              (v16i8 V128:$src2)))))>,
5667           Requires<[HasFuseAES]>;
5668
5669 def : Pat<(v16i8 (int_aarch64_crypto_aesimc
5670             (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
5671                                             (v16i8 V128:$src2))))),
5672           (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
5673                                               (v16i8 V128:$src2)))))>,
5674           Requires<[HasFuseAES]>;
5675
5676 let Predicates = [HasSHA2] in {
5677 def SHA1Crrr     : SHATiedInstQSV<0b000, "sha1c",   int_aarch64_crypto_sha1c>;
5678 def SHA1Prrr     : SHATiedInstQSV<0b001, "sha1p",   int_aarch64_crypto_sha1p>;
5679 def SHA1Mrrr     : SHATiedInstQSV<0b010, "sha1m",   int_aarch64_crypto_sha1m>;
5680 def SHA1SU0rrr   : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
5681 def SHA256Hrrr   : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
5682 def SHA256H2rrr  : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
5683 def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
5684
5685 def SHA1Hrr     : SHAInstSS<    0b0000, "sha1h",    int_aarch64_crypto_sha1h>;
5686 def SHA1SU1rr   : SHATiedInstVV<0b0001, "sha1su1",  int_aarch64_crypto_sha1su1>;
5687 def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
5688 }
5689
5690 //----------------------------------------------------------------------------
5691 // Compiler-pseudos
5692 //----------------------------------------------------------------------------
5693 // FIXME: Like for X86, these should go in their own separate .td file.
5694
5695 def def32 : PatLeaf<(i32 GPR32:$src), [{
5696   return isDef32(*N);
5697 }]>;
5698
5699 // In the case of a 32-bit def that is known to implicitly zero-extend,
5700 // we can use a SUBREG_TO_REG.
5701 def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
5702
5703 // For an anyext, we don't care what the high bits are, so we can perform an
5704 // INSERT_SUBREF into an IMPLICIT_DEF.
5705 def : Pat<(i64 (anyext GPR32:$src)),
5706           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
5707
5708 // When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
5709 // then assert the extension has happened.
5710 def : Pat<(i64 (zext GPR32:$src)),
5711           (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
5712
5713 // To sign extend, we use a signed bitfield move instruction (SBFM) on the
5714 // containing super-reg.
5715 def : Pat<(i64 (sext GPR32:$src)),
5716    (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
5717 def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
5718 def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
5719 def : Pat<(i64 (sext_inreg GPR64:$src, i8)),  (SBFMXri GPR64:$src, 0, 7)>;
5720 def : Pat<(i64 (sext_inreg GPR64:$src, i1)),  (SBFMXri GPR64:$src, 0, 0)>;
5721 def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
5722 def : Pat<(i32 (sext_inreg GPR32:$src, i8)),  (SBFMWri GPR32:$src, 0, 7)>;
5723 def : Pat<(i32 (sext_inreg GPR32:$src, i1)),  (SBFMWri GPR32:$src, 0, 0)>;
5724
5725 def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
5726           (SBFMWri GPR32:$Rn, (i64 (i32shift_a       imm0_31:$imm)),
5727                               (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
5728 def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
5729           (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
5730                               (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
5731
5732 def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
5733           (SBFMWri GPR32:$Rn, (i64 (i32shift_a        imm0_31:$imm)),
5734                               (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
5735 def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
5736           (SBFMXri GPR64:$Rn, (i64 (i64shift_a        imm0_63:$imm)),
5737                               (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
5738
5739 def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
5740           (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
5741                    (i64 (i64shift_a        imm0_63:$imm)),
5742                    (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
5743
5744 // sra patterns have an AddedComplexity of 10, so make sure we have a higher
5745 // AddedComplexity for the following patterns since we want to match sext + sra
5746 // patterns before we attempt to match a single sra node.
5747 let AddedComplexity = 20 in {
5748 // We support all sext + sra combinations which preserve at least one bit of the
5749 // original value which is to be sign extended. E.g. we support shifts up to
5750 // bitwidth-1 bits.
5751 def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
5752           (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
5753 def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
5754           (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
5755
5756 def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
5757           (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
5758 def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
5759           (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
5760
5761 def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
5762           (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
5763                    (i64 imm0_31:$imm), 31)>;
5764 } // AddedComplexity = 20
5765
5766 // To truncate, we can simply extract from a subregister.
5767 def : Pat<(i32 (trunc GPR64sp:$src)),
5768           (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
5769
5770 // __builtin_trap() uses the BRK instruction on AArch64.
5771 def : Pat<(trap), (BRK 1)>;
5772
5773 // Conversions within AdvSIMD types in the same register size are free.
5774 // But because we need a consistent lane ordering, in big endian many
5775 // conversions require one or more REV instructions.
5776 //
5777 // Consider a simple memory load followed by a bitconvert then a store.
5778 //   v0 = load v2i32
5779 //   v1 = BITCAST v2i32 v0 to v4i16
5780 //        store v4i16 v2
5781 //
5782 // In big endian mode every memory access has an implicit byte swap. LDR and
5783 // STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
5784 // is, they treat the vector as a sequence of elements to be byte-swapped.
5785 // The two pairs of instructions are fundamentally incompatible. We've decided
5786 // to use LD1/ST1 only to simplify compiler implementation.
5787 //
5788 // LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
5789 // the original code sequence:
5790 //   v0 = load v2i32
5791 //   v1 = REV v2i32                  (implicit)
5792 //   v2 = BITCAST v2i32 v1 to v4i16
5793 //   v3 = REV v4i16 v2               (implicit)
5794 //        store v4i16 v3
5795 //
5796 // But this is now broken - the value stored is different to the value loaded
5797 // due to lane reordering. To fix this, on every BITCAST we must perform two
5798 // other REVs:
5799 //   v0 = load v2i32
5800 //   v1 = REV v2i32                  (implicit)
5801 //   v2 = REV v2i32
5802 //   v3 = BITCAST v2i32 v2 to v4i16
5803 //   v4 = REV v4i16
5804 //   v5 = REV v4i16 v4               (implicit)
5805 //        store v4i16 v5
5806 //
5807 // This means an extra two instructions, but actually in most cases the two REV
5808 // instructions can be combined into one. For example:
5809 //   (REV64_2s (REV64_4h X)) === (REV32_4h X)
5810 //
5811 // There is also no 128-bit REV instruction. This must be synthesized with an
5812 // EXT instruction.
5813 //
5814 // Most bitconverts require some sort of conversion. The only exceptions are:
5815 //   a) Identity conversions -  vNfX <-> vNiX
5816 //   b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
5817 //
5818
5819 // Natural vector casts (64 bit)
5820 def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
5821 def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
5822 def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
5823 def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
5824 def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
5825 def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
5826
5827 def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
5828 def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
5829 def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
5830 def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
5831 def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
5832
5833 def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
5834 def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
5835 def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
5836 def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
5837 def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
5838 def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
5839
5840 def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
5841 def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
5842 def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
5843 def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
5844 def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
5845 def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
5846 def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
5847
5848 def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
5849 def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
5850 def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
5851 def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
5852 def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
5853
5854 // Natural vector casts (128 bit)
5855 def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
5856 def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
5857 def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
5858 def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
5859 def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
5860 def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
5861 def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
5862
5863 def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
5864 def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
5865 def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
5866 def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
5867 def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
5868 def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
5869 def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
5870
5871 def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
5872 def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
5873 def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
5874 def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
5875 def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
5876 def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
5877 def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
5878
5879 def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
5880 def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
5881 def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
5882 def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
5883 def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
5884 def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
5885 def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
5886
5887 def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
5888 def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
5889 def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
5890 def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
5891 def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
5892 def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
5893 def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
5894
5895 def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
5896 def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
5897 def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
5898 def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
5899 def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
5900 def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
5901 def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
5902
5903 let Predicates = [IsLE] in {
5904 def : Pat<(v8i8  (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5905 def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5906 def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5907 def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5908 def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5909
5910 def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
5911           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5912 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
5913           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5914 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
5915           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5916 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
5917           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5918 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
5919           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5920 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
5921           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5922 }
5923 let Predicates = [IsBE] in {
5924 def : Pat<(v8i8  (bitconvert GPR64:$Xn)),
5925                  (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5926 def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
5927                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5928 def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
5929                  (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5930 def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
5931                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5932 def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
5933                  (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
5934
5935 def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
5936           (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5937 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
5938           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5939 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
5940           (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5941 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
5942           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5943 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
5944           (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
5945 }
5946 def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5947 def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5948 def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
5949           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5950 def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
5951           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5952 def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
5953           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5954 def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
5955
5956 def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
5957           (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
5958 def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
5959           (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
5960 def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
5961           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
5962 def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
5963           (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
5964 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
5965           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
5966
5967 let Predicates = [IsLE] in {
5968 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
5969 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
5970 def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))), (v1i64 FPR64:$src)>;
5971 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
5972 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
5973 }
5974 let Predicates = [IsBE] in {
5975 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
5976                              (v1i64 (REV64v2i32 FPR64:$src))>;
5977 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
5978                              (v1i64 (REV64v4i16 FPR64:$src))>;
5979 def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))),
5980                              (v1i64 (REV64v8i8 FPR64:$src))>;
5981 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
5982                              (v1i64 (REV64v4i16 FPR64:$src))>;
5983 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
5984                              (v1i64 (REV64v2i32 FPR64:$src))>;
5985 }
5986 def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
5987 def : Pat<(v1i64 (bitconvert (f64   FPR64:$src))), (v1i64 FPR64:$src)>;
5988
5989 let Predicates = [IsLE] in {
5990 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
5991 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
5992 def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))), (v2i32 FPR64:$src)>;
5993 def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))), (v2i32 FPR64:$src)>;
5994 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
5995 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
5996 }
5997 let Predicates = [IsBE] in {
5998 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
5999                              (v2i32 (REV64v2i32 FPR64:$src))>;
6000 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
6001                              (v2i32 (REV32v4i16 FPR64:$src))>;
6002 def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))),
6003                              (v2i32 (REV32v8i8 FPR64:$src))>;
6004 def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))),
6005                              (v2i32 (REV64v2i32 FPR64:$src))>;
6006 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
6007                              (v2i32 (REV64v2i32 FPR64:$src))>;
6008 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
6009                              (v2i32 (REV32v4i16 FPR64:$src))>;
6010 }
6011 def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
6012
6013 let Predicates = [IsLE] in {
6014 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
6015 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
6016 def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))), (v4i16 FPR64:$src)>;
6017 def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))), (v4i16 FPR64:$src)>;
6018 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
6019 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
6020 }
6021 let Predicates = [IsBE] in {
6022 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
6023                              (v4i16 (REV64v4i16 FPR64:$src))>;
6024 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
6025                              (v4i16 (REV32v4i16 FPR64:$src))>;
6026 def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))),
6027                              (v4i16 (REV16v8i8 FPR64:$src))>;
6028 def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))),
6029                              (v4i16 (REV64v4i16 FPR64:$src))>;
6030 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
6031                              (v4i16 (REV32v4i16 FPR64:$src))>;
6032 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
6033                              (v4i16 (REV64v4i16 FPR64:$src))>;
6034 }
6035 def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
6036
6037 let Predicates = [IsLE] in {
6038 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
6039 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
6040 def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))), (v4f16 FPR64:$src)>;
6041 def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))), (v4f16 FPR64:$src)>;
6042 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
6043 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
6044 }
6045 let Predicates = [IsBE] in {
6046 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
6047                              (v4f16 (REV64v4i16 FPR64:$src))>;
6048 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
6049                              (v4f16 (REV32v4i16 FPR64:$src))>;
6050 def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))),
6051                              (v4f16 (REV16v8i8 FPR64:$src))>;
6052 def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))),
6053                              (v4f16 (REV64v4i16 FPR64:$src))>;
6054 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
6055                              (v4f16 (REV32v4i16 FPR64:$src))>;
6056 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
6057                              (v4f16 (REV64v4i16 FPR64:$src))>;
6058 }
6059 def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
6060
6061 let Predicates = [IsLE] in {
6062 def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))), (v8i8  FPR64:$src)>;
6063 def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))), (v8i8  FPR64:$src)>;
6064 def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))), (v8i8  FPR64:$src)>;
6065 def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))), (v8i8  FPR64:$src)>;
6066 def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))), (v8i8  FPR64:$src)>;
6067 def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))), (v8i8  FPR64:$src)>;
6068 def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))), (v8i8  FPR64:$src)>;
6069 }
6070 let Predicates = [IsBE] in {
6071 def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))),
6072                              (v8i8 (REV64v8i8 FPR64:$src))>;
6073 def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))),
6074                              (v8i8 (REV32v8i8 FPR64:$src))>;
6075 def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))),
6076                              (v8i8 (REV16v8i8 FPR64:$src))>;
6077 def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))),
6078                              (v8i8 (REV64v8i8 FPR64:$src))>;
6079 def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))),
6080                              (v8i8 (REV32v8i8 FPR64:$src))>;
6081 def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))),
6082                              (v8i8 (REV64v8i8 FPR64:$src))>;
6083 def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))),
6084                              (v8i8 (REV16v8i8 FPR64:$src))>;
6085 }
6086
6087 let Predicates = [IsLE] in {
6088 def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))), (f64   FPR64:$src)>;
6089 def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))), (f64   FPR64:$src)>;
6090 def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))), (f64   FPR64:$src)>;
6091 def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))), (f64   FPR64:$src)>;
6092 def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))), (f64   FPR64:$src)>;
6093 }
6094 let Predicates = [IsBE] in {
6095 def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))),
6096                              (f64 (REV64v2i32 FPR64:$src))>;
6097 def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))),
6098                              (f64 (REV64v4i16 FPR64:$src))>;
6099 def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))),
6100                              (f64 (REV64v2i32 FPR64:$src))>;
6101 def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))),
6102                              (f64 (REV64v8i8 FPR64:$src))>;
6103 def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))),
6104                              (f64 (REV64v4i16 FPR64:$src))>;
6105 }
6106 def : Pat<(f64   (bitconvert (v1i64 FPR64:$src))), (f64   FPR64:$src)>;
6107 def : Pat<(f64   (bitconvert (v1f64 FPR64:$src))), (f64   FPR64:$src)>;
6108
6109 let Predicates = [IsLE] in {
6110 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
6111 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
6112 def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))), (v1f64 FPR64:$src)>;
6113 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
6114 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
6115 }
6116 let Predicates = [IsBE] in {
6117 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
6118                              (v1f64 (REV64v2i32 FPR64:$src))>;
6119 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
6120                              (v1f64 (REV64v4i16 FPR64:$src))>;
6121 def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))),
6122                              (v1f64 (REV64v8i8 FPR64:$src))>;
6123 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
6124                              (v1f64 (REV64v2i32 FPR64:$src))>;
6125 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
6126                              (v1f64 (REV64v4i16 FPR64:$src))>;
6127 }
6128 def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
6129 def : Pat<(v1f64 (bitconvert (f64   FPR64:$src))), (v1f64 FPR64:$src)>;
6130
6131 let Predicates = [IsLE] in {
6132 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
6133 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
6134 def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))), (v2f32 FPR64:$src)>;
6135 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
6136 def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))), (v2f32 FPR64:$src)>;
6137 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
6138 }
6139 let Predicates = [IsBE] in {
6140 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
6141                              (v2f32 (REV64v2i32 FPR64:$src))>;
6142 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
6143                              (v2f32 (REV32v4i16 FPR64:$src))>;
6144 def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))),
6145                              (v2f32 (REV32v8i8 FPR64:$src))>;
6146 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
6147                              (v2f32 (REV64v2i32 FPR64:$src))>;
6148 def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))),
6149                              (v2f32 (REV64v2i32 FPR64:$src))>;
6150 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
6151                              (v2f32 (REV32v4i16 FPR64:$src))>;
6152 }
6153 def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
6154
6155 let Predicates = [IsLE] in {
6156 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
6157 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
6158 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
6159 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
6160 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
6161 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
6162 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
6163 }
6164 let Predicates = [IsBE] in {
6165 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
6166                             (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
6167 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
6168                             (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
6169                                             (REV64v4i32 FPR128:$src), (i32 8)))>;
6170 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
6171                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
6172                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
6173 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
6174                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
6175                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
6176 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
6177                             (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
6178 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
6179                             (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
6180                                             (REV64v4i32 FPR128:$src), (i32 8)))>;
6181 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
6182                             (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
6183                                             (REV64v16i8 FPR128:$src), (i32 8)))>;
6184 }
6185
6186 let Predicates = [IsLE] in {
6187 def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))), (v2f64 FPR128:$src)>;
6188 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
6189 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
6190 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
6191 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
6192 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
6193 }
6194 let Predicates = [IsBE] in {
6195 def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))),
6196                              (v2f64 (EXTv16i8 FPR128:$src,
6197                                               FPR128:$src, (i32 8)))>;
6198 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
6199                              (v2f64 (REV64v4i32 FPR128:$src))>;
6200 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
6201                              (v2f64 (REV64v8i16 FPR128:$src))>;
6202 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
6203                              (v2f64 (REV64v8i16 FPR128:$src))>;
6204 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
6205                              (v2f64 (REV64v16i8 FPR128:$src))>;
6206 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
6207                              (v2f64 (REV64v4i32 FPR128:$src))>;
6208 }
6209 def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
6210
6211 let Predicates = [IsLE] in {
6212 def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))), (v4f32 FPR128:$src)>;
6213 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
6214 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
6215 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
6216 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
6217 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
6218 }
6219 let Predicates = [IsBE] in {
6220 def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))),
6221                              (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
6222                                     (REV64v4i32 FPR128:$src), (i32 8)))>;
6223 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
6224                              (v4f32 (REV32v8i16 FPR128:$src))>;
6225 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
6226                              (v4f32 (REV32v8i16 FPR128:$src))>;
6227 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
6228                              (v4f32 (REV32v16i8 FPR128:$src))>;
6229 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
6230                              (v4f32 (REV64v4i32 FPR128:$src))>;
6231 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
6232                              (v4f32 (REV64v4i32 FPR128:$src))>;
6233 }
6234 def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
6235
6236 let Predicates = [IsLE] in {
6237 def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))), (v2i64 FPR128:$src)>;
6238 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
6239 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
6240 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
6241 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
6242 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
6243 }
6244 let Predicates = [IsBE] in {
6245 def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))),
6246                              (v2i64 (EXTv16i8 FPR128:$src,
6247                                               FPR128:$src, (i32 8)))>;
6248 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
6249                              (v2i64 (REV64v4i32 FPR128:$src))>;
6250 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
6251                              (v2i64 (REV64v8i16 FPR128:$src))>;
6252 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
6253                              (v2i64 (REV64v16i8 FPR128:$src))>;
6254 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
6255                              (v2i64 (REV64v4i32 FPR128:$src))>;
6256 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
6257                              (v2i64 (REV64v8i16 FPR128:$src))>;
6258 }
6259 def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
6260
6261 let Predicates = [IsLE] in {
6262 def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))), (v4i32 FPR128:$src)>;
6263 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
6264 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
6265 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
6266 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
6267 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
6268 }
6269 let Predicates = [IsBE] in {
6270 def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))),
6271                              (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
6272                                               (REV64v4i32 FPR128:$src),
6273                                               (i32 8)))>;
6274 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
6275                              (v4i32 (REV64v4i32 FPR128:$src))>;
6276 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
6277                              (v4i32 (REV32v8i16 FPR128:$src))>;
6278 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
6279                              (v4i32 (REV32v16i8 FPR128:$src))>;
6280 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
6281                              (v4i32 (REV64v4i32 FPR128:$src))>;
6282 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
6283                              (v4i32 (REV32v8i16 FPR128:$src))>;
6284 }
6285 def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
6286
6287 let Predicates = [IsLE] in {
6288 def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))), (v8i16 FPR128:$src)>;
6289 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
6290 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
6291 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
6292 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
6293 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
6294 }
6295 let Predicates = [IsBE] in {
6296 def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))),
6297                              (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
6298                                               (REV64v8i16 FPR128:$src),
6299                                               (i32 8)))>;
6300 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
6301                              (v8i16 (REV64v8i16 FPR128:$src))>;
6302 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
6303                              (v8i16 (REV32v8i16 FPR128:$src))>;
6304 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
6305                              (v8i16 (REV16v16i8 FPR128:$src))>;
6306 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
6307                              (v8i16 (REV64v8i16 FPR128:$src))>;
6308 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
6309                              (v8i16 (REV32v8i16 FPR128:$src))>;
6310 }
6311 def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
6312
6313 let Predicates = [IsLE] in {
6314 def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))), (v8f16 FPR128:$src)>;
6315 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
6316 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
6317 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
6318 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
6319 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
6320 }
6321 let Predicates = [IsBE] in {
6322 def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))),
6323                              (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
6324                                               (REV64v8i16 FPR128:$src),
6325                                               (i32 8)))>;
6326 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
6327                              (v8f16 (REV64v8i16 FPR128:$src))>;
6328 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
6329                              (v8f16 (REV32v8i16 FPR128:$src))>;
6330 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
6331                              (v8f16 (REV16v16i8 FPR128:$src))>;
6332 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
6333                              (v8f16 (REV64v8i16 FPR128:$src))>;
6334 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
6335                              (v8f16 (REV32v8i16 FPR128:$src))>;
6336 }
6337 def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
6338
6339 let Predicates = [IsLE] in {
6340 def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))), (v16i8 FPR128:$src)>;
6341 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
6342 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
6343 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
6344 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
6345 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
6346 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
6347 }
6348 let Predicates = [IsBE] in {
6349 def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))),
6350                              (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
6351                                               (REV64v16i8 FPR128:$src),
6352                                               (i32 8)))>;
6353 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
6354                              (v16i8 (REV64v16i8 FPR128:$src))>;
6355 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
6356                              (v16i8 (REV32v16i8 FPR128:$src))>;
6357 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
6358                              (v16i8 (REV16v16i8 FPR128:$src))>;
6359 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
6360                              (v16i8 (REV64v16i8 FPR128:$src))>;
6361 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
6362                              (v16i8 (REV32v16i8 FPR128:$src))>;
6363 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
6364                              (v16i8 (REV16v16i8 FPR128:$src))>;
6365 }
6366
6367 def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
6368            (EXTRACT_SUBREG V128:$Rn, dsub)>;
6369 def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
6370            (EXTRACT_SUBREG V128:$Rn, dsub)>;
6371 def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
6372            (EXTRACT_SUBREG V128:$Rn, dsub)>;
6373 def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
6374            (EXTRACT_SUBREG V128:$Rn, dsub)>;
6375 def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
6376            (EXTRACT_SUBREG V128:$Rn, dsub)>;
6377 def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
6378            (EXTRACT_SUBREG V128:$Rn, dsub)>;
6379 def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
6380            (EXTRACT_SUBREG V128:$Rn, dsub)>;
6381
6382 def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
6383           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
6384 def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
6385           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
6386 def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
6387           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
6388 def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
6389           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
6390
6391 // A 64-bit subvector insert to the first 128-bit vector position
6392 // is a subregister copy that needs no instruction.
6393 multiclass InsertSubvectorUndef<ValueType Ty> {
6394   def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
6395             (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6396   def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
6397             (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6398   def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
6399             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6400   def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
6401             (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6402   def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
6403             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6404   def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
6405             (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6406   def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
6407             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
6408 }
6409
6410 defm : InsertSubvectorUndef<i32>;
6411 defm : InsertSubvectorUndef<i64>;
6412
6413 // Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
6414 // or v2f32.
6415 def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
6416                     (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
6417            (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
6418 def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
6419                      (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
6420            (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
6421     // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
6422     // so we match on v4f32 here, not v2f32. This will also catch adding
6423     // the low two lanes of a true v4f32 vector.
6424 def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
6425                 (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
6426           (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
6427
6428 // Scalar 64-bit shifts in FPR64 registers.
6429 def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
6430           (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
6431 def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
6432           (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
6433 def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
6434           (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
6435 def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
6436           (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
6437
6438 // Patterns for nontemporal/no-allocate stores.
6439 // We have to resort to tricks to turn a single-input store into a store pair,
6440 // because there is no single-input nontemporal store, only STNP.
6441 let Predicates = [IsLE] in {
6442 let AddedComplexity = 15 in {
6443 class NTStore128Pat<ValueType VT> :
6444   Pat<(nontemporalstore (VT FPR128:$Rt),
6445         (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
6446       (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
6447               (CPYi64 FPR128:$Rt, (i64 1)),
6448               GPR64sp:$Rn, simm7s8:$offset)>;
6449
6450 def : NTStore128Pat<v2i64>;
6451 def : NTStore128Pat<v4i32>;
6452 def : NTStore128Pat<v8i16>;
6453 def : NTStore128Pat<v16i8>;
6454
6455 class NTStore64Pat<ValueType VT> :
6456   Pat<(nontemporalstore (VT FPR64:$Rt),
6457         (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
6458       (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
6459               (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
6460               GPR64sp:$Rn, simm7s4:$offset)>;
6461
6462 // FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
6463 def : NTStore64Pat<v1f64>;
6464 def : NTStore64Pat<v1i64>;
6465 def : NTStore64Pat<v2i32>;
6466 def : NTStore64Pat<v4i16>;
6467 def : NTStore64Pat<v8i8>;
6468
6469 def : Pat<(nontemporalstore GPR64:$Rt,
6470             (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
6471           (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
6472                   (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
6473                   GPR64sp:$Rn, simm7s4:$offset)>;
6474 } // AddedComplexity=10
6475 } // Predicates = [IsLE]
6476
6477 // Tail call return handling. These are all compiler pseudo-instructions,
6478 // so no encoding information or anything like that.
6479 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
6480   def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
6481                    Sched<[WriteBrReg]>;
6482   def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
6483                    Sched<[WriteBrReg]>;
6484 }
6485
6486 def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
6487           (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>;
6488 def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
6489           (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
6490 def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
6491           (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
6492
6493 include "AArch64InstrAtomics.td"
6494 include "AArch64SVEInstrInfo.td"