]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp
Merge ^/head r312968 through r313054.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / ARM / MCTargetDesc / ARMELFStreamer.cpp
1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file assembles .s files and emits ARM ELF .o object files. Different
11 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to
12 // delimit regions of data and code.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "ARMRegisterInfo.h"
17 #include "ARMUnwindOpAsm.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/MC/MCAsmBackend.h"
21 #include "llvm/MC/MCAsmInfo.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCCodeEmitter.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCELFStreamer.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCInstPrinter.h"
29 #include "llvm/MC/MCObjectFileInfo.h"
30 #include "llvm/MC/MCObjectStreamer.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCSectionELF.h"
34 #include "llvm/MC/MCStreamer.h"
35 #include "llvm/MC/MCSymbolELF.h"
36 #include "llvm/MC/MCValue.h"
37 #include "llvm/Support/ARMBuildAttributes.h"
38 #include "llvm/Support/ARMEHABI.h"
39 #include "llvm/Support/TargetParser.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ELF.h"
42 #include "llvm/Support/FormattedStream.h"
43 #include "llvm/Support/LEB128.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <algorithm>
46
47 using namespace llvm;
48
49 static std::string GetAEABIUnwindPersonalityName(unsigned Index) {
50   assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX &&
51          "Invalid personality index");
52   return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str();
53 }
54
55 namespace {
56
57 class ARMELFStreamer;
58
59 class ARMTargetAsmStreamer : public ARMTargetStreamer {
60   formatted_raw_ostream &OS;
61   MCInstPrinter &InstPrinter;
62   bool IsVerboseAsm;
63
64   void emitFnStart() override;
65   void emitFnEnd() override;
66   void emitCantUnwind() override;
67   void emitPersonality(const MCSymbol *Personality) override;
68   void emitPersonalityIndex(unsigned Index) override;
69   void emitHandlerData() override;
70   void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
71   void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
72   void emitPad(int64_t Offset) override;
73   void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
74                    bool isVector) override;
75   void emitUnwindRaw(int64_t Offset,
76                      const SmallVectorImpl<uint8_t> &Opcodes) override;
77
78   void switchVendor(StringRef Vendor) override;
79   void emitAttribute(unsigned Attribute, unsigned Value) override;
80   void emitTextAttribute(unsigned Attribute, StringRef String) override;
81   void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
82                             StringRef StringValue) override;
83   void emitArch(unsigned Arch) override;
84   void emitArchExtension(unsigned ArchExt) override;
85   void emitObjectArch(unsigned Arch) override;
86   void emitFPU(unsigned FPU) override;
87   void emitInst(uint32_t Inst, char Suffix = '\0') override;
88   void finishAttributeSection() override;
89
90   void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
91   void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
92
93 public:
94   ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS,
95                        MCInstPrinter &InstPrinter, bool VerboseAsm);
96 };
97
98 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S,
99                                            formatted_raw_ostream &OS,
100                                            MCInstPrinter &InstPrinter,
101                                            bool VerboseAsm)
102     : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter),
103       IsVerboseAsm(VerboseAsm) {}
104 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; }
105 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; }
106 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; }
107 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) {
108   OS << "\t.personality " << Personality->getName() << '\n';
109 }
110 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) {
111   OS << "\t.personalityindex " << Index << '\n';
112 }
113 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; }
114 void ARMTargetAsmStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
115                                      int64_t Offset) {
116   OS << "\t.setfp\t";
117   InstPrinter.printRegName(OS, FpReg);
118   OS << ", ";
119   InstPrinter.printRegName(OS, SpReg);
120   if (Offset)
121     OS << ", #" << Offset;
122   OS << '\n';
123 }
124 void ARMTargetAsmStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
125   assert((Reg != ARM::SP && Reg != ARM::PC) &&
126          "the operand of .movsp cannot be either sp or pc");
127
128   OS << "\t.movsp\t";
129   InstPrinter.printRegName(OS, Reg);
130   if (Offset)
131     OS << ", #" << Offset;
132   OS << '\n';
133 }
134 void ARMTargetAsmStreamer::emitPad(int64_t Offset) {
135   OS << "\t.pad\t#" << Offset << '\n';
136 }
137 void ARMTargetAsmStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
138                                        bool isVector) {
139   assert(RegList.size() && "RegList should not be empty");
140   if (isVector)
141     OS << "\t.vsave\t{";
142   else
143     OS << "\t.save\t{";
144
145   InstPrinter.printRegName(OS, RegList[0]);
146
147   for (unsigned i = 1, e = RegList.size(); i != e; ++i) {
148     OS << ", ";
149     InstPrinter.printRegName(OS, RegList[i]);
150   }
151
152   OS << "}\n";
153 }
154 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {
155 }
156 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
157   OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value);
158   if (IsVerboseAsm) {
159     StringRef Name = ARMBuildAttrs::AttrTypeAsString(Attribute);
160     if (!Name.empty())
161       OS << "\t@ " << Name;
162   }
163   OS << "\n";
164 }
165 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute,
166                                              StringRef String) {
167   switch (Attribute) {
168   case ARMBuildAttrs::CPU_name:
169     OS << "\t.cpu\t" << String.lower();
170     break;
171   default:
172     OS << "\t.eabi_attribute\t" << Attribute << ", \"" << String << "\"";
173     if (IsVerboseAsm) {
174       StringRef Name = ARMBuildAttrs::AttrTypeAsString(Attribute);
175       if (!Name.empty())
176         OS << "\t@ " << Name;
177     }
178     break;
179   }
180   OS << "\n";
181 }
182 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute,
183                                                 unsigned IntValue,
184                                                 StringRef StringValue) {
185   switch (Attribute) {
186   default: llvm_unreachable("unsupported multi-value attribute in asm mode");
187   case ARMBuildAttrs::compatibility:
188     OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue;
189     if (!StringValue.empty())
190       OS << ", \"" << StringValue << "\"";
191     if (IsVerboseAsm)
192       OS << "\t@ " << ARMBuildAttrs::AttrTypeAsString(Attribute);
193     break;
194   }
195   OS << "\n";
196 }
197 void ARMTargetAsmStreamer::emitArch(unsigned Arch) {
198   OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n";
199 }
200 void ARMTargetAsmStreamer::emitArchExtension(unsigned ArchExt) {
201   OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n";
202 }
203 void ARMTargetAsmStreamer::emitObjectArch(unsigned Arch) {
204   OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n';
205 }
206 void ARMTargetAsmStreamer::emitFPU(unsigned FPU) {
207   OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n";
208 }
209 void ARMTargetAsmStreamer::finishAttributeSection() {
210 }
211 void
212 ARMTargetAsmStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) {
213   OS << "\t.tlsdescseq\t" << S->getSymbol().getName();
214 }
215
216 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
217   const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo();
218
219   OS << "\t.thumb_set\t";
220   Symbol->print(OS, MAI);
221   OS << ", ";
222   Value->print(OS, MAI);
223   OS << '\n';
224 }
225
226 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) {
227   OS << "\t.inst";
228   if (Suffix)
229     OS << "." << Suffix;
230   OS << "\t0x" << Twine::utohexstr(Inst) << "\n";
231 }
232
233 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset,
234                                       const SmallVectorImpl<uint8_t> &Opcodes) {
235   OS << "\t.unwind_raw " << Offset;
236   for (SmallVectorImpl<uint8_t>::const_iterator OCI = Opcodes.begin(),
237                                                 OCE = Opcodes.end();
238        OCI != OCE; ++OCI)
239     OS << ", 0x" << Twine::utohexstr(*OCI);
240   OS << '\n';
241 }
242
243 class ARMTargetELFStreamer : public ARMTargetStreamer {
244 private:
245   // This structure holds all attributes, accounting for
246   // their string/numeric value, so we can later emit them
247   // in declaration order, keeping all in the same vector
248   struct AttributeItem {
249     enum {
250       HiddenAttribute = 0,
251       NumericAttribute,
252       TextAttribute,
253       NumericAndTextAttributes
254     } Type;
255     unsigned Tag;
256     unsigned IntValue;
257     std::string StringValue;
258
259     static bool LessTag(const AttributeItem &LHS, const AttributeItem &RHS) {
260       // The conformance tag must be emitted first when serialised
261       // into an object file. Specifically, the addenda to the ARM ABI
262       // states that (2.3.7.4):
263       //
264       // "To simplify recognition by consumers in the common case of
265       // claiming conformity for the whole file, this tag should be
266       // emitted first in a file-scope sub-subsection of the first
267       // public subsection of the attributes section."
268       //
269       // So it is special-cased in this comparison predicate when the
270       // attributes are sorted in finishAttributeSection().
271       return (RHS.Tag != ARMBuildAttrs::conformance) &&
272              ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag));
273     }
274   };
275
276   StringRef CurrentVendor;
277   unsigned FPU;
278   unsigned Arch;
279   unsigned EmittedArch;
280   SmallVector<AttributeItem, 64> Contents;
281
282   MCSection *AttributeSection;
283
284   AttributeItem *getAttributeItem(unsigned Attribute) {
285     for (size_t i = 0; i < Contents.size(); ++i)
286       if (Contents[i].Tag == Attribute)
287         return &Contents[i];
288     return nullptr;
289   }
290
291   void setAttributeItem(unsigned Attribute, unsigned Value,
292                         bool OverwriteExisting) {
293     // Look for existing attribute item
294     if (AttributeItem *Item = getAttributeItem(Attribute)) {
295       if (!OverwriteExisting)
296         return;
297       Item->Type = AttributeItem::NumericAttribute;
298       Item->IntValue = Value;
299       return;
300     }
301
302     // Create new attribute item
303     AttributeItem Item = {
304       AttributeItem::NumericAttribute,
305       Attribute,
306       Value,
307       StringRef("")
308     };
309     Contents.push_back(Item);
310   }
311
312   void setAttributeItem(unsigned Attribute, StringRef Value,
313                         bool OverwriteExisting) {
314     // Look for existing attribute item
315     if (AttributeItem *Item = getAttributeItem(Attribute)) {
316       if (!OverwriteExisting)
317         return;
318       Item->Type = AttributeItem::TextAttribute;
319       Item->StringValue = Value;
320       return;
321     }
322
323     // Create new attribute item
324     AttributeItem Item = {
325       AttributeItem::TextAttribute,
326       Attribute,
327       0,
328       Value
329     };
330     Contents.push_back(Item);
331   }
332
333   void setAttributeItems(unsigned Attribute, unsigned IntValue,
334                          StringRef StringValue, bool OverwriteExisting) {
335     // Look for existing attribute item
336     if (AttributeItem *Item = getAttributeItem(Attribute)) {
337       if (!OverwriteExisting)
338         return;
339       Item->Type = AttributeItem::NumericAndTextAttributes;
340       Item->IntValue = IntValue;
341       Item->StringValue = StringValue;
342       return;
343     }
344
345     // Create new attribute item
346     AttributeItem Item = {
347       AttributeItem::NumericAndTextAttributes,
348       Attribute,
349       IntValue,
350       StringValue
351     };
352     Contents.push_back(Item);
353   }
354
355   void emitArchDefaultAttributes();
356   void emitFPUDefaultAttributes();
357
358   ARMELFStreamer &getStreamer();
359
360   void emitFnStart() override;
361   void emitFnEnd() override;
362   void emitCantUnwind() override;
363   void emitPersonality(const MCSymbol *Personality) override;
364   void emitPersonalityIndex(unsigned Index) override;
365   void emitHandlerData() override;
366   void emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0) override;
367   void emitMovSP(unsigned Reg, int64_t Offset = 0) override;
368   void emitPad(int64_t Offset) override;
369   void emitRegSave(const SmallVectorImpl<unsigned> &RegList,
370                    bool isVector) override;
371   void emitUnwindRaw(int64_t Offset,
372                      const SmallVectorImpl<uint8_t> &Opcodes) override;
373
374   void switchVendor(StringRef Vendor) override;
375   void emitAttribute(unsigned Attribute, unsigned Value) override;
376   void emitTextAttribute(unsigned Attribute, StringRef String) override;
377   void emitIntTextAttribute(unsigned Attribute, unsigned IntValue,
378                             StringRef StringValue) override;
379   void emitArch(unsigned Arch) override;
380   void emitObjectArch(unsigned Arch) override;
381   void emitFPU(unsigned FPU) override;
382   void emitInst(uint32_t Inst, char Suffix = '\0') override;
383   void finishAttributeSection() override;
384   void emitLabel(MCSymbol *Symbol) override;
385
386   void AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override;
387   void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override;
388
389   size_t calculateContentSize() const;
390
391   // Reset state between object emissions
392   void reset() override;
393
394 public:
395   ARMTargetELFStreamer(MCStreamer &S)
396     : ARMTargetStreamer(S), CurrentVendor("aeabi"), FPU(ARM::FK_INVALID),
397       Arch(ARM::AK_INVALID), EmittedArch(ARM::AK_INVALID),
398       AttributeSection(nullptr) {}
399 };
400
401 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at
402 /// the appropriate points in the object files. These symbols are defined in the
403 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf.
404 ///
405 /// In brief: $a, $t or $d should be emitted at the start of each contiguous
406 /// region of ARM code, Thumb code or data in a section. In practice, this
407 /// emission does not rely on explicit assembler directives but on inherent
408 /// properties of the directives doing the emission (e.g. ".byte" is data, "add
409 /// r0, r0, r0" an instruction).
410 ///
411 /// As a result this system is orthogonal to the DataRegion infrastructure used
412 /// by MachO. Beware!
413 class ARMELFStreamer : public MCELFStreamer {
414 public:
415   friend class ARMTargetELFStreamer;
416
417   ARMELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_pwrite_stream &OS,
418                  MCCodeEmitter *Emitter, bool IsThumb)
419       : MCELFStreamer(Context, TAB, OS, Emitter), IsThumb(IsThumb),
420         MappingSymbolCounter(0), LastEMS(EMS_None) {
421     EHReset();
422   }
423
424   ~ARMELFStreamer() {}
425
426   void FinishImpl() override;
427
428   // ARM exception handling directives
429   void emitFnStart();
430   void emitFnEnd();
431   void emitCantUnwind();
432   void emitPersonality(const MCSymbol *Per);
433   void emitPersonalityIndex(unsigned index);
434   void emitHandlerData();
435   void emitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0);
436   void emitMovSP(unsigned Reg, int64_t Offset = 0);
437   void emitPad(int64_t Offset);
438   void emitRegSave(const SmallVectorImpl<unsigned> &RegList, bool isVector);
439   void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes);
440
441   void ChangeSection(MCSection *Section, const MCExpr *Subsection) override {
442     // We have to keep track of the mapping symbol state of any sections we
443     // use. Each one should start off as EMS_None, which is provided as the
444     // default constructor by DenseMap::lookup.
445     LastMappingSymbols[getPreviousSection().first] = LastEMS;
446     LastEMS = LastMappingSymbols.lookup(Section);
447
448     MCELFStreamer::ChangeSection(Section, Subsection);
449   }
450
451   /// This function is the one used to emit instruction data into the ELF
452   /// streamer. We override it to add the appropriate mapping symbol if
453   /// necessary.
454   void EmitInstruction(const MCInst& Inst,
455                        const MCSubtargetInfo &STI) override {
456     if (IsThumb)
457       EmitThumbMappingSymbol();
458     else
459       EmitARMMappingSymbol();
460
461     MCELFStreamer::EmitInstruction(Inst, STI);
462   }
463
464   void emitInst(uint32_t Inst, char Suffix) {
465     unsigned Size;
466     char Buffer[4];
467     const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian();
468
469     switch (Suffix) {
470     case '\0':
471       Size = 4;
472
473       assert(!IsThumb);
474       EmitARMMappingSymbol();
475       for (unsigned II = 0, IE = Size; II != IE; II++) {
476         const unsigned I = LittleEndian ? (Size - II - 1) : II;
477         Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
478       }
479
480       break;
481     case 'n':
482     case 'w':
483       Size = (Suffix == 'n' ? 2 : 4);
484
485       assert(IsThumb);
486       EmitThumbMappingSymbol();
487       for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
488         const unsigned I0 = LittleEndian ? II + 0 : (Size - II - 1);
489         const unsigned I1 = LittleEndian ? II + 1 : (Size - II - 2);
490         Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
491         Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
492       }
493
494       break;
495     default:
496       llvm_unreachable("Invalid Suffix");
497     }
498
499     MCELFStreamer::EmitBytes(StringRef(Buffer, Size));
500   }
501
502   /// This is one of the functions used to emit data into an ELF section, so the
503   /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
504   /// necessary.
505   void EmitBytes(StringRef Data) override {
506     EmitDataMappingSymbol();
507     MCELFStreamer::EmitBytes(Data);
508   }
509
510   /// This is one of the functions used to emit data into an ELF section, so the
511   /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if
512   /// necessary.
513   void EmitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override {
514     if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value))
515       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) {
516         getContext().reportError(Loc, "relocated expression must be 32-bit");
517         return;
518       }
519
520     EmitDataMappingSymbol();
521     MCELFStreamer::EmitValueImpl(Value, Size, Loc);
522   }
523
524   void EmitAssemblerFlag(MCAssemblerFlag Flag) override {
525     MCELFStreamer::EmitAssemblerFlag(Flag);
526
527     switch (Flag) {
528     case MCAF_SyntaxUnified:
529       return; // no-op here.
530     case MCAF_Code16:
531       IsThumb = true;
532       return; // Change to Thumb mode
533     case MCAF_Code32:
534       IsThumb = false;
535       return; // Change to ARM mode
536     case MCAF_Code64:
537       return;
538     case MCAF_SubsectionsViaSymbols:
539       return;
540     }
541   }
542
543 private:
544   enum ElfMappingSymbol {
545     EMS_None,
546     EMS_ARM,
547     EMS_Thumb,
548     EMS_Data
549   };
550
551   void EmitDataMappingSymbol() {
552     if (LastEMS == EMS_Data) return;
553     EmitMappingSymbol("$d");
554     LastEMS = EMS_Data;
555   }
556
557   void EmitThumbMappingSymbol() {
558     if (LastEMS == EMS_Thumb) return;
559     EmitMappingSymbol("$t");
560     LastEMS = EMS_Thumb;
561   }
562
563   void EmitARMMappingSymbol() {
564     if (LastEMS == EMS_ARM) return;
565     EmitMappingSymbol("$a");
566     LastEMS = EMS_ARM;
567   }
568
569   void EmitMappingSymbol(StringRef Name) {
570     auto *Symbol = cast<MCSymbolELF>(getContext().getOrCreateSymbol(
571         Name + "." + Twine(MappingSymbolCounter++)));
572     EmitLabel(Symbol);
573
574     Symbol->setType(ELF::STT_NOTYPE);
575     Symbol->setBinding(ELF::STB_LOCAL);
576     Symbol->setExternal(false);
577   }
578
579   void EmitThumbFunc(MCSymbol *Func) override {
580     getAssembler().setIsThumbFunc(Func);
581     EmitSymbolAttribute(Func, MCSA_ELF_TypeFunction);
582   }
583
584   // Helper functions for ARM exception handling directives
585   void EHReset();
586
587   // Reset state between object emissions
588   void reset() override;
589
590   void EmitPersonalityFixup(StringRef Name);
591   void FlushPendingOffset();
592   void FlushUnwindOpcodes(bool NoHandlerData);
593
594   void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags,
595                          SectionKind Kind, const MCSymbol &Fn);
596   void SwitchToExTabSection(const MCSymbol &FnStart);
597   void SwitchToExIdxSection(const MCSymbol &FnStart);
598
599   void EmitFixup(const MCExpr *Expr, MCFixupKind Kind);
600
601   bool IsThumb;
602   int64_t MappingSymbolCounter;
603
604   DenseMap<const MCSection *, ElfMappingSymbol> LastMappingSymbols;
605   ElfMappingSymbol LastEMS;
606
607   // ARM Exception Handling Frame Information
608   MCSymbol *ExTab;
609   MCSymbol *FnStart;
610   const MCSymbol *Personality;
611   unsigned PersonalityIndex;
612   unsigned FPReg; // Frame pointer register
613   int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp)
614   int64_t SPOffset; // Offset: (final $sp) - (initial $sp)
615   int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp)
616   bool UsedFP;
617   bool CantUnwind;
618   SmallVector<uint8_t, 64> Opcodes;
619   UnwindOpcodeAssembler UnwindOpAsm;
620 };
621 } // end anonymous namespace
622
623 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() {
624   return static_cast<ARMELFStreamer &>(Streamer);
625 }
626
627 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); }
628 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); }
629 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); }
630 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) {
631   getStreamer().emitPersonality(Personality);
632 }
633 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) {
634   getStreamer().emitPersonalityIndex(Index);
635 }
636 void ARMTargetELFStreamer::emitHandlerData() {
637   getStreamer().emitHandlerData();
638 }
639 void ARMTargetELFStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
640                                      int64_t Offset) {
641   getStreamer().emitSetFP(FpReg, SpReg, Offset);
642 }
643 void ARMTargetELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
644   getStreamer().emitMovSP(Reg, Offset);
645 }
646 void ARMTargetELFStreamer::emitPad(int64_t Offset) {
647   getStreamer().emitPad(Offset);
648 }
649 void ARMTargetELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
650                                        bool isVector) {
651   getStreamer().emitRegSave(RegList, isVector);
652 }
653 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset,
654                                       const SmallVectorImpl<uint8_t> &Opcodes) {
655   getStreamer().emitUnwindRaw(Offset, Opcodes);
656 }
657 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) {
658   assert(!Vendor.empty() && "Vendor cannot be empty.");
659
660   if (CurrentVendor == Vendor)
661     return;
662
663   if (!CurrentVendor.empty())
664     finishAttributeSection();
665
666   assert(Contents.empty() &&
667          ".ARM.attributes should be flushed before changing vendor");
668   CurrentVendor = Vendor;
669
670 }
671 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) {
672   setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true);
673 }
674 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute,
675                                              StringRef Value) {
676   setAttributeItem(Attribute, Value, /* OverwriteExisting= */ true);
677 }
678 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute,
679                                                 unsigned IntValue,
680                                                 StringRef StringValue) {
681   setAttributeItems(Attribute, IntValue, StringValue,
682                     /* OverwriteExisting= */ true);
683 }
684 void ARMTargetELFStreamer::emitArch(unsigned Value) {
685   Arch = Value;
686 }
687 void ARMTargetELFStreamer::emitObjectArch(unsigned Value) {
688   EmittedArch = Value;
689 }
690 void ARMTargetELFStreamer::emitArchDefaultAttributes() {
691   using namespace ARMBuildAttrs;
692
693   setAttributeItem(CPU_name,
694                    ARM::getCPUAttr(Arch),
695                    false);
696
697   if (EmittedArch == ARM::AK_INVALID)
698     setAttributeItem(CPU_arch,
699                      ARM::getArchAttr(Arch),
700                      false);
701   else
702     setAttributeItem(CPU_arch,
703                      ARM::getArchAttr(EmittedArch),
704                      false);
705
706   switch (Arch) {
707   case ARM::AK_ARMV2:
708   case ARM::AK_ARMV2A:
709   case ARM::AK_ARMV3:
710   case ARM::AK_ARMV3M:
711   case ARM::AK_ARMV4:
712     setAttributeItem(ARM_ISA_use, Allowed, false);
713     break;
714
715   case ARM::AK_ARMV4T:
716   case ARM::AK_ARMV5T:
717   case ARM::AK_ARMV5TE:
718   case ARM::AK_ARMV6:
719     setAttributeItem(ARM_ISA_use, Allowed, false);
720     setAttributeItem(THUMB_ISA_use, Allowed, false);
721     break;
722
723   case ARM::AK_ARMV6T2:
724     setAttributeItem(ARM_ISA_use, Allowed, false);
725     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
726     break;
727
728   case ARM::AK_ARMV6K:
729   case ARM::AK_ARMV6KZ:
730     setAttributeItem(ARM_ISA_use, Allowed, false);
731     setAttributeItem(THUMB_ISA_use, Allowed, false);
732     setAttributeItem(Virtualization_use, AllowTZ, false);
733     break;
734
735   case ARM::AK_ARMV6M:
736     setAttributeItem(THUMB_ISA_use, Allowed, false);
737     break;
738
739   case ARM::AK_ARMV7A:
740     setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
741     setAttributeItem(ARM_ISA_use, Allowed, false);
742     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
743     break;
744
745   case ARM::AK_ARMV7R:
746     setAttributeItem(CPU_arch_profile, RealTimeProfile, false);
747     setAttributeItem(ARM_ISA_use, Allowed, false);
748     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
749     break;
750
751   case ARM::AK_ARMV7M:
752     setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
753     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
754     break;
755
756   case ARM::AK_ARMV8A:
757   case ARM::AK_ARMV8_1A:
758   case ARM::AK_ARMV8_2A:
759     setAttributeItem(CPU_arch_profile, ApplicationProfile, false);
760     setAttributeItem(ARM_ISA_use, Allowed, false);
761     setAttributeItem(THUMB_ISA_use, AllowThumb32, false);
762     setAttributeItem(MPextension_use, Allowed, false);
763     setAttributeItem(Virtualization_use, AllowTZVirtualization, false);
764     break;
765
766   case ARM::AK_ARMV8MBaseline:
767   case ARM::AK_ARMV8MMainline:
768     setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false);
769     setAttributeItem(CPU_arch_profile, MicroControllerProfile, false);
770     break;
771
772   case ARM::AK_IWMMXT:
773     setAttributeItem(ARM_ISA_use, Allowed, false);
774     setAttributeItem(THUMB_ISA_use, Allowed, false);
775     setAttributeItem(WMMX_arch, AllowWMMXv1, false);
776     break;
777
778   case ARM::AK_IWMMXT2:
779     setAttributeItem(ARM_ISA_use, Allowed, false);
780     setAttributeItem(THUMB_ISA_use, Allowed, false);
781     setAttributeItem(WMMX_arch, AllowWMMXv2, false);
782     break;
783
784   default:
785     report_fatal_error("Unknown Arch: " + Twine(Arch));
786     break;
787   }
788 }
789 void ARMTargetELFStreamer::emitFPU(unsigned Value) {
790   FPU = Value;
791 }
792 void ARMTargetELFStreamer::emitFPUDefaultAttributes() {
793   switch (FPU) {
794   case ARM::FK_VFP:
795   case ARM::FK_VFPV2:
796     setAttributeItem(ARMBuildAttrs::FP_arch,
797                      ARMBuildAttrs::AllowFPv2,
798                      /* OverwriteExisting= */ false);
799     break;
800
801   case ARM::FK_VFPV3:
802     setAttributeItem(ARMBuildAttrs::FP_arch,
803                      ARMBuildAttrs::AllowFPv3A,
804                      /* OverwriteExisting= */ false);
805     break;
806
807   case ARM::FK_VFPV3_FP16:
808     setAttributeItem(ARMBuildAttrs::FP_arch,
809                      ARMBuildAttrs::AllowFPv3A,
810                      /* OverwriteExisting= */ false);
811     setAttributeItem(ARMBuildAttrs::FP_HP_extension,
812                      ARMBuildAttrs::AllowHPFP,
813                      /* OverwriteExisting= */ false);
814     break;
815
816   case ARM::FK_VFPV3_D16:
817     setAttributeItem(ARMBuildAttrs::FP_arch,
818                      ARMBuildAttrs::AllowFPv3B,
819                      /* OverwriteExisting= */ false);
820     break;
821
822   case ARM::FK_VFPV3_D16_FP16:
823     setAttributeItem(ARMBuildAttrs::FP_arch,
824                      ARMBuildAttrs::AllowFPv3B,
825                      /* OverwriteExisting= */ false);
826     setAttributeItem(ARMBuildAttrs::FP_HP_extension,
827                      ARMBuildAttrs::AllowHPFP,
828                      /* OverwriteExisting= */ false);
829     break;
830
831   case ARM::FK_VFPV3XD:
832     setAttributeItem(ARMBuildAttrs::FP_arch,
833                      ARMBuildAttrs::AllowFPv3B,
834                      /* OverwriteExisting= */ false);
835     break;
836   case ARM::FK_VFPV3XD_FP16:
837     setAttributeItem(ARMBuildAttrs::FP_arch,
838                      ARMBuildAttrs::AllowFPv3B,
839                      /* OverwriteExisting= */ false);
840     setAttributeItem(ARMBuildAttrs::FP_HP_extension,
841                      ARMBuildAttrs::AllowHPFP,
842                      /* OverwriteExisting= */ false);
843     break;
844
845   case ARM::FK_VFPV4:
846     setAttributeItem(ARMBuildAttrs::FP_arch,
847                      ARMBuildAttrs::AllowFPv4A,
848                      /* OverwriteExisting= */ false);
849     break;
850
851   // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same
852   // as _D16 here.
853   case ARM::FK_FPV4_SP_D16:
854   case ARM::FK_VFPV4_D16:
855     setAttributeItem(ARMBuildAttrs::FP_arch,
856                      ARMBuildAttrs::AllowFPv4B,
857                      /* OverwriteExisting= */ false);
858     break;
859
860   case ARM::FK_FP_ARMV8:
861     setAttributeItem(ARMBuildAttrs::FP_arch,
862                      ARMBuildAttrs::AllowFPARMv8A,
863                      /* OverwriteExisting= */ false);
864     break;
865
866   // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so
867   // uses the FP_ARMV8_D16 build attribute.
868   case ARM::FK_FPV5_SP_D16:
869   case ARM::FK_FPV5_D16:
870     setAttributeItem(ARMBuildAttrs::FP_arch,
871                      ARMBuildAttrs::AllowFPARMv8B,
872                      /* OverwriteExisting= */ false);
873     break;
874
875   case ARM::FK_NEON:
876     setAttributeItem(ARMBuildAttrs::FP_arch,
877                      ARMBuildAttrs::AllowFPv3A,
878                      /* OverwriteExisting= */ false);
879     setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
880                      ARMBuildAttrs::AllowNeon,
881                      /* OverwriteExisting= */ false);
882     break;
883
884   case ARM::FK_NEON_FP16:
885     setAttributeItem(ARMBuildAttrs::FP_arch,
886                      ARMBuildAttrs::AllowFPv3A,
887                      /* OverwriteExisting= */ false);
888     setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
889                      ARMBuildAttrs::AllowNeon,
890                      /* OverwriteExisting= */ false);
891     setAttributeItem(ARMBuildAttrs::FP_HP_extension,
892                      ARMBuildAttrs::AllowHPFP,
893                      /* OverwriteExisting= */ false);
894     break;
895
896   case ARM::FK_NEON_VFPV4:
897     setAttributeItem(ARMBuildAttrs::FP_arch,
898                      ARMBuildAttrs::AllowFPv4A,
899                      /* OverwriteExisting= */ false);
900     setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch,
901                      ARMBuildAttrs::AllowNeon2,
902                      /* OverwriteExisting= */ false);
903     break;
904
905   case ARM::FK_NEON_FP_ARMV8:
906   case ARM::FK_CRYPTO_NEON_FP_ARMV8:
907     setAttributeItem(ARMBuildAttrs::FP_arch,
908                      ARMBuildAttrs::AllowFPARMv8A,
909                      /* OverwriteExisting= */ false);
910     // 'Advanced_SIMD_arch' must be emitted not here, but within
911     // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a()
912     break;
913
914   case ARM::FK_SOFTVFP:
915   case ARM::FK_NONE:
916     break;
917
918   default:
919     report_fatal_error("Unknown FPU: " + Twine(FPU));
920     break;
921   }
922 }
923 size_t ARMTargetELFStreamer::calculateContentSize() const {
924   size_t Result = 0;
925   for (size_t i = 0; i < Contents.size(); ++i) {
926     AttributeItem item = Contents[i];
927     switch (item.Type) {
928     case AttributeItem::HiddenAttribute:
929       break;
930     case AttributeItem::NumericAttribute:
931       Result += getULEB128Size(item.Tag);
932       Result += getULEB128Size(item.IntValue);
933       break;
934     case AttributeItem::TextAttribute:
935       Result += getULEB128Size(item.Tag);
936       Result += item.StringValue.size() + 1; // string + '\0'
937       break;
938     case AttributeItem::NumericAndTextAttributes:
939       Result += getULEB128Size(item.Tag);
940       Result += getULEB128Size(item.IntValue);
941       Result += item.StringValue.size() + 1; // string + '\0';
942       break;
943     }
944   }
945   return Result;
946 }
947 void ARMTargetELFStreamer::finishAttributeSection() {
948   // <format-version>
949   // [ <section-length> "vendor-name"
950   // [ <file-tag> <size> <attribute>*
951   //   | <section-tag> <size> <section-number>* 0 <attribute>*
952   //   | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
953   //   ]+
954   // ]*
955
956   if (FPU != ARM::FK_INVALID)
957     emitFPUDefaultAttributes();
958
959   if (Arch != ARM::AK_INVALID)
960     emitArchDefaultAttributes();
961
962   if (Contents.empty())
963     return;
964
965   std::sort(Contents.begin(), Contents.end(), AttributeItem::LessTag);
966
967   ARMELFStreamer &Streamer = getStreamer();
968
969   // Switch to .ARM.attributes section
970   if (AttributeSection) {
971     Streamer.SwitchSection(AttributeSection);
972   } else {
973     AttributeSection = Streamer.getContext().getELFSection(
974         ".ARM.attributes", ELF::SHT_ARM_ATTRIBUTES, 0);
975     Streamer.SwitchSection(AttributeSection);
976
977     // Format version
978     Streamer.EmitIntValue(0x41, 1);
979   }
980
981   // Vendor size + Vendor name + '\0'
982   const size_t VendorHeaderSize = 4 + CurrentVendor.size() + 1;
983
984   // Tag + Tag Size
985   const size_t TagHeaderSize = 1 + 4;
986
987   const size_t ContentsSize = calculateContentSize();
988
989   Streamer.EmitIntValue(VendorHeaderSize + TagHeaderSize + ContentsSize, 4);
990   Streamer.EmitBytes(CurrentVendor);
991   Streamer.EmitIntValue(0, 1); // '\0'
992
993   Streamer.EmitIntValue(ARMBuildAttrs::File, 1);
994   Streamer.EmitIntValue(TagHeaderSize + ContentsSize, 4);
995
996   // Size should have been accounted for already, now
997   // emit each field as its type (ULEB or String)
998   for (size_t i = 0; i < Contents.size(); ++i) {
999     AttributeItem item = Contents[i];
1000     Streamer.EmitULEB128IntValue(item.Tag);
1001     switch (item.Type) {
1002     default: llvm_unreachable("Invalid attribute type");
1003     case AttributeItem::NumericAttribute:
1004       Streamer.EmitULEB128IntValue(item.IntValue);
1005       break;
1006     case AttributeItem::TextAttribute:
1007       Streamer.EmitBytes(item.StringValue);
1008       Streamer.EmitIntValue(0, 1); // '\0'
1009       break;
1010     case AttributeItem::NumericAndTextAttributes:
1011       Streamer.EmitULEB128IntValue(item.IntValue);
1012       Streamer.EmitBytes(item.StringValue);
1013       Streamer.EmitIntValue(0, 1); // '\0'
1014       break;
1015     }
1016   }
1017
1018   Contents.clear();
1019   FPU = ARM::FK_INVALID;
1020 }
1021
1022 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) {
1023   ARMELFStreamer &Streamer = getStreamer();
1024   if (!Streamer.IsThumb)
1025     return;
1026
1027   Streamer.getAssembler().registerSymbol(*Symbol);
1028   unsigned Type = cast<MCSymbolELF>(Symbol)->getType();
1029   if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)
1030     Streamer.EmitThumbFunc(Symbol);
1031 }
1032
1033 void
1034 ARMTargetELFStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *S) {
1035   getStreamer().EmitFixup(S, FK_Data_4);
1036 }
1037
1038 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {
1039   if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) {
1040     const MCSymbol &Sym = SRE->getSymbol();
1041     if (!Sym.isDefined()) {
1042       getStreamer().EmitAssignment(Symbol, Value);
1043       return;
1044     }
1045   }
1046
1047   getStreamer().EmitThumbFunc(Symbol);
1048   getStreamer().EmitAssignment(Symbol, Value);
1049 }
1050
1051 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) {
1052   getStreamer().emitInst(Inst, Suffix);
1053 }
1054
1055 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; }
1056
1057 void ARMELFStreamer::FinishImpl() {
1058   MCTargetStreamer &TS = *getTargetStreamer();
1059   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1060   ATS.finishAttributeSection();
1061
1062   MCELFStreamer::FinishImpl();
1063 }
1064
1065 void ARMELFStreamer::reset() {
1066   MCTargetStreamer &TS = *getTargetStreamer();
1067   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1068   ATS.reset();
1069   MappingSymbolCounter = 0;
1070   MCELFStreamer::reset();
1071   // MCELFStreamer clear's the assembler's e_flags. However, for
1072   // arm we manually set the ABI version on streamer creation, so
1073   // do the same here
1074   getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
1075 }
1076
1077 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix,
1078                                               unsigned Type,
1079                                               unsigned Flags,
1080                                               SectionKind Kind,
1081                                               const MCSymbol &Fn) {
1082   const MCSectionELF &FnSection =
1083     static_cast<const MCSectionELF &>(Fn.getSection());
1084
1085   // Create the name for new section
1086   StringRef FnSecName(FnSection.getSectionName());
1087   SmallString<128> EHSecName(Prefix);
1088   if (FnSecName != ".text") {
1089     EHSecName += FnSecName;
1090   }
1091
1092   // Get .ARM.extab or .ARM.exidx section
1093   const MCSymbolELF *Group = FnSection.getGroup();
1094   if (Group)
1095     Flags |= ELF::SHF_GROUP;
1096   MCSectionELF *EHSection =
1097       getContext().getELFSection(EHSecName, Type, Flags, 0, Group,
1098                                  FnSection.getUniqueID(), nullptr, &FnSection);
1099
1100   assert(EHSection && "Failed to get the required EH section");
1101
1102   // Switch to .ARM.extab or .ARM.exidx section
1103   SwitchSection(EHSection);
1104   EmitCodeAlignment(4);
1105 }
1106
1107 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) {
1108   SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC,
1109                     SectionKind::getData(), FnStart);
1110 }
1111
1112 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) {
1113   SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX,
1114                     ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER,
1115                     SectionKind::getData(), FnStart);
1116 }
1117 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) {
1118   MCDataFragment *Frag = getOrCreateDataFragment();
1119   Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr,
1120                                               Kind));
1121 }
1122
1123 void ARMELFStreamer::EHReset() {
1124   ExTab = nullptr;
1125   FnStart = nullptr;
1126   Personality = nullptr;
1127   PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX;
1128   FPReg = ARM::SP;
1129   FPOffset = 0;
1130   SPOffset = 0;
1131   PendingOffset = 0;
1132   UsedFP = false;
1133   CantUnwind = false;
1134
1135   Opcodes.clear();
1136   UnwindOpAsm.Reset();
1137 }
1138
1139 void ARMELFStreamer::emitFnStart() {
1140   assert(FnStart == nullptr);
1141   FnStart = getContext().createTempSymbol();
1142   EmitLabel(FnStart);
1143 }
1144
1145 void ARMELFStreamer::emitFnEnd() {
1146   assert(FnStart && ".fnstart must precedes .fnend");
1147
1148   // Emit unwind opcodes if there is no .handlerdata directive
1149   if (!ExTab && !CantUnwind)
1150     FlushUnwindOpcodes(true);
1151
1152   // Emit the exception index table entry
1153   SwitchToExIdxSection(*FnStart);
1154
1155   if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX)
1156     EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex));
1157
1158   const MCSymbolRefExpr *FnStartRef =
1159     MCSymbolRefExpr::create(FnStart,
1160                             MCSymbolRefExpr::VK_ARM_PREL31,
1161                             getContext());
1162
1163   EmitValue(FnStartRef, 4);
1164
1165   if (CantUnwind) {
1166     EmitIntValue(ARM::EHABI::EXIDX_CANTUNWIND, 4);
1167   } else if (ExTab) {
1168     // Emit a reference to the unwind opcodes in the ".ARM.extab" section.
1169     const MCSymbolRefExpr *ExTabEntryRef =
1170       MCSymbolRefExpr::create(ExTab,
1171                               MCSymbolRefExpr::VK_ARM_PREL31,
1172                               getContext());
1173     EmitValue(ExTabEntryRef, 4);
1174   } else {
1175     // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in
1176     // the second word of exception index table entry.  The size of the unwind
1177     // opcodes should always be 4 bytes.
1178     assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 &&
1179            "Compact model must use __aeabi_unwind_cpp_pr0 as personality");
1180     assert(Opcodes.size() == 4u &&
1181            "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4");
1182     uint64_t Intval = Opcodes[0] |
1183                       Opcodes[1] << 8 |
1184                       Opcodes[2] << 16 |
1185                       Opcodes[3] << 24;
1186     EmitIntValue(Intval, Opcodes.size());
1187   }
1188
1189   // Switch to the section containing FnStart
1190   SwitchSection(&FnStart->getSection());
1191
1192   // Clean exception handling frame information
1193   EHReset();
1194 }
1195
1196 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; }
1197
1198 // Add the R_ARM_NONE fixup at the same position
1199 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) {
1200   const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name);
1201
1202   const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create(
1203       PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext());
1204
1205   visitUsedExpr(*PersonalityRef);
1206   MCDataFragment *DF = getOrCreateDataFragment();
1207   DF->getFixups().push_back(MCFixup::create(DF->getContents().size(),
1208                                             PersonalityRef,
1209                                             MCFixup::getKindForSize(4, false)));
1210 }
1211
1212 void ARMELFStreamer::FlushPendingOffset() {
1213   if (PendingOffset != 0) {
1214     UnwindOpAsm.EmitSPOffset(-PendingOffset);
1215     PendingOffset = 0;
1216   }
1217 }
1218
1219 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) {
1220   // Emit the unwind opcode to restore $sp.
1221   if (UsedFP) {
1222     const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1223     int64_t LastRegSaveSPOffset = SPOffset - PendingOffset;
1224     UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset);
1225     UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
1226   } else {
1227     FlushPendingOffset();
1228   }
1229
1230   // Finalize the unwind opcode sequence
1231   UnwindOpAsm.Finalize(PersonalityIndex, Opcodes);
1232
1233   // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx
1234   // section.  Thus, we don't have to create an entry in the .ARM.extab
1235   // section.
1236   if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0)
1237     return;
1238
1239   // Switch to .ARM.extab section.
1240   SwitchToExTabSection(*FnStart);
1241
1242   // Create .ARM.extab label for offset in .ARM.exidx
1243   assert(!ExTab);
1244   ExTab = getContext().createTempSymbol();
1245   EmitLabel(ExTab);
1246
1247   // Emit personality
1248   if (Personality) {
1249     const MCSymbolRefExpr *PersonalityRef =
1250       MCSymbolRefExpr::create(Personality,
1251                               MCSymbolRefExpr::VK_ARM_PREL31,
1252                               getContext());
1253
1254     EmitValue(PersonalityRef, 4);
1255   }
1256
1257   // Emit unwind opcodes
1258   assert((Opcodes.size() % 4) == 0 &&
1259          "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4");
1260   for (unsigned I = 0; I != Opcodes.size(); I += 4) {
1261     uint64_t Intval = Opcodes[I] |
1262                       Opcodes[I + 1] << 8 |
1263                       Opcodes[I + 2] << 16 |
1264                       Opcodes[I + 3] << 24;
1265     EmitIntValue(Intval, 4);
1266   }
1267
1268   // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or
1269   // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted
1270   // after the unwind opcodes.  The handler data consists of several 32-bit
1271   // words, and should be terminated by zero.
1272   //
1273   // In case that the .handlerdata directive is not specified by the
1274   // programmer, we should emit zero to terminate the handler data.
1275   if (NoHandlerData && !Personality)
1276     EmitIntValue(0, 4);
1277 }
1278
1279 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); }
1280
1281 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) {
1282   Personality = Per;
1283   UnwindOpAsm.setPersonality(Per);
1284 }
1285
1286 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) {
1287   assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index");
1288   PersonalityIndex = Index;
1289 }
1290
1291 void ARMELFStreamer::emitSetFP(unsigned NewFPReg, unsigned NewSPReg,
1292                                int64_t Offset) {
1293   assert((NewSPReg == ARM::SP || NewSPReg == FPReg) &&
1294          "the operand of .setfp directive should be either $sp or $fp");
1295
1296   UsedFP = true;
1297   FPReg = NewFPReg;
1298
1299   if (NewSPReg == ARM::SP)
1300     FPOffset = SPOffset + Offset;
1301   else
1302     FPOffset += Offset;
1303 }
1304
1305 void ARMELFStreamer::emitMovSP(unsigned Reg, int64_t Offset) {
1306   assert((Reg != ARM::SP && Reg != ARM::PC) &&
1307          "the operand of .movsp cannot be either sp or pc");
1308   assert(FPReg == ARM::SP && "current FP must be SP");
1309
1310   FlushPendingOffset();
1311
1312   FPReg = Reg;
1313   FPOffset = SPOffset + Offset;
1314
1315   const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1316   UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg));
1317 }
1318
1319 void ARMELFStreamer::emitPad(int64_t Offset) {
1320   // Track the change of the $sp offset
1321   SPOffset -= Offset;
1322
1323   // To squash multiple .pad directives, we should delay the unwind opcode
1324   // until the .save, .vsave, .handlerdata, or .fnend directives.
1325   PendingOffset -= Offset;
1326 }
1327
1328 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
1329                                  bool IsVector) {
1330   // Collect the registers in the register list
1331   unsigned Count = 0;
1332   uint32_t Mask = 0;
1333   const MCRegisterInfo *MRI = getContext().getRegisterInfo();
1334   for (size_t i = 0; i < RegList.size(); ++i) {
1335     unsigned Reg = MRI->getEncodingValue(RegList[i]);
1336     assert(Reg < (IsVector ? 32U : 16U) && "Register out of range");
1337     unsigned Bit = (1u << Reg);
1338     if ((Mask & Bit) == 0) {
1339       Mask |= Bit;
1340       ++Count;
1341     }
1342   }
1343
1344   // Track the change the $sp offset: For the .save directive, the
1345   // corresponding push instruction will decrease the $sp by (4 * Count).
1346   // For the .vsave directive, the corresponding vpush instruction will
1347   // decrease $sp by (8 * Count).
1348   SPOffset -= Count * (IsVector ? 8 : 4);
1349
1350   // Emit the opcode
1351   FlushPendingOffset();
1352   if (IsVector)
1353     UnwindOpAsm.EmitVFPRegSave(Mask);
1354   else
1355     UnwindOpAsm.EmitRegSave(Mask);
1356 }
1357
1358 void ARMELFStreamer::emitUnwindRaw(int64_t Offset,
1359                                    const SmallVectorImpl<uint8_t> &Opcodes) {
1360   FlushPendingOffset();
1361   SPOffset = SPOffset - Offset;
1362   UnwindOpAsm.EmitRaw(Opcodes);
1363 }
1364
1365 namespace llvm {
1366
1367 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S,
1368                                              formatted_raw_ostream &OS,
1369                                              MCInstPrinter *InstPrint,
1370                                              bool isVerboseAsm) {
1371   return new ARMTargetAsmStreamer(S, OS, *InstPrint, isVerboseAsm);
1372 }
1373
1374 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) {
1375   return new ARMTargetStreamer(S);
1376 }
1377
1378 MCTargetStreamer *createARMObjectTargetStreamer(MCStreamer &S,
1379                                                 const MCSubtargetInfo &STI) {
1380   const Triple &TT = STI.getTargetTriple();
1381   if (TT.isOSBinFormatELF())
1382     return new ARMTargetELFStreamer(S);
1383   return new ARMTargetStreamer(S);
1384 }
1385
1386 MCELFStreamer *createARMELFStreamer(MCContext &Context, MCAsmBackend &TAB,
1387                                     raw_pwrite_stream &OS,
1388                                     MCCodeEmitter *Emitter, bool RelaxAll,
1389                                     bool IsThumb) {
1390     ARMELFStreamer *S = new ARMELFStreamer(Context, TAB, OS, Emitter, IsThumb);
1391     // FIXME: This should eventually end up somewhere else where more
1392     // intelligent flag decisions can be made. For now we are just maintaining
1393     // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default.
1394     S->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
1395
1396     if (RelaxAll)
1397       S->getAssembler().setRelaxAll(true);
1398     return S;
1399   }
1400
1401 }
1402
1403