]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / ARM / ARMTargetTransformInfo.cpp
1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "ARMTargetTransformInfo.h"
11 #include "ARMSubtarget.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/CodeGen/CostTable.h"
17 #include "llvm/CodeGen/ISDOpcodes.h"
18 #include "llvm/CodeGen/ValueTypes.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/MC/SubtargetFeature.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/MachineValueType.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <utility>
34
35 using namespace llvm;
36
37 #define DEBUG_TYPE "armtti"
38
39 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
40                                      const Function *Callee) const {
41   const TargetMachine &TM = getTLI()->getTargetMachine();
42   const FeatureBitset &CallerBits =
43       TM.getSubtargetImpl(*Caller)->getFeatureBits();
44   const FeatureBitset &CalleeBits =
45       TM.getSubtargetImpl(*Callee)->getFeatureBits();
46
47   // To inline a callee, all features not in the whitelist must match exactly.
48   bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) ==
49                     (CalleeBits & ~InlineFeatureWhitelist);
50   // For features in the whitelist, the callee's features must be a subset of
51   // the callers'.
52   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) ==
53                      (CalleeBits & InlineFeatureWhitelist);
54   return MatchExact && MatchSubset;
55 }
56
57 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
58   assert(Ty->isIntegerTy());
59
60  unsigned Bits = Ty->getPrimitiveSizeInBits();
61  if (Bits == 0 || Imm.getActiveBits() >= 64)
62    return 4;
63
64   int64_t SImmVal = Imm.getSExtValue();
65   uint64_t ZImmVal = Imm.getZExtValue();
66   if (!ST->isThumb()) {
67     if ((SImmVal >= 0 && SImmVal < 65536) ||
68         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
69         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
70       return 1;
71     return ST->hasV6T2Ops() ? 2 : 3;
72   }
73   if (ST->isThumb2()) {
74     if ((SImmVal >= 0 && SImmVal < 65536) ||
75         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
76         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
77       return 1;
78     return ST->hasV6T2Ops() ? 2 : 3;
79   }
80   // Thumb1.
81   if (SImmVal >= 0 && SImmVal < 256)
82     return 1;
83   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
84     return 2;
85   // Load from constantpool.
86   return 3;
87 }
88
89 // Constants smaller than 256 fit in the immediate field of
90 // Thumb1 instructions so we return a zero cost and 1 otherwise.
91 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
92                                       const APInt &Imm, Type *Ty) {
93   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
94     return 0;
95
96   return 1;
97 }
98
99 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
100                               Type *Ty) {
101   // Division by a constant can be turned into multiplication, but only if we
102   // know it's constant. So it's not so much that the immediate is cheap (it's
103   // not), but that the alternative is worse.
104   // FIXME: this is probably unneeded with GlobalISel.
105   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
106        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
107       Idx == 1)
108     return 0;
109
110   if (Opcode == Instruction::And)
111       // Conversion to BIC is free, and means we can use ~Imm instead.
112       return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
113
114   if (Opcode == Instruction::Add)
115     // Conversion to SUB is free, and means we can use -Imm instead.
116     return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
117
118   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
119       Ty->getIntegerBitWidth() == 32) {
120     int64_t NegImm = -Imm.getSExtValue();
121     if (ST->isThumb2() && NegImm < 1<<12)
122       // icmp X, #-C -> cmn X, #C
123       return 0;
124     if (ST->isThumb() && NegImm < 1<<8)
125       // icmp X, #-C -> adds X, #C
126       return 0;
127   }
128
129   // xor a, -1 can always be folded to MVN
130   if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
131     return 0;
132
133   return getIntImmCost(Imm, Ty);
134 }
135
136 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
137                                  const Instruction *I) {
138   int ISD = TLI->InstructionOpcodeToISD(Opcode);
139   assert(ISD && "Invalid opcode");
140
141   // Single to/from double precision conversions.
142   static const CostTblEntry NEONFltDblTbl[] = {
143     // Vector fptrunc/fpext conversions.
144     { ISD::FP_ROUND,   MVT::v2f64, 2 },
145     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
146     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
147   };
148
149   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
150                                           ISD == ISD::FP_EXTEND)) {
151     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
152     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
153       return LT.first * Entry->Cost;
154   }
155
156   EVT SrcTy = TLI->getValueType(DL, Src);
157   EVT DstTy = TLI->getValueType(DL, Dst);
158
159   if (!SrcTy.isSimple() || !DstTy.isSimple())
160     return BaseT::getCastInstrCost(Opcode, Dst, Src);
161
162   // Some arithmetic, load and store operations have specific instructions
163   // to cast up/down their types automatically at no extra cost.
164   // TODO: Get these tables to know at least what the related operations are.
165   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
166     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
167     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
168     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
169     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
170     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
171     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
172
173     // The number of vmovl instructions for the extension.
174     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
175     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
176     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
177     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
178     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
179     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
180     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
181     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
182     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
183     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
184
185     // Operations that we legalize using splitting.
186     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
187     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
188
189     // Vector float <-> i32 conversions.
190     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
191     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
192
193     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
194     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
195     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
196     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
197     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
198     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
199     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
200     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
201     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
202     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
203     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
204     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
205     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
206     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
207     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
208     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
209     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
210     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
211     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
212     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
213
214     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
215     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
216     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
217     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
218     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
219     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
220
221     // Vector double <-> i32 conversions.
222     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
223     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
224
225     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
226     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
227     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
228     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
229     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
230     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
231
232     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
233     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
234     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
235     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
236     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
237     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
238   };
239
240   if (SrcTy.isVector() && ST->hasNEON()) {
241     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
242                                                    DstTy.getSimpleVT(),
243                                                    SrcTy.getSimpleVT()))
244       return Entry->Cost;
245   }
246
247   // Scalar float to integer conversions.
248   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
249     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
250     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
251     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
252     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
253     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
254     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
255     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
256     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
257     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
258     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
259     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
260     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
261     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
262     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
263     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
264     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
265     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
266     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
267     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
268     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
269   };
270   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
271     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
272                                                    DstTy.getSimpleVT(),
273                                                    SrcTy.getSimpleVT()))
274       return Entry->Cost;
275   }
276
277   // Scalar integer to float conversions.
278   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
279     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
280     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
281     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
282     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
283     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
284     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
285     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
286     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
287     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
288     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
289     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
290     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
291     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
292     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
293     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
294     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
295     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
296     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
297     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
298     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
299   };
300
301   if (SrcTy.isInteger() && ST->hasNEON()) {
302     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
303                                                    ISD, DstTy.getSimpleVT(),
304                                                    SrcTy.getSimpleVT()))
305       return Entry->Cost;
306   }
307
308   // Scalar integer conversion costs.
309   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
310     // i16 -> i64 requires two dependent operations.
311     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
312
313     // Truncates on i64 are assumed to be free.
314     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
315     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
316     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
317     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
318   };
319
320   if (SrcTy.isInteger()) {
321     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
322                                                    DstTy.getSimpleVT(),
323                                                    SrcTy.getSimpleVT()))
324       return Entry->Cost;
325   }
326
327   return BaseT::getCastInstrCost(Opcode, Dst, Src);
328 }
329
330 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
331                                    unsigned Index) {
332   // Penalize inserting into an D-subregister. We end up with a three times
333   // lower estimated throughput on swift.
334   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
335       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
336     return 3;
337
338   if ((Opcode == Instruction::InsertElement ||
339        Opcode == Instruction::ExtractElement)) {
340     // Cross-class copies are expensive on many microarchitectures,
341     // so assume they are expensive by default.
342     if (ValTy->getVectorElementType()->isIntegerTy())
343       return 3;
344
345     // Even if it's not a cross class copy, this likely leads to mixing
346     // of NEON and VFP code and should be therefore penalized.
347     if (ValTy->isVectorTy() &&
348         ValTy->getScalarSizeInBits() <= 32)
349       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
350   }
351
352   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
353 }
354
355 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
356                                    const Instruction *I) {
357   int ISD = TLI->InstructionOpcodeToISD(Opcode);
358   // On NEON a vector select gets lowered to vbsl.
359   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
360     // Lowering of some vector selects is currently far from perfect.
361     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
362       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
363       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
364       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
365     };
366
367     EVT SelCondTy = TLI->getValueType(DL, CondTy);
368     EVT SelValTy = TLI->getValueType(DL, ValTy);
369     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
370       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
371                                                      SelCondTy.getSimpleVT(),
372                                                      SelValTy.getSimpleVT()))
373         return Entry->Cost;
374     }
375
376     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
377     return LT.first;
378   }
379
380   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
381 }
382
383 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
384                                           const SCEV *Ptr) {
385   // Address computations in vectorized code with non-consecutive addresses will
386   // likely result in more instructions compared to scalar code where the
387   // computation can more often be merged into the index mode. The resulting
388   // extra micro-ops can significantly decrease throughput.
389   unsigned NumVectorInstToHideOverhead = 10;
390   int MaxMergeDistance = 64;
391
392   if (Ty->isVectorTy() && SE &&
393       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
394     return NumVectorInstToHideOverhead;
395
396   // In many cases the address computation is not merged into the instruction
397   // addressing mode.
398   return 1;
399 }
400
401 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
402                                Type *SubTp) {
403   // We only handle costs of reverse and select shuffles for now.
404   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Select)
405     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
406
407   if (Kind == TTI::SK_Reverse) {
408     static const CostTblEntry NEONShuffleTbl[] = {
409         // Reverse shuffle cost one instruction if we are shuffling within a
410         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
411         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
412         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
413         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
414         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
415
416         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
417         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
418         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
419         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
420
421     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
422
423     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
424                                             LT.second))
425       return LT.first * Entry->Cost;
426
427     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
428   }
429   if (Kind == TTI::SK_Select) {
430     static const CostTblEntry NEONSelShuffleTbl[] = {
431         // Select shuffle cost table for ARM. Cost is the number of instructions
432         // required to create the shuffled vector.
433
434         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
435         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
436         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
437         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
438
439         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
440         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
441         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
442
443         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
444
445         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
446
447     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
448     if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
449                                             ISD::VECTOR_SHUFFLE, LT.second))
450       return LT.first * Entry->Cost;
451     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
452   }
453   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
454 }
455
456 int ARMTTIImpl::getArithmeticInstrCost(
457     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
458     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
459     TTI::OperandValueProperties Opd2PropInfo,
460     ArrayRef<const Value *> Args) {
461   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
462   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
463
464   const unsigned FunctionCallDivCost = 20;
465   const unsigned ReciprocalDivCost = 10;
466   static const CostTblEntry CostTbl[] = {
467     // Division.
468     // These costs are somewhat random. Choose a cost of 20 to indicate that
469     // vectorizing devision (added function call) is going to be very expensive.
470     // Double registers types.
471     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
472     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
473     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
474     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
475     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
476     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
477     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
478     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
479     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
480     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
481     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
482     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
483     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
484     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
485     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
486     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
487     // Quad register types.
488     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
489     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
490     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
491     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
492     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
493     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
494     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
495     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
496     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
497     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
498     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
499     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
500     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
501     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
502     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
503     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
504     // Multiplication.
505   };
506
507   if (ST->hasNEON())
508     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
509       return LT.first * Entry->Cost;
510
511   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
512                                            Opd1PropInfo, Opd2PropInfo);
513
514   // This is somewhat of a hack. The problem that we are facing is that SROA
515   // creates a sequence of shift, and, or instructions to construct values.
516   // These sequences are recognized by the ISel and have zero-cost. Not so for
517   // the vectorized code. Because we have support for v2i64 but not i64 those
518   // sequences look particularly beneficial to vectorize.
519   // To work around this we increase the cost of v2i64 operations to make them
520   // seem less beneficial.
521   if (LT.second == MVT::v2i64 &&
522       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
523     Cost += 4;
524
525   return Cost;
526 }
527
528 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
529                                 unsigned AddressSpace, const Instruction *I) {
530   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
531
532   if (Src->isVectorTy() && Alignment != 16 &&
533       Src->getVectorElementType()->isDoubleTy()) {
534     // Unaligned loads/stores are extremely inefficient.
535     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
536     return LT.first * 4;
537   }
538   return LT.first;
539 }
540
541 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
542                                            unsigned Factor,
543                                            ArrayRef<unsigned> Indices,
544                                            unsigned Alignment,
545                                            unsigned AddressSpace) {
546   assert(Factor >= 2 && "Invalid interleave factor");
547   assert(isa<VectorType>(VecTy) && "Expect a vector type");
548
549   // vldN/vstN doesn't support vector types of i64/f64 element.
550   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
551
552   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
553     unsigned NumElts = VecTy->getVectorNumElements();
554     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
555
556     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
557     // Accesses having vector types that are a multiple of 128 bits can be
558     // matched to more than one vldN/vstN instruction.
559     if (NumElts % Factor == 0 &&
560         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
561       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
562   }
563
564   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
565                                            Alignment, AddressSpace);
566 }
567
568 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
569                                          TTI::UnrollingPreferences &UP) {
570   // Only currently enable these preferences for M-Class cores.
571   if (!ST->isMClass())
572     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
573
574   // Disable loop unrolling for Oz and Os.
575   UP.OptSizeThreshold = 0;
576   UP.PartialOptSizeThreshold = 0;
577   if (L->getHeader()->getParent()->optForSize())
578     return;
579
580   // Only enable on Thumb-2 targets.
581   if (!ST->isThumb2())
582     return;
583
584   SmallVector<BasicBlock*, 4> ExitingBlocks;
585   L->getExitingBlocks(ExitingBlocks);
586   LLVM_DEBUG(dbgs() << "Loop has:\n"
587                     << "Blocks: " << L->getNumBlocks() << "\n"
588                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
589
590   // Only allow another exit other than the latch. This acts as an early exit
591   // as it mirrors the profitability calculation of the runtime unroller.
592   if (ExitingBlocks.size() > 2)
593     return;
594
595   // Limit the CFG of the loop body for targets with a branch predictor.
596   // Allowing 4 blocks permits if-then-else diamonds in the body.
597   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
598     return;
599
600   // Scan the loop: don't unroll loops with calls as this could prevent
601   // inlining.
602   unsigned Cost = 0;
603   for (auto *BB : L->getBlocks()) {
604     for (auto &I : *BB) {
605       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
606         ImmutableCallSite CS(&I);
607         if (const Function *F = CS.getCalledFunction()) {
608           if (!isLoweredToCall(F))
609             continue;
610         }
611         return;
612       }
613       SmallVector<const Value*, 4> Operands(I.value_op_begin(),
614                                             I.value_op_end());
615       Cost += getUserCost(&I, Operands);
616     }
617   }
618
619   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
620
621   UP.Partial = true;
622   UP.Runtime = true;
623   UP.UnrollRemainder = true;
624   UP.DefaultUnrollRuntimeCount = 4;
625   UP.UnrollAndJam = true;
626   UP.UnrollAndJamInnerLoopThreshold = 60;
627
628   // Force unrolling small loops can be very useful because of the branch
629   // taken cost of the backedge.
630   if (Cost < 12)
631     UP.Force = true;
632 }