]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / ARM / ARMConstantIslandPass.cpp
1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function.  This is required due to the
12 // limited pc-relative displacements that ARM has.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMBasicBlockInfo.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMSubtarget.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "Thumb2InstrInfo.h"
23 #include "Utils/ARMBaseInfo.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54 #include <utility>
55 #include <vector>
56
57 using namespace llvm;
58
59 #define DEBUG_TYPE "arm-cp-islands"
60
61 #define ARM_CP_ISLANDS_OPT_NAME \
62   "ARM constant island placement and branch shortening pass"
63 STATISTIC(NumCPEs,       "Number of constpool entries");
64 STATISTIC(NumSplit,      "Number of uncond branches inserted");
65 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
66 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
67 STATISTIC(NumTBs,        "Number of table branches generated");
68 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
69 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
70 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
71 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
72 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
73
74 static cl::opt<bool>
75 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
76           cl::desc("Adjust basic block layout to better use TB[BH]"));
77
78 static cl::opt<unsigned>
79 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
80           cl::desc("The max number of iteration for converge"));
81
82 static cl::opt<bool> SynthesizeThumb1TBB(
83     "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
84     cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
85              "equivalent to the TBB/TBH instructions"));
86
87 namespace {
88
89   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
90   /// requires constant pool entries to be scattered among the instructions
91   /// inside a function.  To do this, it completely ignores the normal LLVM
92   /// constant pool; instead, it places constants wherever it feels like with
93   /// special instructions.
94   ///
95   /// The terminology used in this pass includes:
96   ///   Islands - Clumps of constants placed in the function.
97   ///   Water   - Potential places where an island could be formed.
98   ///   CPE     - A constant pool entry that has been placed somewhere, which
99   ///             tracks a list of users.
100   class ARMConstantIslands : public MachineFunctionPass {
101     std::vector<BasicBlockInfo> BBInfo;
102
103     /// WaterList - A sorted list of basic blocks where islands could be placed
104     /// (i.e. blocks that don't fall through to the following block, due
105     /// to a return, unreachable, or unconditional branch).
106     std::vector<MachineBasicBlock*> WaterList;
107
108     /// NewWaterList - The subset of WaterList that was created since the
109     /// previous iteration by inserting unconditional branches.
110     SmallSet<MachineBasicBlock*, 4> NewWaterList;
111
112     using water_iterator = std::vector<MachineBasicBlock *>::iterator;
113
114     /// CPUser - One user of a constant pool, keeping the machine instruction
115     /// pointer, the constant pool being referenced, and the max displacement
116     /// allowed from the instruction to the CP.  The HighWaterMark records the
117     /// highest basic block where a new CPEntry can be placed.  To ensure this
118     /// pass terminates, the CP entries are initially placed at the end of the
119     /// function and then move monotonically to lower addresses.  The
120     /// exception to this rule is when the current CP entry for a particular
121     /// CPUser is out of range, but there is another CP entry for the same
122     /// constant value in range.  We want to use the existing in-range CP
123     /// entry, but if it later moves out of range, the search for new water
124     /// should resume where it left off.  The HighWaterMark is used to record
125     /// that point.
126     struct CPUser {
127       MachineInstr *MI;
128       MachineInstr *CPEMI;
129       MachineBasicBlock *HighWaterMark;
130       unsigned MaxDisp;
131       bool NegOk;
132       bool IsSoImm;
133       bool KnownAlignment = false;
134
135       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
136              bool neg, bool soimm)
137         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
138         HighWaterMark = CPEMI->getParent();
139       }
140
141       /// getMaxDisp - Returns the maximum displacement supported by MI.
142       /// Correct for unknown alignment.
143       /// Conservatively subtract 2 bytes to handle weird alignment effects.
144       unsigned getMaxDisp() const {
145         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
146       }
147     };
148
149     /// CPUsers - Keep track of all of the machine instructions that use various
150     /// constant pools and their max displacement.
151     std::vector<CPUser> CPUsers;
152
153     /// CPEntry - One per constant pool entry, keeping the machine instruction
154     /// pointer, the constpool index, and the number of CPUser's which
155     /// reference this entry.
156     struct CPEntry {
157       MachineInstr *CPEMI;
158       unsigned CPI;
159       unsigned RefCount;
160
161       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
162         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
163     };
164
165     /// CPEntries - Keep track of all of the constant pool entry machine
166     /// instructions. For each original constpool index (i.e. those that existed
167     /// upon entry to this pass), it keeps a vector of entries.  Original
168     /// elements are cloned as we go along; the clones are put in the vector of
169     /// the original element, but have distinct CPIs.
170     ///
171     /// The first half of CPEntries contains generic constants, the second half
172     /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
173     /// which vector it will be in here.
174     std::vector<std::vector<CPEntry>> CPEntries;
175
176     /// Maps a JT index to the offset in CPEntries containing copies of that
177     /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
178     DenseMap<int, int> JumpTableEntryIndices;
179
180     /// Maps a JT index to the LEA that actually uses the index to calculate its
181     /// base address.
182     DenseMap<int, int> JumpTableUserIndices;
183
184     /// ImmBranch - One per immediate branch, keeping the machine instruction
185     /// pointer, conditional or unconditional, the max displacement,
186     /// and (if isCond is true) the corresponding unconditional branch
187     /// opcode.
188     struct ImmBranch {
189       MachineInstr *MI;
190       unsigned MaxDisp : 31;
191       bool isCond : 1;
192       unsigned UncondBr;
193
194       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
195         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
196     };
197
198     /// ImmBranches - Keep track of all the immediate branch instructions.
199     std::vector<ImmBranch> ImmBranches;
200
201     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
202     SmallVector<MachineInstr*, 4> PushPopMIs;
203
204     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
205     SmallVector<MachineInstr*, 4> T2JumpTables;
206
207     /// HasFarJump - True if any far jump instruction has been emitted during
208     /// the branch fix up pass.
209     bool HasFarJump;
210
211     MachineFunction *MF;
212     MachineConstantPool *MCP;
213     const ARMBaseInstrInfo *TII;
214     const ARMSubtarget *STI;
215     ARMFunctionInfo *AFI;
216     bool isThumb;
217     bool isThumb1;
218     bool isThumb2;
219     bool isPositionIndependentOrROPI;
220
221   public:
222     static char ID;
223
224     ARMConstantIslands() : MachineFunctionPass(ID) {}
225
226     bool runOnMachineFunction(MachineFunction &MF) override;
227
228     MachineFunctionProperties getRequiredProperties() const override {
229       return MachineFunctionProperties().set(
230           MachineFunctionProperties::Property::NoVRegs);
231     }
232
233     StringRef getPassName() const override {
234       return ARM_CP_ISLANDS_OPT_NAME;
235     }
236
237   private:
238     void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
239     void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
240     bool BBHasFallthrough(MachineBasicBlock *MBB);
241     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
242     unsigned getCPELogAlign(const MachineInstr *CPEMI);
243     void scanFunctionJumpTables();
244     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
245     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
246     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
247     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
248     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
249     unsigned getCombinedIndex(const MachineInstr *CPEMI);
250     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
251     bool findAvailableWater(CPUser&U, unsigned UserOffset,
252                             water_iterator &WaterIter, bool CloserWater);
253     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
254                         MachineBasicBlock *&NewMBB);
255     bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
256     void removeDeadCPEMI(MachineInstr *CPEMI);
257     bool removeUnusedCPEntries();
258     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
259                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
260                           bool DoDump = false);
261     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
262                         CPUser &U, unsigned &Growth);
263     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
264     bool fixupImmediateBr(ImmBranch &Br);
265     bool fixupConditionalBr(ImmBranch &Br);
266     bool fixupUnconditionalBr(ImmBranch &Br);
267     bool undoLRSpillRestore();
268     bool optimizeThumb2Instructions();
269     bool optimizeThumb2Branches();
270     bool reorderThumb2JumpTables();
271     bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
272                               unsigned &DeadSize, bool &CanDeleteLEA,
273                               bool &BaseRegKill);
274     bool optimizeThumb2JumpTables();
275     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
276                                                   MachineBasicBlock *JTBB);
277
278     unsigned getOffsetOf(MachineInstr *MI) const;
279     unsigned getUserOffset(CPUser&) const;
280     void dumpBBs();
281     void verify();
282
283     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
284                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
285     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
286                          const CPUser &U) {
287       return isOffsetInRange(UserOffset, TrialOffset,
288                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
289     }
290   };
291
292 } // end anonymous namespace
293
294 char ARMConstantIslands::ID = 0;
295
296 /// verify - check BBOffsets, BBSizes, alignment of islands
297 void ARMConstantIslands::verify() {
298 #ifndef NDEBUG
299   assert(std::is_sorted(MF->begin(), MF->end(),
300                         [this](const MachineBasicBlock &LHS,
301                                const MachineBasicBlock &RHS) {
302                           return BBInfo[LHS.getNumber()].postOffset() <
303                                  BBInfo[RHS.getNumber()].postOffset();
304                         }));
305   LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
306   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
307     CPUser &U = CPUsers[i];
308     unsigned UserOffset = getUserOffset(U);
309     // Verify offset using the real max displacement without the safety
310     // adjustment.
311     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
312                          /* DoDump = */ true)) {
313       LLVM_DEBUG(dbgs() << "OK\n");
314       continue;
315     }
316     LLVM_DEBUG(dbgs() << "Out of range.\n");
317     dumpBBs();
318     LLVM_DEBUG(MF->dump());
319     llvm_unreachable("Constant pool entry out of range!");
320   }
321 #endif
322 }
323
324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
325 /// print block size and offset information - debugging
326 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
327   LLVM_DEBUG({
328     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
329       const BasicBlockInfo &BBI = BBInfo[J];
330       dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
331              << " kb=" << unsigned(BBI.KnownBits)
332              << " ua=" << unsigned(BBI.Unalign)
333              << " pa=" << unsigned(BBI.PostAlign)
334              << format(" size=%#x\n", BBInfo[J].Size);
335     }
336   });
337 }
338 #endif
339
340 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
341   MF = &mf;
342   MCP = mf.getConstantPool();
343
344   LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
345                     << MCP->getConstants().size() << " CP entries, aligned to "
346                     << MCP->getConstantPoolAlignment() << " bytes *****\n");
347
348   STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
349   TII = STI->getInstrInfo();
350   isPositionIndependentOrROPI =
351       STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
352   AFI = MF->getInfo<ARMFunctionInfo>();
353
354   isThumb = AFI->isThumbFunction();
355   isThumb1 = AFI->isThumb1OnlyFunction();
356   isThumb2 = AFI->isThumb2Function();
357
358   HasFarJump = false;
359   bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
360
361   // This pass invalidates liveness information when it splits basic blocks.
362   MF->getRegInfo().invalidateLiveness();
363
364   // Renumber all of the machine basic blocks in the function, guaranteeing that
365   // the numbers agree with the position of the block in the function.
366   MF->RenumberBlocks();
367
368   // Try to reorder and otherwise adjust the block layout to make good use
369   // of the TB[BH] instructions.
370   bool MadeChange = false;
371   if (GenerateTBB && AdjustJumpTableBlocks) {
372     scanFunctionJumpTables();
373     MadeChange |= reorderThumb2JumpTables();
374     // Data is out of date, so clear it. It'll be re-computed later.
375     T2JumpTables.clear();
376     // Blocks may have shifted around. Keep the numbering up to date.
377     MF->RenumberBlocks();
378   }
379
380   // Perform the initial placement of the constant pool entries.  To start with,
381   // we put them all at the end of the function.
382   std::vector<MachineInstr*> CPEMIs;
383   if (!MCP->isEmpty())
384     doInitialConstPlacement(CPEMIs);
385
386   if (MF->getJumpTableInfo())
387     doInitialJumpTablePlacement(CPEMIs);
388
389   /// The next UID to take is the first unused one.
390   AFI->initPICLabelUId(CPEMIs.size());
391
392   // Do the initial scan of the function, building up information about the
393   // sizes of each block, the location of all the water, and finding all of the
394   // constant pool users.
395   initializeFunctionInfo(CPEMIs);
396   CPEMIs.clear();
397   LLVM_DEBUG(dumpBBs());
398
399   // Functions with jump tables need an alignment of 4 because they use the ADR
400   // instruction, which aligns the PC to 4 bytes before adding an offset.
401   if (!T2JumpTables.empty())
402     MF->ensureAlignment(2);
403
404   /// Remove dead constant pool entries.
405   MadeChange |= removeUnusedCPEntries();
406
407   // Iteratively place constant pool entries and fix up branches until there
408   // is no change.
409   unsigned NoCPIters = 0, NoBRIters = 0;
410   while (true) {
411     LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
412     bool CPChange = false;
413     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
414       // For most inputs, it converges in no more than 5 iterations.
415       // If it doesn't end in 10, the input may have huge BB or many CPEs.
416       // In this case, we will try different heuristics.
417       CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
418     if (CPChange && ++NoCPIters > CPMaxIteration)
419       report_fatal_error("Constant Island pass failed to converge!");
420     LLVM_DEBUG(dumpBBs());
421
422     // Clear NewWaterList now.  If we split a block for branches, it should
423     // appear as "new water" for the next iteration of constant pool placement.
424     NewWaterList.clear();
425
426     LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
427     bool BRChange = false;
428     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
429       BRChange |= fixupImmediateBr(ImmBranches[i]);
430     if (BRChange && ++NoBRIters > 30)
431       report_fatal_error("Branch Fix Up pass failed to converge!");
432     LLVM_DEBUG(dumpBBs());
433
434     if (!CPChange && !BRChange)
435       break;
436     MadeChange = true;
437   }
438
439   // Shrink 32-bit Thumb2 load and store instructions.
440   if (isThumb2 && !STI->prefers32BitThumb())
441     MadeChange |= optimizeThumb2Instructions();
442
443   // Shrink 32-bit branch instructions.
444   if (isThumb && STI->hasV8MBaselineOps())
445     MadeChange |= optimizeThumb2Branches();
446
447   // Optimize jump tables using TBB / TBH.
448   if (GenerateTBB && !STI->genExecuteOnly())
449     MadeChange |= optimizeThumb2JumpTables();
450
451   // After a while, this might be made debug-only, but it is not expensive.
452   verify();
453
454   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
455   // undo the spill / restore of LR if possible.
456   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
457     MadeChange |= undoLRSpillRestore();
458
459   // Save the mapping between original and cloned constpool entries.
460   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
461     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
462       const CPEntry & CPE = CPEntries[i][j];
463       if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
464         AFI->recordCPEClone(i, CPE.CPI);
465     }
466   }
467
468   LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
469
470   BBInfo.clear();
471   WaterList.clear();
472   CPUsers.clear();
473   CPEntries.clear();
474   JumpTableEntryIndices.clear();
475   JumpTableUserIndices.clear();
476   ImmBranches.clear();
477   PushPopMIs.clear();
478   T2JumpTables.clear();
479
480   return MadeChange;
481 }
482
483 /// Perform the initial placement of the regular constant pool entries.
484 /// To start with, we put them all at the end of the function.
485 void
486 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
487   // Create the basic block to hold the CPE's.
488   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
489   MF->push_back(BB);
490
491   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
492   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
493
494   // Mark the basic block as required by the const-pool.
495   BB->setAlignment(MaxAlign);
496
497   // The function needs to be as aligned as the basic blocks. The linker may
498   // move functions around based on their alignment.
499   MF->ensureAlignment(BB->getAlignment());
500
501   // Order the entries in BB by descending alignment.  That ensures correct
502   // alignment of all entries as long as BB is sufficiently aligned.  Keep
503   // track of the insertion point for each alignment.  We are going to bucket
504   // sort the entries as they are created.
505   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
506
507   // Add all of the constants from the constant pool to the end block, use an
508   // identity mapping of CPI's to CPE's.
509   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
510
511   const DataLayout &TD = MF->getDataLayout();
512   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
513     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
514     unsigned Align = CPs[i].getAlignment();
515     assert(isPowerOf2_32(Align) && "Invalid alignment");
516     // Verify that all constant pool entries are a multiple of their alignment.
517     // If not, we would have to pad them out so that instructions stay aligned.
518     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
519
520     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
521     unsigned LogAlign = Log2_32(Align);
522     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
523     MachineInstr *CPEMI =
524       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
525         .addImm(i).addConstantPoolIndex(i).addImm(Size);
526     CPEMIs.push_back(CPEMI);
527
528     // Ensure that future entries with higher alignment get inserted before
529     // CPEMI. This is bucket sort with iterators.
530     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
531       if (InsPoint[a] == InsAt)
532         InsPoint[a] = CPEMI;
533
534     // Add a new CPEntry, but no corresponding CPUser yet.
535     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
536     ++NumCPEs;
537     LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
538                       << Size << ", align = " << Align << '\n');
539   }
540   LLVM_DEBUG(BB->dump());
541 }
542
543 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
544 /// instructions can be made more efficient if the jump table immediately
545 /// follows the instruction, it's best to place them immediately next to their
546 /// jumps to begin with. In almost all cases they'll never be moved from that
547 /// position.
548 void ARMConstantIslands::doInitialJumpTablePlacement(
549     std::vector<MachineInstr *> &CPEMIs) {
550   unsigned i = CPEntries.size();
551   auto MJTI = MF->getJumpTableInfo();
552   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
553
554   MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
555   for (MachineBasicBlock &MBB : *MF) {
556     auto MI = MBB.getLastNonDebugInstr();
557     if (MI == MBB.end())
558       continue;
559
560     unsigned JTOpcode;
561     switch (MI->getOpcode()) {
562     default:
563       continue;
564     case ARM::BR_JTadd:
565     case ARM::BR_JTr:
566     case ARM::tBR_JTr:
567     case ARM::BR_JTm_i12:
568     case ARM::BR_JTm_rs:
569       JTOpcode = ARM::JUMPTABLE_ADDRS;
570       break;
571     case ARM::t2BR_JT:
572       JTOpcode = ARM::JUMPTABLE_INSTS;
573       break;
574     case ARM::tTBB_JT:
575     case ARM::t2TBB_JT:
576       JTOpcode = ARM::JUMPTABLE_TBB;
577       break;
578     case ARM::tTBH_JT:
579     case ARM::t2TBH_JT:
580       JTOpcode = ARM::JUMPTABLE_TBH;
581       break;
582     }
583
584     unsigned NumOps = MI->getDesc().getNumOperands();
585     MachineOperand JTOp =
586       MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
587     unsigned JTI = JTOp.getIndex();
588     unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
589     MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
590     MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
591     MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
592                                   DebugLoc(), TII->get(JTOpcode))
593                               .addImm(i++)
594                               .addJumpTableIndex(JTI)
595                               .addImm(Size);
596     CPEMIs.push_back(CPEMI);
597     CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
598     JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
599     if (!LastCorrectlyNumberedBB)
600       LastCorrectlyNumberedBB = &MBB;
601   }
602
603   // If we did anything then we need to renumber the subsequent blocks.
604   if (LastCorrectlyNumberedBB)
605     MF->RenumberBlocks(LastCorrectlyNumberedBB);
606 }
607
608 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
609 /// into the block immediately after it.
610 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
611   // Get the next machine basic block in the function.
612   MachineFunction::iterator MBBI = MBB->getIterator();
613   // Can't fall off end of function.
614   if (std::next(MBBI) == MBB->getParent()->end())
615     return false;
616
617   MachineBasicBlock *NextBB = &*std::next(MBBI);
618   if (!MBB->isSuccessor(NextBB))
619     return false;
620
621   // Try to analyze the end of the block. A potential fallthrough may already
622   // have an unconditional branch for whatever reason.
623   MachineBasicBlock *TBB, *FBB;
624   SmallVector<MachineOperand, 4> Cond;
625   bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
626   return TooDifficult || FBB == nullptr;
627 }
628
629 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
630 /// look up the corresponding CPEntry.
631 ARMConstantIslands::CPEntry *
632 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
633                                        const MachineInstr *CPEMI) {
634   std::vector<CPEntry> &CPEs = CPEntries[CPI];
635   // Number of entries per constpool index should be small, just do a
636   // linear search.
637   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
638     if (CPEs[i].CPEMI == CPEMI)
639       return &CPEs[i];
640   }
641   return nullptr;
642 }
643
644 /// getCPELogAlign - Returns the required alignment of the constant pool entry
645 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
646 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
647   switch (CPEMI->getOpcode()) {
648   case ARM::CONSTPOOL_ENTRY:
649     break;
650   case ARM::JUMPTABLE_TBB:
651     return isThumb1 ? 2 : 0;
652   case ARM::JUMPTABLE_TBH:
653     return isThumb1 ? 2 : 1;
654   case ARM::JUMPTABLE_INSTS:
655     return 1;
656   case ARM::JUMPTABLE_ADDRS:
657     return 2;
658   default:
659     llvm_unreachable("unknown constpool entry kind");
660   }
661
662   unsigned CPI = getCombinedIndex(CPEMI);
663   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
664   unsigned Align = MCP->getConstants()[CPI].getAlignment();
665   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
666   return Log2_32(Align);
667 }
668
669 /// scanFunctionJumpTables - Do a scan of the function, building up
670 /// information about the sizes of each block and the locations of all
671 /// the jump tables.
672 void ARMConstantIslands::scanFunctionJumpTables() {
673   for (MachineBasicBlock &MBB : *MF) {
674     for (MachineInstr &I : MBB)
675       if (I.isBranch() &&
676           (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
677         T2JumpTables.push_back(&I);
678   }
679 }
680
681 /// initializeFunctionInfo - Do the initial scan of the function, building up
682 /// information about the sizes of each block, the location of all the water,
683 /// and finding all of the constant pool users.
684 void ARMConstantIslands::
685 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
686
687   BBInfo = computeAllBlockSizes(MF);
688
689   // The known bits of the entry block offset are determined by the function
690   // alignment.
691   BBInfo.front().KnownBits = MF->getAlignment();
692
693   // Compute block offsets and known bits.
694   adjustBBOffsetsAfter(&MF->front());
695
696   // Now go back through the instructions and build up our data structures.
697   for (MachineBasicBlock &MBB : *MF) {
698     // If this block doesn't fall through into the next MBB, then this is
699     // 'water' that a constant pool island could be placed.
700     if (!BBHasFallthrough(&MBB))
701       WaterList.push_back(&MBB);
702
703     for (MachineInstr &I : MBB) {
704       if (I.isDebugInstr())
705         continue;
706
707       unsigned Opc = I.getOpcode();
708       if (I.isBranch()) {
709         bool isCond = false;
710         unsigned Bits = 0;
711         unsigned Scale = 1;
712         int UOpc = Opc;
713         switch (Opc) {
714         default:
715           continue;  // Ignore other JT branches
716         case ARM::t2BR_JT:
717         case ARM::tBR_JTr:
718           T2JumpTables.push_back(&I);
719           continue;   // Does not get an entry in ImmBranches
720         case ARM::Bcc:
721           isCond = true;
722           UOpc = ARM::B;
723           LLVM_FALLTHROUGH;
724         case ARM::B:
725           Bits = 24;
726           Scale = 4;
727           break;
728         case ARM::tBcc:
729           isCond = true;
730           UOpc = ARM::tB;
731           Bits = 8;
732           Scale = 2;
733           break;
734         case ARM::tB:
735           Bits = 11;
736           Scale = 2;
737           break;
738         case ARM::t2Bcc:
739           isCond = true;
740           UOpc = ARM::t2B;
741           Bits = 20;
742           Scale = 2;
743           break;
744         case ARM::t2B:
745           Bits = 24;
746           Scale = 2;
747           break;
748         }
749
750         // Record this immediate branch.
751         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
752         ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
753       }
754
755       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
756         PushPopMIs.push_back(&I);
757
758       if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
759           Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
760           Opc == ARM::JUMPTABLE_TBH)
761         continue;
762
763       // Scan the instructions for constant pool operands.
764       for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
765         if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
766           // We found one.  The addressing mode tells us the max displacement
767           // from the PC that this instruction permits.
768
769           // Basic size info comes from the TSFlags field.
770           unsigned Bits = 0;
771           unsigned Scale = 1;
772           bool NegOk = false;
773           bool IsSoImm = false;
774
775           switch (Opc) {
776           default:
777             llvm_unreachable("Unknown addressing mode for CP reference!");
778
779           // Taking the address of a CP entry.
780           case ARM::LEApcrel:
781           case ARM::LEApcrelJT:
782             // This takes a SoImm, which is 8 bit immediate rotated. We'll
783             // pretend the maximum offset is 255 * 4. Since each instruction
784             // 4 byte wide, this is always correct. We'll check for other
785             // displacements that fits in a SoImm as well.
786             Bits = 8;
787             Scale = 4;
788             NegOk = true;
789             IsSoImm = true;
790             break;
791           case ARM::t2LEApcrel:
792           case ARM::t2LEApcrelJT:
793             Bits = 12;
794             NegOk = true;
795             break;
796           case ARM::tLEApcrel:
797           case ARM::tLEApcrelJT:
798             Bits = 8;
799             Scale = 4;
800             break;
801
802           case ARM::LDRBi12:
803           case ARM::LDRi12:
804           case ARM::LDRcp:
805           case ARM::t2LDRpci:
806           case ARM::t2LDRHpci:
807           case ARM::t2LDRBpci:
808             Bits = 12;  // +-offset_12
809             NegOk = true;
810             break;
811
812           case ARM::tLDRpci:
813             Bits = 8;
814             Scale = 4;  // +(offset_8*4)
815             break;
816
817           case ARM::VLDRD:
818           case ARM::VLDRS:
819             Bits = 8;
820             Scale = 4;  // +-(offset_8*4)
821             NegOk = true;
822             break;
823           case ARM::VLDRH:
824             Bits = 8;
825             Scale = 2;  // +-(offset_8*2)
826             NegOk = true;
827             break;
828
829           case ARM::tLDRHi:
830             Bits = 5;
831             Scale = 2; // +(offset_5*2)
832             break;
833           }
834
835           // Remember that this is a user of a CP entry.
836           unsigned CPI = I.getOperand(op).getIndex();
837           if (I.getOperand(op).isJTI()) {
838             JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
839             CPI = JumpTableEntryIndices[CPI];
840           }
841
842           MachineInstr *CPEMI = CPEMIs[CPI];
843           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
844           CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
845
846           // Increment corresponding CPEntry reference count.
847           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
848           assert(CPE && "Cannot find a corresponding CPEntry!");
849           CPE->RefCount++;
850
851           // Instructions can only use one CP entry, don't bother scanning the
852           // rest of the operands.
853           break;
854         }
855     }
856   }
857 }
858
859 /// getOffsetOf - Return the current offset of the specified machine instruction
860 /// from the start of the function.  This offset changes as stuff is moved
861 /// around inside the function.
862 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
863   MachineBasicBlock *MBB = MI->getParent();
864
865   // The offset is composed of two things: the sum of the sizes of all MBB's
866   // before this instruction's block, and the offset from the start of the block
867   // it is in.
868   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
869
870   // Sum instructions before MI in MBB.
871   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
872     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
873     Offset += TII->getInstSizeInBytes(*I);
874   }
875   return Offset;
876 }
877
878 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
879 /// ID.
880 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
881                               const MachineBasicBlock *RHS) {
882   return LHS->getNumber() < RHS->getNumber();
883 }
884
885 /// updateForInsertedWaterBlock - When a block is newly inserted into the
886 /// machine function, it upsets all of the block numbers.  Renumber the blocks
887 /// and update the arrays that parallel this numbering.
888 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
889   // Renumber the MBB's to keep them consecutive.
890   NewBB->getParent()->RenumberBlocks(NewBB);
891
892   // Insert an entry into BBInfo to align it properly with the (newly
893   // renumbered) block numbers.
894   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
895
896   // Next, update WaterList.  Specifically, we need to add NewMBB as having
897   // available water after it.
898   water_iterator IP =
899     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
900                      CompareMBBNumbers);
901   WaterList.insert(IP, NewBB);
902 }
903
904 /// Split the basic block containing MI into two blocks, which are joined by
905 /// an unconditional branch.  Update data structures and renumber blocks to
906 /// account for this change and returns the newly created block.
907 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
908   MachineBasicBlock *OrigBB = MI->getParent();
909
910   // Create a new MBB for the code after the OrigBB.
911   MachineBasicBlock *NewBB =
912     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
913   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
914   MF->insert(MBBI, NewBB);
915
916   // Splice the instructions starting with MI over to NewBB.
917   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
918
919   // Add an unconditional branch from OrigBB to NewBB.
920   // Note the new unconditional branch is not being recorded.
921   // There doesn't seem to be meaningful DebugInfo available; this doesn't
922   // correspond to anything in the source.
923   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
924   if (!isThumb)
925     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
926   else
927     BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
928         .addMBB(NewBB)
929         .add(predOps(ARMCC::AL));
930   ++NumSplit;
931
932   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
933   NewBB->transferSuccessors(OrigBB);
934
935   // OrigBB branches to NewBB.
936   OrigBB->addSuccessor(NewBB);
937
938   // Update internal data structures to account for the newly inserted MBB.
939   // This is almost the same as updateForInsertedWaterBlock, except that
940   // the Water goes after OrigBB, not NewBB.
941   MF->RenumberBlocks(NewBB);
942
943   // Insert an entry into BBInfo to align it properly with the (newly
944   // renumbered) block numbers.
945   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
946
947   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
948   // available water after it (but not if it's already there, which happens
949   // when splitting before a conditional branch that is followed by an
950   // unconditional branch - in that case we want to insert NewBB).
951   water_iterator IP =
952     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
953                      CompareMBBNumbers);
954   MachineBasicBlock* WaterBB = *IP;
955   if (WaterBB == OrigBB)
956     WaterList.insert(std::next(IP), NewBB);
957   else
958     WaterList.insert(IP, OrigBB);
959   NewWaterList.insert(OrigBB);
960
961   // Figure out how large the OrigBB is.  As the first half of the original
962   // block, it cannot contain a tablejump.  The size includes
963   // the new jump we added.  (It should be possible to do this without
964   // recounting everything, but it's very confusing, and this is rarely
965   // executed.)
966   computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]);
967
968   // Figure out how large the NewMBB is.  As the second half of the original
969   // block, it may contain a tablejump.
970   computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]);
971
972   // All BBOffsets following these blocks must be modified.
973   adjustBBOffsetsAfter(OrigBB);
974
975   return NewBB;
976 }
977
978 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
979 /// displacement computation.  Update U.KnownAlignment to match its current
980 /// basic block location.
981 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
982   unsigned UserOffset = getOffsetOf(U.MI);
983   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
984   unsigned KnownBits = BBI.internalKnownBits();
985
986   // The value read from PC is offset from the actual instruction address.
987   UserOffset += (isThumb ? 4 : 8);
988
989   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
990   // Make sure U.getMaxDisp() returns a constrained range.
991   U.KnownAlignment = (KnownBits >= 2);
992
993   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
994   // purposes of the displacement computation; compensate for that here.
995   // For unknown alignments, getMaxDisp() constrains the range instead.
996   if (isThumb && U.KnownAlignment)
997     UserOffset &= ~3u;
998
999   return UserOffset;
1000 }
1001
1002 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1003 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1004 /// constant pool entry).
1005 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1006 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1007 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1008 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1009                                          unsigned TrialOffset, unsigned MaxDisp,
1010                                          bool NegativeOK, bool IsSoImm) {
1011   if (UserOffset <= TrialOffset) {
1012     // User before the Trial.
1013     if (TrialOffset - UserOffset <= MaxDisp)
1014       return true;
1015     // FIXME: Make use full range of soimm values.
1016   } else if (NegativeOK) {
1017     if (UserOffset - TrialOffset <= MaxDisp)
1018       return true;
1019     // FIXME: Make use full range of soimm values.
1020   }
1021   return false;
1022 }
1023
1024 /// isWaterInRange - Returns true if a CPE placed after the specified
1025 /// Water (a basic block) will be in range for the specific MI.
1026 ///
1027 /// Compute how much the function will grow by inserting a CPE after Water.
1028 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1029                                         MachineBasicBlock* Water, CPUser &U,
1030                                         unsigned &Growth) {
1031   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
1032   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
1033   unsigned NextBlockOffset, NextBlockAlignment;
1034   MachineFunction::const_iterator NextBlock = Water->getIterator();
1035   if (++NextBlock == MF->end()) {
1036     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1037     NextBlockAlignment = 0;
1038   } else {
1039     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1040     NextBlockAlignment = NextBlock->getAlignment();
1041   }
1042   unsigned Size = U.CPEMI->getOperand(2).getImm();
1043   unsigned CPEEnd = CPEOffset + Size;
1044
1045   // The CPE may be able to hide in the alignment padding before the next
1046   // block. It may also cause more padding to be required if it is more aligned
1047   // that the next block.
1048   if (CPEEnd > NextBlockOffset) {
1049     Growth = CPEEnd - NextBlockOffset;
1050     // Compute the padding that would go at the end of the CPE to align the next
1051     // block.
1052     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
1053
1054     // If the CPE is to be inserted before the instruction, that will raise
1055     // the offset of the instruction. Also account for unknown alignment padding
1056     // in blocks between CPE and the user.
1057     if (CPEOffset < UserOffset)
1058       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
1059   } else
1060     // CPE fits in existing padding.
1061     Growth = 0;
1062
1063   return isOffsetInRange(UserOffset, CPEOffset, U);
1064 }
1065
1066 /// isCPEntryInRange - Returns true if the distance between specific MI and
1067 /// specific ConstPool entry instruction can fit in MI's displacement field.
1068 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1069                                       MachineInstr *CPEMI, unsigned MaxDisp,
1070                                       bool NegOk, bool DoDump) {
1071   unsigned CPEOffset  = getOffsetOf(CPEMI);
1072
1073   if (DoDump) {
1074     LLVM_DEBUG({
1075       unsigned Block = MI->getParent()->getNumber();
1076       const BasicBlockInfo &BBI = BBInfo[Block];
1077       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1078              << " max delta=" << MaxDisp
1079              << format(" insn address=%#x", UserOffset) << " in "
1080              << printMBBReference(*MI->getParent()) << ": "
1081              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1082              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1083                        int(CPEOffset - UserOffset));
1084     });
1085   }
1086
1087   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1088 }
1089
1090 #ifndef NDEBUG
1091 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1092 /// unconditionally branches to its only successor.
1093 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1094   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1095     return false;
1096
1097   MachineBasicBlock *Succ = *MBB->succ_begin();
1098   MachineBasicBlock *Pred = *MBB->pred_begin();
1099   MachineInstr *PredMI = &Pred->back();
1100   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1101       || PredMI->getOpcode() == ARM::t2B)
1102     return PredMI->getOperand(0).getMBB() == Succ;
1103   return false;
1104 }
1105 #endif // NDEBUG
1106
1107 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1108   unsigned BBNum = BB->getNumber();
1109   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1110     // Get the offset and known bits at the end of the layout predecessor.
1111     // Include the alignment of the current block.
1112     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
1113     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
1114     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
1115
1116     // This is where block i begins.  Stop if the offset is already correct,
1117     // and we have updated 2 blocks.  This is the maximum number of blocks
1118     // changed before calling this function.
1119     if (i > BBNum + 2 &&
1120         BBInfo[i].Offset == Offset &&
1121         BBInfo[i].KnownBits == KnownBits)
1122       break;
1123
1124     BBInfo[i].Offset = Offset;
1125     BBInfo[i].KnownBits = KnownBits;
1126   }
1127 }
1128
1129 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1130 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1131 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1132 /// the entry, false if we didn't.
1133 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1134                                                     MachineInstr *CPEMI) {
1135   // Find the old entry. Eliminate it if it is no longer used.
1136   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1137   assert(CPE && "Unexpected!");
1138   if (--CPE->RefCount == 0) {
1139     removeDeadCPEMI(CPEMI);
1140     CPE->CPEMI = nullptr;
1141     --NumCPEs;
1142     return true;
1143   }
1144   return false;
1145 }
1146
1147 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1148   if (CPEMI->getOperand(1).isCPI())
1149     return CPEMI->getOperand(1).getIndex();
1150
1151   return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1152 }
1153
1154 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1155 /// if not, see if an in-range clone of the CPE is in range, and if so,
1156 /// change the data structures so the user references the clone.  Returns:
1157 /// 0 = no existing entry found
1158 /// 1 = entry found, and there were no code insertions or deletions
1159 /// 2 = entry found, and there were code insertions or deletions
1160 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1161   MachineInstr *UserMI = U.MI;
1162   MachineInstr *CPEMI  = U.CPEMI;
1163
1164   // Check to see if the CPE is already in-range.
1165   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1166                        true)) {
1167     LLVM_DEBUG(dbgs() << "In range\n");
1168     return 1;
1169   }
1170
1171   // No.  Look for previously created clones of the CPE that are in range.
1172   unsigned CPI = getCombinedIndex(CPEMI);
1173   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1174   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1175     // We already tried this one
1176     if (CPEs[i].CPEMI == CPEMI)
1177       continue;
1178     // Removing CPEs can leave empty entries, skip
1179     if (CPEs[i].CPEMI == nullptr)
1180       continue;
1181     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1182                      U.NegOk)) {
1183       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1184                         << CPEs[i].CPI << "\n");
1185       // Point the CPUser node to the replacement
1186       U.CPEMI = CPEs[i].CPEMI;
1187       // Change the CPI in the instruction operand to refer to the clone.
1188       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1189         if (UserMI->getOperand(j).isCPI()) {
1190           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1191           break;
1192         }
1193       // Adjust the refcount of the clone...
1194       CPEs[i].RefCount++;
1195       // ...and the original.  If we didn't remove the old entry, none of the
1196       // addresses changed, so we don't need another pass.
1197       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1198     }
1199   }
1200   return 0;
1201 }
1202
1203 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1204 /// the specific unconditional branch instruction.
1205 static inline unsigned getUnconditionalBrDisp(int Opc) {
1206   switch (Opc) {
1207   case ARM::tB:
1208     return ((1<<10)-1)*2;
1209   case ARM::t2B:
1210     return ((1<<23)-1)*2;
1211   default:
1212     break;
1213   }
1214
1215   return ((1<<23)-1)*4;
1216 }
1217
1218 /// findAvailableWater - Look for an existing entry in the WaterList in which
1219 /// we can place the CPE referenced from U so it's within range of U's MI.
1220 /// Returns true if found, false if not.  If it returns true, WaterIter
1221 /// is set to the WaterList entry.  For Thumb, prefer water that will not
1222 /// introduce padding to water that will.  To ensure that this pass
1223 /// terminates, the CPE location for a particular CPUser is only allowed to
1224 /// move to a lower address, so search backward from the end of the list and
1225 /// prefer the first water that is in range.
1226 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1227                                             water_iterator &WaterIter,
1228                                             bool CloserWater) {
1229   if (WaterList.empty())
1230     return false;
1231
1232   unsigned BestGrowth = ~0u;
1233   // The nearest water without splitting the UserBB is right after it.
1234   // If the distance is still large (we have a big BB), then we need to split it
1235   // if we don't converge after certain iterations. This helps the following
1236   // situation to converge:
1237   //   BB0:
1238   //      Big BB
1239   //   BB1:
1240   //      Constant Pool
1241   // When a CP access is out of range, BB0 may be used as water. However,
1242   // inserting islands between BB0 and BB1 makes other accesses out of range.
1243   MachineBasicBlock *UserBB = U.MI->getParent();
1244   unsigned MinNoSplitDisp =
1245       BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI));
1246   if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1247     return false;
1248   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1249        --IP) {
1250     MachineBasicBlock* WaterBB = *IP;
1251     // Check if water is in range and is either at a lower address than the
1252     // current "high water mark" or a new water block that was created since
1253     // the previous iteration by inserting an unconditional branch.  In the
1254     // latter case, we want to allow resetting the high water mark back to
1255     // this new water since we haven't seen it before.  Inserting branches
1256     // should be relatively uncommon and when it does happen, we want to be
1257     // sure to take advantage of it for all the CPEs near that block, so that
1258     // we don't insert more branches than necessary.
1259     // When CloserWater is true, we try to find the lowest address after (or
1260     // equal to) user MI's BB no matter of padding growth.
1261     unsigned Growth;
1262     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1263         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1264          NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1265         Growth < BestGrowth) {
1266       // This is the least amount of required padding seen so far.
1267       BestGrowth = Growth;
1268       WaterIter = IP;
1269       LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1270                         << " Growth=" << Growth << '\n');
1271
1272       if (CloserWater && WaterBB == U.MI->getParent())
1273         return true;
1274       // Keep looking unless it is perfect and we're not looking for the lowest
1275       // possible address.
1276       if (!CloserWater && BestGrowth == 0)
1277         return true;
1278     }
1279     if (IP == B)
1280       break;
1281   }
1282   return BestGrowth != ~0u;
1283 }
1284
1285 /// createNewWater - No existing WaterList entry will work for
1286 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1287 /// block is used if in range, and the conditional branch munged so control
1288 /// flow is correct.  Otherwise the block is split to create a hole with an
1289 /// unconditional branch around it.  In either case NewMBB is set to a
1290 /// block following which the new island can be inserted (the WaterList
1291 /// is not adjusted).
1292 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1293                                         unsigned UserOffset,
1294                                         MachineBasicBlock *&NewMBB) {
1295   CPUser &U = CPUsers[CPUserIndex];
1296   MachineInstr *UserMI = U.MI;
1297   MachineInstr *CPEMI  = U.CPEMI;
1298   unsigned CPELogAlign = getCPELogAlign(CPEMI);
1299   MachineBasicBlock *UserMBB = UserMI->getParent();
1300   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1301
1302   // If the block does not end in an unconditional branch already, and if the
1303   // end of the block is within range, make new water there.  (The addition
1304   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1305   // Thumb2, 2 on Thumb1.
1306   if (BBHasFallthrough(UserMBB)) {
1307     // Size of branch to insert.
1308     unsigned Delta = isThumb1 ? 2 : 4;
1309     // Compute the offset where the CPE will begin.
1310     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1311
1312     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1313       LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1314                         << format(", expected CPE offset %#x\n", CPEOffset));
1315       NewMBB = &*++UserMBB->getIterator();
1316       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1317       // it for branch lengthening; this new branch will not get out of range,
1318       // but if the preceding conditional branch is out of range, the targets
1319       // will be exchanged, and the altered branch may be out of range, so the
1320       // machinery has to know about it.
1321       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1322       if (!isThumb)
1323         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1324       else
1325         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1326             .addMBB(NewMBB)
1327             .add(predOps(ARMCC::AL));
1328       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1329       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1330                                       MaxDisp, false, UncondBr));
1331       computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]);
1332       adjustBBOffsetsAfter(UserMBB);
1333       return;
1334     }
1335   }
1336
1337   // What a big block.  Find a place within the block to split it.  This is a
1338   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1339   // entries are 4 bytes: if instruction I references island CPE, and
1340   // instruction I+1 references CPE', it will not work well to put CPE as far
1341   // forward as possible, since then CPE' cannot immediately follow it (that
1342   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1343   // need to create a new island.  So, we make a first guess, then walk through
1344   // the instructions between the one currently being looked at and the
1345   // possible insertion point, and make sure any other instructions that
1346   // reference CPEs will be able to use the same island area; if not, we back
1347   // up the insertion point.
1348
1349   // Try to split the block so it's fully aligned.  Compute the latest split
1350   // point where we can add a 4-byte branch instruction, and then align to
1351   // LogAlign which is the largest possible alignment in the function.
1352   unsigned LogAlign = MF->getAlignment();
1353   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1354   unsigned KnownBits = UserBBI.internalKnownBits();
1355   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1356   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1357   LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1358                               BaseInsertOffset));
1359
1360   // The 4 in the following is for the unconditional branch we'll be inserting
1361   // (allows for long branch on Thumb1).  Alignment of the island is handled
1362   // inside isOffsetInRange.
1363   BaseInsertOffset -= 4;
1364
1365   LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1366                     << " la=" << LogAlign << " kb=" << KnownBits
1367                     << " up=" << UPad << '\n');
1368
1369   // This could point off the end of the block if we've already got constant
1370   // pool entries following this block; only the last one is in the water list.
1371   // Back past any possible branches (allow for a conditional and a maximally
1372   // long unconditional).
1373   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1374     // Ensure BaseInsertOffset is larger than the offset of the instruction
1375     // following UserMI so that the loop which searches for the split point
1376     // iterates at least once.
1377     BaseInsertOffset =
1378         std::max(UserBBI.postOffset() - UPad - 8,
1379                  UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1380     LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1381   }
1382   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1383     CPEMI->getOperand(2).getImm();
1384   MachineBasicBlock::iterator MI = UserMI;
1385   ++MI;
1386   unsigned CPUIndex = CPUserIndex+1;
1387   unsigned NumCPUsers = CPUsers.size();
1388   MachineInstr *LastIT = nullptr;
1389   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1390        Offset < BaseInsertOffset;
1391        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1392     assert(MI != UserMBB->end() && "Fell off end of block");
1393     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1394       CPUser &U = CPUsers[CPUIndex];
1395       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1396         // Shift intertion point by one unit of alignment so it is within reach.
1397         BaseInsertOffset -= 1u << LogAlign;
1398         EndInsertOffset  -= 1u << LogAlign;
1399       }
1400       // This is overly conservative, as we don't account for CPEMIs being
1401       // reused within the block, but it doesn't matter much.  Also assume CPEs
1402       // are added in order with alignment padding.  We may eventually be able
1403       // to pack the aligned CPEs better.
1404       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1405       CPUIndex++;
1406     }
1407
1408     // Remember the last IT instruction.
1409     if (MI->getOpcode() == ARM::t2IT)
1410       LastIT = &*MI;
1411   }
1412
1413   --MI;
1414
1415   // Avoid splitting an IT block.
1416   if (LastIT) {
1417     unsigned PredReg = 0;
1418     ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1419     if (CC != ARMCC::AL)
1420       MI = LastIT;
1421   }
1422
1423   // We really must not split an IT block.
1424   LLVM_DEBUG(unsigned PredReg; assert(
1425                  !isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL));
1426
1427   NewMBB = splitBlockBeforeInstr(&*MI);
1428 }
1429
1430 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1431 /// is out-of-range.  If so, pick up the constant pool value and move it some
1432 /// place in-range.  Return true if we changed any addresses (thus must run
1433 /// another pass of branch lengthening), false otherwise.
1434 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1435                                                 bool CloserWater) {
1436   CPUser &U = CPUsers[CPUserIndex];
1437   MachineInstr *UserMI = U.MI;
1438   MachineInstr *CPEMI  = U.CPEMI;
1439   unsigned CPI = getCombinedIndex(CPEMI);
1440   unsigned Size = CPEMI->getOperand(2).getImm();
1441   // Compute this only once, it's expensive.
1442   unsigned UserOffset = getUserOffset(U);
1443
1444   // See if the current entry is within range, or there is a clone of it
1445   // in range.
1446   int result = findInRangeCPEntry(U, UserOffset);
1447   if (result==1) return false;
1448   else if (result==2) return true;
1449
1450   // No existing clone of this CPE is within range.
1451   // We will be generating a new clone.  Get a UID for it.
1452   unsigned ID = AFI->createPICLabelUId();
1453
1454   // Look for water where we can place this CPE.
1455   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1456   MachineBasicBlock *NewMBB;
1457   water_iterator IP;
1458   if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1459     LLVM_DEBUG(dbgs() << "Found water in range\n");
1460     MachineBasicBlock *WaterBB = *IP;
1461
1462     // If the original WaterList entry was "new water" on this iteration,
1463     // propagate that to the new island.  This is just keeping NewWaterList
1464     // updated to match the WaterList, which will be updated below.
1465     if (NewWaterList.erase(WaterBB))
1466       NewWaterList.insert(NewIsland);
1467
1468     // The new CPE goes before the following block (NewMBB).
1469     NewMBB = &*++WaterBB->getIterator();
1470   } else {
1471     // No water found.
1472     LLVM_DEBUG(dbgs() << "No water found\n");
1473     createNewWater(CPUserIndex, UserOffset, NewMBB);
1474
1475     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1476     // called while handling branches so that the water will be seen on the
1477     // next iteration for constant pools, but in this context, we don't want
1478     // it.  Check for this so it will be removed from the WaterList.
1479     // Also remove any entry from NewWaterList.
1480     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1481     IP = find(WaterList, WaterBB);
1482     if (IP != WaterList.end())
1483       NewWaterList.erase(WaterBB);
1484
1485     // We are adding new water.  Update NewWaterList.
1486     NewWaterList.insert(NewIsland);
1487   }
1488   // Always align the new block because CP entries can be smaller than 4
1489   // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1490   // be an already aligned constant pool block.
1491   const unsigned Align = isThumb ? 1 : 2;
1492   if (NewMBB->getAlignment() < Align)
1493     NewMBB->setAlignment(Align);
1494
1495   // Remove the original WaterList entry; we want subsequent insertions in
1496   // this vicinity to go after the one we're about to insert.  This
1497   // considerably reduces the number of times we have to move the same CPE
1498   // more than once and is also important to ensure the algorithm terminates.
1499   if (IP != WaterList.end())
1500     WaterList.erase(IP);
1501
1502   // Okay, we know we can put an island before NewMBB now, do it!
1503   MF->insert(NewMBB->getIterator(), NewIsland);
1504
1505   // Update internal data structures to account for the newly inserted MBB.
1506   updateForInsertedWaterBlock(NewIsland);
1507
1508   // Now that we have an island to add the CPE to, clone the original CPE and
1509   // add it to the island.
1510   U.HighWaterMark = NewIsland;
1511   U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1512                 .addImm(ID)
1513                 .add(CPEMI->getOperand(1))
1514                 .addImm(Size);
1515   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1516   ++NumCPEs;
1517
1518   // Decrement the old entry, and remove it if refcount becomes 0.
1519   decrementCPEReferenceCount(CPI, CPEMI);
1520
1521   // Mark the basic block as aligned as required by the const-pool entry.
1522   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1523
1524   // Increase the size of the island block to account for the new entry.
1525   BBInfo[NewIsland->getNumber()].Size += Size;
1526   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1527
1528   // Finally, change the CPI in the instruction operand to be ID.
1529   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1530     if (UserMI->getOperand(i).isCPI()) {
1531       UserMI->getOperand(i).setIndex(ID);
1532       break;
1533     }
1534
1535   LLVM_DEBUG(
1536       dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1537              << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1538
1539   return true;
1540 }
1541
1542 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1543 /// sizes and offsets of impacted basic blocks.
1544 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1545   MachineBasicBlock *CPEBB = CPEMI->getParent();
1546   unsigned Size = CPEMI->getOperand(2).getImm();
1547   CPEMI->eraseFromParent();
1548   BBInfo[CPEBB->getNumber()].Size -= Size;
1549   // All succeeding offsets have the current size value added in, fix this.
1550   if (CPEBB->empty()) {
1551     BBInfo[CPEBB->getNumber()].Size = 0;
1552
1553     // This block no longer needs to be aligned.
1554     CPEBB->setAlignment(0);
1555   } else
1556     // Entries are sorted by descending alignment, so realign from the front.
1557     CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin()));
1558
1559   adjustBBOffsetsAfter(CPEBB);
1560   // An island has only one predecessor BB and one successor BB. Check if
1561   // this BB's predecessor jumps directly to this BB's successor. This
1562   // shouldn't happen currently.
1563   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1564   // FIXME: remove the empty blocks after all the work is done?
1565 }
1566
1567 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1568 /// are zero.
1569 bool ARMConstantIslands::removeUnusedCPEntries() {
1570   unsigned MadeChange = false;
1571   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1572       std::vector<CPEntry> &CPEs = CPEntries[i];
1573       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1574         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1575           removeDeadCPEMI(CPEs[j].CPEMI);
1576           CPEs[j].CPEMI = nullptr;
1577           MadeChange = true;
1578         }
1579       }
1580   }
1581   return MadeChange;
1582 }
1583
1584 /// isBBInRange - Returns true if the distance between specific MI and
1585 /// specific BB can fit in MI's displacement field.
1586 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1587                                      unsigned MaxDisp) {
1588   unsigned PCAdj      = isThumb ? 4 : 8;
1589   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1590   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1591
1592   LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1593                     << " from " << printMBBReference(*MI->getParent())
1594                     << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1595                     << " to " << DestOffset << " offset "
1596                     << int(DestOffset - BrOffset) << "\t" << *MI);
1597
1598   if (BrOffset <= DestOffset) {
1599     // Branch before the Dest.
1600     if (DestOffset-BrOffset <= MaxDisp)
1601       return true;
1602   } else {
1603     if (BrOffset-DestOffset <= MaxDisp)
1604       return true;
1605   }
1606   return false;
1607 }
1608
1609 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1610 /// away to fit in its displacement field.
1611 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1612   MachineInstr *MI = Br.MI;
1613   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1614
1615   // Check to see if the DestBB is already in-range.
1616   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1617     return false;
1618
1619   if (!Br.isCond)
1620     return fixupUnconditionalBr(Br);
1621   return fixupConditionalBr(Br);
1622 }
1623
1624 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1625 /// too far away to fit in its displacement field. If the LR register has been
1626 /// spilled in the epilogue, then we can use BL to implement a far jump.
1627 /// Otherwise, add an intermediate branch instruction to a branch.
1628 bool
1629 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1630   MachineInstr *MI = Br.MI;
1631   MachineBasicBlock *MBB = MI->getParent();
1632   if (!isThumb1)
1633     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1634
1635   // Use BL to implement far jump.
1636   Br.MaxDisp = (1 << 21) * 2;
1637   MI->setDesc(TII->get(ARM::tBfar));
1638   BBInfo[MBB->getNumber()].Size += 2;
1639   adjustBBOffsetsAfter(MBB);
1640   HasFarJump = true;
1641   ++NumUBrFixed;
1642
1643   LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1644
1645   return true;
1646 }
1647
1648 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1649 /// far away to fit in its displacement field. It is converted to an inverse
1650 /// conditional branch + an unconditional branch to the destination.
1651 bool
1652 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1653   MachineInstr *MI = Br.MI;
1654   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1655
1656   // Add an unconditional branch to the destination and invert the branch
1657   // condition to jump over it:
1658   // blt L1
1659   // =>
1660   // bge L2
1661   // b   L1
1662   // L2:
1663   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1664   CC = ARMCC::getOppositeCondition(CC);
1665   unsigned CCReg = MI->getOperand(2).getReg();
1666
1667   // If the branch is at the end of its MBB and that has a fall-through block,
1668   // direct the updated conditional branch to the fall-through block. Otherwise,
1669   // split the MBB before the next instruction.
1670   MachineBasicBlock *MBB = MI->getParent();
1671   MachineInstr *BMI = &MBB->back();
1672   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1673
1674   ++NumCBrFixed;
1675   if (BMI != MI) {
1676     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1677         BMI->getOpcode() == Br.UncondBr) {
1678       // Last MI in the BB is an unconditional branch. Can we simply invert the
1679       // condition and swap destinations:
1680       // beq L1
1681       // b   L2
1682       // =>
1683       // bne L2
1684       // b   L1
1685       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1686       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1687         LLVM_DEBUG(
1688             dbgs() << "  Invert Bcc condition and swap its destination with "
1689                    << *BMI);
1690         BMI->getOperand(0).setMBB(DestBB);
1691         MI->getOperand(0).setMBB(NewDest);
1692         MI->getOperand(1).setImm(CC);
1693         return true;
1694       }
1695     }
1696   }
1697
1698   if (NeedSplit) {
1699     splitBlockBeforeInstr(MI);
1700     // No need for the branch to the next block. We're adding an unconditional
1701     // branch to the destination.
1702     int delta = TII->getInstSizeInBytes(MBB->back());
1703     BBInfo[MBB->getNumber()].Size -= delta;
1704     MBB->back().eraseFromParent();
1705
1706     // The conditional successor will be swapped between the BBs after this, so
1707     // update CFG.
1708     MBB->addSuccessor(DestBB);
1709     std::next(MBB->getIterator())->removeSuccessor(DestBB);
1710
1711     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1712   }
1713   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1714
1715   LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1716                     << " also invert condition and change dest. to "
1717                     << printMBBReference(*NextBB) << "\n");
1718
1719   // Insert a new conditional branch and a new unconditional branch.
1720   // Also update the ImmBranch as well as adding a new entry for the new branch.
1721   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1722     .addMBB(NextBB).addImm(CC).addReg(CCReg);
1723   Br.MI = &MBB->back();
1724   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1725   if (isThumb)
1726     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1727         .addMBB(DestBB)
1728         .add(predOps(ARMCC::AL));
1729   else
1730     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1731   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1732   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1733   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1734
1735   // Remove the old conditional branch.  It may or may not still be in MBB.
1736   BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1737   MI->eraseFromParent();
1738   adjustBBOffsetsAfter(MBB);
1739   return true;
1740 }
1741
1742 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1743 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1744 /// to do this if tBfar is not used.
1745 bool ARMConstantIslands::undoLRSpillRestore() {
1746   bool MadeChange = false;
1747   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1748     MachineInstr *MI = PushPopMIs[i];
1749     // First two operands are predicates.
1750     if (MI->getOpcode() == ARM::tPOP_RET &&
1751         MI->getOperand(2).getReg() == ARM::PC &&
1752         MI->getNumExplicitOperands() == 3) {
1753       // Create the new insn and copy the predicate from the old.
1754       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1755           .add(MI->getOperand(0))
1756           .add(MI->getOperand(1));
1757       MI->eraseFromParent();
1758       MadeChange = true;
1759     } else if (MI->getOpcode() == ARM::tPUSH &&
1760                MI->getOperand(2).getReg() == ARM::LR &&
1761                MI->getNumExplicitOperands() == 3) {
1762       // Just remove the push.
1763       MI->eraseFromParent();
1764       MadeChange = true;
1765     }
1766   }
1767   return MadeChange;
1768 }
1769
1770 bool ARMConstantIslands::optimizeThumb2Instructions() {
1771   bool MadeChange = false;
1772
1773   // Shrink ADR and LDR from constantpool.
1774   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1775     CPUser &U = CPUsers[i];
1776     unsigned Opcode = U.MI->getOpcode();
1777     unsigned NewOpc = 0;
1778     unsigned Scale = 1;
1779     unsigned Bits = 0;
1780     switch (Opcode) {
1781     default: break;
1782     case ARM::t2LEApcrel:
1783       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1784         NewOpc = ARM::tLEApcrel;
1785         Bits = 8;
1786         Scale = 4;
1787       }
1788       break;
1789     case ARM::t2LDRpci:
1790       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1791         NewOpc = ARM::tLDRpci;
1792         Bits = 8;
1793         Scale = 4;
1794       }
1795       break;
1796     }
1797
1798     if (!NewOpc)
1799       continue;
1800
1801     unsigned UserOffset = getUserOffset(U);
1802     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1803
1804     // Be conservative with inline asm.
1805     if (!U.KnownAlignment)
1806       MaxOffs -= 2;
1807
1808     // FIXME: Check if offset is multiple of scale if scale is not 4.
1809     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1810       LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1811       U.MI->setDesc(TII->get(NewOpc));
1812       MachineBasicBlock *MBB = U.MI->getParent();
1813       BBInfo[MBB->getNumber()].Size -= 2;
1814       adjustBBOffsetsAfter(MBB);
1815       ++NumT2CPShrunk;
1816       MadeChange = true;
1817     }
1818   }
1819
1820   return MadeChange;
1821 }
1822
1823 bool ARMConstantIslands::optimizeThumb2Branches() {
1824   bool MadeChange = false;
1825
1826   // The order in which branches appear in ImmBranches is approximately their
1827   // order within the function body. By visiting later branches first, we reduce
1828   // the distance between earlier forward branches and their targets, making it
1829   // more likely that the cbn?z optimization, which can only apply to forward
1830   // branches, will succeed.
1831   for (unsigned i = ImmBranches.size(); i != 0; --i) {
1832     ImmBranch &Br = ImmBranches[i-1];
1833     unsigned Opcode = Br.MI->getOpcode();
1834     unsigned NewOpc = 0;
1835     unsigned Scale = 1;
1836     unsigned Bits = 0;
1837     switch (Opcode) {
1838     default: break;
1839     case ARM::t2B:
1840       NewOpc = ARM::tB;
1841       Bits = 11;
1842       Scale = 2;
1843       break;
1844     case ARM::t2Bcc:
1845       NewOpc = ARM::tBcc;
1846       Bits = 8;
1847       Scale = 2;
1848       break;
1849     }
1850     if (NewOpc) {
1851       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1852       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1853       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
1854         LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1855         Br.MI->setDesc(TII->get(NewOpc));
1856         MachineBasicBlock *MBB = Br.MI->getParent();
1857         BBInfo[MBB->getNumber()].Size -= 2;
1858         adjustBBOffsetsAfter(MBB);
1859         ++NumT2BrShrunk;
1860         MadeChange = true;
1861       }
1862     }
1863
1864     Opcode = Br.MI->getOpcode();
1865     if (Opcode != ARM::tBcc)
1866       continue;
1867
1868     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1869     // so this transformation is not safe.
1870     if (!Br.MI->killsRegister(ARM::CPSR))
1871       continue;
1872
1873     NewOpc = 0;
1874     unsigned PredReg = 0;
1875     ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1876     if (Pred == ARMCC::EQ)
1877       NewOpc = ARM::tCBZ;
1878     else if (Pred == ARMCC::NE)
1879       NewOpc = ARM::tCBNZ;
1880     if (!NewOpc)
1881       continue;
1882     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1883     // Check if the distance is within 126. Subtract starting offset by 2
1884     // because the cmp will be eliminated.
1885     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
1886     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1887     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1888       MachineBasicBlock::iterator CmpMI = Br.MI;
1889       if (CmpMI != Br.MI->getParent()->begin()) {
1890         --CmpMI;
1891         if (CmpMI->getOpcode() == ARM::tCMPi8) {
1892           unsigned Reg = CmpMI->getOperand(0).getReg();
1893           Pred = getInstrPredicate(*CmpMI, PredReg);
1894           if (Pred == ARMCC::AL &&
1895               CmpMI->getOperand(1).getImm() == 0 &&
1896               isARMLowRegister(Reg)) {
1897             MachineBasicBlock *MBB = Br.MI->getParent();
1898             LLVM_DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1899             MachineInstr *NewBR =
1900               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1901               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1902             CmpMI->eraseFromParent();
1903             Br.MI->eraseFromParent();
1904             Br.MI = NewBR;
1905             BBInfo[MBB->getNumber()].Size -= 2;
1906             adjustBBOffsetsAfter(MBB);
1907             ++NumCBZ;
1908             MadeChange = true;
1909           }
1910         }
1911       }
1912     }
1913   }
1914
1915   return MadeChange;
1916 }
1917
1918 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
1919                               unsigned BaseReg) {
1920   if (I.getOpcode() != ARM::t2ADDrs)
1921     return false;
1922
1923   if (I.getOperand(0).getReg() != EntryReg)
1924     return false;
1925
1926   if (I.getOperand(1).getReg() != BaseReg)
1927     return false;
1928
1929   // FIXME: what about CC and IdxReg?
1930   return true;
1931 }
1932
1933 /// While trying to form a TBB/TBH instruction, we may (if the table
1934 /// doesn't immediately follow the BR_JT) need access to the start of the
1935 /// jump-table. We know one instruction that produces such a register; this
1936 /// function works out whether that definition can be preserved to the BR_JT,
1937 /// possibly by removing an intervening addition (which is usually needed to
1938 /// calculate the actual entry to jump to).
1939 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
1940                                               MachineInstr *LEAMI,
1941                                               unsigned &DeadSize,
1942                                               bool &CanDeleteLEA,
1943                                               bool &BaseRegKill) {
1944   if (JumpMI->getParent() != LEAMI->getParent())
1945     return false;
1946
1947   // Now we hope that we have at least these instructions in the basic block:
1948   //     BaseReg = t2LEA ...
1949   //     [...]
1950   //     EntryReg = t2ADDrs BaseReg, ...
1951   //     [...]
1952   //     t2BR_JT EntryReg
1953   //
1954   // We have to be very conservative about what we recognise here though. The
1955   // main perturbing factors to watch out for are:
1956   //    + Spills at any point in the chain: not direct problems but we would
1957   //      expect a blocking Def of the spilled register so in practice what we
1958   //      can do is limited.
1959   //    + EntryReg == BaseReg: this is the one situation we should allow a Def
1960   //      of BaseReg, but only if the t2ADDrs can be removed.
1961   //    + Some instruction other than t2ADDrs computing the entry. Not seen in
1962   //      the wild, but we should be careful.
1963   unsigned EntryReg = JumpMI->getOperand(0).getReg();
1964   unsigned BaseReg = LEAMI->getOperand(0).getReg();
1965
1966   CanDeleteLEA = true;
1967   BaseRegKill = false;
1968   MachineInstr *RemovableAdd = nullptr;
1969   MachineBasicBlock::iterator I(LEAMI);
1970   for (++I; &*I != JumpMI; ++I) {
1971     if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
1972       RemovableAdd = &*I;
1973       break;
1974     }
1975
1976     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
1977       const MachineOperand &MO = I->getOperand(K);
1978       if (!MO.isReg() || !MO.getReg())
1979         continue;
1980       if (MO.isDef() && MO.getReg() == BaseReg)
1981         return false;
1982       if (MO.isUse() && MO.getReg() == BaseReg) {
1983         BaseRegKill = BaseRegKill || MO.isKill();
1984         CanDeleteLEA = false;
1985       }
1986     }
1987   }
1988
1989   if (!RemovableAdd)
1990     return true;
1991
1992   // Check the add really is removable, and that nothing else in the block
1993   // clobbers BaseReg.
1994   for (++I; &*I != JumpMI; ++I) {
1995     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
1996       const MachineOperand &MO = I->getOperand(K);
1997       if (!MO.isReg() || !MO.getReg())
1998         continue;
1999       if (MO.isDef() && MO.getReg() == BaseReg)
2000         return false;
2001       if (MO.isUse() && MO.getReg() == EntryReg)
2002         RemovableAdd = nullptr;
2003     }
2004   }
2005
2006   if (RemovableAdd) {
2007     RemovableAdd->eraseFromParent();
2008     DeadSize += isThumb2 ? 4 : 2;
2009   } else if (BaseReg == EntryReg) {
2010     // The add wasn't removable, but clobbered the base for the TBB. So we can't
2011     // preserve it.
2012     return false;
2013   }
2014
2015   // We reached the end of the block without seeing another definition of
2016   // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2017   // used in the TBB/TBH if necessary.
2018   return true;
2019 }
2020
2021 /// Returns whether CPEMI is the first instruction in the block
2022 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2023 /// we can switch the first register to PC and usually remove the address
2024 /// calculation that preceded it.
2025 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2026   MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2027   MachineFunction *MF = MBB->getParent();
2028   ++MBB;
2029
2030   return MBB != MF->end() && MBB->begin() != MBB->end() &&
2031          &*MBB->begin() == CPEMI;
2032 }
2033
2034 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2035                                          MachineInstr *JumpMI,
2036                                          unsigned &DeadSize) {
2037   // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2038   // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2039   // and is not clobbered / used.
2040   MachineInstr *RemovableAdd = nullptr;
2041   unsigned EntryReg = JumpMI->getOperand(0).getReg();
2042
2043   // Find the last ADD to set EntryReg
2044   MachineBasicBlock::iterator I(LEAMI);
2045   for (++I; &*I != JumpMI; ++I) {
2046     if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2047       RemovableAdd = &*I;
2048   }
2049
2050   if (!RemovableAdd)
2051     return;
2052
2053   // Ensure EntryReg is not clobbered or used.
2054   MachineBasicBlock::iterator J(RemovableAdd);
2055   for (++J; &*J != JumpMI; ++J) {
2056     for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2057       const MachineOperand &MO = J->getOperand(K);
2058       if (!MO.isReg() || !MO.getReg())
2059         continue;
2060       if (MO.isDef() && MO.getReg() == EntryReg)
2061         return;
2062       if (MO.isUse() && MO.getReg() == EntryReg)
2063         return;
2064     }
2065   }
2066
2067   LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2068   RemovableAdd->eraseFromParent();
2069   DeadSize += 4;
2070 }
2071
2072 static bool registerDefinedBetween(unsigned Reg,
2073                                    MachineBasicBlock::iterator From,
2074                                    MachineBasicBlock::iterator To,
2075                                    const TargetRegisterInfo *TRI) {
2076   for (auto I = From; I != To; ++I)
2077     if (I->modifiesRegister(Reg, TRI))
2078       return true;
2079   return false;
2080 }
2081
2082 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2083 /// jumptables when it's possible.
2084 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2085   bool MadeChange = false;
2086
2087   // FIXME: After the tables are shrunk, can we get rid some of the
2088   // constantpool tables?
2089   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2090   if (!MJTI) return false;
2091
2092   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2093   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2094     MachineInstr *MI = T2JumpTables[i];
2095     const MCInstrDesc &MCID = MI->getDesc();
2096     unsigned NumOps = MCID.getNumOperands();
2097     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2098     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2099     unsigned JTI = JTOP.getIndex();
2100     assert(JTI < JT.size());
2101
2102     bool ByteOk = true;
2103     bool HalfWordOk = true;
2104     unsigned JTOffset = getOffsetOf(MI) + 4;
2105     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2106     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2107       MachineBasicBlock *MBB = JTBBs[j];
2108       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2109       // Negative offset is not ok. FIXME: We should change BB layout to make
2110       // sure all the branches are forward.
2111       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2112         ByteOk = false;
2113       unsigned TBHLimit = ((1<<16)-1)*2;
2114       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2115         HalfWordOk = false;
2116       if (!ByteOk && !HalfWordOk)
2117         break;
2118     }
2119
2120     if (!ByteOk && !HalfWordOk)
2121       continue;
2122
2123     CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2124     MachineBasicBlock *MBB = MI->getParent();
2125     if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2126       continue;
2127
2128     unsigned DeadSize = 0;
2129     bool CanDeleteLEA = false;
2130     bool BaseRegKill = false;
2131
2132     unsigned IdxReg = ~0U;
2133     bool IdxRegKill = true;
2134     if (isThumb2) {
2135       IdxReg = MI->getOperand(1).getReg();
2136       IdxRegKill = MI->getOperand(1).isKill();
2137
2138       bool PreservedBaseReg =
2139         preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2140       if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2141         continue;
2142     } else {
2143       // We're in thumb-1 mode, so we must have something like:
2144       //   %idx = tLSLri %idx, 2
2145       //   %base = tLEApcrelJT
2146       //   %t = tLDRr %base, %idx
2147       unsigned BaseReg = User.MI->getOperand(0).getReg();
2148
2149       if (User.MI->getIterator() == User.MI->getParent()->begin())
2150         continue;
2151       MachineInstr *Shift = User.MI->getPrevNode();
2152       if (Shift->getOpcode() != ARM::tLSLri ||
2153           Shift->getOperand(3).getImm() != 2 ||
2154           !Shift->getOperand(2).isKill())
2155         continue;
2156       IdxReg = Shift->getOperand(2).getReg();
2157       unsigned ShiftedIdxReg = Shift->getOperand(0).getReg();
2158
2159       // It's important that IdxReg is live until the actual TBB/TBH. Most of
2160       // the range is checked later, but the LEA might still clobber it and not
2161       // actually get removed.
2162       if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2163         continue;
2164
2165       MachineInstr *Load = User.MI->getNextNode();
2166       if (Load->getOpcode() != ARM::tLDRr)
2167         continue;
2168       if (Load->getOperand(1).getReg() != BaseReg ||
2169           Load->getOperand(2).getReg() != ShiftedIdxReg ||
2170           !Load->getOperand(2).isKill())
2171         continue;
2172
2173       // If we're in PIC mode, there should be another ADD following.
2174       auto *TRI = STI->getRegisterInfo();
2175
2176       // %base cannot be redefined after the load as it will appear before
2177       // TBB/TBH like:
2178       //      %base =
2179       //      %base =
2180       //      tBB %base, %idx
2181       if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2182         continue;
2183
2184       if (isPositionIndependentOrROPI) {
2185         MachineInstr *Add = Load->getNextNode();
2186         if (Add->getOpcode() != ARM::tADDrr ||
2187             Add->getOperand(2).getReg() != BaseReg ||
2188             Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2189             !Add->getOperand(3).isKill())
2190           continue;
2191         if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2192           continue;
2193         if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2194           // IdxReg gets redefined in the middle of the sequence.
2195           continue;
2196         Add->eraseFromParent();
2197         DeadSize += 2;
2198       } else {
2199         if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2200           continue;
2201         if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2202           // IdxReg gets redefined in the middle of the sequence.
2203           continue;
2204       }
2205
2206       // Now safe to delete the load and lsl. The LEA will be removed later.
2207       CanDeleteLEA = true;
2208       Shift->eraseFromParent();
2209       Load->eraseFromParent();
2210       DeadSize += 4;
2211     }
2212
2213     LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2214     MachineInstr *CPEMI = User.CPEMI;
2215     unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2216     if (!isThumb2)
2217       Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2218
2219     MachineBasicBlock::iterator MI_JT = MI;
2220     MachineInstr *NewJTMI =
2221         BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2222             .addReg(User.MI->getOperand(0).getReg(),
2223                     getKillRegState(BaseRegKill))
2224             .addReg(IdxReg, getKillRegState(IdxRegKill))
2225             .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2226             .addImm(CPEMI->getOperand(0).getImm());
2227     LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2228
2229     unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2230     CPEMI->setDesc(TII->get(JTOpc));
2231
2232     if (jumpTableFollowsTB(MI, User.CPEMI)) {
2233       NewJTMI->getOperand(0).setReg(ARM::PC);
2234       NewJTMI->getOperand(0).setIsKill(false);
2235
2236       if (CanDeleteLEA) {
2237         if (isThumb2)
2238           RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2239
2240         User.MI->eraseFromParent();
2241         DeadSize += isThumb2 ? 4 : 2;
2242
2243         // The LEA was eliminated, the TBB instruction becomes the only new user
2244         // of the jump table.
2245         User.MI = NewJTMI;
2246         User.MaxDisp = 4;
2247         User.NegOk = false;
2248         User.IsSoImm = false;
2249         User.KnownAlignment = false;
2250       } else {
2251         // The LEA couldn't be eliminated, so we must add another CPUser to
2252         // record the TBB or TBH use.
2253         int CPEntryIdx = JumpTableEntryIndices[JTI];
2254         auto &CPEs = CPEntries[CPEntryIdx];
2255         auto Entry =
2256             find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2257         ++Entry->RefCount;
2258         CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2259       }
2260     }
2261
2262     unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2263     unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2264     MI->eraseFromParent();
2265
2266     int Delta = OrigSize - NewSize + DeadSize;
2267     BBInfo[MBB->getNumber()].Size -= Delta;
2268     adjustBBOffsetsAfter(MBB);
2269
2270     ++NumTBs;
2271     MadeChange = true;
2272   }
2273
2274   return MadeChange;
2275 }
2276
2277 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2278 /// jump tables always branch forwards, since that's what tbb and tbh need.
2279 bool ARMConstantIslands::reorderThumb2JumpTables() {
2280   bool MadeChange = false;
2281
2282   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2283   if (!MJTI) return false;
2284
2285   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2286   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2287     MachineInstr *MI = T2JumpTables[i];
2288     const MCInstrDesc &MCID = MI->getDesc();
2289     unsigned NumOps = MCID.getNumOperands();
2290     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2291     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2292     unsigned JTI = JTOP.getIndex();
2293     assert(JTI < JT.size());
2294
2295     // We prefer if target blocks for the jump table come after the jump
2296     // instruction so we can use TB[BH]. Loop through the target blocks
2297     // and try to adjust them such that that's true.
2298     int JTNumber = MI->getParent()->getNumber();
2299     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2300     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2301       MachineBasicBlock *MBB = JTBBs[j];
2302       int DTNumber = MBB->getNumber();
2303
2304       if (DTNumber < JTNumber) {
2305         // The destination precedes the switch. Try to move the block forward
2306         // so we have a positive offset.
2307         MachineBasicBlock *NewBB =
2308           adjustJTTargetBlockForward(MBB, MI->getParent());
2309         if (NewBB)
2310           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2311         MadeChange = true;
2312       }
2313     }
2314   }
2315
2316   return MadeChange;
2317 }
2318
2319 MachineBasicBlock *ARMConstantIslands::
2320 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2321   // If the destination block is terminated by an unconditional branch,
2322   // try to move it; otherwise, create a new block following the jump
2323   // table that branches back to the actual target. This is a very simple
2324   // heuristic. FIXME: We can definitely improve it.
2325   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2326   SmallVector<MachineOperand, 4> Cond;
2327   SmallVector<MachineOperand, 4> CondPrior;
2328   MachineFunction::iterator BBi = BB->getIterator();
2329   MachineFunction::iterator OldPrior = std::prev(BBi);
2330
2331   // If the block terminator isn't analyzable, don't try to move the block
2332   bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2333
2334   // If the block ends in an unconditional branch, move it. The prior block
2335   // has to have an analyzable terminator for us to move this one. Be paranoid
2336   // and make sure we're not trying to move the entry block of the function.
2337   if (!B && Cond.empty() && BB != &MF->front() &&
2338       !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2339     BB->moveAfter(JTBB);
2340     OldPrior->updateTerminator();
2341     BB->updateTerminator();
2342     // Update numbering to account for the block being moved.
2343     MF->RenumberBlocks();
2344     ++NumJTMoved;
2345     return nullptr;
2346   }
2347
2348   // Create a new MBB for the code after the jump BB.
2349   MachineBasicBlock *NewBB =
2350     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2351   MachineFunction::iterator MBBI = ++JTBB->getIterator();
2352   MF->insert(MBBI, NewBB);
2353
2354   // Add an unconditional branch from NewBB to BB.
2355   // There doesn't seem to be meaningful DebugInfo available; this doesn't
2356   // correspond directly to anything in the source.
2357   if (isThumb2)
2358     BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2359         .addMBB(BB)
2360         .add(predOps(ARMCC::AL));
2361   else
2362     BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2363         .addMBB(BB)
2364         .add(predOps(ARMCC::AL));
2365
2366   // Update internal data structures to account for the newly inserted MBB.
2367   MF->RenumberBlocks(NewBB);
2368
2369   // Update the CFG.
2370   NewBB->addSuccessor(BB);
2371   JTBB->replaceSuccessor(BB, NewBB);
2372
2373   ++NumJTInserted;
2374   return NewBB;
2375 }
2376
2377 /// createARMConstantIslandPass - returns an instance of the constpool
2378 /// island pass.
2379 FunctionPass *llvm::createARMConstantIslandPass() {
2380   return new ARMConstantIslands();
2381 }
2382
2383 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2384                 false, false)