]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AMDGPU / GCNSchedStrategy.cpp
1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This contains a MachineSchedStrategy implementation for maximizing wave
12 /// occupancy on GCN hardware.
13 //===----------------------------------------------------------------------===//
14
15 #include "GCNSchedStrategy.h"
16 #include "AMDGPUSubtarget.h"
17 #include "SIInstrInfo.h"
18 #include "SIMachineFunctionInfo.h"
19 #include "SIRegisterInfo.h"
20 #include "llvm/CodeGen/RegisterClassInfo.h"
21 #include "llvm/Support/MathExtras.h"
22
23 #define DEBUG_TYPE "machine-scheduler"
24
25 using namespace llvm;
26
27 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
28     const MachineSchedContext *C) :
29     GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
30
31 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
32   GenericScheduler::initialize(DAG);
33
34   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
35
36   MF = &DAG->MF;
37
38   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
39
40   // FIXME: This is also necessary, because some passes that run after
41   // scheduling and before regalloc increase register pressure.
42   const int ErrorMargin = 3;
43
44   SGPRExcessLimit = Context->RegClassInfo
45     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
46   VGPRExcessLimit = Context->RegClassInfo
47     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
48   if (TargetOccupancy) {
49     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
50     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
51   } else {
52     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
53                                                     SRI->getSGPRPressureSet());
54     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
55                                                     SRI->getVGPRPressureSet());
56   }
57
58   SGPRCriticalLimit -= ErrorMargin;
59   VGPRCriticalLimit -= ErrorMargin;
60 }
61
62 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
63                                      bool AtTop, const RegPressureTracker &RPTracker,
64                                      const SIRegisterInfo *SRI,
65                                      unsigned SGPRPressure,
66                                      unsigned VGPRPressure) {
67
68   Cand.SU = SU;
69   Cand.AtTop = AtTop;
70
71   // getDownwardPressure() and getUpwardPressure() make temporary changes to
72   // the tracker, so we need to pass those function a non-const copy.
73   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
74
75   std::vector<unsigned> Pressure;
76   std::vector<unsigned> MaxPressure;
77
78   if (AtTop)
79     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
80   else {
81     // FIXME: I think for bottom up scheduling, the register pressure is cached
82     // and can be retrieved by DAG->getPressureDif(SU).
83     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
84   }
85
86   unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
87   unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
88
89   // If two instructions increase the pressure of different register sets
90   // by the same amount, the generic scheduler will prefer to schedule the
91   // instruction that increases the set with the least amount of registers,
92   // which in our case would be SGPRs.  This is rarely what we want, so
93   // when we report excess/critical register pressure, we do it either
94   // only for VGPRs or only for SGPRs.
95
96   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
97   const unsigned MaxVGPRPressureInc = 16;
98   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
99   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
100
101
102   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
103   // to increase the likelihood we don't go over the limits.  We should improve
104   // the analysis to look through dependencies to find the path with the least
105   // register pressure.
106
107   // We only need to update the RPDelata for instructions that increase
108   // register pressure.  Instructions that decrease or keep reg pressure
109   // the same will be marked as RegExcess in tryCandidate() when they
110   // are compared with instructions that increase the register pressure.
111   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
112     Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
113     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
114   }
115
116   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
117     Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
118     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
119   }
120
121   // Register pressure is considered 'CRITICAL' if it is approaching a value
122   // that would reduce the wave occupancy for the execution unit.  When
123   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
124   // has the same cost, so we don't need to prefer one over the other.
125
126   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
127   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
128
129   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
130     if (SGPRDelta > VGPRDelta) {
131       Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
132       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
133     } else {
134       Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
135       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
136     }
137   }
138 }
139
140 // This function is mostly cut and pasted from
141 // GenericScheduler::pickNodeFromQueue()
142 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
143                                          const CandPolicy &ZonePolicy,
144                                          const RegPressureTracker &RPTracker,
145                                          SchedCandidate &Cand) {
146   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
147   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
148   unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
149   unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
150   ReadyQueue &Q = Zone.Available;
151   for (SUnit *SU : Q) {
152
153     SchedCandidate TryCand(ZonePolicy);
154     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
155                   SGPRPressure, VGPRPressure);
156     // Pass SchedBoundary only when comparing nodes from the same boundary.
157     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
158     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
159     if (TryCand.Reason != NoCand) {
160       // Initialize resource delta if needed in case future heuristics query it.
161       if (TryCand.ResDelta == SchedResourceDelta())
162         TryCand.initResourceDelta(Zone.DAG, SchedModel);
163       Cand.setBest(TryCand);
164     }
165   }
166 }
167
168 // This function is mostly cut and pasted from
169 // GenericScheduler::pickNodeBidirectional()
170 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
171   // Schedule as far as possible in the direction of no choice. This is most
172   // efficient, but also provides the best heuristics for CriticalPSets.
173   if (SUnit *SU = Bot.pickOnlyChoice()) {
174     IsTopNode = false;
175     return SU;
176   }
177   if (SUnit *SU = Top.pickOnlyChoice()) {
178     IsTopNode = true;
179     return SU;
180   }
181   // Set the bottom-up policy based on the state of the current bottom zone and
182   // the instructions outside the zone, including the top zone.
183   CandPolicy BotPolicy;
184   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
185   // Set the top-down policy based on the state of the current top zone and
186   // the instructions outside the zone, including the bottom zone.
187   CandPolicy TopPolicy;
188   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
189
190   // See if BotCand is still valid (because we previously scheduled from Top).
191   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
192   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
193       BotCand.Policy != BotPolicy) {
194     BotCand.reset(CandPolicy());
195     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
196     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
197   } else {
198     LLVM_DEBUG(traceCandidate(BotCand));
199   }
200
201   // Check if the top Q has a better candidate.
202   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
203   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
204       TopCand.Policy != TopPolicy) {
205     TopCand.reset(CandPolicy());
206     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
207     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
208   } else {
209     LLVM_DEBUG(traceCandidate(TopCand));
210   }
211
212   // Pick best from BotCand and TopCand.
213   LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
214              dbgs() << "Bot Cand: "; traceCandidate(BotCand););
215   SchedCandidate Cand;
216   if (TopCand.Reason == BotCand.Reason) {
217     Cand = BotCand;
218     GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
219     TopCand.Reason = NoCand;
220     GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
221     if (TopCand.Reason != NoCand) {
222       Cand.setBest(TopCand);
223     } else {
224       TopCand.Reason = TopReason;
225     }
226   } else {
227     if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
228       Cand = TopCand;
229     } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
230       Cand = BotCand;
231     } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
232       Cand = TopCand;
233     } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
234       Cand = BotCand;
235     } else {
236       if (BotCand.Reason > TopCand.Reason) {
237         Cand = TopCand;
238       } else {
239         Cand = BotCand;
240       }
241     }
242   }
243   LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
244
245   IsTopNode = Cand.AtTop;
246   return Cand.SU;
247 }
248
249 // This function is mostly cut and pasted from
250 // GenericScheduler::pickNode()
251 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
252   if (DAG->top() == DAG->bottom()) {
253     assert(Top.Available.empty() && Top.Pending.empty() &&
254            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
255     return nullptr;
256   }
257   SUnit *SU;
258   do {
259     if (RegionPolicy.OnlyTopDown) {
260       SU = Top.pickOnlyChoice();
261       if (!SU) {
262         CandPolicy NoPolicy;
263         TopCand.reset(NoPolicy);
264         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
265         assert(TopCand.Reason != NoCand && "failed to find a candidate");
266         SU = TopCand.SU;
267       }
268       IsTopNode = true;
269     } else if (RegionPolicy.OnlyBottomUp) {
270       SU = Bot.pickOnlyChoice();
271       if (!SU) {
272         CandPolicy NoPolicy;
273         BotCand.reset(NoPolicy);
274         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
275         assert(BotCand.Reason != NoCand && "failed to find a candidate");
276         SU = BotCand.SU;
277       }
278       IsTopNode = false;
279     } else {
280       SU = pickNodeBidirectional(IsTopNode);
281     }
282   } while (SU->isScheduled);
283
284   if (SU->isTopReady())
285     Top.removeReady(SU);
286   if (SU->isBottomReady())
287     Bot.removeReady(SU);
288
289   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
290                     << *SU->getInstr());
291   return SU;
292 }
293
294 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
295                         std::unique_ptr<MachineSchedStrategy> S) :
296   ScheduleDAGMILive(C, std::move(S)),
297   ST(MF.getSubtarget<GCNSubtarget>()),
298   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
299   StartingOccupancy(MFI.getOccupancy()),
300   MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) {
301
302   LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
303 }
304
305 void GCNScheduleDAGMILive::schedule() {
306   if (Stage == 0) {
307     // Just record regions at the first pass.
308     Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
309     return;
310   }
311
312   std::vector<MachineInstr*> Unsched;
313   Unsched.reserve(NumRegionInstrs);
314   for (auto &I : *this) {
315     Unsched.push_back(&I);
316   }
317
318   GCNRegPressure PressureBefore;
319   if (LIS) {
320     PressureBefore = Pressure[RegionIdx];
321
322     LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
323                GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
324                dbgs() << "Region live-in pressure:  ";
325                llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
326                dbgs() << "Region register pressure: ";
327                PressureBefore.print(dbgs()));
328   }
329
330   ScheduleDAGMILive::schedule();
331   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
332
333   if (!LIS)
334     return;
335
336   // Check the results of scheduling.
337   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
338   auto PressureAfter = getRealRegPressure();
339
340   LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
341              PressureAfter.print(dbgs()));
342
343   if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
344       PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
345     Pressure[RegionIdx] = PressureAfter;
346     LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
347     return;
348   }
349   unsigned Occ = MFI.getOccupancy();
350   unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST));
351   unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST));
352   LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
353                     << ", after " << WavesAfter << ".\n");
354
355   // We could not keep current target occupancy because of the just scheduled
356   // region. Record new occupancy for next scheduling cycle.
357   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
358   // Allow memory bound functions to drop to 4 waves if not limited by an
359   // attribute.
360   if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
361       WavesAfter >= MFI.getMinAllowedOccupancy()) {
362     LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
363                       << MFI.getMinAllowedOccupancy() << " waves\n");
364     NewOccupancy = WavesAfter;
365   }
366   if (NewOccupancy < MinOccupancy) {
367     MinOccupancy = NewOccupancy;
368     MFI.limitOccupancy(MinOccupancy);
369     LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
370                       << MinOccupancy << ".\n");
371   }
372
373   if (WavesAfter >= MinOccupancy) {
374     Pressure[RegionIdx] = PressureAfter;
375     return;
376   }
377
378   LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
379   RegionEnd = RegionBegin;
380   for (MachineInstr *MI : Unsched) {
381     if (MI->isDebugInstr())
382       continue;
383
384     if (MI->getIterator() != RegionEnd) {
385       BB->remove(MI);
386       BB->insert(RegionEnd, MI);
387       if (!MI->isDebugInstr())
388         LIS->handleMove(*MI, true);
389     }
390     // Reset read-undef flags and update them later.
391     for (auto &Op : MI->operands())
392       if (Op.isReg() && Op.isDef())
393         Op.setIsUndef(false);
394     RegisterOperands RegOpers;
395     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
396     if (!MI->isDebugInstr()) {
397       if (ShouldTrackLaneMasks) {
398         // Adjust liveness and add missing dead+read-undef flags.
399         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
400         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
401       } else {
402         // Adjust for missing dead-def flags.
403         RegOpers.detectDeadDefs(*MI, *LIS);
404       }
405     }
406     RegionEnd = MI->getIterator();
407     ++RegionEnd;
408     LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
409   }
410   RegionBegin = Unsched.front()->getIterator();
411   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
412
413   placeDebugValues();
414 }
415
416 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
417   GCNDownwardRPTracker RPTracker(*LIS);
418   RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
419   return RPTracker.moveMaxPressure();
420 }
421
422 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
423   GCNDownwardRPTracker RPTracker(*LIS);
424
425   // If the block has the only successor then live-ins of that successor are
426   // live-outs of the current block. We can reuse calculated live set if the
427   // successor will be sent to scheduling past current block.
428   const MachineBasicBlock *OnlySucc = nullptr;
429   if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
430     SlotIndexes *Ind = LIS->getSlotIndexes();
431     if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
432       OnlySucc = *MBB->succ_begin();
433   }
434
435   // Scheduler sends regions from the end of the block upwards.
436   size_t CurRegion = RegionIdx;
437   for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
438     if (Regions[CurRegion].first->getParent() != MBB)
439       break;
440   --CurRegion;
441
442   auto I = MBB->begin();
443   auto LiveInIt = MBBLiveIns.find(MBB);
444   if (LiveInIt != MBBLiveIns.end()) {
445     auto LiveIn = std::move(LiveInIt->second);
446     RPTracker.reset(*MBB->begin(), &LiveIn);
447     MBBLiveIns.erase(LiveInIt);
448   } else {
449     I = Regions[CurRegion].first;
450     RPTracker.reset(*I);
451   }
452
453   for ( ; ; ) {
454     I = RPTracker.getNext();
455
456     if (Regions[CurRegion].first == I) {
457       LiveIns[CurRegion] = RPTracker.getLiveRegs();
458       RPTracker.clearMaxPressure();
459     }
460
461     if (Regions[CurRegion].second == I) {
462       Pressure[CurRegion] = RPTracker.moveMaxPressure();
463       if (CurRegion-- == RegionIdx)
464         break;
465     }
466     RPTracker.advanceToNext();
467     RPTracker.advanceBeforeNext();
468   }
469
470   if (OnlySucc) {
471     if (I != MBB->end()) {
472       RPTracker.advanceToNext();
473       RPTracker.advance(MBB->end());
474     }
475     RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
476     RPTracker.advanceBeforeNext();
477     MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
478   }
479 }
480
481 void GCNScheduleDAGMILive::finalizeSchedule() {
482   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
483   LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
484
485   LiveIns.resize(Regions.size());
486   Pressure.resize(Regions.size());
487
488   do {
489     Stage++;
490     RegionIdx = 0;
491     MachineBasicBlock *MBB = nullptr;
492
493     if (Stage > 1) {
494       // Retry function scheduling if we found resulting occupancy and it is
495       // lower than used for first pass scheduling. This will give more freedom
496       // to schedule low register pressure blocks.
497       // Code is partially copied from MachineSchedulerBase::scheduleRegions().
498
499       if (!LIS || StartingOccupancy <= MinOccupancy)
500         break;
501
502       LLVM_DEBUG(
503           dbgs()
504           << "Retrying function scheduling with lowest recorded occupancy "
505           << MinOccupancy << ".\n");
506
507       S.setTargetOccupancy(MinOccupancy);
508     }
509
510     for (auto Region : Regions) {
511       RegionBegin = Region.first;
512       RegionEnd = Region.second;
513
514       if (RegionBegin->getParent() != MBB) {
515         if (MBB) finishBlock();
516         MBB = RegionBegin->getParent();
517         startBlock(MBB);
518         if (Stage == 1)
519           computeBlockPressure(MBB);
520       }
521
522       unsigned NumRegionInstrs = std::distance(begin(), end());
523       enterRegion(MBB, begin(), end(), NumRegionInstrs);
524
525       // Skip empty scheduling regions (0 or 1 schedulable instructions).
526       if (begin() == end() || begin() == std::prev(end())) {
527         exitRegion();
528         continue;
529       }
530
531       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
532       LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
533                         << MBB->getName() << "\n  From: " << *begin()
534                         << "    To: ";
535                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
536                  else dbgs() << "End";
537                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
538
539       schedule();
540
541       exitRegion();
542       ++RegionIdx;
543     }
544     finishBlock();
545
546   } while (Stage < 2);
547 }