]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
Merge ^/head r340918 through r341763.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AArch64 / AArch64TargetTransformInfo.cpp
1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/TargetTransformInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/TargetLowering.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/Support/Debug.h"
19 #include <algorithm>
20 using namespace llvm;
21
22 #define DEBUG_TYPE "aarch64tti"
23
24 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
25                                                cl::init(true), cl::Hidden);
26
27 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
28                                          const Function *Callee) const {
29   const TargetMachine &TM = getTLI()->getTargetMachine();
30
31   const FeatureBitset &CallerBits =
32       TM.getSubtargetImpl(*Caller)->getFeatureBits();
33   const FeatureBitset &CalleeBits =
34       TM.getSubtargetImpl(*Callee)->getFeatureBits();
35
36   // Inline a callee if its target-features are a subset of the callers
37   // target-features.
38   return (CallerBits & CalleeBits) == CalleeBits;
39 }
40
41 /// Calculate the cost of materializing a 64-bit value. This helper
42 /// method might only calculate a fraction of a larger immediate. Therefore it
43 /// is valid to return a cost of ZERO.
44 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
45   // Check if the immediate can be encoded within an instruction.
46   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
47     return 0;
48
49   if (Val < 0)
50     Val = ~Val;
51
52   // Calculate how many moves we will need to materialize this constant.
53   unsigned LZ = countLeadingZeros((uint64_t)Val);
54   return (64 - LZ + 15) / 16;
55 }
56
57 /// Calculate the cost of materializing the given constant.
58 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
59   assert(Ty->isIntegerTy());
60
61   unsigned BitSize = Ty->getPrimitiveSizeInBits();
62   if (BitSize == 0)
63     return ~0U;
64
65   // Sign-extend all constants to a multiple of 64-bit.
66   APInt ImmVal = Imm;
67   if (BitSize & 0x3f)
68     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
69
70   // Split the constant into 64-bit chunks and calculate the cost for each
71   // chunk.
72   int Cost = 0;
73   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
74     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
75     int64_t Val = Tmp.getSExtValue();
76     Cost += getIntImmCost(Val);
77   }
78   // We need at least one instruction to materialze the constant.
79   return std::max(1, Cost);
80 }
81
82 int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
83                                   const APInt &Imm, Type *Ty) {
84   assert(Ty->isIntegerTy());
85
86   unsigned BitSize = Ty->getPrimitiveSizeInBits();
87   // There is no cost model for constants with a bit size of 0. Return TCC_Free
88   // here, so that constant hoisting will ignore this constant.
89   if (BitSize == 0)
90     return TTI::TCC_Free;
91
92   unsigned ImmIdx = ~0U;
93   switch (Opcode) {
94   default:
95     return TTI::TCC_Free;
96   case Instruction::GetElementPtr:
97     // Always hoist the base address of a GetElementPtr.
98     if (Idx == 0)
99       return 2 * TTI::TCC_Basic;
100     return TTI::TCC_Free;
101   case Instruction::Store:
102     ImmIdx = 0;
103     break;
104   case Instruction::Add:
105   case Instruction::Sub:
106   case Instruction::Mul:
107   case Instruction::UDiv:
108   case Instruction::SDiv:
109   case Instruction::URem:
110   case Instruction::SRem:
111   case Instruction::And:
112   case Instruction::Or:
113   case Instruction::Xor:
114   case Instruction::ICmp:
115     ImmIdx = 1;
116     break;
117   // Always return TCC_Free for the shift value of a shift instruction.
118   case Instruction::Shl:
119   case Instruction::LShr:
120   case Instruction::AShr:
121     if (Idx == 1)
122       return TTI::TCC_Free;
123     break;
124   case Instruction::Trunc:
125   case Instruction::ZExt:
126   case Instruction::SExt:
127   case Instruction::IntToPtr:
128   case Instruction::PtrToInt:
129   case Instruction::BitCast:
130   case Instruction::PHI:
131   case Instruction::Call:
132   case Instruction::Select:
133   case Instruction::Ret:
134   case Instruction::Load:
135     break;
136   }
137
138   if (Idx == ImmIdx) {
139     int NumConstants = (BitSize + 63) / 64;
140     int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
141     return (Cost <= NumConstants * TTI::TCC_Basic)
142                ? static_cast<int>(TTI::TCC_Free)
143                : Cost;
144   }
145   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
146 }
147
148 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
149                                   const APInt &Imm, Type *Ty) {
150   assert(Ty->isIntegerTy());
151
152   unsigned BitSize = Ty->getPrimitiveSizeInBits();
153   // There is no cost model for constants with a bit size of 0. Return TCC_Free
154   // here, so that constant hoisting will ignore this constant.
155   if (BitSize == 0)
156     return TTI::TCC_Free;
157
158   switch (IID) {
159   default:
160     return TTI::TCC_Free;
161   case Intrinsic::sadd_with_overflow:
162   case Intrinsic::uadd_with_overflow:
163   case Intrinsic::ssub_with_overflow:
164   case Intrinsic::usub_with_overflow:
165   case Intrinsic::smul_with_overflow:
166   case Intrinsic::umul_with_overflow:
167     if (Idx == 1) {
168       int NumConstants = (BitSize + 63) / 64;
169       int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
170       return (Cost <= NumConstants * TTI::TCC_Basic)
171                  ? static_cast<int>(TTI::TCC_Free)
172                  : Cost;
173     }
174     break;
175   case Intrinsic::experimental_stackmap:
176     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
177       return TTI::TCC_Free;
178     break;
179   case Intrinsic::experimental_patchpoint_void:
180   case Intrinsic::experimental_patchpoint_i64:
181     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
182       return TTI::TCC_Free;
183     break;
184   }
185   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
186 }
187
188 TargetTransformInfo::PopcntSupportKind
189 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
190   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
191   if (TyWidth == 32 || TyWidth == 64)
192     return TTI::PSK_FastHardware;
193   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
194   return TTI::PSK_Software;
195 }
196
197 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
198                                            ArrayRef<const Value *> Args) {
199
200   // A helper that returns a vector type from the given type. The number of
201   // elements in type Ty determine the vector width.
202   auto toVectorTy = [&](Type *ArgTy) {
203     return VectorType::get(ArgTy->getScalarType(),
204                            DstTy->getVectorNumElements());
205   };
206
207   // Exit early if DstTy is not a vector type whose elements are at least
208   // 16-bits wide.
209   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
210     return false;
211
212   // Determine if the operation has a widening variant. We consider both the
213   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
214   // instructions.
215   //
216   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
217   //       verify that their extending operands are eliminated during code
218   //       generation.
219   switch (Opcode) {
220   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
221   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
222     break;
223   default:
224     return false;
225   }
226
227   // To be a widening instruction (either the "wide" or "long" versions), the
228   // second operand must be a sign- or zero extend having a single user. We
229   // only consider extends having a single user because they may otherwise not
230   // be eliminated.
231   if (Args.size() != 2 ||
232       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
233       !Args[1]->hasOneUse())
234     return false;
235   auto *Extend = cast<CastInst>(Args[1]);
236
237   // Legalize the destination type and ensure it can be used in a widening
238   // operation.
239   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
240   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
241   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
242     return false;
243
244   // Legalize the source type and ensure it can be used in a widening
245   // operation.
246   Type *SrcTy = toVectorTy(Extend->getSrcTy());
247   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
248   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
249   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
250     return false;
251
252   // Get the total number of vector elements in the legalized types.
253   unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
254   unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();
255
256   // Return true if the legalized types have the same number of vector elements
257   // and the destination element type size is twice that of the source type.
258   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
259 }
260
261 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
262                                      const Instruction *I) {
263   int ISD = TLI->InstructionOpcodeToISD(Opcode);
264   assert(ISD && "Invalid opcode");
265
266   // If the cast is observable, and it is used by a widening instruction (e.g.,
267   // uaddl, saddw, etc.), it may be free.
268   if (I && I->hasOneUse()) {
269     auto *SingleUser = cast<Instruction>(*I->user_begin());
270     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
271     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
272       // If the cast is the second operand, it is free. We will generate either
273       // a "wide" or "long" version of the widening instruction.
274       if (I == SingleUser->getOperand(1))
275         return 0;
276       // If the cast is not the second operand, it will be free if it looks the
277       // same as the second operand. In this case, we will generate a "long"
278       // version of the widening instruction.
279       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
280         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
281             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
282           return 0;
283     }
284   }
285
286   EVT SrcTy = TLI->getValueType(DL, Src);
287   EVT DstTy = TLI->getValueType(DL, Dst);
288
289   if (!SrcTy.isSimple() || !DstTy.isSimple())
290     return BaseT::getCastInstrCost(Opcode, Dst, Src);
291
292   static const TypeConversionCostTblEntry
293   ConversionTbl[] = {
294     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
295     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
296     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
297     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
298
299     // The number of shll instructions for the extension.
300     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
301     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
302     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
303     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
304     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
305     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
306     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
307     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
308     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
309     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
310     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
311     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
312     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
313     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
314     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
315     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
316
317     // LowerVectorINT_TO_FP:
318     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
319     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
320     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
321     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
322     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
323     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
324
325     // Complex: to v2f32
326     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
327     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
328     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
329     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
330     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
331     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
332
333     // Complex: to v4f32
334     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
335     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
336     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
337     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
338
339     // Complex: to v8f32
340     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
341     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
342     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
343     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
344
345     // Complex: to v16f32
346     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
347     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
348
349     // Complex: to v2f64
350     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
351     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
352     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
353     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
354     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
355     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
356
357
358     // LowerVectorFP_TO_INT
359     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
360     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
361     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
362     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
363     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
364     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
365
366     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
367     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
368     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
369     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
370     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
371     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
372     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
373
374     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
375     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
376     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
377     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
378     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
379
380     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
381     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
382     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
383     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
384     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
385     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
386     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
387   };
388
389   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
390                                                  DstTy.getSimpleVT(),
391                                                  SrcTy.getSimpleVT()))
392     return Entry->Cost;
393
394   return BaseT::getCastInstrCost(Opcode, Dst, Src);
395 }
396
397 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
398                                              VectorType *VecTy,
399                                              unsigned Index) {
400
401   // Make sure we were given a valid extend opcode.
402   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
403          "Invalid opcode");
404
405   // We are extending an element we extract from a vector, so the source type
406   // of the extend is the element type of the vector.
407   auto *Src = VecTy->getElementType();
408
409   // Sign- and zero-extends are for integer types only.
410   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
411
412   // Get the cost for the extract. We compute the cost (if any) for the extend
413   // below.
414   auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
415
416   // Legalize the types.
417   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
418   auto DstVT = TLI->getValueType(DL, Dst);
419   auto SrcVT = TLI->getValueType(DL, Src);
420
421   // If the resulting type is still a vector and the destination type is legal,
422   // we may get the extension for free. If not, get the default cost for the
423   // extend.
424   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
425     return Cost + getCastInstrCost(Opcode, Dst, Src);
426
427   // The destination type should be larger than the element type. If not, get
428   // the default cost for the extend.
429   if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
430     return Cost + getCastInstrCost(Opcode, Dst, Src);
431
432   switch (Opcode) {
433   default:
434     llvm_unreachable("Opcode should be either SExt or ZExt");
435
436   // For sign-extends, we only need a smov, which performs the extension
437   // automatically.
438   case Instruction::SExt:
439     return Cost;
440
441   // For zero-extends, the extend is performed automatically by a umov unless
442   // the destination type is i64 and the element type is i8 or i16.
443   case Instruction::ZExt:
444     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
445       return Cost;
446   }
447
448   // If we are unable to perform the extend for free, get the default cost.
449   return Cost + getCastInstrCost(Opcode, Dst, Src);
450 }
451
452 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
453                                        unsigned Index) {
454   assert(Val->isVectorTy() && "This must be a vector type");
455
456   if (Index != -1U) {
457     // Legalize the type.
458     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
459
460     // This type is legalized to a scalar type.
461     if (!LT.second.isVector())
462       return 0;
463
464     // The type may be split. Normalize the index to the new type.
465     unsigned Width = LT.second.getVectorNumElements();
466     Index = Index % Width;
467
468     // The element at index zero is already inside the vector.
469     if (Index == 0)
470       return 0;
471   }
472
473   // All other insert/extracts cost this much.
474   return ST->getVectorInsertExtractBaseCost();
475 }
476
477 int AArch64TTIImpl::getArithmeticInstrCost(
478     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
479     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
480     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
481   // Legalize the type.
482   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
483
484   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
485   // add in the widening overhead specified by the sub-target. Since the
486   // extends feeding widening instructions are performed automatically, they
487   // aren't present in the generated code and have a zero cost. By adding a
488   // widening overhead here, we attach the total cost of the combined operation
489   // to the widening instruction.
490   int Cost = 0;
491   if (isWideningInstruction(Ty, Opcode, Args))
492     Cost += ST->getWideningBaseCost();
493
494   int ISD = TLI->InstructionOpcodeToISD(Opcode);
495
496   switch (ISD) {
497   default:
498     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
499                                                 Opd1PropInfo, Opd2PropInfo);
500   case ISD::SDIV:
501     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
502         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
503       // On AArch64, scalar signed division by constants power-of-two are
504       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
505       // The OperandValue properties many not be same as that of previous
506       // operation; conservatively assume OP_None.
507       Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
508                                      TargetTransformInfo::OP_None,
509                                      TargetTransformInfo::OP_None);
510       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
511                                      TargetTransformInfo::OP_None,
512                                      TargetTransformInfo::OP_None);
513       Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
514                                      TargetTransformInfo::OP_None,
515                                      TargetTransformInfo::OP_None);
516       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
517                                      TargetTransformInfo::OP_None,
518                                      TargetTransformInfo::OP_None);
519       return Cost;
520     }
521     LLVM_FALLTHROUGH;
522   case ISD::UDIV:
523     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
524       auto VT = TLI->getValueType(DL, Ty);
525       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
526         // Vector signed division by constant are expanded to the
527         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
528         // to MULHS + SUB + SRL + ADD + SRL.
529         int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
530                                              Opd2Info,
531                                              TargetTransformInfo::OP_None,
532                                              TargetTransformInfo::OP_None);
533         int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
534                                              Opd2Info,
535                                              TargetTransformInfo::OP_None,
536                                              TargetTransformInfo::OP_None);
537         int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
538                                              Opd2Info,
539                                              TargetTransformInfo::OP_None,
540                                              TargetTransformInfo::OP_None);
541         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
542       }
543     }
544
545     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
546                                           Opd1PropInfo, Opd2PropInfo);
547     if (Ty->isVectorTy()) {
548       // On AArch64, vector divisions are not supported natively and are
549       // expanded into scalar divisions of each pair of elements.
550       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
551                                      Opd2Info, Opd1PropInfo, Opd2PropInfo);
552       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
553                                      Opd2Info, Opd1PropInfo, Opd2PropInfo);
554       // TODO: if one of the arguments is scalar, then it's not necessary to
555       // double the cost of handling the vector elements.
556       Cost += Cost;
557     }
558     return Cost;
559
560   case ISD::ADD:
561   case ISD::MUL:
562   case ISD::XOR:
563   case ISD::OR:
564   case ISD::AND:
565     // These nodes are marked as 'custom' for combining purposes only.
566     // We know that they are legal. See LowerAdd in ISelLowering.
567     return (Cost + 1) * LT.first;
568   }
569 }
570
571 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
572                                               const SCEV *Ptr) {
573   // Address computations in vectorized code with non-consecutive addresses will
574   // likely result in more instructions compared to scalar code where the
575   // computation can more often be merged into the index mode. The resulting
576   // extra micro-ops can significantly decrease throughput.
577   unsigned NumVectorInstToHideOverhead = 10;
578   int MaxMergeDistance = 64;
579
580   if (Ty->isVectorTy() && SE &&
581       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
582     return NumVectorInstToHideOverhead;
583
584   // In many cases the address computation is not merged into the instruction
585   // addressing mode.
586   return 1;
587 }
588
589 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
590                                        Type *CondTy, const Instruction *I) {
591
592   int ISD = TLI->InstructionOpcodeToISD(Opcode);
593   // We don't lower some vector selects well that are wider than the register
594   // width.
595   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
596     // We would need this many instructions to hide the scalarization happening.
597     const int AmortizationCost = 20;
598     static const TypeConversionCostTblEntry
599     VectorSelectTbl[] = {
600       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
601       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
602       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
603       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
604       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
605       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
606     };
607
608     EVT SelCondTy = TLI->getValueType(DL, CondTy);
609     EVT SelValTy = TLI->getValueType(DL, ValTy);
610     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
611       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
612                                                      SelCondTy.getSimpleVT(),
613                                                      SelValTy.getSimpleVT()))
614         return Entry->Cost;
615     }
616   }
617   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
618 }
619
620 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
621                                     unsigned Alignment, unsigned AddressSpace,
622                                     const Instruction *I) {
623   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
624
625   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
626       LT.second.is128BitVector() && Alignment < 16) {
627     // Unaligned stores are extremely inefficient. We don't split all
628     // unaligned 128-bit stores because the negative impact that has shown in
629     // practice on inlined block copy code.
630     // We make such stores expensive so that we will only vectorize if there
631     // are 6 other instructions getting vectorized.
632     const int AmortizationCost = 6;
633
634     return LT.first * 2 * AmortizationCost;
635   }
636
637   if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
638     unsigned ProfitableNumElements;
639     if (Opcode == Instruction::Store)
640       // We use a custom trunc store lowering so v.4b should be profitable.
641       ProfitableNumElements = 4;
642     else
643       // We scalarize the loads because there is not v.4b register and we
644       // have to promote the elements to v.2.
645       ProfitableNumElements = 8;
646
647     if (Ty->getVectorNumElements() < ProfitableNumElements) {
648       unsigned NumVecElts = Ty->getVectorNumElements();
649       unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
650       // We generate 2 instructions per vector element.
651       return NumVectorizableInstsToAmortize * NumVecElts * 2;
652     }
653   }
654
655   return LT.first;
656 }
657
658 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
659                                                unsigned Factor,
660                                                ArrayRef<unsigned> Indices,
661                                                unsigned Alignment,
662                                                unsigned AddressSpace) {
663   assert(Factor >= 2 && "Invalid interleave factor");
664   assert(isa<VectorType>(VecTy) && "Expect a vector type");
665
666   if (Factor <= TLI->getMaxSupportedInterleaveFactor()) {
667     unsigned NumElts = VecTy->getVectorNumElements();
668     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
669
670     // ldN/stN only support legal vector types of size 64 or 128 in bits.
671     // Accesses having vector types that are a multiple of 128 bits can be
672     // matched to more than one ldN/stN instruction.
673     if (NumElts % Factor == 0 &&
674         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
675       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
676   }
677
678   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
679                                            Alignment, AddressSpace);
680 }
681
682 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
683   int Cost = 0;
684   for (auto *I : Tys) {
685     if (!I->isVectorTy())
686       continue;
687     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
688       Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
689         getMemoryOpCost(Instruction::Load, I, 128, 0);
690   }
691   return Cost;
692 }
693
694 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
695   return ST->getMaxInterleaveFactor();
696 }
697
698 // For Falkor, we want to avoid having too many strided loads in a loop since
699 // that can exhaust the HW prefetcher resources.  We adjust the unroller
700 // MaxCount preference below to attempt to ensure unrolling doesn't create too
701 // many strided loads.
702 static void
703 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
704                               TargetTransformInfo::UnrollingPreferences &UP) {
705   enum { MaxStridedLoads = 7 };
706   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
707     int StridedLoads = 0;
708     // FIXME? We could make this more precise by looking at the CFG and
709     // e.g. not counting loads in each side of an if-then-else diamond.
710     for (const auto BB : L->blocks()) {
711       for (auto &I : *BB) {
712         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
713         if (!LMemI)
714           continue;
715
716         Value *PtrValue = LMemI->getPointerOperand();
717         if (L->isLoopInvariant(PtrValue))
718           continue;
719
720         const SCEV *LSCEV = SE.getSCEV(PtrValue);
721         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
722         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
723           continue;
724
725         // FIXME? We could take pairing of unrolled load copies into account
726         // by looking at the AddRec, but we would probably have to limit this
727         // to loops with no stores or other memory optimization barriers.
728         ++StridedLoads;
729         // We've seen enough strided loads that seeing more won't make a
730         // difference.
731         if (StridedLoads > MaxStridedLoads / 2)
732           return StridedLoads;
733       }
734     }
735     return StridedLoads;
736   };
737
738   int StridedLoads = countStridedLoads(L, SE);
739   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
740                     << " strided loads\n");
741   // Pick the largest power of 2 unroll count that won't result in too many
742   // strided loads.
743   if (StridedLoads) {
744     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
745     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
746                       << UP.MaxCount << '\n');
747   }
748 }
749
750 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
751                                              TTI::UnrollingPreferences &UP) {
752   // Enable partial unrolling and runtime unrolling.
753   BaseT::getUnrollingPreferences(L, SE, UP);
754
755   // For inner loop, it is more likely to be a hot one, and the runtime check
756   // can be promoted out from LICM pass, so the overhead is less, let's try
757   // a larger threshold to unroll more loops.
758   if (L->getLoopDepth() > 1)
759     UP.PartialThreshold *= 2;
760
761   // Disable partial & runtime unrolling on -Os.
762   UP.PartialOptSizeThreshold = 0;
763
764   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
765       EnableFalkorHWPFUnrollFix)
766     getFalkorUnrollingPreferences(L, SE, UP);
767 }
768
769 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
770                                                          Type *ExpectedType) {
771   switch (Inst->getIntrinsicID()) {
772   default:
773     return nullptr;
774   case Intrinsic::aarch64_neon_st2:
775   case Intrinsic::aarch64_neon_st3:
776   case Intrinsic::aarch64_neon_st4: {
777     // Create a struct type
778     StructType *ST = dyn_cast<StructType>(ExpectedType);
779     if (!ST)
780       return nullptr;
781     unsigned NumElts = Inst->getNumArgOperands() - 1;
782     if (ST->getNumElements() != NumElts)
783       return nullptr;
784     for (unsigned i = 0, e = NumElts; i != e; ++i) {
785       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
786         return nullptr;
787     }
788     Value *Res = UndefValue::get(ExpectedType);
789     IRBuilder<> Builder(Inst);
790     for (unsigned i = 0, e = NumElts; i != e; ++i) {
791       Value *L = Inst->getArgOperand(i);
792       Res = Builder.CreateInsertValue(Res, L, i);
793     }
794     return Res;
795   }
796   case Intrinsic::aarch64_neon_ld2:
797   case Intrinsic::aarch64_neon_ld3:
798   case Intrinsic::aarch64_neon_ld4:
799     if (Inst->getType() == ExpectedType)
800       return Inst;
801     return nullptr;
802   }
803 }
804
805 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
806                                         MemIntrinsicInfo &Info) {
807   switch (Inst->getIntrinsicID()) {
808   default:
809     break;
810   case Intrinsic::aarch64_neon_ld2:
811   case Intrinsic::aarch64_neon_ld3:
812   case Intrinsic::aarch64_neon_ld4:
813     Info.ReadMem = true;
814     Info.WriteMem = false;
815     Info.PtrVal = Inst->getArgOperand(0);
816     break;
817   case Intrinsic::aarch64_neon_st2:
818   case Intrinsic::aarch64_neon_st3:
819   case Intrinsic::aarch64_neon_st4:
820     Info.ReadMem = false;
821     Info.WriteMem = true;
822     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
823     break;
824   }
825
826   switch (Inst->getIntrinsicID()) {
827   default:
828     return false;
829   case Intrinsic::aarch64_neon_ld2:
830   case Intrinsic::aarch64_neon_st2:
831     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
832     break;
833   case Intrinsic::aarch64_neon_ld3:
834   case Intrinsic::aarch64_neon_st3:
835     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
836     break;
837   case Intrinsic::aarch64_neon_ld4:
838   case Intrinsic::aarch64_neon_st4:
839     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
840     break;
841   }
842   return true;
843 }
844
845 /// See if \p I should be considered for address type promotion. We check if \p
846 /// I is a sext with right type and used in memory accesses. If it used in a
847 /// "complex" getelementptr, we allow it to be promoted without finding other
848 /// sext instructions that sign extended the same initial value. A getelementptr
849 /// is considered as "complex" if it has more than 2 operands.
850 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
851     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
852   bool Considerable = false;
853   AllowPromotionWithoutCommonHeader = false;
854   if (!isa<SExtInst>(&I))
855     return false;
856   Type *ConsideredSExtType =
857       Type::getInt64Ty(I.getParent()->getParent()->getContext());
858   if (I.getType() != ConsideredSExtType)
859     return false;
860   // See if the sext is the one with the right type and used in at least one
861   // GetElementPtrInst.
862   for (const User *U : I.users()) {
863     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
864       Considerable = true;
865       // A getelementptr is considered as "complex" if it has more than 2
866       // operands. We will promote a SExt used in such complex GEP as we
867       // expect some computation to be merged if they are done on 64 bits.
868       if (GEPInst->getNumOperands() > 2) {
869         AllowPromotionWithoutCommonHeader = true;
870         break;
871       }
872     }
873   }
874   return Considerable;
875 }
876
877 unsigned AArch64TTIImpl::getCacheLineSize() {
878   return ST->getCacheLineSize();
879 }
880
881 unsigned AArch64TTIImpl::getPrefetchDistance() {
882   return ST->getPrefetchDistance();
883 }
884
885 unsigned AArch64TTIImpl::getMinPrefetchStride() {
886   return ST->getMinPrefetchStride();
887 }
888
889 unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
890   return ST->getMaxPrefetchIterationsAhead();
891 }
892
893 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
894                                            TTI::ReductionFlags Flags) const {
895   assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
896   unsigned ScalarBits = Ty->getScalarSizeInBits();
897   switch (Opcode) {
898   case Instruction::FAdd:
899   case Instruction::FMul:
900   case Instruction::And:
901   case Instruction::Or:
902   case Instruction::Xor:
903   case Instruction::Mul:
904     return false;
905   case Instruction::Add:
906     return ScalarBits * Ty->getVectorNumElements() >= 128;
907   case Instruction::ICmp:
908     return (ScalarBits < 64) &&
909            (ScalarBits * Ty->getVectorNumElements() >= 128);
910   case Instruction::FCmp:
911     return Flags.NoNaN;
912   default:
913     llvm_unreachable("Unhandled reduction opcode");
914   }
915   return false;
916 }
917
918 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
919                                                bool IsPairwiseForm) {
920
921   if (IsPairwiseForm)
922     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
923
924   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
925   MVT MTy = LT.second;
926   int ISD = TLI->InstructionOpcodeToISD(Opcode);
927   assert(ISD && "Invalid opcode");
928
929   // Horizontal adds can use the 'addv' instruction. We model the cost of these
930   // instructions as normal vector adds. This is the only arithmetic vector
931   // reduction operation for which we have an instruction.
932   static const CostTblEntry CostTblNoPairwise[]{
933       {ISD::ADD, MVT::v8i8,  1},
934       {ISD::ADD, MVT::v16i8, 1},
935       {ISD::ADD, MVT::v4i16, 1},
936       {ISD::ADD, MVT::v8i16, 1},
937       {ISD::ADD, MVT::v4i32, 1},
938   };
939
940   if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
941     return LT.first * Entry->Cost;
942
943   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
944 }
945
946 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
947                                    Type *SubTp) {
948   if (Kind == TTI::SK_Transpose || Kind == TTI::SK_Select ||
949       Kind == TTI::SK_PermuteSingleSrc) {
950     static const CostTblEntry ShuffleTbl[] = {
951       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
952       // 'zip1/zip2' instructions.
953       { TTI::SK_Transpose, MVT::v8i8,  1 },
954       { TTI::SK_Transpose, MVT::v16i8, 1 },
955       { TTI::SK_Transpose, MVT::v4i16, 1 },
956       { TTI::SK_Transpose, MVT::v8i16, 1 },
957       { TTI::SK_Transpose, MVT::v2i32, 1 },
958       { TTI::SK_Transpose, MVT::v4i32, 1 },
959       { TTI::SK_Transpose, MVT::v2i64, 1 },
960       { TTI::SK_Transpose, MVT::v2f32, 1 },
961       { TTI::SK_Transpose, MVT::v4f32, 1 },
962       { TTI::SK_Transpose, MVT::v2f64, 1 },
963       // Select shuffle kinds.
964       // TODO: handle vXi8/vXi16.
965       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
966       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
967       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
968       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
969       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
970       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
971       // PermuteSingleSrc shuffle kinds.
972       // TODO: handle vXi8/vXi16.
973       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
974       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
975       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
976       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
977       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
978       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
979     };
980     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
981     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
982       return LT.first * Entry->Cost;
983   }
984
985   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
986 }