]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AMDGPU / AMDGPUTargetTransformInfo.cpp
1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // \file
11 // This file implements a TargetTransformInfo analysis pass specific to the
12 // AMDGPU target machine. It uses the target's detailed information to provide
13 // more precise answers to certain TTI queries, while letting the target
14 // independent and default TTI implementations handle the rest.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "AMDGPUTargetTransformInfo.h"
19 #include "AMDGPUSubtarget.h"
20 #include "Utils/AMDGPUBaseInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/MC/SubtargetFeature.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MachineValueType.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <limits>
52 #include <utility>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "AMDGPUtti"
57
58 static cl::opt<unsigned> UnrollThresholdPrivate(
59   "amdgpu-unroll-threshold-private",
60   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
61   cl::init(2500), cl::Hidden);
62
63 static cl::opt<unsigned> UnrollThresholdLocal(
64   "amdgpu-unroll-threshold-local",
65   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
66   cl::init(1000), cl::Hidden);
67
68 static cl::opt<unsigned> UnrollThresholdIf(
69   "amdgpu-unroll-threshold-if",
70   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
71   cl::init(150), cl::Hidden);
72
73 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
74                               unsigned Depth = 0) {
75   const Instruction *I = dyn_cast<Instruction>(Cond);
76   if (!I)
77     return false;
78
79   for (const Value *V : I->operand_values()) {
80     if (!L->contains(I))
81       continue;
82     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
83       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
84                   return SubLoop->contains(PHI); }))
85         return true;
86     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
87       return true;
88   }
89   return false;
90 }
91
92 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
93                                             TTI::UnrollingPreferences &UP) {
94   UP.Threshold = 300; // Twice the default.
95   UP.MaxCount = std::numeric_limits<unsigned>::max();
96   UP.Partial = true;
97
98   // TODO: Do we want runtime unrolling?
99
100   // Maximum alloca size than can fit registers. Reserve 16 registers.
101   const unsigned MaxAlloca = (256 - 16) * 4;
102   unsigned ThresholdPrivate = UnrollThresholdPrivate;
103   unsigned ThresholdLocal = UnrollThresholdLocal;
104   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
105   const AMDGPUAS &ASST = AMDGPU::getAMDGPUAS(TargetTriple);
106   for (const BasicBlock *BB : L->getBlocks()) {
107     const DataLayout &DL = BB->getModule()->getDataLayout();
108     unsigned LocalGEPsSeen = 0;
109
110     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
111                return SubLoop->contains(BB); }))
112         continue; // Block belongs to an inner loop.
113
114     for (const Instruction &I : *BB) {
115       // Unroll a loop which contains an "if" statement whose condition
116       // defined by a PHI belonging to the loop. This may help to eliminate
117       // if region and potentially even PHI itself, saving on both divergence
118       // and registers used for the PHI.
119       // Add a small bonus for each of such "if" statements.
120       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
121         if (UP.Threshold < MaxBoost && Br->isConditional()) {
122           if (L->isLoopExiting(Br->getSuccessor(0)) ||
123               L->isLoopExiting(Br->getSuccessor(1)))
124             continue;
125           if (dependsOnLocalPhi(L, Br->getCondition())) {
126             UP.Threshold += UnrollThresholdIf;
127             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
128                               << " for loop:\n"
129                               << *L << " due to " << *Br << '\n');
130             if (UP.Threshold >= MaxBoost)
131               return;
132           }
133         }
134         continue;
135       }
136
137       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
138       if (!GEP)
139         continue;
140
141       unsigned AS = GEP->getAddressSpace();
142       unsigned Threshold = 0;
143       if (AS == ASST.PRIVATE_ADDRESS)
144         Threshold = ThresholdPrivate;
145       else if (AS == ASST.LOCAL_ADDRESS)
146         Threshold = ThresholdLocal;
147       else
148         continue;
149
150       if (UP.Threshold >= Threshold)
151         continue;
152
153       if (AS == ASST.PRIVATE_ADDRESS) {
154         const Value *Ptr = GEP->getPointerOperand();
155         const AllocaInst *Alloca =
156             dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
157         if (!Alloca || !Alloca->isStaticAlloca())
158           continue;
159         Type *Ty = Alloca->getAllocatedType();
160         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
161         if (AllocaSize > MaxAlloca)
162           continue;
163       } else if (AS == ASST.LOCAL_ADDRESS) {
164         LocalGEPsSeen++;
165         // Inhibit unroll for local memory if we have seen addressing not to
166         // a variable, most likely we will be unable to combine it.
167         // Do not unroll too deep inner loops for local memory to give a chance
168         // to unroll an outer loop for a more important reason.
169         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
170             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
171              !isa<Argument>(GEP->getPointerOperand())))
172           continue;
173       }
174
175       // Check if GEP depends on a value defined by this loop itself.
176       bool HasLoopDef = false;
177       for (const Value *Op : GEP->operands()) {
178         const Instruction *Inst = dyn_cast<Instruction>(Op);
179         if (!Inst || L->isLoopInvariant(Op))
180           continue;
181
182         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
183              return SubLoop->contains(Inst); }))
184           continue;
185         HasLoopDef = true;
186         break;
187       }
188       if (!HasLoopDef)
189         continue;
190
191       // We want to do whatever we can to limit the number of alloca
192       // instructions that make it through to the code generator.  allocas
193       // require us to use indirect addressing, which is slow and prone to
194       // compiler bugs.  If this loop does an address calculation on an
195       // alloca ptr, then we want to use a higher than normal loop unroll
196       // threshold. This will give SROA a better chance to eliminate these
197       // allocas.
198       //
199       // We also want to have more unrolling for local memory to let ds
200       // instructions with different offsets combine.
201       //
202       // Don't use the maximum allowed value here as it will make some
203       // programs way too big.
204       UP.Threshold = Threshold;
205       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
206                         << " for loop:\n"
207                         << *L << " due to " << *GEP << '\n');
208       if (UP.Threshold >= MaxBoost)
209         return;
210     }
211   }
212 }
213
214 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
215   // The concept of vector registers doesn't really exist. Some packed vector
216   // operations operate on the normal 32-bit registers.
217   return 256;
218 }
219
220 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
221   // This is really the number of registers to fill when vectorizing /
222   // interleaving loops, so we lie to avoid trying to use all registers.
223   return getHardwareNumberOfRegisters(Vec) >> 3;
224 }
225
226 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
227   return 32;
228 }
229
230 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
231   return 32;
232 }
233
234 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
235                                             unsigned ChainSizeInBytes,
236                                             VectorType *VecTy) const {
237   unsigned VecRegBitWidth = VF * LoadSize;
238   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
239     // TODO: Support element-size less than 32bit?
240     return 128 / LoadSize;
241
242   return VF;
243 }
244
245 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
246                                              unsigned ChainSizeInBytes,
247                                              VectorType *VecTy) const {
248   unsigned VecRegBitWidth = VF * StoreSize;
249   if (VecRegBitWidth > 128)
250     return 128 / StoreSize;
251
252   return VF;
253 }
254
255 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
256   AMDGPUAS AS = ST->getAMDGPUAS();
257   if (AddrSpace == AS.GLOBAL_ADDRESS ||
258       AddrSpace == AS.CONSTANT_ADDRESS ||
259       AddrSpace == AS.CONSTANT_ADDRESS_32BIT) {
260     return 512;
261   }
262
263   if (AddrSpace == AS.FLAT_ADDRESS ||
264       AddrSpace == AS.LOCAL_ADDRESS ||
265       AddrSpace == AS.REGION_ADDRESS)
266     return 128;
267
268   if (AddrSpace == AS.PRIVATE_ADDRESS)
269     return 8 * ST->getMaxPrivateElementSize();
270
271   llvm_unreachable("unhandled address space");
272 }
273
274 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
275                                                unsigned Alignment,
276                                                unsigned AddrSpace) const {
277   // We allow vectorization of flat stores, even though we may need to decompose
278   // them later if they may access private memory. We don't have enough context
279   // here, and legalization can handle it.
280   if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS) {
281     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
282       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
283   }
284   return true;
285 }
286
287 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
288                                                 unsigned Alignment,
289                                                 unsigned AddrSpace) const {
290   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
291 }
292
293 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
294                                                  unsigned Alignment,
295                                                  unsigned AddrSpace) const {
296   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
297 }
298
299 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
300   // Disable unrolling if the loop is not vectorized.
301   // TODO: Enable this again.
302   if (VF == 1)
303     return 1;
304
305   return 8;
306 }
307
308 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
309                                        MemIntrinsicInfo &Info) const {
310   switch (Inst->getIntrinsicID()) {
311   case Intrinsic::amdgcn_atomic_inc:
312   case Intrinsic::amdgcn_atomic_dec:
313   case Intrinsic::amdgcn_ds_fadd:
314   case Intrinsic::amdgcn_ds_fmin:
315   case Intrinsic::amdgcn_ds_fmax: {
316     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
317     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
318     if (!Ordering || !Volatile)
319       return false; // Invalid.
320
321     unsigned OrderingVal = Ordering->getZExtValue();
322     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
323       return false;
324
325     Info.PtrVal = Inst->getArgOperand(0);
326     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
327     Info.ReadMem = true;
328     Info.WriteMem = true;
329     Info.IsVolatile = !Volatile->isNullValue();
330     return true;
331   }
332   default:
333     return false;
334   }
335 }
336
337 int GCNTTIImpl::getArithmeticInstrCost(
338     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
339     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
340     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args ) {
341   EVT OrigTy = TLI->getValueType(DL, Ty);
342   if (!OrigTy.isSimple()) {
343     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
344                                          Opd1PropInfo, Opd2PropInfo);
345   }
346
347   // Legalize the type.
348   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
349   int ISD = TLI->InstructionOpcodeToISD(Opcode);
350
351   // Because we don't have any legal vector operations, but the legal types, we
352   // need to account for split vectors.
353   unsigned NElts = LT.second.isVector() ?
354     LT.second.getVectorNumElements() : 1;
355
356   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
357
358   switch (ISD) {
359   case ISD::SHL:
360   case ISD::SRL:
361   case ISD::SRA:
362     if (SLT == MVT::i64)
363       return get64BitInstrCost() * LT.first * NElts;
364
365     // i32
366     return getFullRateInstrCost() * LT.first * NElts;
367   case ISD::ADD:
368   case ISD::SUB:
369   case ISD::AND:
370   case ISD::OR:
371   case ISD::XOR:
372     if (SLT == MVT::i64){
373       // and, or and xor are typically split into 2 VALU instructions.
374       return 2 * getFullRateInstrCost() * LT.first * NElts;
375     }
376
377     return LT.first * NElts * getFullRateInstrCost();
378   case ISD::MUL: {
379     const int QuarterRateCost = getQuarterRateInstrCost();
380     if (SLT == MVT::i64) {
381       const int FullRateCost = getFullRateInstrCost();
382       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
383     }
384
385     // i32
386     return QuarterRateCost * NElts * LT.first;
387   }
388   case ISD::FADD:
389   case ISD::FSUB:
390   case ISD::FMUL:
391     if (SLT == MVT::f64)
392       return LT.first * NElts * get64BitInstrCost();
393
394     if (SLT == MVT::f32 || SLT == MVT::f16)
395       return LT.first * NElts * getFullRateInstrCost();
396     break;
397   case ISD::FDIV:
398   case ISD::FREM:
399     // FIXME: frem should be handled separately. The fdiv in it is most of it,
400     // but the current lowering is also not entirely correct.
401     if (SLT == MVT::f64) {
402       int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
403       // Add cost of workaround.
404       if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
405         Cost += 3 * getFullRateInstrCost();
406
407       return LT.first * Cost * NElts;
408     }
409
410     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
411       // TODO: This is more complicated, unsafe flags etc.
412       if ((SLT == MVT::f32 && !ST->hasFP32Denormals()) ||
413           (SLT == MVT::f16 && ST->has16BitInsts())) {
414         return LT.first * getQuarterRateInstrCost() * NElts;
415       }
416     }
417
418     if (SLT == MVT::f16 && ST->has16BitInsts()) {
419       // 2 x v_cvt_f32_f16
420       // f32 rcp
421       // f32 fmul
422       // v_cvt_f16_f32
423       // f16 div_fixup
424       int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
425       return LT.first * Cost * NElts;
426     }
427
428     if (SLT == MVT::f32 || SLT == MVT::f16) {
429       int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
430
431       if (!ST->hasFP32Denormals()) {
432         // FP mode switches.
433         Cost += 2 * getFullRateInstrCost();
434       }
435
436       return LT.first * NElts * Cost;
437     }
438     break;
439   default:
440     break;
441   }
442
443   return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
444                                        Opd1PropInfo, Opd2PropInfo);
445 }
446
447 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
448   // XXX - For some reason this isn't called for switch.
449   switch (Opcode) {
450   case Instruction::Br:
451   case Instruction::Ret:
452     return 10;
453   default:
454     return BaseT::getCFInstrCost(Opcode);
455   }
456 }
457
458 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
459                                               bool IsPairwise) {
460   EVT OrigTy = TLI->getValueType(DL, Ty);
461
462   // Computes cost on targets that have packed math instructions(which support
463   // 16-bit types only).
464   if (IsPairwise ||
465       !ST->hasVOP3PInsts() ||
466       OrigTy.getScalarSizeInBits() != 16)
467     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
468
469   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
470   return LT.first * getFullRateInstrCost();
471 }
472
473 int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
474                                           bool IsPairwise,
475                                           bool IsUnsigned) {
476   EVT OrigTy = TLI->getValueType(DL, Ty);
477
478   // Computes cost on targets that have packed math instructions(which support
479   // 16-bit types only).
480   if (IsPairwise ||
481       !ST->hasVOP3PInsts() ||
482       OrigTy.getScalarSizeInBits() != 16)
483     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
484
485   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
486   return LT.first * getHalfRateInstrCost();
487 }
488
489 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
490                                       unsigned Index) {
491   switch (Opcode) {
492   case Instruction::ExtractElement:
493   case Instruction::InsertElement: {
494     unsigned EltSize
495       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
496     if (EltSize < 32) {
497       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
498         return 0;
499       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
500     }
501
502     // Extracts are just reads of a subregister, so are free. Inserts are
503     // considered free because we don't want to have any cost for scalarizing
504     // operations, and we don't have to copy into a different register class.
505
506     // Dynamic indexing isn't free and is best avoided.
507     return Index == ~0u ? 2 : 0;
508   }
509   default:
510     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
511   }
512 }
513
514
515
516 static bool isArgPassedInSGPR(const Argument *A) {
517   const Function *F = A->getParent();
518
519   // Arguments to compute shaders are never a source of divergence.
520   CallingConv::ID CC = F->getCallingConv();
521   switch (CC) {
522   case CallingConv::AMDGPU_KERNEL:
523   case CallingConv::SPIR_KERNEL:
524     return true;
525   case CallingConv::AMDGPU_VS:
526   case CallingConv::AMDGPU_LS:
527   case CallingConv::AMDGPU_HS:
528   case CallingConv::AMDGPU_ES:
529   case CallingConv::AMDGPU_GS:
530   case CallingConv::AMDGPU_PS:
531   case CallingConv::AMDGPU_CS:
532     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
533     // Everything else is in VGPRs.
534     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
535            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
536   default:
537     // TODO: Should calls support inreg for SGPR inputs?
538     return false;
539   }
540 }
541
542 /// \returns true if the result of the value could potentially be
543 /// different across workitems in a wavefront.
544 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
545   if (const Argument *A = dyn_cast<Argument>(V))
546     return !isArgPassedInSGPR(A);
547
548   // Loads from the private address space are divergent, because threads
549   // can execute the load instruction with the same inputs and get different
550   // results.
551   //
552   // All other loads are not divergent, because if threads issue loads with the
553   // same arguments, they will always get the same result.
554   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
555     return Load->getPointerAddressSpace() == ST->getAMDGPUAS().PRIVATE_ADDRESS;
556
557   // Atomics are divergent because they are executed sequentially: when an
558   // atomic operation refers to the same address in each thread, then each
559   // thread after the first sees the value written by the previous thread as
560   // original value.
561   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
562     return true;
563
564   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
565     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
566
567   // Assume all function calls are a source of divergence.
568   if (isa<CallInst>(V) || isa<InvokeInst>(V))
569     return true;
570
571   return false;
572 }
573
574 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
575   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
576     switch (Intrinsic->getIntrinsicID()) {
577     default:
578       return false;
579     case Intrinsic::amdgcn_readfirstlane:
580     case Intrinsic::amdgcn_readlane:
581       return true;
582     }
583   }
584   return false;
585 }
586
587 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
588                                        Type *SubTp) {
589   if (ST->hasVOP3PInsts()) {
590     VectorType *VT = cast<VectorType>(Tp);
591     if (VT->getNumElements() == 2 &&
592         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
593       // With op_sel VOP3P instructions freely can access the low half or high
594       // half of a register, so any swizzle is free.
595
596       switch (Kind) {
597       case TTI::SK_Broadcast:
598       case TTI::SK_Reverse:
599       case TTI::SK_PermuteSingleSrc:
600         return 0;
601       default:
602         break;
603       }
604     }
605   }
606
607   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
608 }
609
610 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
611                                         const Function *Callee) const {
612   const TargetMachine &TM = getTLI()->getTargetMachine();
613   const FeatureBitset &CallerBits =
614     TM.getSubtargetImpl(*Caller)->getFeatureBits();
615   const FeatureBitset &CalleeBits =
616     TM.getSubtargetImpl(*Callee)->getFeatureBits();
617
618   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
619   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
620   return ((RealCallerBits & RealCalleeBits) == RealCalleeBits);
621 }
622
623 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
624                                          TTI::UnrollingPreferences &UP) {
625   CommonTTI.getUnrollingPreferences(L, SE, UP);
626 }
627
628 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
629   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
630 }
631
632 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
633   return getHardwareNumberOfRegisters(Vec);
634 }
635
636 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
637   return 32;
638 }
639
640 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
641   return 32;
642 }
643
644 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
645   AMDGPUAS AS = ST->getAMDGPUAS();
646   if (AddrSpace == AS.GLOBAL_ADDRESS ||
647       AddrSpace == AS.CONSTANT_ADDRESS)
648     return 128;
649   if (AddrSpace == AS.LOCAL_ADDRESS ||
650       AddrSpace == AS.REGION_ADDRESS)
651     return 64;
652   if (AddrSpace == AS.PRIVATE_ADDRESS)
653     return 32;
654
655   if ((AddrSpace == AS.PARAM_D_ADDRESS ||
656       AddrSpace == AS.PARAM_I_ADDRESS ||
657       (AddrSpace >= AS.CONSTANT_BUFFER_0 &&
658       AddrSpace <= AS.CONSTANT_BUFFER_15)))
659     return 128;
660   llvm_unreachable("unhandled address space");
661 }
662
663 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
664                                              unsigned Alignment,
665                                              unsigned AddrSpace) const {
666   // We allow vectorization of flat stores, even though we may need to decompose
667   // them later if they may access private memory. We don't have enough context
668   // here, and legalization can handle it.
669   if (AddrSpace == ST->getAMDGPUAS().PRIVATE_ADDRESS)
670     return false;
671   return true;
672 }
673
674 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
675                                               unsigned Alignment,
676                                               unsigned AddrSpace) const {
677   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
678 }
679
680 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
681                                                unsigned Alignment,
682                                                unsigned AddrSpace) const {
683   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
684 }
685
686 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
687   // Disable unrolling if the loop is not vectorized.
688   // TODO: Enable this again.
689   if (VF == 1)
690     return 1;
691
692   return 8;
693 }
694
695 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
696   // XXX - For some reason this isn't called for switch.
697   switch (Opcode) {
698   case Instruction::Br:
699   case Instruction::Ret:
700     return 10;
701   default:
702     return BaseT::getCFInstrCost(Opcode);
703   }
704 }
705
706 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
707                                     unsigned Index) {
708   switch (Opcode) {
709   case Instruction::ExtractElement:
710   case Instruction::InsertElement: {
711     unsigned EltSize
712       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
713     if (EltSize < 32) {
714       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
715     }
716
717     // Extracts are just reads of a subregister, so are free. Inserts are
718     // considered free because we don't want to have any cost for scalarizing
719     // operations, and we don't have to copy into a different register class.
720
721     // Dynamic indexing isn't free and is best avoided.
722     return Index == ~0u ? 2 : 0;
723   }
724   default:
725     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
726   }
727 }
728
729 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
730                                           TTI::UnrollingPreferences &UP) {
731   CommonTTI.getUnrollingPreferences(L, SE, UP);
732 }