]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AMDGPU / AMDGPULibCalls.cpp
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file does AMD library function optimizations.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "amdgpu-simplifylib"
16
17 #include "AMDGPU.h"
18 #include "AMDGPULibFunc.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/ADT/StringSet.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <vector>
35 #include <cmath>
36
37 using namespace llvm;
38
39 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
40   cl::desc("Enable pre-link mode optimizations"),
41   cl::init(false),
42   cl::Hidden);
43
44 static cl::list<std::string> UseNative("amdgpu-use-native",
45   cl::desc("Comma separated list of functions to replace with native, or all"),
46   cl::CommaSeparated, cl::ValueOptional,
47   cl::Hidden);
48
49 #define MATH_PI     3.14159265358979323846264338327950288419716939937511
50 #define MATH_E      2.71828182845904523536028747135266249775724709369996
51 #define MATH_SQRT2  1.41421356237309504880168872420969807856967187537695
52
53 #define MATH_LOG2E     1.4426950408889634073599246810018921374266459541529859
54 #define MATH_LOG10E    0.4342944819032518276511289189166050822943970058036665
55 // Value of log2(10)
56 #define MATH_LOG2_10   3.3219280948873623478703194294893901758648313930245806
57 // Value of 1 / log2(10)
58 #define MATH_RLOG2_10  0.3010299956639811952137388947244930267681898814621085
59 // Value of 1 / M_LOG2E_F = 1 / log2(e)
60 #define MATH_RLOG2_E   0.6931471805599453094172321214581765680755001343602552
61
62 namespace llvm {
63
64 class AMDGPULibCalls {
65 private:
66
67   typedef llvm::AMDGPULibFunc FuncInfo;
68
69   // -fuse-native.
70   bool AllNative = false;
71
72   bool useNativeFunc(const StringRef F) const;
73
74   // Return a pointer (pointer expr) to the function if function defintion with
75   // "FuncName" exists. It may create a new function prototype in pre-link mode.
76   Constant *getFunction(Module *M, const FuncInfo& fInfo);
77
78   // Replace a normal function with its native version.
79   bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
80
81   bool parseFunctionName(const StringRef& FMangledName,
82                          FuncInfo *FInfo=nullptr /*out*/);
83
84   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
85
86   /* Specialized optimizations */
87
88   // recip (half or native)
89   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
90
91   // divide (half or native)
92   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
93
94   // pow/powr/pown
95   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
96
97   // rootn
98   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
99
100   // fma/mad
101   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
102
103   // -fuse-native for sincos
104   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
105
106   // evaluate calls if calls' arguments are constants.
107   bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
108     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
109   bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
110
111   // exp
112   bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
113
114   // exp2
115   bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
116
117   // exp10
118   bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
119
120   // log
121   bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
122
123   // log2
124   bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
125
126   // log10
127   bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
128
129   // sqrt
130   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
131
132   // sin/cos
133   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
134
135   // __read_pipe/__write_pipe
136   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
137
138   // Get insertion point at entry.
139   BasicBlock::iterator getEntryIns(CallInst * UI);
140   // Insert an Alloc instruction.
141   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
142   // Get a scalar native builtin signle argument FP function
143   Constant* getNativeFunction(Module* M, const FuncInfo &FInfo);
144
145 protected:
146   CallInst *CI;
147
148   bool isUnsafeMath(const CallInst *CI) const;
149
150   void replaceCall(Value *With) {
151     CI->replaceAllUsesWith(With);
152     CI->eraseFromParent();
153   }
154
155 public:
156   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
157
158   void initNativeFuncs();
159
160   // Replace a normal math function call with that native version
161   bool useNative(CallInst *CI);
162 };
163
164 } // end llvm namespace
165
166 namespace {
167
168   class AMDGPUSimplifyLibCalls : public FunctionPass {
169
170   AMDGPULibCalls Simplifier;
171
172   const TargetOptions Options;
173
174   public:
175     static char ID; // Pass identification
176
177     AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions())
178       : FunctionPass(ID), Options(Opt) {
179       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
180     }
181
182     void getAnalysisUsage(AnalysisUsage &AU) const override {
183       AU.addRequired<AAResultsWrapperPass>();
184     }
185
186     bool runOnFunction(Function &M) override;
187   };
188
189   class AMDGPUUseNativeCalls : public FunctionPass {
190
191   AMDGPULibCalls Simplifier;
192
193   public:
194     static char ID; // Pass identification
195
196     AMDGPUUseNativeCalls() : FunctionPass(ID) {
197       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
198       Simplifier.initNativeFuncs();
199     }
200
201     bool runOnFunction(Function &F) override;
202   };
203
204 } // end anonymous namespace.
205
206 char AMDGPUSimplifyLibCalls::ID = 0;
207 char AMDGPUUseNativeCalls::ID = 0;
208
209 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
210                       "Simplify well-known AMD library calls", false, false)
211 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
212 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
213                     "Simplify well-known AMD library calls", false, false)
214
215 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
216                 "Replace builtin math calls with that native versions.",
217                 false, false)
218
219 template <typename IRB>
220 static CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg,
221                               const Twine &Name = "") {
222   CallInst *R = B.CreateCall(Callee, Arg, Name);
223   if (Function* F = dyn_cast<Function>(Callee))
224     R->setCallingConv(F->getCallingConv());
225   return R;
226 }
227
228 template <typename IRB>
229 static CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2,
230                                const Twine &Name = "") {
231   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
232   if (Function* F = dyn_cast<Function>(Callee))
233     R->setCallingConv(F->getCallingConv());
234   return R;
235 }
236
237 //  Data structures for table-driven optimizations.
238 //  FuncTbl works for both f32 and f64 functions with 1 input argument
239
240 struct TableEntry {
241   double   result;
242   double   input;
243 };
244
245 /* a list of {result, input} */
246 static const TableEntry tbl_acos[] = {
247   {MATH_PI/2.0, 0.0},
248   {MATH_PI/2.0, -0.0},
249   {0.0, 1.0},
250   {MATH_PI, -1.0}
251 };
252 static const TableEntry tbl_acosh[] = {
253   {0.0, 1.0}
254 };
255 static const TableEntry tbl_acospi[] = {
256   {0.5, 0.0},
257   {0.5, -0.0},
258   {0.0, 1.0},
259   {1.0, -1.0}
260 };
261 static const TableEntry tbl_asin[] = {
262   {0.0, 0.0},
263   {-0.0, -0.0},
264   {MATH_PI/2.0, 1.0},
265   {-MATH_PI/2.0, -1.0}
266 };
267 static const TableEntry tbl_asinh[] = {
268   {0.0, 0.0},
269   {-0.0, -0.0}
270 };
271 static const TableEntry tbl_asinpi[] = {
272   {0.0, 0.0},
273   {-0.0, -0.0},
274   {0.5, 1.0},
275   {-0.5, -1.0}
276 };
277 static const TableEntry tbl_atan[] = {
278   {0.0, 0.0},
279   {-0.0, -0.0},
280   {MATH_PI/4.0, 1.0},
281   {-MATH_PI/4.0, -1.0}
282 };
283 static const TableEntry tbl_atanh[] = {
284   {0.0, 0.0},
285   {-0.0, -0.0}
286 };
287 static const TableEntry tbl_atanpi[] = {
288   {0.0, 0.0},
289   {-0.0, -0.0},
290   {0.25, 1.0},
291   {-0.25, -1.0}
292 };
293 static const TableEntry tbl_cbrt[] = {
294   {0.0, 0.0},
295   {-0.0, -0.0},
296   {1.0, 1.0},
297   {-1.0, -1.0},
298 };
299 static const TableEntry tbl_cos[] = {
300   {1.0, 0.0},
301   {1.0, -0.0}
302 };
303 static const TableEntry tbl_cosh[] = {
304   {1.0, 0.0},
305   {1.0, -0.0}
306 };
307 static const TableEntry tbl_cospi[] = {
308   {1.0, 0.0},
309   {1.0, -0.0}
310 };
311 static const TableEntry tbl_erfc[] = {
312   {1.0, 0.0},
313   {1.0, -0.0}
314 };
315 static const TableEntry tbl_erf[] = {
316   {0.0, 0.0},
317   {-0.0, -0.0}
318 };
319 static const TableEntry tbl_exp[] = {
320   {1.0, 0.0},
321   {1.0, -0.0},
322   {MATH_E, 1.0}
323 };
324 static const TableEntry tbl_exp2[] = {
325   {1.0, 0.0},
326   {1.0, -0.0},
327   {2.0, 1.0}
328 };
329 static const TableEntry tbl_exp10[] = {
330   {1.0, 0.0},
331   {1.0, -0.0},
332   {10.0, 1.0}
333 };
334 static const TableEntry tbl_expm1[] = {
335   {0.0, 0.0},
336   {-0.0, -0.0}
337 };
338 static const TableEntry tbl_log[] = {
339   {0.0, 1.0},
340   {1.0, MATH_E}
341 };
342 static const TableEntry tbl_log2[] = {
343   {0.0, 1.0},
344   {1.0, 2.0}
345 };
346 static const TableEntry tbl_log10[] = {
347   {0.0, 1.0},
348   {1.0, 10.0}
349 };
350 static const TableEntry tbl_rsqrt[] = {
351   {1.0, 1.0},
352   {1.0/MATH_SQRT2, 2.0}
353 };
354 static const TableEntry tbl_sin[] = {
355   {0.0, 0.0},
356   {-0.0, -0.0}
357 };
358 static const TableEntry tbl_sinh[] = {
359   {0.0, 0.0},
360   {-0.0, -0.0}
361 };
362 static const TableEntry tbl_sinpi[] = {
363   {0.0, 0.0},
364   {-0.0, -0.0}
365 };
366 static const TableEntry tbl_sqrt[] = {
367   {0.0, 0.0},
368   {1.0, 1.0},
369   {MATH_SQRT2, 2.0}
370 };
371 static const TableEntry tbl_tan[] = {
372   {0.0, 0.0},
373   {-0.0, -0.0}
374 };
375 static const TableEntry tbl_tanh[] = {
376   {0.0, 0.0},
377   {-0.0, -0.0}
378 };
379 static const TableEntry tbl_tanpi[] = {
380   {0.0, 0.0},
381   {-0.0, -0.0}
382 };
383 static const TableEntry tbl_tgamma[] = {
384   {1.0, 1.0},
385   {1.0, 2.0},
386   {2.0, 3.0},
387   {6.0, 4.0}
388 };
389
390 static bool HasNative(AMDGPULibFunc::EFuncId id) {
391   switch(id) {
392   case AMDGPULibFunc::EI_DIVIDE:
393   case AMDGPULibFunc::EI_COS:
394   case AMDGPULibFunc::EI_EXP:
395   case AMDGPULibFunc::EI_EXP2:
396   case AMDGPULibFunc::EI_EXP10:
397   case AMDGPULibFunc::EI_LOG:
398   case AMDGPULibFunc::EI_LOG2:
399   case AMDGPULibFunc::EI_LOG10:
400   case AMDGPULibFunc::EI_POWR:
401   case AMDGPULibFunc::EI_RECIP:
402   case AMDGPULibFunc::EI_RSQRT:
403   case AMDGPULibFunc::EI_SIN:
404   case AMDGPULibFunc::EI_SINCOS:
405   case AMDGPULibFunc::EI_SQRT:
406   case AMDGPULibFunc::EI_TAN:
407     return true;
408   default:;
409   }
410   return false;
411 }
412
413 struct TableRef {
414   size_t size;
415   const TableEntry *table; // variable size: from 0 to (size - 1)
416
417   TableRef() : size(0), table(nullptr) {}
418
419   template <size_t N>
420   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
421 };
422
423 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
424   switch(id) {
425   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
426   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
427   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
428   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
429   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
430   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
431   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
432   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
433   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
434   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
435   case AMDGPULibFunc::EI_NCOS:
436   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
437   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
438   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
439   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
440   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
441   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
442   case AMDGPULibFunc::EI_NEXP2:
443   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
444   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
445   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
446   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
447   case AMDGPULibFunc::EI_NLOG2:
448   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
449   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
450   case AMDGPULibFunc::EI_NRSQRT:
451   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
452   case AMDGPULibFunc::EI_NSIN:
453   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
454   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
455   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
456   case AMDGPULibFunc::EI_NSQRT:
457   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
458   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
459   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
460   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
461   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
462   default:;
463   }
464   return TableRef();
465 }
466
467 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
468   return FInfo.getLeads()[0].VectorSize;
469 }
470
471 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
472   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
473 }
474
475 Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) {
476   // If we are doing PreLinkOpt, the function is external. So it is safe to
477   // use getOrInsertFunction() at this stage.
478
479   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
480                        : AMDGPULibFunc::getFunction(M, fInfo);
481 }
482
483 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
484                                     FuncInfo *FInfo) {
485   return AMDGPULibFunc::parse(FMangledName, *FInfo);
486 }
487
488 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
489   if (auto Op = dyn_cast<FPMathOperator>(CI))
490     if (Op->isFast())
491       return true;
492   const Function *F = CI->getParent()->getParent();
493   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
494   return Attr.getValueAsString() == "true";
495 }
496
497 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
498   return AllNative ||
499          std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
500 }
501
502 void AMDGPULibCalls::initNativeFuncs() {
503   AllNative = useNativeFunc("all") ||
504               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
505                UseNative.begin()->empty());
506 }
507
508 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
509   bool native_sin = useNativeFunc("sin");
510   bool native_cos = useNativeFunc("cos");
511
512   if (native_sin && native_cos) {
513     Module *M = aCI->getModule();
514     Value *opr0 = aCI->getArgOperand(0);
515
516     AMDGPULibFunc nf;
517     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
518     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
519
520     nf.setPrefix(AMDGPULibFunc::NATIVE);
521     nf.setId(AMDGPULibFunc::EI_SIN);
522     Constant *sinExpr = getFunction(M, nf);
523
524     nf.setPrefix(AMDGPULibFunc::NATIVE);
525     nf.setId(AMDGPULibFunc::EI_COS);
526     Constant *cosExpr = getFunction(M, nf);
527     if (sinExpr && cosExpr) {
528       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
529       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
530       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
531
532       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
533                                           << " with native version of sin/cos");
534
535       replaceCall(sinval);
536       return true;
537     }
538   }
539   return false;
540 }
541
542 bool AMDGPULibCalls::useNative(CallInst *aCI) {
543   CI = aCI;
544   Function *Callee = aCI->getCalledFunction();
545
546   FuncInfo FInfo;
547   if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
548       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
549       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
550       !(AllNative || useNativeFunc(FInfo.getName()))) {
551     return false;
552   }
553
554   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
555     return sincosUseNative(aCI, FInfo);
556
557   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
558   Constant *F = getFunction(aCI->getModule(), FInfo);
559   if (!F)
560     return false;
561
562   aCI->setCalledFunction(F);
563   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
564                                       << " with native version");
565   return true;
566 }
567
568 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
569 // builtin, with appended type size and alignment arguments, where 2 or 4
570 // indicates the original number of arguments. The library has optimized version
571 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
572 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
573 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
574 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
575 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
576                                           FuncInfo &FInfo) {
577   auto *Callee = CI->getCalledFunction();
578   if (!Callee->isDeclaration())
579     return false;
580
581   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
582   auto *M = Callee->getParent();
583   auto &Ctx = M->getContext();
584   std::string Name = Callee->getName();
585   auto NumArg = CI->getNumArgOperands();
586   if (NumArg != 4 && NumArg != 6)
587     return false;
588   auto *PacketSize = CI->getArgOperand(NumArg - 2);
589   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
590   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
591     return false;
592   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
593   unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue();
594   if (Size != Align || !isPowerOf2_32(Size))
595     return false;
596
597   Type *PtrElemTy;
598   if (Size <= 8)
599     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
600   else
601     PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8);
602   unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
603   auto PtrArg = CI->getArgOperand(PtrArgLoc);
604   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
605   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
606
607   SmallVector<llvm::Type *, 6> ArgTys;
608   for (unsigned I = 0; I != PtrArgLoc; ++I)
609     ArgTys.push_back(CI->getArgOperand(I)->getType());
610   ArgTys.push_back(PtrTy);
611
612   Name = Name + "_" + std::to_string(Size);
613   auto *FTy = FunctionType::get(Callee->getReturnType(),
614                                 ArrayRef<Type *>(ArgTys), false);
615   AMDGPULibFunc NewLibFunc(Name, FTy);
616   auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
617   if (!F)
618     return false;
619
620   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
621   SmallVector<Value *, 6> Args;
622   for (unsigned I = 0; I != PtrArgLoc; ++I)
623     Args.push_back(CI->getArgOperand(I));
624   Args.push_back(BCast);
625
626   auto *NCI = B.CreateCall(F, Args);
627   NCI->setAttributes(CI->getAttributes());
628   CI->replaceAllUsesWith(NCI);
629   CI->dropAllReferences();
630   CI->eraseFromParent();
631
632   return true;
633 }
634
635 // This function returns false if no change; return true otherwise.
636 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
637   this->CI = CI;
638   Function *Callee = CI->getCalledFunction();
639
640   // Ignore indirect calls.
641   if (Callee == 0) return false;
642
643   FuncInfo FInfo;
644   if (!parseFunctionName(Callee->getName(), &FInfo))
645     return false;
646
647   // Further check the number of arguments to see if they match.
648   if (CI->getNumArgOperands() != FInfo.getNumArgs())
649     return false;
650
651   BasicBlock *BB = CI->getParent();
652   LLVMContext &Context = CI->getParent()->getContext();
653   IRBuilder<> B(Context);
654
655   // Set the builder to the instruction after the call.
656   B.SetInsertPoint(BB, CI->getIterator());
657
658   // Copy fast flags from the original call.
659   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
660     B.setFastMathFlags(FPOp->getFastMathFlags());
661
662   if (TDOFold(CI, FInfo))
663     return true;
664
665   // Under unsafe-math, evaluate calls if possible.
666   // According to Brian Sumner, we can do this for all f32 function calls
667   // using host's double function calls.
668   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
669     return true;
670
671   // Specilized optimizations for each function call
672   switch (FInfo.getId()) {
673   case AMDGPULibFunc::EI_RECIP:
674     // skip vector function
675     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
676              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
677             "recip must be an either native or half function");
678     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
679
680   case AMDGPULibFunc::EI_DIVIDE:
681     // skip vector function
682     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
683              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
684             "divide must be an either native or half function");
685     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
686
687   case AMDGPULibFunc::EI_POW:
688   case AMDGPULibFunc::EI_POWR:
689   case AMDGPULibFunc::EI_POWN:
690     return fold_pow(CI, B, FInfo);
691
692   case AMDGPULibFunc::EI_ROOTN:
693     // skip vector function
694     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
695
696   case AMDGPULibFunc::EI_FMA:
697   case AMDGPULibFunc::EI_MAD:
698   case AMDGPULibFunc::EI_NFMA:
699     // skip vector function
700     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
701
702   case AMDGPULibFunc::EI_SQRT:
703     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
704   case AMDGPULibFunc::EI_COS:
705   case AMDGPULibFunc::EI_SIN:
706     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
707          getArgType(FInfo) == AMDGPULibFunc::F64)
708         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
709       return fold_sincos(CI, B, AA);
710
711     break;
712   case AMDGPULibFunc::EI_READ_PIPE_2:
713   case AMDGPULibFunc::EI_READ_PIPE_4:
714   case AMDGPULibFunc::EI_WRITE_PIPE_2:
715   case AMDGPULibFunc::EI_WRITE_PIPE_4:
716     return fold_read_write_pipe(CI, B, FInfo);
717
718   default:
719     break;
720   }
721
722   return false;
723 }
724
725 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
726   // Table-Driven optimization
727   const TableRef tr = getOptTable(FInfo.getId());
728   if (tr.size==0)
729     return false;
730
731   int const sz = (int)tr.size;
732   const TableEntry * const ftbl = tr.table;
733   Value *opr0 = CI->getArgOperand(0);
734
735   if (getVecSize(FInfo) > 1) {
736     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
737       SmallVector<double, 0> DVal;
738       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
739         ConstantFP *eltval = dyn_cast<ConstantFP>(
740                                CV->getElementAsConstant((unsigned)eltNo));
741         assert(eltval && "Non-FP arguments in math function!");
742         bool found = false;
743         for (int i=0; i < sz; ++i) {
744           if (eltval->isExactlyValue(ftbl[i].input)) {
745             DVal.push_back(ftbl[i].result);
746             found = true;
747             break;
748           }
749         }
750         if (!found) {
751           // This vector constants not handled yet.
752           return false;
753         }
754       }
755       LLVMContext &context = CI->getParent()->getParent()->getContext();
756       Constant *nval;
757       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
758         SmallVector<float, 0> FVal;
759         for (unsigned i = 0; i < DVal.size(); ++i) {
760           FVal.push_back((float)DVal[i]);
761         }
762         ArrayRef<float> tmp(FVal);
763         nval = ConstantDataVector::get(context, tmp);
764       } else { // F64
765         ArrayRef<double> tmp(DVal);
766         nval = ConstantDataVector::get(context, tmp);
767       }
768       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
769       replaceCall(nval);
770       return true;
771     }
772   } else {
773     // Scalar version
774     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
775       for (int i = 0; i < sz; ++i) {
776         if (CF->isExactlyValue(ftbl[i].input)) {
777           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
778           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
779           replaceCall(nval);
780           return true;
781         }
782       }
783     }
784   }
785
786   return false;
787 }
788
789 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
790   Module *M = CI->getModule();
791   if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
792       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
793       !HasNative(FInfo.getId()))
794     return false;
795
796   AMDGPULibFunc nf = FInfo;
797   nf.setPrefix(AMDGPULibFunc::NATIVE);
798   if (Constant *FPExpr = getFunction(M, nf)) {
799     LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
800
801     CI->setCalledFunction(FPExpr);
802
803     LLVM_DEBUG(dbgs() << *CI << '\n');
804
805     return true;
806   }
807   return false;
808 }
809
810 //  [native_]half_recip(c) ==> 1.0/c
811 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
812                                 const FuncInfo &FInfo) {
813   Value *opr0 = CI->getArgOperand(0);
814   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
815     // Just create a normal div. Later, InstCombine will be able
816     // to compute the divide into a constant (avoid check float infinity
817     // or subnormal at this point).
818     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
819                                opr0,
820                                "recip2div");
821     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
822     replaceCall(nval);
823     return true;
824   }
825   return false;
826 }
827
828 //  [native_]half_divide(x, c) ==> x/c
829 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
830                                  const FuncInfo &FInfo) {
831   Value *opr0 = CI->getArgOperand(0);
832   Value *opr1 = CI->getArgOperand(1);
833   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
834   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
835
836   if ((CF0 && CF1) ||  // both are constants
837       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
838       // CF1 is constant && f32 divide
839   {
840     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
841                                 opr1, "__div2recip");
842     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
843     replaceCall(nval);
844     return true;
845   }
846   return false;
847 }
848
849 namespace llvm {
850 static double log2(double V) {
851 #if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
852   return ::log2(V);
853 #else
854   return log(V) / 0.693147180559945309417;
855 #endif
856 }
857 }
858
859 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
860                               const FuncInfo &FInfo) {
861   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
862           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
863           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
864          "fold_pow: encounter a wrong function call");
865
866   Value *opr0, *opr1;
867   ConstantFP *CF;
868   ConstantInt *CINT;
869   ConstantAggregateZero *CZero;
870   Type *eltType;
871
872   opr0 = CI->getArgOperand(0);
873   opr1 = CI->getArgOperand(1);
874   CZero = dyn_cast<ConstantAggregateZero>(opr1);
875   if (getVecSize(FInfo) == 1) {
876     eltType = opr0->getType();
877     CF = dyn_cast<ConstantFP>(opr1);
878     CINT = dyn_cast<ConstantInt>(opr1);
879   } else {
880     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
881     assert(VTy && "Oprand of vector function should be of vectortype");
882     eltType = VTy->getElementType();
883     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
884
885     // Now, only Handle vector const whose elements have the same value.
886     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
887     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
888   }
889
890   // No unsafe math , no constant argument, do nothing
891   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
892     return false;
893
894   // 0x1111111 means that we don't do anything for this call.
895   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
896
897   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
898     //  pow/powr/pown(x, 0) == 1
899     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
900     Constant *cnval = ConstantFP::get(eltType, 1.0);
901     if (getVecSize(FInfo) > 1) {
902       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
903     }
904     replaceCall(cnval);
905     return true;
906   }
907   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
908     // pow/powr/pown(x, 1.0) = x
909     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
910     replaceCall(opr0);
911     return true;
912   }
913   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
914     // pow/powr/pown(x, 2.0) = x*x
915     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
916                       << "\n");
917     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
918     replaceCall(nval);
919     return true;
920   }
921   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
922     // pow/powr/pown(x, -1.0) = 1.0/x
923     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
924     Constant *cnval = ConstantFP::get(eltType, 1.0);
925     if (getVecSize(FInfo) > 1) {
926       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
927     }
928     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
929     replaceCall(nval);
930     return true;
931   }
932
933   Module *M = CI->getModule();
934   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
935     // pow[r](x, [-]0.5) = sqrt(x)
936     bool issqrt = CF->isExactlyValue(0.5);
937     if (Constant *FPExpr = getFunction(M,
938         AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
939                              : AMDGPULibFunc::EI_RSQRT, FInfo))) {
940       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
941                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
942       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
943                                                         : "__pow2rsqrt");
944       replaceCall(nval);
945       return true;
946     }
947   }
948
949   if (!isUnsafeMath(CI))
950     return false;
951
952   // Unsafe Math optimization
953
954   // Remember that ci_opr1 is set if opr1 is integral
955   if (CF) {
956     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
957                     ? (double)CF->getValueAPF().convertToFloat()
958                     : CF->getValueAPF().convertToDouble();
959     int ival = (int)dval;
960     if ((double)ival == dval) {
961       ci_opr1 = ival;
962     } else
963       ci_opr1 = 0x11111111;
964   }
965
966   // pow/powr/pown(x, c) = [1/](x*x*..x); where
967   //   trunc(c) == c && the number of x == c && |c| <= 12
968   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
969   if (abs_opr1 <= 12) {
970     Constant *cnval;
971     Value *nval;
972     if (abs_opr1 == 0) {
973       cnval = ConstantFP::get(eltType, 1.0);
974       if (getVecSize(FInfo) > 1) {
975         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
976       }
977       nval = cnval;
978     } else {
979       Value *valx2 = nullptr;
980       nval = nullptr;
981       while (abs_opr1 > 0) {
982         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
983         if (abs_opr1 & 1) {
984           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
985         }
986         abs_opr1 >>= 1;
987       }
988     }
989
990     if (ci_opr1 < 0) {
991       cnval = ConstantFP::get(eltType, 1.0);
992       if (getVecSize(FInfo) > 1) {
993         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
994       }
995       nval = B.CreateFDiv(cnval, nval, "__1powprod");
996     }
997     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
998                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
999                       << ")\n");
1000     replaceCall(nval);
1001     return true;
1002   }
1003
1004   // powr ---> exp2(y * log2(x))
1005   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1006   Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2,
1007                                                    FInfo));
1008   if (!ExpExpr)
1009     return false;
1010
1011   bool needlog = false;
1012   bool needabs = false;
1013   bool needcopysign = false;
1014   Constant *cnval = nullptr;
1015   if (getVecSize(FInfo) == 1) {
1016     CF = dyn_cast<ConstantFP>(opr0);
1017
1018     if (CF) {
1019       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1020                    ? (double)CF->getValueAPF().convertToFloat()
1021                    : CF->getValueAPF().convertToDouble();
1022
1023       V = log2(std::abs(V));
1024       cnval = ConstantFP::get(eltType, V);
1025       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1026                      CF->isNegative();
1027     } else {
1028       needlog = true;
1029       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1030                                (!CF || CF->isNegative());
1031     }
1032   } else {
1033     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1034
1035     if (!CDV) {
1036       needlog = true;
1037       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1038     } else {
1039       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1040               "Wrong vector size detected");
1041
1042       SmallVector<double, 0> DVal;
1043       for (int i=0; i < getVecSize(FInfo); ++i) {
1044         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1045                      ? (double)CDV->getElementAsFloat(i)
1046                      : CDV->getElementAsDouble(i);
1047         if (V < 0.0) needcopysign = true;
1048         V = log2(std::abs(V));
1049         DVal.push_back(V);
1050       }
1051       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1052         SmallVector<float, 0> FVal;
1053         for (unsigned i=0; i < DVal.size(); ++i) {
1054           FVal.push_back((float)DVal[i]);
1055         }
1056         ArrayRef<float> tmp(FVal);
1057         cnval = ConstantDataVector::get(M->getContext(), tmp);
1058       } else {
1059         ArrayRef<double> tmp(DVal);
1060         cnval = ConstantDataVector::get(M->getContext(), tmp);
1061       }
1062     }
1063   }
1064
1065   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1066     // We cannot handle corner cases for a general pow() function, give up
1067     // unless y is a constant integral value. Then proceed as if it were pown.
1068     if (getVecSize(FInfo) == 1) {
1069       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1070         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1071                    ? (double)CF->getValueAPF().convertToFloat()
1072                    : CF->getValueAPF().convertToDouble();
1073         if (y != (double)(int64_t)y)
1074           return false;
1075       } else
1076         return false;
1077     } else {
1078       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1079         for (int i=0; i < getVecSize(FInfo); ++i) {
1080           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1081                      ? (double)CDV->getElementAsFloat(i)
1082                      : CDV->getElementAsDouble(i);
1083           if (y != (double)(int64_t)y)
1084             return false;
1085         }
1086       } else
1087         return false;
1088     }
1089   }
1090
1091   Value *nval;
1092   if (needabs) {
1093     Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS,
1094                                                      FInfo));
1095     if (!AbsExpr)
1096       return false;
1097     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1098   } else {
1099     nval = cnval ? cnval : opr0;
1100   }
1101   if (needlog) {
1102     Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2,
1103                                                      FInfo));
1104     if (!LogExpr)
1105       return false;
1106     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1107   }
1108
1109   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1110     // convert int(32) to fp(f32 or f64)
1111     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1112   }
1113   nval = B.CreateFMul(opr1, nval, "__ylogx");
1114   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1115
1116   if (needcopysign) {
1117     Value *opr_n;
1118     Type* rTy = opr0->getType();
1119     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1120     Type *nTy = nTyS;
1121     if (const VectorType *vTy = dyn_cast<VectorType>(rTy))
1122       nTy = VectorType::get(nTyS, vTy->getNumElements());
1123     unsigned size = nTy->getScalarSizeInBits();
1124     opr_n = CI->getArgOperand(1);
1125     if (opr_n->getType()->isIntegerTy())
1126       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1127     else
1128       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1129
1130     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1131     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1132     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1133     nval = B.CreateBitCast(nval, opr0->getType());
1134   }
1135
1136   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1137                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1138   replaceCall(nval);
1139
1140   return true;
1141 }
1142
1143 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1144                                 const FuncInfo &FInfo) {
1145   Value *opr0 = CI->getArgOperand(0);
1146   Value *opr1 = CI->getArgOperand(1);
1147
1148   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1149   if (!CINT) {
1150     return false;
1151   }
1152   int ci_opr1 = (int)CINT->getSExtValue();
1153   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1154     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1155     replaceCall(opr0);
1156     return true;
1157   }
1158   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1159     std::vector<const Type*> ParamsTys;
1160     ParamsTys.push_back(opr0->getType());
1161     Module *M = CI->getModule();
1162     if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT,
1163                                                         FInfo))) {
1164       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1165       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1166       replaceCall(nval);
1167       return true;
1168     }
1169   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1170     Module *M = CI->getModule();
1171     if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT,
1172                                                         FInfo))) {
1173       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1174       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1175       replaceCall(nval);
1176       return true;
1177     }
1178   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1179     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1180     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1181                                opr0,
1182                                "__rootn2div");
1183     replaceCall(nval);
1184     return true;
1185   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1186     std::vector<const Type*> ParamsTys;
1187     ParamsTys.push_back(opr0->getType());
1188     Module *M = CI->getModule();
1189     if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT,
1190                                                         FInfo))) {
1191       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1192                         << ")\n");
1193       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1194       replaceCall(nval);
1195       return true;
1196     }
1197   }
1198   return false;
1199 }
1200
1201 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1202                                   const FuncInfo &FInfo) {
1203   Value *opr0 = CI->getArgOperand(0);
1204   Value *opr1 = CI->getArgOperand(1);
1205   Value *opr2 = CI->getArgOperand(2);
1206
1207   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1208   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1209   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1210     // fma/mad(a, b, c) = c if a=0 || b=0
1211     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1212     replaceCall(opr2);
1213     return true;
1214   }
1215   if (CF0 && CF0->isExactlyValue(1.0f)) {
1216     // fma/mad(a, b, c) = b+c if a=1
1217     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1218                       << "\n");
1219     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1220     replaceCall(nval);
1221     return true;
1222   }
1223   if (CF1 && CF1->isExactlyValue(1.0f)) {
1224     // fma/mad(a, b, c) = a+c if b=1
1225     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1226                       << "\n");
1227     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1228     replaceCall(nval);
1229     return true;
1230   }
1231   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1232     if (CF->isZero()) {
1233       // fma/mad(a, b, c) = a*b if c=0
1234       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1235                         << *opr1 << "\n");
1236       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1237       replaceCall(nval);
1238       return true;
1239     }
1240   }
1241
1242   return false;
1243 }
1244
1245 // Get a scalar native builtin signle argument FP function
1246 Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) {
1247   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1248     return nullptr;
1249   FuncInfo nf = FInfo;
1250   nf.setPrefix(AMDGPULibFunc::NATIVE);
1251   return getFunction(M, nf);
1252 }
1253
1254 // fold sqrt -> native_sqrt (x)
1255 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1256                                const FuncInfo &FInfo) {
1257   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1258       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1259     if (Constant *FPExpr = getNativeFunction(
1260         CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1261       Value *opr0 = CI->getArgOperand(0);
1262       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1263                         << "sqrt(" << *opr0 << ")\n");
1264       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1265       replaceCall(nval);
1266       return true;
1267     }
1268   }
1269   return false;
1270 }
1271
1272 // fold sin, cos -> sincos.
1273 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1274                                  AliasAnalysis *AA) {
1275   AMDGPULibFunc fInfo;
1276   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1277     return false;
1278
1279   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1280          fInfo.getId() == AMDGPULibFunc::EI_COS);
1281   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1282
1283   Value *CArgVal = CI->getArgOperand(0);
1284   BasicBlock * const CBB = CI->getParent();
1285
1286   int const MaxScan = 30;
1287
1288   { // fold in load value.
1289     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1290     if (LI && LI->getParent() == CBB) {
1291       BasicBlock::iterator BBI = LI->getIterator();
1292       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1293       if (AvailableVal) {
1294         CArgVal->replaceAllUsesWith(AvailableVal);
1295         if (CArgVal->getNumUses() == 0)
1296           LI->eraseFromParent();
1297         CArgVal = CI->getArgOperand(0);
1298       }
1299     }
1300   }
1301
1302   Module *M = CI->getModule();
1303   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1304   std::string const PairName = fInfo.mangle();
1305
1306   CallInst *UI = nullptr;
1307   for (User* U : CArgVal->users()) {
1308     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1309     if (!XI || XI == CI || XI->getParent() != CBB)
1310       continue;
1311
1312     Function *UCallee = XI->getCalledFunction();
1313     if (!UCallee || !UCallee->getName().equals(PairName))
1314       continue;
1315
1316     BasicBlock::iterator BBI = CI->getIterator();
1317     if (BBI == CI->getParent()->begin())
1318       break;
1319     --BBI;
1320     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1321       if (cast<Instruction>(BBI) == XI) {
1322         UI = XI;
1323         break;
1324       }
1325     }
1326     if (UI) break;
1327   }
1328
1329   if (!UI) return false;
1330
1331   // Merge the sin and cos.
1332
1333   // for OpenCL 2.0 we have only generic implementation of sincos
1334   // function.
1335   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1336   const AMDGPUAS AS = AMDGPU::getAMDGPUAS(*M);
1337   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AS.FLAT_ADDRESS);
1338   Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf));
1339   if (!Fsincos) return false;
1340
1341   BasicBlock::iterator ItOld = B.GetInsertPoint();
1342   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1343   B.SetInsertPoint(UI);
1344
1345   Value *P = Alloc;
1346   Type *PTy = Fsincos->getFunctionType()->getParamType(1);
1347   // The allocaInst allocates the memory in private address space. This need
1348   // to be bitcasted to point to the address space of cos pointer type.
1349   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1350   if (PTy->getPointerAddressSpace() != AS.PRIVATE_ADDRESS)
1351     P = B.CreateAddrSpaceCast(Alloc, PTy);
1352   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1353
1354   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1355                     << *Call << "\n");
1356
1357   if (!isSin) { // CI->cos, UI->sin
1358     B.SetInsertPoint(&*ItOld);
1359     UI->replaceAllUsesWith(&*Call);
1360     Instruction *Reload = B.CreateLoad(Alloc);
1361     CI->replaceAllUsesWith(Reload);
1362     UI->eraseFromParent();
1363     CI->eraseFromParent();
1364   } else { // CI->sin, UI->cos
1365     Instruction *Reload = B.CreateLoad(Alloc);
1366     UI->replaceAllUsesWith(Reload);
1367     CI->replaceAllUsesWith(Call);
1368     UI->eraseFromParent();
1369     CI->eraseFromParent();
1370   }
1371   return true;
1372 }
1373
1374 // Get insertion point at entry.
1375 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1376   Function * Func = UI->getParent()->getParent();
1377   BasicBlock * BB = &Func->getEntryBlock();
1378   assert(BB && "Entry block not found!");
1379   BasicBlock::iterator ItNew = BB->begin();
1380   return ItNew;
1381 }
1382
1383 // Insert a AllocsInst at the beginning of function entry block.
1384 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1385                                          const char *prefix) {
1386   BasicBlock::iterator ItNew = getEntryIns(UI);
1387   Function *UCallee = UI->getCalledFunction();
1388   Type *RetType = UCallee->getReturnType();
1389   B.SetInsertPoint(&*ItNew);
1390   AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1391     std::string(prefix) + UI->getName());
1392   Alloc->setAlignment(UCallee->getParent()->getDataLayout()
1393                        .getTypeAllocSize(RetType));
1394   return Alloc;
1395 }
1396
1397 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1398                                             double& Res0, double& Res1,
1399                                             Constant *copr0, Constant *copr1,
1400                                             Constant *copr2) {
1401   // By default, opr0/opr1/opr3 holds values of float/double type.
1402   // If they are not float/double, each function has to its
1403   // operand separately.
1404   double opr0=0.0, opr1=0.0, opr2=0.0;
1405   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1406   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1407   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1408   if (fpopr0) {
1409     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1410              ? fpopr0->getValueAPF().convertToDouble()
1411              : (double)fpopr0->getValueAPF().convertToFloat();
1412   }
1413
1414   if (fpopr1) {
1415     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1416              ? fpopr1->getValueAPF().convertToDouble()
1417              : (double)fpopr1->getValueAPF().convertToFloat();
1418   }
1419
1420   if (fpopr2) {
1421     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1422              ? fpopr2->getValueAPF().convertToDouble()
1423              : (double)fpopr2->getValueAPF().convertToFloat();
1424   }
1425
1426   switch (FInfo.getId()) {
1427   default : return false;
1428
1429   case AMDGPULibFunc::EI_ACOS:
1430     Res0 = acos(opr0);
1431     return true;
1432
1433   case AMDGPULibFunc::EI_ACOSH:
1434     // acosh(x) == log(x + sqrt(x*x - 1))
1435     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1436     return true;
1437
1438   case AMDGPULibFunc::EI_ACOSPI:
1439     Res0 = acos(opr0) / MATH_PI;
1440     return true;
1441
1442   case AMDGPULibFunc::EI_ASIN:
1443     Res0 = asin(opr0);
1444     return true;
1445
1446   case AMDGPULibFunc::EI_ASINH:
1447     // asinh(x) == log(x + sqrt(x*x + 1))
1448     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1449     return true;
1450
1451   case AMDGPULibFunc::EI_ASINPI:
1452     Res0 = asin(opr0) / MATH_PI;
1453     return true;
1454
1455   case AMDGPULibFunc::EI_ATAN:
1456     Res0 = atan(opr0);
1457     return true;
1458
1459   case AMDGPULibFunc::EI_ATANH:
1460     // atanh(x) == (log(x+1) - log(x-1))/2;
1461     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1462     return true;
1463
1464   case AMDGPULibFunc::EI_ATANPI:
1465     Res0 = atan(opr0) / MATH_PI;
1466     return true;
1467
1468   case AMDGPULibFunc::EI_CBRT:
1469     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1470     return true;
1471
1472   case AMDGPULibFunc::EI_COS:
1473     Res0 = cos(opr0);
1474     return true;
1475
1476   case AMDGPULibFunc::EI_COSH:
1477     Res0 = cosh(opr0);
1478     return true;
1479
1480   case AMDGPULibFunc::EI_COSPI:
1481     Res0 = cos(MATH_PI * opr0);
1482     return true;
1483
1484   case AMDGPULibFunc::EI_EXP:
1485     Res0 = exp(opr0);
1486     return true;
1487
1488   case AMDGPULibFunc::EI_EXP2:
1489     Res0 = pow(2.0, opr0);
1490     return true;
1491
1492   case AMDGPULibFunc::EI_EXP10:
1493     Res0 = pow(10.0, opr0);
1494     return true;
1495
1496   case AMDGPULibFunc::EI_EXPM1:
1497     Res0 = exp(opr0) - 1.0;
1498     return true;
1499
1500   case AMDGPULibFunc::EI_LOG:
1501     Res0 = log(opr0);
1502     return true;
1503
1504   case AMDGPULibFunc::EI_LOG2:
1505     Res0 = log(opr0) / log(2.0);
1506     return true;
1507
1508   case AMDGPULibFunc::EI_LOG10:
1509     Res0 = log(opr0) / log(10.0);
1510     return true;
1511
1512   case AMDGPULibFunc::EI_RSQRT:
1513     Res0 = 1.0 / sqrt(opr0);
1514     return true;
1515
1516   case AMDGPULibFunc::EI_SIN:
1517     Res0 = sin(opr0);
1518     return true;
1519
1520   case AMDGPULibFunc::EI_SINH:
1521     Res0 = sinh(opr0);
1522     return true;
1523
1524   case AMDGPULibFunc::EI_SINPI:
1525     Res0 = sin(MATH_PI * opr0);
1526     return true;
1527
1528   case AMDGPULibFunc::EI_SQRT:
1529     Res0 = sqrt(opr0);
1530     return true;
1531
1532   case AMDGPULibFunc::EI_TAN:
1533     Res0 = tan(opr0);
1534     return true;
1535
1536   case AMDGPULibFunc::EI_TANH:
1537     Res0 = tanh(opr0);
1538     return true;
1539
1540   case AMDGPULibFunc::EI_TANPI:
1541     Res0 = tan(MATH_PI * opr0);
1542     return true;
1543
1544   case AMDGPULibFunc::EI_RECIP:
1545     Res0 = 1.0 / opr0;
1546     return true;
1547
1548   // two-arg functions
1549   case AMDGPULibFunc::EI_DIVIDE:
1550     Res0 = opr0 / opr1;
1551     return true;
1552
1553   case AMDGPULibFunc::EI_POW:
1554   case AMDGPULibFunc::EI_POWR:
1555     Res0 = pow(opr0, opr1);
1556     return true;
1557
1558   case AMDGPULibFunc::EI_POWN: {
1559     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1560       double val = (double)iopr1->getSExtValue();
1561       Res0 = pow(opr0, val);
1562       return true;
1563     }
1564     return false;
1565   }
1566
1567   case AMDGPULibFunc::EI_ROOTN: {
1568     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1569       double val = (double)iopr1->getSExtValue();
1570       Res0 = pow(opr0, 1.0 / val);
1571       return true;
1572     }
1573     return false;
1574   }
1575
1576   // with ptr arg
1577   case AMDGPULibFunc::EI_SINCOS:
1578     Res0 = sin(opr0);
1579     Res1 = cos(opr0);
1580     return true;
1581
1582   // three-arg functions
1583   case AMDGPULibFunc::EI_FMA:
1584   case AMDGPULibFunc::EI_MAD:
1585     Res0 = opr0 * opr1 + opr2;
1586     return true;
1587   }
1588
1589   return false;
1590 }
1591
1592 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1593   int numArgs = (int)aCI->getNumArgOperands();
1594   if (numArgs > 3)
1595     return false;
1596
1597   Constant *copr0 = nullptr;
1598   Constant *copr1 = nullptr;
1599   Constant *copr2 = nullptr;
1600   if (numArgs > 0) {
1601     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1602       return false;
1603   }
1604
1605   if (numArgs > 1) {
1606     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1607       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1608         return false;
1609     }
1610   }
1611
1612   if (numArgs > 2) {
1613     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1614       return false;
1615   }
1616
1617   // At this point, all arguments to aCI are constants.
1618
1619   // max vector size is 16, and sincos will generate two results.
1620   double DVal0[16], DVal1[16];
1621   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1622   if (getVecSize(FInfo) == 1) {
1623     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1624                                 DVal1[0], copr0, copr1, copr2)) {
1625       return false;
1626     }
1627   } else {
1628     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1629     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1630     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1631     for (int i=0; i < getVecSize(FInfo); ++i) {
1632       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1633       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1634       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1635       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1636                                   DVal1[i], celt0, celt1, celt2)) {
1637         return false;
1638       }
1639     }
1640   }
1641
1642   LLVMContext &context = CI->getParent()->getParent()->getContext();
1643   Constant *nval0, *nval1;
1644   if (getVecSize(FInfo) == 1) {
1645     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1646     if (hasTwoResults)
1647       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1648   } else {
1649     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1650       SmallVector <float, 0> FVal0, FVal1;
1651       for (int i=0; i < getVecSize(FInfo); ++i)
1652         FVal0.push_back((float)DVal0[i]);
1653       ArrayRef<float> tmp0(FVal0);
1654       nval0 = ConstantDataVector::get(context, tmp0);
1655       if (hasTwoResults) {
1656         for (int i=0; i < getVecSize(FInfo); ++i)
1657           FVal1.push_back((float)DVal1[i]);
1658         ArrayRef<float> tmp1(FVal1);
1659         nval1 = ConstantDataVector::get(context, tmp1);
1660       }
1661     } else {
1662       ArrayRef<double> tmp0(DVal0);
1663       nval0 = ConstantDataVector::get(context, tmp0);
1664       if (hasTwoResults) {
1665         ArrayRef<double> tmp1(DVal1);
1666         nval1 = ConstantDataVector::get(context, tmp1);
1667       }
1668     }
1669   }
1670
1671   if (hasTwoResults) {
1672     // sincos
1673     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1674            "math function with ptr arg not supported yet");
1675     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1676   }
1677
1678   replaceCall(nval0);
1679   return true;
1680 }
1681
1682 // Public interface to the Simplify LibCalls pass.
1683 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt) {
1684   return new AMDGPUSimplifyLibCalls(Opt);
1685 }
1686
1687 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1688   return new AMDGPUUseNativeCalls();
1689 }
1690
1691 static bool setFastFlags(Function &F, const TargetOptions &Options) {
1692   AttrBuilder B;
1693
1694   if (Options.UnsafeFPMath || Options.NoInfsFPMath)
1695     B.addAttribute("no-infs-fp-math", "true");
1696   if (Options.UnsafeFPMath || Options.NoNaNsFPMath)
1697     B.addAttribute("no-nans-fp-math", "true");
1698   if (Options.UnsafeFPMath) {
1699     B.addAttribute("less-precise-fpmad", "true");
1700     B.addAttribute("unsafe-fp-math", "true");
1701   }
1702
1703   if (!B.hasAttributes())
1704     return false;
1705
1706   F.addAttributes(AttributeList::FunctionIndex, B);
1707
1708   return true;
1709 }
1710
1711 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1712   if (skipFunction(F))
1713     return false;
1714
1715   bool Changed = false;
1716   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1717
1718   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1719              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1720
1721   if (!EnablePreLink)
1722     Changed |= setFastFlags(F, Options);
1723
1724   for (auto &BB : F) {
1725     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1726       // Ignore non-calls.
1727       CallInst *CI = dyn_cast<CallInst>(I);
1728       ++I;
1729       if (!CI) continue;
1730
1731       // Ignore indirect calls.
1732       Function *Callee = CI->getCalledFunction();
1733       if (Callee == 0) continue;
1734
1735       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1736                  dbgs().flush());
1737       if(Simplifier.fold(CI, AA))
1738         Changed = true;
1739     }
1740   }
1741   return Changed;
1742 }
1743
1744 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1745   if (skipFunction(F) || UseNative.empty())
1746     return false;
1747
1748   bool Changed = false;
1749   for (auto &BB : F) {
1750     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1751       // Ignore non-calls.
1752       CallInst *CI = dyn_cast<CallInst>(I);
1753       ++I;
1754       if (!CI) continue;
1755
1756       // Ignore indirect calls.
1757       Function *Callee = CI->getCalledFunction();
1758       if (Callee == 0) continue;
1759
1760       if(Simplifier.useNative(CI))
1761         Changed = true;
1762     }
1763   }
1764   return Changed;
1765 }