]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AArch64/AArch64SchedCyclone.td
Merge ^/head r308870 through r309105.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AArch64 / AArch64SchedCyclone.td
1 //=- AArch64SchedCyclone.td - Cyclone Scheduling Definitions -*- tablegen -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the machine model for AArch64 Cyclone to support
11 // instruction scheduling and other instruction cost heuristics.
12 //
13 //===----------------------------------------------------------------------===//
14
15 def CycloneModel : SchedMachineModel {
16   let IssueWidth = 6; // 6 micro-ops are dispatched per cycle.
17   let MicroOpBufferSize = 192; // Based on the reorder buffer.
18   let LoadLatency = 4; // Optimistic load latency.
19   let MispredictPenalty = 16; // 14-19 cycles are typical.
20   let CompleteModel = 1;
21 }
22
23 //===----------------------------------------------------------------------===//
24 // Define each kind of processor resource and number available on Cyclone.
25
26 // 4 integer pipes
27 def CyUnitI : ProcResource<4> {
28   let BufferSize = 48;
29 }
30
31 // 2 branch units: I[0..1]
32 def CyUnitB : ProcResource<2> {
33   let Super  = CyUnitI;
34   let BufferSize = 24;
35 }
36
37 // 1 indirect-branch unit: I[0]
38 def CyUnitBR : ProcResource<1> {
39   let Super  = CyUnitB;
40 }
41
42 // 2 shifter pipes: I[2..3]
43 // When an instruction consumes a CyUnitIS, it also consumes a CyUnitI
44 def CyUnitIS : ProcResource<2> {
45   let Super = CyUnitI;
46   let BufferSize = 24;
47 }
48
49 // 1 mul pipe: I[0]
50 def CyUnitIM : ProcResource<1> {
51   let Super = CyUnitBR;
52   let BufferSize = 32;
53 }
54
55 // 1 div pipe: I[1]
56 def CyUnitID : ProcResource<1> {
57   let Super = CyUnitB;
58   let BufferSize = 16;
59 }
60
61 // 1 integer division unit. This is driven by the ID pipe, but only
62 // consumes the pipe for one cycle at issue and another cycle at writeback.
63 def CyUnitIntDiv : ProcResource<1>;
64
65 // 2 ld/st pipes.
66 def CyUnitLS : ProcResource<2> {
67   let BufferSize = 28;
68 }
69
70 // 3 fp/vector pipes.
71 def CyUnitV : ProcResource<3> {
72   let BufferSize = 48;
73 }
74 // 2 fp/vector arithmetic and multiply pipes: V[0-1]
75 def CyUnitVM : ProcResource<2> {
76   let Super = CyUnitV;
77   let BufferSize = 32;
78 }
79 // 1 fp/vector division/sqrt pipe: V[2]
80 def CyUnitVD : ProcResource<1> {
81   let Super = CyUnitV;
82   let BufferSize = 16;
83 }
84 // 1 fp compare pipe: V[0]
85 def CyUnitVC : ProcResource<1> {
86   let Super = CyUnitVM;
87   let BufferSize = 16;
88 }
89
90 // 2 fp division/square-root units.  These are driven by the VD pipe,
91 // but only consume the pipe for one cycle at issue and a cycle at writeback.
92 def CyUnitFloatDiv : ProcResource<2>;
93
94 //===----------------------------------------------------------------------===//
95 // Define scheduler read/write resources and latency on Cyclone.
96 // This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1.
97
98 let SchedModel = CycloneModel in {
99
100 //---
101 // 7.8.1. Moves
102 //---
103
104 // A single nop micro-op (uX).
105 def WriteX : SchedWriteRes<[]> { let Latency = 0; }
106
107 // Move zero is a register rename (to machine register zero).
108 // The move is replaced by a single nop micro-op.
109 // MOVZ Rd, #0
110 // AND Rd, Rzr, #imm
111 def WriteZPred : SchedPredicate<[{TII->isGPRZero(*MI)}]>;
112 def WriteImmZ  : SchedWriteVariant<[
113                    SchedVar<WriteZPred, [WriteX]>,
114                    SchedVar<NoSchedPred, [WriteImm]>]>;
115 def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>;
116
117 // Move GPR is a register rename and single nop micro-op.
118 // ORR Xd, XZR, Xm
119 // ADD Xd, Xn, #0
120 def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(*MI)}]>;
121 def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(*MI)}]>;
122 def WriteMov      : SchedWriteVariant<[
123                       SchedVar<WriteIMovPred, [WriteX]>,
124                       SchedVar<WriteVMovPred, [WriteX]>,
125                       SchedVar<NoSchedPred,   [WriteI]>]>;
126 def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>;
127
128 // Move non-zero immediate is an integer ALU op.
129 // MOVN,MOVZ,MOVK
130 def : WriteRes<WriteImm, [CyUnitI]>;
131
132 //---
133 // 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional,
134 //              Shifts and Bitfield Operations
135 //---
136
137 // ADR,ADRP
138 // ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri
139 // ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr
140 // ADC(S),SBC(S)
141 // Aliases: CMN, CMP, TST
142 //
143 // Conditional operations.
144 // CCMNi,CCMPi,CCMNr,CCMPr,
145 // CSEL,CSINC,CSINV,CSNEG
146 //
147 // Bit counting and reversal operations.
148 // CLS,CLZ,RBIT,REV,REV16,REV32
149 def : WriteRes<WriteI, [CyUnitI]>;
150
151 // ADD with shifted register operand is a single micro-op that
152 // consumes a shift pipeline for two cycles.
153 // ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs
154 // EXAMPLE: ADDrs Xn, Xm LSL #imm
155 def : WriteRes<WriteISReg, [CyUnitIS]> {
156   let Latency = 2;
157   let ResourceCycles = [2];
158 }
159
160 // ADD with extended register operand is the same as shifted reg operand.
161 // ADD(S)re,SUB(S)re
162 // EXAMPLE: ADDXre Xn, Xm, UXTB #1
163 def : WriteRes<WriteIEReg, [CyUnitIS]> {
164   let Latency = 2;
165   let ResourceCycles = [2];
166 }
167
168 // Variable shift and bitfield operations.
169 // ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM
170 def : WriteRes<WriteIS, [CyUnitIS]>;
171
172 // EXTR Shifts a pair of registers and requires two micro-ops.
173 // The second micro-op is delayed, as modeled by ReadExtrHi.
174 // EXTR Xn, Xm, #imm
175 def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> {
176   let Latency = 2;
177   let NumMicroOps = 2;
178 }
179
180 // EXTR's first register read is delayed by one cycle, effectively
181 // shortening its writer's latency.
182 // EXTR Xn, Xm, #imm
183 def : ReadAdvance<ReadExtrHi, 1>;
184
185 //---
186 // 7.8.6. Multiplies
187 //---
188
189 // MUL/MNEG are aliases for MADD/MSUB.
190 // MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL
191 def : WriteRes<WriteIM32, [CyUnitIM]> {
192   let Latency = 4;
193 }
194 // MADDX,MSUBX,SMULH,UMULH
195 def : WriteRes<WriteIM64, [CyUnitIM]> {
196   let Latency = 5;
197 }
198
199 //---
200 // 7.8.7. Divide
201 //---
202
203 // 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient.
204 // The ID pipe is consumed for 2 cycles: issue and writeback.
205 // SDIVW,UDIVW
206 def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> {
207   let Latency = 10;
208   let ResourceCycles = [2, 10];
209 }
210 // 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient.
211 // The ID pipe is consumed for 2 cycles: issue and writeback.
212 // SDIVX,UDIVX
213 def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> {
214   let Latency = 13;
215   let ResourceCycles = [2, 13];
216 }
217
218 //---
219 // 7.8.8,7.8.10. Load/Store, single element
220 //---
221
222 // Integer loads take 4 cycles and use one LS unit for one cycle.
223 def : WriteRes<WriteLD, [CyUnitLS]> {
224   let Latency = 4;
225 }
226
227 // Store-load forwarding is 4 cycles.
228 //
229 // Note: The store-exclusive sequence incorporates this
230 // latency. However, general heuristics should not model the
231 // dependence between a store and subsequent may-alias load because
232 // hardware speculation works.
233 def : WriteRes<WriteST, [CyUnitLS]> {
234   let Latency = 4;
235 }
236
237 // Load from base address plus an optionally scaled register offset.
238 // Rt latency is latency WriteIS + WriteLD.
239 // EXAMPLE: LDR Xn, Xm [, lsl 3]
240 def CyWriteLDIdx : SchedWriteVariant<[
241   SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register.
242   SchedVar<NoSchedPred,   [WriteLD]>]>;        // Load from register offset.
243 def : SchedAlias<WriteLDIdx, CyWriteLDIdx>;    // Map AArch64->Cyclone type.
244
245 // EXAMPLE: STR Xn, Xm [, lsl 3]
246 def CyWriteSTIdx : SchedWriteVariant<[
247   SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register.
248   SchedVar<NoSchedPred,   [WriteST]>]>;        // Store to register offset.
249 def : SchedAlias<WriteSTIdx, CyWriteSTIdx>;    // Map AArch64->Cyclone type.
250
251 // Read the (unshifted) base register Xn in the second micro-op one cycle later.
252 // EXAMPLE: LDR Xn, Xm [, lsl 3]
253 def ReadBaseRS : SchedReadAdvance<1>;
254 def CyReadAdrBase : SchedReadVariant<[
255   SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset.
256   SchedVar<NoSchedPred,   [ReadDefault]>]>;   // Read base reg with no shift.
257 def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type.
258
259 //---
260 // 7.8.9,7.8.11. Load/Store, paired
261 //---
262
263 // Address pre/post increment is a simple ALU op with one cycle latency.
264 def : WriteRes<WriteAdr, [CyUnitI]>;
265
266 // LDP high register write is fused with the load, but a nop micro-op remains.
267 def : WriteRes<WriteLDHi, []> {
268   let Latency = 4;
269 }
270
271 // STP is a vector op and store, except for QQ, which is just two stores.
272 def : SchedAlias<WriteSTP, WriteVSTShuffle>;
273 def : InstRW<[WriteST, WriteST], (instrs STPQi)>;
274
275 //---
276 // 7.8.13. Branches
277 //---
278
279 // Branches take a single micro-op.
280 // The misprediction penalty is defined as a SchedMachineModel property.
281 def : WriteRes<WriteBr,    [CyUnitB]>  {let Latency = 0;}
282 def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;}
283
284 //---
285 // 7.8.14. Never-issued Instructions, Barrier and Hint Operations
286 //---
287
288 // NOP,SEV,SEVL,WFE,WFI,YIELD
289 def : WriteRes<WriteHint, []> {let Latency = 0;}
290 // ISB
291 def : InstRW<[WriteI], (instrs ISB)>;
292 // SLREX,DMB,DSB
293 def : WriteRes<WriteBarrier, [CyUnitLS]>;
294
295 // System instructions get an invalid latency because the latency of
296 // other operations across them is meaningless.
297 def : WriteRes<WriteSys, []> {let Latency = -1;}
298
299 //===----------------------------------------------------------------------===//
300 // 7.9 Vector Unit Instructions
301
302 // Simple vector operations take 2 cycles.
303 def : WriteRes<WriteV, [CyUnitV]> {let Latency = 2;}
304
305 // Define some longer latency vector op types for Cyclone.
306 def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
307 def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;}
308 def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;}
309 def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;}
310
311 // Simple floating-point operations take 2 cycles.
312 def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;}
313
314 //---
315 // 7.9.1 Vector Moves
316 //---
317
318 // TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently
319 // generates expensive int-float conversion instead:
320 // FMOVDi Dd, #0.0
321 // FMOVv2f64ns Vd.2d, #0.0
322
323 // FMOVSi,FMOVDi
324 def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;}
325
326 // MOVI,MVNI are WriteV
327 // FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV
328
329 // Move FPR is a register rename and single nop micro-op.
330 // ORR.16b Vd,Vn,Vn
331 // COPY is handled above in the WriteMov Variant.
332 def WriteVMov    : SchedWriteVariant<[
333                      SchedVar<WriteVMovPred, [WriteX]>,
334                      SchedVar<NoSchedPred,   [WriteV]>]>;
335 def : InstRW<[WriteVMov], (instrs ORRv16i8)>;
336
337 // FMOVSr,FMOVDr are WriteF.
338
339 // MOV V,V is a WriteV.
340
341 // CPY D,V[x] is a WriteV
342
343 // INS V[x],V[y] is a WriteV.
344
345 // FMOVWSr,FMOVXDr,FMOVXDHighr
346 def : WriteRes<WriteFCopy, [CyUnitLS]> {
347   let Latency = 5;
348 }
349
350 // FMOVSWr,FMOVDXr
351 def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>;
352
353 // INS V[x],R
354 def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>;
355 def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>;
356
357 // SMOV,UMOV R,V[x]
358 def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>;
359 def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>;
360
361 // DUP V,R
362 def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>;
363
364 // DUP V,V[x] is a WriteV.
365
366 //---
367 // 7.9.2 Integer Arithmetic, Logical, and Comparisons
368 //---
369
370 // BIC,ORR V,#imm are WriteV
371
372 def : InstRW<[CyWriteV3], (instregex "ABSv")>;
373
374 // MVN,NEG,NOT are WriteV
375
376 def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>;
377
378 // ADDP is a WriteV.
379 def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
380 def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>;
381
382 def : InstRW<[CyWriteV3],
383              (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>;
384
385 def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>;
386
387 // ADD,SUB are WriteV
388
389 // Forward declare.
390 def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
391
392 // Add/Diff and accumulate uses the vector multiply unit.
393 def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
394 def CyReadVAccum  : SchedReadAdvance<1,
395                     [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>;
396
397 def : InstRW<[CyWriteVAccum, CyReadVAccum],
398              (instregex "SADALP","UADALP")>;
399
400 def : InstRW<[CyWriteVAccum, CyReadVAccum],
401              (instregex "SABAv","UABAv","SABALv","UABALv")>;
402
403 def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>;
404
405 def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>;
406
407 def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>;
408
409 // WriteV includes:
410 // AND,BIC,CMTST,EOR,ORN,ORR
411 // ADDP
412 // SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD
413 // SADDL,SSUBL,UADDL,USUBL
414 // SADDW,SSUBW,UADDW,USUBW
415
416 def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv",
417                                      "CMLEv","CMLTv",
418                                      "CMHIv","CMHSv")>;
419
420 def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv",
421                                      "SMAXPv","SMINPv","UMAXPv","UMINPv")>;
422
423 def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv",
424                                        "SABDLv","UABDLv")>;
425
426 //---
427 // 7.9.3 Floating Point Arithmetic and Comparisons
428 //---
429
430 // FABS,FNEG are WriteF
431
432 def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>;
433 def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>;
434
435 def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i",
436                                      "FMINPv2i","FMINNMPv2i")>;
437
438 def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>;
439
440 def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32,
441                                   FSUBSrr,FSUBv2f32,FSUBv4f32,
442                                   FADDPv2f32,FADDPv4f32,
443                                   FABD32,FABDv2f32,FABDv4f32)>;
444 def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64,
445                                   FSUBDrr,FSUBv2f64,
446                                   FADDPv2f64,
447                                   FABD64,FABDv2f64)>;
448
449 def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>;
450
451 def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT",
452                                      "FMAXS","FMAXD","FMAXv",
453                                      "FMINS","FMIND","FMINv",
454                                      "FMAXNMS","FMAXNMD","FMAXNMv",
455                                      "FMINNMS","FMINNMD","FMINNMv",
456                                      "FMAXPv2f","FMAXPv4f",
457                                      "FMINPv2f","FMINPv4f",
458                                      "FMAXNMPv2f","FMAXNMPv4f",
459                                      "FMINNMPv2f","FMINNMPv4f")>;
460
461 // FCMP,FCMPE,FCCMP,FCCMPE
462 def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;}
463
464 // FCSEL is a WriteF.
465
466 //---
467 // 7.9.4 Shifts and Bitfield Operations
468 //---
469
470 // SHL is a WriteV
471
472 def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
473 def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>;
474
475 def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
476 def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>;
477
478 // Shift and accumulate uses the vector multiply unit.
479 def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
480 def CyReadVShiftAcc  : SchedReadAdvance<1,
481                         [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>;
482 def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc],
483              (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>;
484
485 // SSHL,USHL are WriteV.
486
487 def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>;
488
489 // SQSHL,SQSHLU,UQSHL are WriteV.
490
491 def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>;
492
493 // WriteV includes:
494 // SHLL,SSHLL,USHLL
495 // SLI,SRI
496 // BIF,BIT,BSL
497 // EXT
498 // CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN
499 // XTN2
500
501 def : InstRW<[CyWriteV4],
502              (instregex "RSHRNv","SHRNv",
503                         "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv",
504                         "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>;
505
506 //---
507 // 7.9.5 Multiplication
508 //---
509
510 def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;}
511 def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv",
512                              "SQDMULLv","SQDMULHv","SQRDMULHv")>;
513
514 // FMUL,FMULX,FNMUL default to WriteFMul.
515 def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;}
516
517 def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;}
518 def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed,
519                                FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>;
520
521 def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>;
522 def : InstRW<[CyWriteVMul, CyReadVMulAcc],
523              (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL",
524               "SQDMLAL","SQDMLSL")>;
525
526 def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;}
527 def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;}
528 def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>;
529 def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>;
530
531 def : InstRW<[CyWriteSMul, CyReadSMul],
532              (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr,
533               FMLAv2f32,FMLAv4f32,
534               FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>;
535 def : InstRW<[CyWriteDMul, CyReadDMul],
536              (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr,
537               FMLAv2f64,FMLAv2i64_indexed,
538               FMLSv2f64,FMLSv2i64_indexed)>;
539
540 def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; }
541 def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>;
542
543 //---
544 // 7.9.6 Divide and Square Root
545 //---
546
547 // FDIV,FSQRT
548 // TODO: Add 64-bit variant with 19 cycle latency.
549 // TODO: Specialize FSQRT for longer latency.
550 def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> {
551   let Latency = 17;
552   let ResourceCycles = [2, 17];
553 }
554
555 def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>;
556
557 def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; }
558 def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>;
559
560 def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; }
561 def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; }
562 def : InstRW<[WriteFRECPS],  (instregex "FRECPSv")>;
563 def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>;
564
565 //---
566 // 7.9.7 Integer-FP Conversions
567 //---
568
569 // FCVT lengthen f16/s32
570 def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>;
571
572 // FCVT,FCVTN,FCVTXN
573 // SCVTF,UCVTF V,V
574 // FRINT(AIMNPXZ) V,V
575 def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;}
576
577 // SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles.
578 def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>;
579 def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>;
580
581 // FCVT Rd, S/D = V6+LD4: 10 cycles
582 def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>;
583 def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>;
584
585 // FCVTL is a WriteV
586
587 //---
588 // 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup
589 //---
590
591 def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;}
592 def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr,
593                                        AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr,
594                                        SHA1SU0rrr)>;
595
596 def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;}
597 def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>;
598
599 def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;}
600 def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr,
601                                        SHA256Hrrr,SHA256H2rrr)>;
602
603 // TRN,UZP,ZUP are WriteV.
604
605 // TBL,TBX are WriteV.
606
607 //---
608 // 7.9.11-7.9.14 Load/Store, single element and paired
609 //---
610
611 // Loading into the vector unit takes 5 cycles vs 4 for integer loads.
612 def : WriteRes<WriteVLD, [CyUnitLS]> {
613   let Latency = 5;
614 }
615
616 // Store-load forwarding is 4 cycles.
617 def : WriteRes<WriteVST, [CyUnitLS]> {
618   let Latency = 4;
619 }
620
621 // WriteVLDPair/VSTPair sequences are expanded by the target description.
622
623 //---
624 // 7.9.15 Load, element operations
625 //---
626
627 // Only the first WriteVLD and WriteAdr for writeback matches def operands.
628 // Subsequent WriteVLDs consume resources. Since all loaded values have the
629 // same latency, this is acceptable.
630
631 // Vd is read 5 cycles after issuing the vector load.
632 def : ReadAdvance<ReadVLD, 5>;
633
634 def : InstRW<[WriteVLD],
635              (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
636 def : InstRW<[WriteVLD, WriteAdr],
637              (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
638
639 // Register writes from the load's high half are fused micro-ops.
640 def : InstRW<[WriteVLD],
641              (instregex "LD1Twov(8b|4h|2s|1d)$")>;
642 def : InstRW<[WriteVLD, WriteAdr],
643              (instregex "LD1Twov(8b|4h|2s|1d)_POST")>;
644 def : InstRW<[WriteVLD, WriteVLD],
645              (instregex "LD1Twov(16b|8h|4s|2d)$")>;
646 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
647              (instregex "LD1Twov(16b|8h|4s|2d)_POST")>;
648
649 def : InstRW<[WriteVLD, WriteVLD],
650              (instregex "LD1Threev(8b|4h|2s|1d)$")>;
651 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
652              (instregex "LD1Threev(8b|4h|2s|1d)_POST")>;
653 def : InstRW<[WriteVLD, WriteVLD, WriteVLD],
654              (instregex "LD1Threev(16b|8h|4s|2d)$")>;
655 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD],
656              (instregex "LD1Threev(16b|8h|4s|2d)_POST")>;
657
658 def : InstRW<[WriteVLD, WriteVLD],
659              (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
660 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
661              (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>;
662 def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD],
663              (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
664 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD],
665              (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>;
666
667 def : InstRW<[WriteVLDShuffle, ReadVLD],
668              (instregex "LD1i(8|16|32)$")>;
669 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],
670              (instregex "LD1i(8|16|32)_POST")>;
671
672 def : InstRW<[WriteVLDShuffle, ReadVLD],          (instrs LD1i64)>;
673 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>;
674
675 def : InstRW<[WriteVLDShuffle],
676              (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
677 def : InstRW<[WriteVLDShuffle, WriteAdr],
678              (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
679
680 def : InstRW<[WriteVLDShuffle, WriteV],
681              (instregex "LD2Twov(8b|4h|2s)$")>;
682 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
683              (instregex "LD2Twov(8b|4h|2s)_POST$")>;
684 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle],
685              (instregex "LD2Twov(16b|8h|4s|2d)$")>;
686 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle],
687              (instregex "LD2Twov(16b|8h|4s|2d)_POST")>;
688
689 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
690              (instregex "LD2i(8|16|32)$")>;
691 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
692              (instregex "LD2i(8|16|32)_POST")>;
693 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
694              (instregex "LD2i64$")>;
695 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
696              (instregex "LD2i64_POST")>;
697
698 def : InstRW<[WriteVLDShuffle, WriteV],
699              (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
700 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
701              (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
702
703 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
704              (instregex "LD3Threev(8b|4h|2s)$")>;
705 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
706              (instregex "LD3Threev(8b|4h|2s)_POST")>;
707 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle],
708              (instregex "LD3Threev(16b|8h|4s|2d)$")>;
709 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle],
710              (instregex "LD3Threev(16b|8h|4s|2d)_POST")>;
711
712 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV],
713              (instregex "LD3i(8|16|32)$")>;
714 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV],
715              (instregex "LD3i(8|16|32)_POST")>;
716
717 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV],
718              (instregex "LD3i64$")>;
719 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
720              (instregex "LD3i64_POST")>;
721
722 def : InstRW<[WriteVLDShuffle, WriteV, WriteV],
723              (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>;
724 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV],
725              (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>;
726
727 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
728              (instrs LD3Rv1d,LD3Rv2d)>;
729 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
730              (instrs LD3Rv1d_POST,LD3Rv2d_POST)>;
731
732 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
733              (instregex "LD4Fourv(8b|4h|2s)$")>;
734 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
735              (instregex "LD4Fourv(8b|4h|2s)_POST")>;
736 def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle,
737               WriteVLDPairShuffle, WriteVLDPairShuffle],
738              (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
739 def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle,
740               WriteVLDPairShuffle, WriteVLDPairShuffle],
741              (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>;
742
743 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV],
744              (instregex "LD4i(8|16|32)$")>;
745 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV],
746              (instregex "LD4i(8|16|32)_POST")>;
747
748
749 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV],
750              (instrs LD4i64)>;
751 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
752              (instrs LD4i64_POST)>;
753
754 def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV],
755              (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>;
756 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV],
757              (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>;
758
759 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
760              (instrs LD4Rv1d,LD4Rv2d)>;
761 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
762              (instrs LD4Rv1d_POST,LD4Rv2d_POST)>;
763
764 //---
765 // 7.9.16 Store, element operations
766 //---
767
768 // Only the WriteAdr for writeback matches a def operands.
769 // Subsequent WriteVLDs only consume resources.
770
771 def : InstRW<[WriteVST],
772              (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
773 def : InstRW<[WriteAdr, WriteVST],
774              (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
775
776 def : InstRW<[WriteVSTShuffle],
777              (instregex "ST1Twov(8b|4h|2s|1d)$")>;
778 def : InstRW<[WriteAdr, WriteVSTShuffle],
779              (instregex "ST1Twov(8b|4h|2s|1d)_POST")>;
780 def : InstRW<[WriteVST, WriteVST],
781              (instregex "ST1Twov(16b|8h|4s|2d)$")>;
782 def : InstRW<[WriteAdr, WriteVST, WriteVST],
783              (instregex "ST1Twov(16b|8h|4s|2d)_POST")>;
784
785 def : InstRW<[WriteVSTShuffle, WriteVST],
786              (instregex "ST1Threev(8b|4h|2s|1d)$")>;
787 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST],
788              (instregex "ST1Threev(8b|4h|2s|1d)_POST")>;
789 def : InstRW<[WriteVST, WriteVST, WriteVST],
790              (instregex "ST1Threev(16b|8h|4s|2d)$")>;
791 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST],
792              (instregex "ST1Threev(16b|8h|4s|2d)_POST")>;
793
794 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
795              (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
796 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
797              (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>;
798 def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST],
799              (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
800 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST],
801              (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>;
802
803 def : InstRW<[WriteVSTShuffle],           (instregex "ST1i(8|16|32)$")>;
804 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>;
805
806 def : InstRW<[WriteVSTShuffle],           (instrs ST1i64)>;
807 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>;
808
809 def : InstRW<[WriteVSTShuffle],
810              (instregex "ST2Twov(8b|4h|2s)$")>;
811 def : InstRW<[WriteAdr, WriteVSTShuffle],
812              (instregex "ST2Twov(8b|4h|2s)_POST")>;
813 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
814              (instregex "ST2Twov(16b|8h|4s|2d)$")>;
815 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
816              (instregex "ST2Twov(16b|8h|4s|2d)_POST")>;
817
818 def : InstRW<[WriteVSTShuffle],           (instregex "ST2i(8|16|32)$")>;
819 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>;
820 def : InstRW<[WriteVSTShuffle],           (instrs ST2i64)>;
821 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>;
822
823 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
824              (instregex "ST3Threev(8b|4h|2s)$")>;
825 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
826              (instregex "ST3Threev(8b|4h|2s)_POST")>;
827 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
828              (instregex "ST3Threev(16b|8h|4s|2d)$")>;
829 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
830              (instregex "ST3Threev(16b|8h|4s|2d)_POST")>;
831
832 def : InstRW<[WriteVSTShuffle],           (instregex "ST3i(8|16|32)$")>;
833 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>;
834
835 def :InstRW<[WriteVSTShuffle, WriteVSTShuffle],           (instrs ST3i64)>;
836 def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>;
837
838 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle],
839             (instregex "ST4Fourv(8b|4h|2s|1d)$")>;
840 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle],
841             (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>;
842 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle,
843               WriteVSTPairShuffle, WriteVSTPairShuffle],
844              (instregex "ST4Fourv(16b|8h|4s|2d)$")>;
845 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle,
846               WriteVSTPairShuffle, WriteVSTPairShuffle],
847              (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>;
848
849 def : InstRW<[WriteVSTPairShuffle],           (instregex "ST4i(8|16|32)$")>;
850 def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>;
851
852 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],          (instrs ST4i64)>;
853 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>;
854
855 // Atomic operations are not supported.
856 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
857
858 //---
859 // Unused SchedRead types
860 //---
861
862 def : ReadAdvance<ReadI, 0>;
863 def : ReadAdvance<ReadISReg, 0>;
864 def : ReadAdvance<ReadIEReg, 0>;
865 def : ReadAdvance<ReadIM, 0>;
866 def : ReadAdvance<ReadIMA, 0>;
867 def : ReadAdvance<ReadID, 0>;
868
869 } // SchedModel = CycloneModel