]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AMDGPU / AMDGPUCodeGenPrepare.cpp
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass does misc. AMDGPU optimizations on IR before instruction
12 /// selection.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/DivergenceAnalysis.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InstVisitor.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include <cassert>
45 #include <iterator>
46
47 #define DEBUG_TYPE "amdgpu-codegenprepare"
48
49 using namespace llvm;
50
51 namespace {
52
53 static cl::opt<bool> WidenLoads(
54   "amdgpu-codegenprepare-widen-constant-loads",
55   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
56   cl::ReallyHidden,
57   cl::init(true));
58
59 class AMDGPUCodeGenPrepare : public FunctionPass,
60                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
61   const GCNSubtarget *ST = nullptr;
62   AssumptionCache *AC = nullptr;
63   DivergenceAnalysis *DA = nullptr;
64   Module *Mod = nullptr;
65   bool HasUnsafeFPMath = false;
66   AMDGPUAS AMDGPUASI;
67
68   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
69   /// binary operation \p V.
70   ///
71   /// \returns Binary operation \p V.
72   /// \returns \p T's base element bit width.
73   unsigned getBaseElementBitWidth(const Type *T) const;
74
75   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
76   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
77   /// is returned.
78   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
79
80   /// \returns True if binary operation \p I is a signed binary operation, false
81   /// otherwise.
82   bool isSigned(const BinaryOperator &I) const;
83
84   /// \returns True if the condition of 'select' operation \p I comes from a
85   /// signed 'icmp' operation, false otherwise.
86   bool isSigned(const SelectInst &I) const;
87
88   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
89   /// false otherwise.
90   bool needsPromotionToI32(const Type *T) const;
91
92   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
93   /// operation.
94   ///
95   /// \details \p I's base element bit width must be greater than 1 and less
96   /// than or equal 16. Promotion is done by sign or zero extending operands to
97   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
98   /// truncating the result of 32 bit binary operation back to \p I's original
99   /// type. Division operation is not promoted.
100   ///
101   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
102   /// false otherwise.
103   bool promoteUniformOpToI32(BinaryOperator &I) const;
104
105   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
106   ///
107   /// \details \p I's base element bit width must be greater than 1 and less
108   /// than or equal 16. Promotion is done by sign or zero extending operands to
109   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
110   ///
111   /// \returns True.
112   bool promoteUniformOpToI32(ICmpInst &I) const;
113
114   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
115   /// operation.
116   ///
117   /// \details \p I's base element bit width must be greater than 1 and less
118   /// than or equal 16. Promotion is done by sign or zero extending operands to
119   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
120   /// result of 32 bit 'select' operation back to \p I's original type.
121   ///
122   /// \returns True.
123   bool promoteUniformOpToI32(SelectInst &I) const;
124
125   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
126   /// intrinsic.
127   ///
128   /// \details \p I's base element bit width must be greater than 1 and less
129   /// than or equal 16. Promotion is done by zero extending the operand to 32
130   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
131   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
132   /// shift amount is 32 minus \p I's base element bit width), and truncating
133   /// the result of the shift operation back to \p I's original type.
134   ///
135   /// \returns True.
136   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
137
138   /// Expands 24 bit div or rem.
139   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
140                         Value *Num, Value *Den,
141                         bool IsDiv, bool IsSigned) const;
142
143   /// Expands 32 bit div or rem.
144   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
145                         Value *Num, Value *Den) const;
146
147   /// Widen a scalar load.
148   ///
149   /// \details \p Widen scalar load for uniform, small type loads from constant
150   //  memory / to a full 32-bits and then truncate the input to allow a scalar
151   //  load instead of a vector load.
152   //
153   /// \returns True.
154
155   bool canWidenScalarExtLoad(LoadInst &I) const;
156
157 public:
158   static char ID;
159
160   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
161
162   bool visitFDiv(BinaryOperator &I);
163
164   bool visitInstruction(Instruction &I) { return false; }
165   bool visitBinaryOperator(BinaryOperator &I);
166   bool visitLoadInst(LoadInst &I);
167   bool visitICmpInst(ICmpInst &I);
168   bool visitSelectInst(SelectInst &I);
169
170   bool visitIntrinsicInst(IntrinsicInst &I);
171   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
172
173   bool doInitialization(Module &M) override;
174   bool runOnFunction(Function &F) override;
175
176   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
177
178   void getAnalysisUsage(AnalysisUsage &AU) const override {
179     AU.addRequired<AssumptionCacheTracker>();
180     AU.addRequired<DivergenceAnalysis>();
181     AU.setPreservesAll();
182  }
183 };
184
185 } // end anonymous namespace
186
187 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
188   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
189
190   if (T->isIntegerTy())
191     return T->getIntegerBitWidth();
192   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
193 }
194
195 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
196   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
197
198   if (T->isIntegerTy())
199     return B.getInt32Ty();
200   return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
201 }
202
203 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
204   return I.getOpcode() == Instruction::AShr ||
205       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
206 }
207
208 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
209   return isa<ICmpInst>(I.getOperand(0)) ?
210       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
211 }
212
213 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
214   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
215   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
216     return true;
217
218   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
219     // TODO: The set of packed operations is more limited, so may want to
220     // promote some anyway.
221     if (ST->hasVOP3PInsts())
222       return false;
223
224     return needsPromotionToI32(VT->getElementType());
225   }
226
227   return false;
228 }
229
230 // Return true if the op promoted to i32 should have nsw set.
231 static bool promotedOpIsNSW(const Instruction &I) {
232   switch (I.getOpcode()) {
233   case Instruction::Shl:
234   case Instruction::Add:
235   case Instruction::Sub:
236     return true;
237   case Instruction::Mul:
238     return I.hasNoUnsignedWrap();
239   default:
240     return false;
241   }
242 }
243
244 // Return true if the op promoted to i32 should have nuw set.
245 static bool promotedOpIsNUW(const Instruction &I) {
246   switch (I.getOpcode()) {
247   case Instruction::Shl:
248   case Instruction::Add:
249   case Instruction::Mul:
250     return true;
251   case Instruction::Sub:
252     return I.hasNoUnsignedWrap();
253   default:
254     return false;
255   }
256 }
257
258 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
259   Type *Ty = I.getType();
260   const DataLayout &DL = Mod->getDataLayout();
261   int TySize = DL.getTypeSizeInBits(Ty);
262   unsigned Align = I.getAlignment() ?
263                    I.getAlignment() : DL.getABITypeAlignment(Ty);
264
265   return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
266 }
267
268 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
269   assert(needsPromotionToI32(I.getType()) &&
270          "I does not need promotion to i32");
271
272   if (I.getOpcode() == Instruction::SDiv ||
273       I.getOpcode() == Instruction::UDiv ||
274       I.getOpcode() == Instruction::SRem ||
275       I.getOpcode() == Instruction::URem)
276     return false;
277
278   IRBuilder<> Builder(&I);
279   Builder.SetCurrentDebugLocation(I.getDebugLoc());
280
281   Type *I32Ty = getI32Ty(Builder, I.getType());
282   Value *ExtOp0 = nullptr;
283   Value *ExtOp1 = nullptr;
284   Value *ExtRes = nullptr;
285   Value *TruncRes = nullptr;
286
287   if (isSigned(I)) {
288     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
289     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
290   } else {
291     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
292     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
293   }
294
295   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
296   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
297     if (promotedOpIsNSW(cast<Instruction>(I)))
298       Inst->setHasNoSignedWrap();
299
300     if (promotedOpIsNUW(cast<Instruction>(I)))
301       Inst->setHasNoUnsignedWrap();
302
303     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
304       Inst->setIsExact(ExactOp->isExact());
305   }
306
307   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
308
309   I.replaceAllUsesWith(TruncRes);
310   I.eraseFromParent();
311
312   return true;
313 }
314
315 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
316   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
317          "I does not need promotion to i32");
318
319   IRBuilder<> Builder(&I);
320   Builder.SetCurrentDebugLocation(I.getDebugLoc());
321
322   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
323   Value *ExtOp0 = nullptr;
324   Value *ExtOp1 = nullptr;
325   Value *NewICmp  = nullptr;
326
327   if (I.isSigned()) {
328     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
329     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
330   } else {
331     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
332     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
333   }
334   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
335
336   I.replaceAllUsesWith(NewICmp);
337   I.eraseFromParent();
338
339   return true;
340 }
341
342 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
343   assert(needsPromotionToI32(I.getType()) &&
344          "I does not need promotion to i32");
345
346   IRBuilder<> Builder(&I);
347   Builder.SetCurrentDebugLocation(I.getDebugLoc());
348
349   Type *I32Ty = getI32Ty(Builder, I.getType());
350   Value *ExtOp1 = nullptr;
351   Value *ExtOp2 = nullptr;
352   Value *ExtRes = nullptr;
353   Value *TruncRes = nullptr;
354
355   if (isSigned(I)) {
356     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
357     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
358   } else {
359     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
360     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
361   }
362   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
363   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
364
365   I.replaceAllUsesWith(TruncRes);
366   I.eraseFromParent();
367
368   return true;
369 }
370
371 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
372     IntrinsicInst &I) const {
373   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
374          "I must be bitreverse intrinsic");
375   assert(needsPromotionToI32(I.getType()) &&
376          "I does not need promotion to i32");
377
378   IRBuilder<> Builder(&I);
379   Builder.SetCurrentDebugLocation(I.getDebugLoc());
380
381   Type *I32Ty = getI32Ty(Builder, I.getType());
382   Function *I32 =
383       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
384   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
385   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
386   Value *LShrOp =
387       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
388   Value *TruncRes =
389       Builder.CreateTrunc(LShrOp, I.getType());
390
391   I.replaceAllUsesWith(TruncRes);
392   I.eraseFromParent();
393
394   return true;
395 }
396
397 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
398   const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
399   if (!CNum)
400     return HasDenormals;
401
402   if (UnsafeDiv)
403     return true;
404
405   bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
406
407   // Reciprocal f32 is handled separately without denormals.
408   return HasDenormals ^ IsOne;
409 }
410
411 // Insert an intrinsic for fast fdiv for safe math situations where we can
412 // reduce precision. Leave fdiv for situations where the generic node is
413 // expected to be optimized.
414 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
415   Type *Ty = FDiv.getType();
416
417   if (!Ty->getScalarType()->isFloatTy())
418     return false;
419
420   MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
421   if (!FPMath)
422     return false;
423
424   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
425   float ULP = FPOp->getFPAccuracy();
426   if (ULP < 2.5f)
427     return false;
428
429   FastMathFlags FMF = FPOp->getFastMathFlags();
430   bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
431                                       FMF.allowReciprocal();
432
433   // With UnsafeDiv node will be optimized to just rcp and mul.
434   if (UnsafeDiv)
435     return false;
436
437   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
438   Builder.setFastMathFlags(FMF);
439   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
440
441   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
442
443   Value *Num = FDiv.getOperand(0);
444   Value *Den = FDiv.getOperand(1);
445
446   Value *NewFDiv = nullptr;
447
448   bool HasDenormals = ST->hasFP32Denormals();
449   if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
450     NewFDiv = UndefValue::get(VT);
451
452     // FIXME: Doesn't do the right thing for cases where the vector is partially
453     // constant. This works when the scalarizer pass is run first.
454     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
455       Value *NumEltI = Builder.CreateExtractElement(Num, I);
456       Value *DenEltI = Builder.CreateExtractElement(Den, I);
457       Value *NewElt;
458
459       if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) {
460         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
461       } else {
462         NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
463       }
464
465       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
466     }
467   } else {
468     if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals))
469       NewFDiv = Builder.CreateCall(Decl, { Num, Den });
470   }
471
472   if (NewFDiv) {
473     FDiv.replaceAllUsesWith(NewFDiv);
474     NewFDiv->takeName(&FDiv);
475     FDiv.eraseFromParent();
476   }
477
478   return !!NewFDiv;
479 }
480
481 static bool hasUnsafeFPMath(const Function &F) {
482   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
483   return Attr.getValueAsString() == "true";
484 }
485
486 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
487                                           Value *LHS, Value *RHS) {
488   Type *I32Ty = Builder.getInt32Ty();
489   Type *I64Ty = Builder.getInt64Ty();
490
491   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
492   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
493   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
494   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
495   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
496   Hi = Builder.CreateTrunc(Hi, I32Ty);
497   return std::make_pair(Lo, Hi);
498 }
499
500 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
501   return getMul64(Builder, LHS, RHS).second;
502 }
503
504 // The fractional part of a float is enough to accurately represent up to
505 // a 24-bit signed integer.
506 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
507                                             BinaryOperator &I,
508                                             Value *Num, Value *Den,
509                                             bool IsDiv, bool IsSigned) const {
510   assert(Num->getType()->isIntegerTy(32));
511
512   const DataLayout &DL = Mod->getDataLayout();
513   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
514   if (LHSSignBits < 9)
515     return nullptr;
516
517   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
518   if (RHSSignBits < 9)
519     return nullptr;
520
521
522   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
523   unsigned DivBits = 32 - SignBits;
524   if (IsSigned)
525     ++DivBits;
526
527   Type *Ty = Num->getType();
528   Type *I32Ty = Builder.getInt32Ty();
529   Type *F32Ty = Builder.getFloatTy();
530   ConstantInt *One = Builder.getInt32(1);
531   Value *JQ = One;
532
533   if (IsSigned) {
534     // char|short jq = ia ^ ib;
535     JQ = Builder.CreateXor(Num, Den);
536
537     // jq = jq >> (bitsize - 2)
538     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
539
540     // jq = jq | 0x1
541     JQ = Builder.CreateOr(JQ, One);
542   }
543
544   // int ia = (int)LHS;
545   Value *IA = Num;
546
547   // int ib, (int)RHS;
548   Value *IB = Den;
549
550   // float fa = (float)ia;
551   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
552                        : Builder.CreateUIToFP(IA, F32Ty);
553
554   // float fb = (float)ib;
555   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
556                        : Builder.CreateUIToFP(IB,F32Ty);
557
558   Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
559   Value *FQM = Builder.CreateFMul(FA, RCP);
560
561   // fq = trunc(fqm);
562   CallInst* FQ = Builder.CreateIntrinsic(Intrinsic::trunc, { FQM });
563   FQ->copyFastMathFlags(Builder.getFastMathFlags());
564
565   // float fqneg = -fq;
566   Value *FQNeg = Builder.CreateFNeg(FQ);
567
568   // float fr = mad(fqneg, fb, fa);
569   Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
570                                       { FQNeg, FB, FA }, FQ);
571
572   // int iq = (int)fq;
573   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
574                        : Builder.CreateFPToUI(FQ, I32Ty);
575
576   // fr = fabs(fr);
577   FR = Builder.CreateIntrinsic(Intrinsic::fabs, { FR }, FQ);
578
579   // fb = fabs(fb);
580   FB = Builder.CreateIntrinsic(Intrinsic::fabs, { FB }, FQ);
581
582   // int cv = fr >= fb;
583   Value *CV = Builder.CreateFCmpOGE(FR, FB);
584
585   // jq = (cv ? jq : 0);
586   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
587
588   // dst = iq + jq;
589   Value *Div = Builder.CreateAdd(IQ, JQ);
590
591   Value *Res = Div;
592   if (!IsDiv) {
593     // Rem needs compensation, it's easier to recompute it
594     Value *Rem = Builder.CreateMul(Div, Den);
595     Res = Builder.CreateSub(Num, Rem);
596   }
597
598   // Truncate to number of bits this divide really is.
599   if (IsSigned) {
600     Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits));
601     Res = Builder.CreateSExt(Res, Ty);
602   } else {
603     ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
604     Res = Builder.CreateAnd(Res, TruncMask);
605   }
606
607   return Res;
608 }
609
610 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
611                                             BinaryOperator &I,
612                                             Value *Num, Value *Den) const {
613   Instruction::BinaryOps Opc = I.getOpcode();
614   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
615          Opc == Instruction::SRem || Opc == Instruction::SDiv);
616
617   FastMathFlags FMF;
618   FMF.setFast();
619   Builder.setFastMathFlags(FMF);
620
621   if (isa<Constant>(Den))
622     return nullptr; // Keep it for optimization
623
624   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
625   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
626
627   Type *Ty = Num->getType();
628   Type *I32Ty = Builder.getInt32Ty();
629   Type *F32Ty = Builder.getFloatTy();
630
631   if (Ty->getScalarSizeInBits() < 32) {
632     if (IsSigned) {
633       Num = Builder.CreateSExt(Num, I32Ty);
634       Den = Builder.CreateSExt(Den, I32Ty);
635     } else {
636       Num = Builder.CreateZExt(Num, I32Ty);
637       Den = Builder.CreateZExt(Den, I32Ty);
638     }
639   }
640
641   if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
642     Res = Builder.CreateTrunc(Res, Ty);
643     return Res;
644   }
645
646   ConstantInt *Zero = Builder.getInt32(0);
647   ConstantInt *One = Builder.getInt32(1);
648   ConstantInt *MinusOne = Builder.getInt32(~0);
649
650   Value *Sign = nullptr;
651   if (IsSigned) {
652     ConstantInt *K31 = Builder.getInt32(31);
653     Value *LHSign = Builder.CreateAShr(Num, K31);
654     Value *RHSign = Builder.CreateAShr(Den, K31);
655     // Remainder sign is the same as LHS
656     Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
657
658     Num = Builder.CreateAdd(Num, LHSign);
659     Den = Builder.CreateAdd(Den, RHSign);
660
661     Num = Builder.CreateXor(Num, LHSign);
662     Den = Builder.CreateXor(Den, RHSign);
663   }
664
665   // RCP =  URECIP(Den) = 2^32 / Den + e
666   // e is rounding error.
667   Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
668   Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
669   Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
670   Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
671   Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
672
673   // RCP_LO, RCP_HI = mul(RCP, Den) */
674   Value *RCP_LO, *RCP_HI;
675   std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
676
677   // NEG_RCP_LO = -RCP_LO
678   Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
679
680   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
681   Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
682   Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
683
684   // Calculate the rounding error from the URECIP instruction
685   // E = mulhu(ABS_RCP_LO, RCP)
686   Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
687
688   // RCP_A_E = RCP + E
689   Value *RCP_A_E = Builder.CreateAdd(RCP, E);
690
691   // RCP_S_E = RCP - E
692   Value *RCP_S_E = Builder.CreateSub(RCP, E);
693
694   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
695   Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
696
697   // Quotient = mulhu(Tmp0, Num)
698   Value *Quotient = getMulHu(Builder, Tmp0, Num);
699
700   // Num_S_Remainder = Quotient * Den
701   Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
702
703   // Remainder = Num - Num_S_Remainder
704   Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
705
706   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
707   Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
708   Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
709
710   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
711   Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
712   Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
713                                                   MinusOne, Zero);
714
715   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
716   Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
717   Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
718
719   Value *Res;
720   if (IsDiv) {
721     // Quotient_A_One = Quotient + 1
722     Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
723
724     // Quotient_S_One = Quotient - 1
725     Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
726
727     // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
728     Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
729
730     // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
731     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
732   } else {
733     // Remainder_S_Den = Remainder - Den
734     Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
735
736     // Remainder_A_Den = Remainder + Den
737     Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
738
739     // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
740     Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
741
742     // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
743     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
744   }
745
746   if (IsSigned) {
747     Res = Builder.CreateXor(Res, Sign);
748     Res = Builder.CreateSub(Res, Sign);
749   }
750
751   Res = Builder.CreateTrunc(Res, Ty);
752
753   return Res;
754 }
755
756 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
757   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
758       DA->isUniform(&I) && promoteUniformOpToI32(I))
759     return true;
760
761   bool Changed = false;
762   Instruction::BinaryOps Opc = I.getOpcode();
763   Type *Ty = I.getType();
764   Value *NewDiv = nullptr;
765   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
766        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
767       Ty->getScalarSizeInBits() <= 32) {
768     Value *Num = I.getOperand(0);
769     Value *Den = I.getOperand(1);
770     IRBuilder<> Builder(&I);
771     Builder.SetCurrentDebugLocation(I.getDebugLoc());
772
773     if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
774       NewDiv = UndefValue::get(VT);
775
776       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
777         Value *NumEltN = Builder.CreateExtractElement(Num, N);
778         Value *DenEltN = Builder.CreateExtractElement(Den, N);
779         Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
780         if (!NewElt)
781           NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
782         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
783       }
784     } else {
785       NewDiv = expandDivRem32(Builder, I, Num, Den);
786     }
787
788     if (NewDiv) {
789       I.replaceAllUsesWith(NewDiv);
790       I.eraseFromParent();
791       Changed = true;
792     }
793   }
794
795   return Changed;
796 }
797
798 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
799   if (!WidenLoads)
800     return false;
801
802   if ((I.getPointerAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
803        I.getPointerAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
804       canWidenScalarExtLoad(I)) {
805     IRBuilder<> Builder(&I);
806     Builder.SetCurrentDebugLocation(I.getDebugLoc());
807
808     Type *I32Ty = Builder.getInt32Ty();
809     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
810     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
811     LoadInst *WidenLoad = Builder.CreateLoad(BitCast);
812     WidenLoad->copyMetadata(I);
813
814     // If we have range metadata, we need to convert the type, and not make
815     // assumptions about the high bits.
816     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
817       ConstantInt *Lower =
818         mdconst::extract<ConstantInt>(Range->getOperand(0));
819
820       if (Lower->getValue().isNullValue()) {
821         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
822       } else {
823         Metadata *LowAndHigh[] = {
824           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
825           // Don't make assumptions about the high bits.
826           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
827         };
828
829         WidenLoad->setMetadata(LLVMContext::MD_range,
830                                MDNode::get(Mod->getContext(), LowAndHigh));
831       }
832     }
833
834     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
835     Type *IntNTy = Builder.getIntNTy(TySize);
836     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
837     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
838     I.replaceAllUsesWith(ValOrig);
839     I.eraseFromParent();
840     return true;
841   }
842
843   return false;
844 }
845
846 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
847   bool Changed = false;
848
849   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
850       DA->isUniform(&I))
851     Changed |= promoteUniformOpToI32(I);
852
853   return Changed;
854 }
855
856 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
857   bool Changed = false;
858
859   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
860       DA->isUniform(&I))
861     Changed |= promoteUniformOpToI32(I);
862
863   return Changed;
864 }
865
866 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
867   switch (I.getIntrinsicID()) {
868   case Intrinsic::bitreverse:
869     return visitBitreverseIntrinsicInst(I);
870   default:
871     return false;
872   }
873 }
874
875 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
876   bool Changed = false;
877
878   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
879       DA->isUniform(&I))
880     Changed |= promoteUniformBitreverseToI32(I);
881
882   return Changed;
883 }
884
885 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
886   Mod = &M;
887   return false;
888 }
889
890 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
891   if (skipFunction(F))
892     return false;
893
894   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
895   if (!TPC)
896     return false;
897
898   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
899   ST = &TM.getSubtarget<GCNSubtarget>(F);
900   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
901   DA = &getAnalysis<DivergenceAnalysis>();
902   HasUnsafeFPMath = hasUnsafeFPMath(F);
903   AMDGPUASI = TM.getAMDGPUAS();
904
905   bool MadeChange = false;
906
907   for (BasicBlock &BB : F) {
908     BasicBlock::iterator Next;
909     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
910       Next = std::next(I);
911       MadeChange |= visit(*I);
912     }
913   }
914
915   return MadeChange;
916 }
917
918 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
919                       "AMDGPU IR optimizations", false, false)
920 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
921 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
922 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
923                     false, false)
924
925 char AMDGPUCodeGenPrepare::ID = 0;
926
927 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
928   return new AMDGPUCodeGenPrepare();
929 }