]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
Merge llvm, clang, lld and lldb trunk r291274, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AArch64 / AArch64TargetTransformInfo.cpp
1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/Support/Debug.h"
16 #include "llvm/Target/CostTable.h"
17 #include "llvm/Target/TargetLowering.h"
18 #include <algorithm>
19 using namespace llvm;
20
21 #define DEBUG_TYPE "aarch64tti"
22
23 /// \brief Calculate the cost of materializing a 64-bit value. This helper
24 /// method might only calculate a fraction of a larger immediate. Therefore it
25 /// is valid to return a cost of ZERO.
26 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
27   // Check if the immediate can be encoded within an instruction.
28   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
29     return 0;
30
31   if (Val < 0)
32     Val = ~Val;
33
34   // Calculate how many moves we will need to materialize this constant.
35   unsigned LZ = countLeadingZeros((uint64_t)Val);
36   return (64 - LZ + 15) / 16;
37 }
38
39 /// \brief Calculate the cost of materializing the given constant.
40 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
41   assert(Ty->isIntegerTy());
42
43   unsigned BitSize = Ty->getPrimitiveSizeInBits();
44   if (BitSize == 0)
45     return ~0U;
46
47   // Sign-extend all constants to a multiple of 64-bit.
48   APInt ImmVal = Imm;
49   if (BitSize & 0x3f)
50     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
51
52   // Split the constant into 64-bit chunks and calculate the cost for each
53   // chunk.
54   int Cost = 0;
55   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
56     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
57     int64_t Val = Tmp.getSExtValue();
58     Cost += getIntImmCost(Val);
59   }
60   // We need at least one instruction to materialze the constant.
61   return std::max(1, Cost);
62 }
63
64 int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
65                                   const APInt &Imm, Type *Ty) {
66   assert(Ty->isIntegerTy());
67
68   unsigned BitSize = Ty->getPrimitiveSizeInBits();
69   // There is no cost model for constants with a bit size of 0. Return TCC_Free
70   // here, so that constant hoisting will ignore this constant.
71   if (BitSize == 0)
72     return TTI::TCC_Free;
73
74   unsigned ImmIdx = ~0U;
75   switch (Opcode) {
76   default:
77     return TTI::TCC_Free;
78   case Instruction::GetElementPtr:
79     // Always hoist the base address of a GetElementPtr.
80     if (Idx == 0)
81       return 2 * TTI::TCC_Basic;
82     return TTI::TCC_Free;
83   case Instruction::Store:
84     ImmIdx = 0;
85     break;
86   case Instruction::Add:
87   case Instruction::Sub:
88   case Instruction::Mul:
89   case Instruction::UDiv:
90   case Instruction::SDiv:
91   case Instruction::URem:
92   case Instruction::SRem:
93   case Instruction::And:
94   case Instruction::Or:
95   case Instruction::Xor:
96   case Instruction::ICmp:
97     ImmIdx = 1;
98     break;
99   // Always return TCC_Free for the shift value of a shift instruction.
100   case Instruction::Shl:
101   case Instruction::LShr:
102   case Instruction::AShr:
103     if (Idx == 1)
104       return TTI::TCC_Free;
105     break;
106   case Instruction::Trunc:
107   case Instruction::ZExt:
108   case Instruction::SExt:
109   case Instruction::IntToPtr:
110   case Instruction::PtrToInt:
111   case Instruction::BitCast:
112   case Instruction::PHI:
113   case Instruction::Call:
114   case Instruction::Select:
115   case Instruction::Ret:
116   case Instruction::Load:
117     break;
118   }
119
120   if (Idx == ImmIdx) {
121     int NumConstants = (BitSize + 63) / 64;
122     int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
123     return (Cost <= NumConstants * TTI::TCC_Basic)
124                ? static_cast<int>(TTI::TCC_Free)
125                : Cost;
126   }
127   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
128 }
129
130 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
131                                   const APInt &Imm, Type *Ty) {
132   assert(Ty->isIntegerTy());
133
134   unsigned BitSize = Ty->getPrimitiveSizeInBits();
135   // There is no cost model for constants with a bit size of 0. Return TCC_Free
136   // here, so that constant hoisting will ignore this constant.
137   if (BitSize == 0)
138     return TTI::TCC_Free;
139
140   switch (IID) {
141   default:
142     return TTI::TCC_Free;
143   case Intrinsic::sadd_with_overflow:
144   case Intrinsic::uadd_with_overflow:
145   case Intrinsic::ssub_with_overflow:
146   case Intrinsic::usub_with_overflow:
147   case Intrinsic::smul_with_overflow:
148   case Intrinsic::umul_with_overflow:
149     if (Idx == 1) {
150       int NumConstants = (BitSize + 63) / 64;
151       int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
152       return (Cost <= NumConstants * TTI::TCC_Basic)
153                  ? static_cast<int>(TTI::TCC_Free)
154                  : Cost;
155     }
156     break;
157   case Intrinsic::experimental_stackmap:
158     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
159       return TTI::TCC_Free;
160     break;
161   case Intrinsic::experimental_patchpoint_void:
162   case Intrinsic::experimental_patchpoint_i64:
163     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
164       return TTI::TCC_Free;
165     break;
166   }
167   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
168 }
169
170 TargetTransformInfo::PopcntSupportKind
171 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
172   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
173   if (TyWidth == 32 || TyWidth == 64)
174     return TTI::PSK_FastHardware;
175   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
176   return TTI::PSK_Software;
177 }
178
179 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
180   int ISD = TLI->InstructionOpcodeToISD(Opcode);
181   assert(ISD && "Invalid opcode");
182
183   EVT SrcTy = TLI->getValueType(DL, Src);
184   EVT DstTy = TLI->getValueType(DL, Dst);
185
186   if (!SrcTy.isSimple() || !DstTy.isSimple())
187     return BaseT::getCastInstrCost(Opcode, Dst, Src);
188
189   static const TypeConversionCostTblEntry
190   ConversionTbl[] = {
191     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
192     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
193     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
194     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
195
196     // The number of shll instructions for the extension.
197     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
198     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
199     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
200     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
201     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
202     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
203     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
204     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
205     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
206     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
207     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
208     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
209     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
210     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
211     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
212     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
213
214     // LowerVectorINT_TO_FP:
215     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
216     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
217     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
218     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
219     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
220     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
221
222     // Complex: to v2f32
223     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
224     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
225     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
226     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
227     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
228     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
229
230     // Complex: to v4f32
231     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
232     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
233     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
234     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
235
236     // Complex: to v8f32
237     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
238     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
239     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
240     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
241
242     // Complex: to v16f32
243     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
244     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
245
246     // Complex: to v2f64
247     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
248     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
249     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
250     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
251     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
252     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
253
254
255     // LowerVectorFP_TO_INT
256     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
257     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
258     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
259     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
260     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
261     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
262
263     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
264     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
265     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
266     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
267     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
268     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
269     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
270
271     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
272     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
273     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
274     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
275     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
276
277     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
278     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
279     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
280     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
281     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
282     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
283     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
284   };
285
286   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
287                                                  DstTy.getSimpleVT(),
288                                                  SrcTy.getSimpleVT()))
289     return Entry->Cost;
290
291   return BaseT::getCastInstrCost(Opcode, Dst, Src);
292 }
293
294 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
295                                              VectorType *VecTy,
296                                              unsigned Index) {
297
298   // Make sure we were given a valid extend opcode.
299   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
300          "Invalid opcode");
301
302   // We are extending an element we extract from a vector, so the source type
303   // of the extend is the element type of the vector.
304   auto *Src = VecTy->getElementType();
305
306   // Sign- and zero-extends are for integer types only.
307   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
308
309   // Get the cost for the extract. We compute the cost (if any) for the extend
310   // below.
311   auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
312
313   // Legalize the types.
314   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
315   auto DstVT = TLI->getValueType(DL, Dst);
316   auto SrcVT = TLI->getValueType(DL, Src);
317
318   // If the resulting type is still a vector and the destination type is legal,
319   // we may get the extension for free. If not, get the default cost for the
320   // extend.
321   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
322     return Cost + getCastInstrCost(Opcode, Dst, Src);
323
324   // The destination type should be larger than the element type. If not, get
325   // the default cost for the extend.
326   if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
327     return Cost + getCastInstrCost(Opcode, Dst, Src);
328
329   switch (Opcode) {
330   default:
331     llvm_unreachable("Opcode should be either SExt or ZExt");
332
333   // For sign-extends, we only need a smov, which performs the extension
334   // automatically.
335   case Instruction::SExt:
336     return Cost;
337
338   // For zero-extends, the extend is performed automatically by a umov unless
339   // the destination type is i64 and the element type is i8 or i16.
340   case Instruction::ZExt:
341     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
342       return Cost;
343   }
344
345   // If we are unable to perform the extend for free, get the default cost.
346   return Cost + getCastInstrCost(Opcode, Dst, Src);
347 }
348
349 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
350                                        unsigned Index) {
351   assert(Val->isVectorTy() && "This must be a vector type");
352
353   if (Index != -1U) {
354     // Legalize the type.
355     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
356
357     // This type is legalized to a scalar type.
358     if (!LT.second.isVector())
359       return 0;
360
361     // The type may be split. Normalize the index to the new type.
362     unsigned Width = LT.second.getVectorNumElements();
363     Index = Index % Width;
364
365     // The element at index zero is already inside the vector.
366     if (Index == 0)
367       return 0;
368   }
369
370   // All other insert/extracts cost this much.
371   return ST->getVectorInsertExtractBaseCost();
372 }
373
374 int AArch64TTIImpl::getArithmeticInstrCost(
375     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
376     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
377     TTI::OperandValueProperties Opd2PropInfo) {
378   // Legalize the type.
379   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
380
381   int ISD = TLI->InstructionOpcodeToISD(Opcode);
382
383   if (ISD == ISD::SDIV &&
384       Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
385       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
386     // On AArch64, scalar signed division by constants power-of-two are
387     // normally expanded to the sequence ADD + CMP + SELECT + SRA.
388     // The OperandValue properties many not be same as that of previous
389     // operation; conservatively assume OP_None.
390     int Cost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
391                                       TargetTransformInfo::OP_None,
392                                       TargetTransformInfo::OP_None);
393     Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
394                                    TargetTransformInfo::OP_None,
395                                    TargetTransformInfo::OP_None);
396     Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
397                                    TargetTransformInfo::OP_None,
398                                    TargetTransformInfo::OP_None);
399     Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
400                                    TargetTransformInfo::OP_None,
401                                    TargetTransformInfo::OP_None);
402     return Cost;
403   }
404
405   switch (ISD) {
406   default:
407     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
408                                          Opd1PropInfo, Opd2PropInfo);
409   case ISD::ADD:
410   case ISD::MUL:
411   case ISD::XOR:
412   case ISD::OR:
413   case ISD::AND:
414     // These nodes are marked as 'custom' for combining purposes only.
415     // We know that they are legal. See LowerAdd in ISelLowering.
416     return 1 * LT.first;
417   }
418 }
419
420 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
421                                               const SCEV *Ptr) {
422   // Address computations in vectorized code with non-consecutive addresses will
423   // likely result in more instructions compared to scalar code where the
424   // computation can more often be merged into the index mode. The resulting
425   // extra micro-ops can significantly decrease throughput.
426   unsigned NumVectorInstToHideOverhead = 10;
427   int MaxMergeDistance = 64;
428
429   if (Ty->isVectorTy() && SE && 
430       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
431     return NumVectorInstToHideOverhead;
432
433   // In many cases the address computation is not merged into the instruction
434   // addressing mode.
435   return 1;
436 }
437
438 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
439                                        Type *CondTy) {
440
441   int ISD = TLI->InstructionOpcodeToISD(Opcode);
442   // We don't lower some vector selects well that are wider than the register
443   // width.
444   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
445     // We would need this many instructions to hide the scalarization happening.
446     const int AmortizationCost = 20;
447     static const TypeConversionCostTblEntry
448     VectorSelectTbl[] = {
449       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
450       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
451       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
452       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
453       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
454       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
455     };
456
457     EVT SelCondTy = TLI->getValueType(DL, CondTy);
458     EVT SelValTy = TLI->getValueType(DL, ValTy);
459     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
460       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
461                                                      SelCondTy.getSimpleVT(),
462                                                      SelValTy.getSimpleVT()))
463         return Entry->Cost;
464     }
465   }
466   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
467 }
468
469 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
470                                     unsigned Alignment, unsigned AddressSpace) {
471   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
472
473   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
474       Src->isVectorTy() && Alignment != 16 &&
475       Src->getVectorElementType()->isIntegerTy(64)) {
476     // Unaligned stores are extremely inefficient. We don't split
477     // unaligned v2i64 stores because the negative impact that has shown in
478     // practice on inlined memcpy code.
479     // We make v2i64 stores expensive so that we will only vectorize if there
480     // are 6 other instructions getting vectorized.
481     int AmortizationCost = 6;
482
483     return LT.first * 2 * AmortizationCost;
484   }
485
486   if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
487       Src->getVectorNumElements() < 8) {
488     // We scalarize the loads/stores because there is not v.4b register and we
489     // have to promote the elements to v.4h.
490     unsigned NumVecElts = Src->getVectorNumElements();
491     unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
492     // We generate 2 instructions per vector element.
493     return NumVectorizableInstsToAmortize * NumVecElts * 2;
494   }
495
496   return LT.first;
497 }
498
499 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
500                                                unsigned Factor,
501                                                ArrayRef<unsigned> Indices,
502                                                unsigned Alignment,
503                                                unsigned AddressSpace) {
504   assert(Factor >= 2 && "Invalid interleave factor");
505   assert(isa<VectorType>(VecTy) && "Expect a vector type");
506
507   if (Factor <= TLI->getMaxSupportedInterleaveFactor()) {
508     unsigned NumElts = VecTy->getVectorNumElements();
509     Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
510     unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
511
512     // ldN/stN only support legal vector types of size 64 or 128 in bits.
513     if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
514       return Factor;
515   }
516
517   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
518                                            Alignment, AddressSpace);
519 }
520
521 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
522   int Cost = 0;
523   for (auto *I : Tys) {
524     if (!I->isVectorTy())
525       continue;
526     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
527       Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
528         getMemoryOpCost(Instruction::Load, I, 128, 0);
529   }
530   return Cost;
531 }
532
533 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
534   return ST->getMaxInterleaveFactor();
535 }
536
537 void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
538                                              TTI::UnrollingPreferences &UP) {
539   // Enable partial unrolling and runtime unrolling.
540   BaseT::getUnrollingPreferences(L, UP);
541
542   // For inner loop, it is more likely to be a hot one, and the runtime check
543   // can be promoted out from LICM pass, so the overhead is less, let's try
544   // a larger threshold to unroll more loops.
545   if (L->getLoopDepth() > 1)
546     UP.PartialThreshold *= 2;
547
548   // Disable partial & runtime unrolling on -Os.
549   UP.PartialOptSizeThreshold = 0;
550 }
551
552 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
553                                                          Type *ExpectedType) {
554   switch (Inst->getIntrinsicID()) {
555   default:
556     return nullptr;
557   case Intrinsic::aarch64_neon_st2:
558   case Intrinsic::aarch64_neon_st3:
559   case Intrinsic::aarch64_neon_st4: {
560     // Create a struct type
561     StructType *ST = dyn_cast<StructType>(ExpectedType);
562     if (!ST)
563       return nullptr;
564     unsigned NumElts = Inst->getNumArgOperands() - 1;
565     if (ST->getNumElements() != NumElts)
566       return nullptr;
567     for (unsigned i = 0, e = NumElts; i != e; ++i) {
568       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
569         return nullptr;
570     }
571     Value *Res = UndefValue::get(ExpectedType);
572     IRBuilder<> Builder(Inst);
573     for (unsigned i = 0, e = NumElts; i != e; ++i) {
574       Value *L = Inst->getArgOperand(i);
575       Res = Builder.CreateInsertValue(Res, L, i);
576     }
577     return Res;
578   }
579   case Intrinsic::aarch64_neon_ld2:
580   case Intrinsic::aarch64_neon_ld3:
581   case Intrinsic::aarch64_neon_ld4:
582     if (Inst->getType() == ExpectedType)
583       return Inst;
584     return nullptr;
585   }
586 }
587
588 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
589                                         MemIntrinsicInfo &Info) {
590   switch (Inst->getIntrinsicID()) {
591   default:
592     break;
593   case Intrinsic::aarch64_neon_ld2:
594   case Intrinsic::aarch64_neon_ld3:
595   case Intrinsic::aarch64_neon_ld4:
596     Info.ReadMem = true;
597     Info.WriteMem = false;
598     Info.IsSimple = true;
599     Info.NumMemRefs = 1;
600     Info.PtrVal = Inst->getArgOperand(0);
601     break;
602   case Intrinsic::aarch64_neon_st2:
603   case Intrinsic::aarch64_neon_st3:
604   case Intrinsic::aarch64_neon_st4:
605     Info.ReadMem = false;
606     Info.WriteMem = true;
607     Info.IsSimple = true;
608     Info.NumMemRefs = 1;
609     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
610     break;
611   }
612
613   switch (Inst->getIntrinsicID()) {
614   default:
615     return false;
616   case Intrinsic::aarch64_neon_ld2:
617   case Intrinsic::aarch64_neon_st2:
618     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
619     break;
620   case Intrinsic::aarch64_neon_ld3:
621   case Intrinsic::aarch64_neon_st3:
622     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
623     break;
624   case Intrinsic::aarch64_neon_ld4:
625   case Intrinsic::aarch64_neon_st4:
626     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
627     break;
628   }
629   return true;
630 }
631
632 unsigned AArch64TTIImpl::getCacheLineSize() {
633   return ST->getCacheLineSize();
634 }
635
636 unsigned AArch64TTIImpl::getPrefetchDistance() {
637   return ST->getPrefetchDistance();
638 }
639
640 unsigned AArch64TTIImpl::getMinPrefetchStride() {
641   return ST->getMinPrefetchStride();
642 }
643
644 unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
645   return ST->getMaxPrefetchIterationsAhead();
646 }