]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/AVR/AVRISelLowering.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / AVR / AVRISelLowering.cpp
1 //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that AVR uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "AVRISelLowering.h"
16
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/Support/ErrorHandling.h"
26
27 #include "AVR.h"
28 #include "AVRMachineFunctionInfo.h"
29 #include "AVRTargetMachine.h"
30 #include "MCTargetDesc/AVRMCTargetDesc.h"
31
32 namespace llvm {
33
34 AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm)
35     : TargetLowering(tm) {
36   // Set up the register classes.
37   addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
38   addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
39
40   // Compute derived properties from the register classes.
41   computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo());
42
43   setBooleanContents(ZeroOrOneBooleanContent);
44   setBooleanVectorContents(ZeroOrOneBooleanContent);
45   setSchedulingPreference(Sched::RegPressure);
46   setStackPointerRegisterToSaveRestore(AVR::SP);
47   setSupportsUnalignedAtomics(true);
48
49   setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
50   setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
51
52   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
53   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
54   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
55   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
56
57   for (MVT VT : MVT::integer_valuetypes()) {
58     for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
59       setLoadExtAction(N, VT, MVT::i1, Promote);
60       setLoadExtAction(N, VT, MVT::i8, Expand);
61     }
62   }
63
64   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
65
66   for (MVT VT : MVT::integer_valuetypes()) {
67     setOperationAction(ISD::ADDC, VT, Legal);
68     setOperationAction(ISD::SUBC, VT, Legal);
69     setOperationAction(ISD::ADDE, VT, Legal);
70     setOperationAction(ISD::SUBE, VT, Legal);
71   }
72
73   // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
74   // revert into a sub since we don't have an add with immediate instruction.
75   setOperationAction(ISD::ADD, MVT::i32, Custom);
76   setOperationAction(ISD::ADD, MVT::i64, Custom);
77
78   // our shift instructions are only able to shift 1 bit at a time, so handle
79   // this in a custom way.
80   setOperationAction(ISD::SRA, MVT::i8, Custom);
81   setOperationAction(ISD::SHL, MVT::i8, Custom);
82   setOperationAction(ISD::SRL, MVT::i8, Custom);
83   setOperationAction(ISD::SRA, MVT::i16, Custom);
84   setOperationAction(ISD::SHL, MVT::i16, Custom);
85   setOperationAction(ISD::SRL, MVT::i16, Custom);
86   setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
87   setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
88   setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
89
90   setOperationAction(ISD::ROTL, MVT::i8, Custom);
91   setOperationAction(ISD::ROTL, MVT::i16, Custom);
92   setOperationAction(ISD::ROTR, MVT::i8, Custom);
93   setOperationAction(ISD::ROTR, MVT::i16, Custom);
94
95   setOperationAction(ISD::BR_CC, MVT::i8, Custom);
96   setOperationAction(ISD::BR_CC, MVT::i16, Custom);
97   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
98   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
99   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
100
101   setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
102   setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
103   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
104   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
105   setOperationAction(ISD::SETCC, MVT::i8, Custom);
106   setOperationAction(ISD::SETCC, MVT::i16, Custom);
107   setOperationAction(ISD::SETCC, MVT::i32, Custom);
108   setOperationAction(ISD::SETCC, MVT::i64, Custom);
109   setOperationAction(ISD::SELECT, MVT::i8, Expand);
110   setOperationAction(ISD::SELECT, MVT::i16, Expand);
111
112   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
113
114   // Add support for postincrement and predecrement load/stores.
115   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
116   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
117   setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
118   setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
119   setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
120   setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
121   setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
122   setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
123
124   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
125
126   setOperationAction(ISD::VASTART, MVT::Other, Custom);
127   setOperationAction(ISD::VAEND, MVT::Other, Expand);
128   setOperationAction(ISD::VAARG, MVT::Other, Expand);
129   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
130
131   // Atomic operations which must be lowered to rtlib calls
132   for (MVT VT : MVT::integer_valuetypes()) {
133     setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
134     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
135     setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
136     setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
137     setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
138     setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
139     setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
140   }
141
142   // Division/remainder
143   setOperationAction(ISD::UDIV, MVT::i8, Expand);
144   setOperationAction(ISD::UDIV, MVT::i16, Expand);
145   setOperationAction(ISD::UREM, MVT::i8, Expand);
146   setOperationAction(ISD::UREM, MVT::i16, Expand);
147   setOperationAction(ISD::SDIV, MVT::i8, Expand);
148   setOperationAction(ISD::SDIV, MVT::i16, Expand);
149   setOperationAction(ISD::SREM, MVT::i8, Expand);
150   setOperationAction(ISD::SREM, MVT::i16, Expand);
151
152   // Make division and modulus custom
153   for (MVT VT : MVT::integer_valuetypes()) {
154     setOperationAction(ISD::UDIVREM, VT, Custom);
155     setOperationAction(ISD::SDIVREM, VT, Custom);
156   }
157
158   // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
159   setOperationAction(ISD::MUL, MVT::i8, Expand);
160   setOperationAction(ISD::MUL, MVT::i16, Expand);
161
162   // Expand 16 bit multiplications.
163   setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
164   setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
165
166   for (MVT VT : MVT::integer_valuetypes()) {
167     setOperationAction(ISD::MULHS, VT, Expand);
168     setOperationAction(ISD::MULHU, VT, Expand);
169   }
170
171   for (MVT VT : MVT::integer_valuetypes()) {
172     setOperationAction(ISD::CTPOP, VT, Expand);
173     setOperationAction(ISD::CTLZ, VT, Expand);
174     setOperationAction(ISD::CTTZ, VT, Expand);
175   }
176
177   for (MVT VT : MVT::integer_valuetypes()) {
178     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
179     // TODO: The generated code is pretty poor. Investigate using the
180     // same "shift and subtract with carry" trick that we do for
181     // extending 8-bit to 16-bit. This may require infrastructure
182     // improvements in how we treat 16-bit "registers" to be feasible.
183   }
184
185   // Division rtlib functions (not supported)
186   setLibcallName(RTLIB::SDIV_I8, nullptr);
187   setLibcallName(RTLIB::SDIV_I16, nullptr);
188   setLibcallName(RTLIB::SDIV_I32, nullptr);
189   setLibcallName(RTLIB::SDIV_I64, nullptr);
190   setLibcallName(RTLIB::SDIV_I128, nullptr);
191   setLibcallName(RTLIB::UDIV_I8, nullptr);
192   setLibcallName(RTLIB::UDIV_I16, nullptr);
193   setLibcallName(RTLIB::UDIV_I32, nullptr);
194   setLibcallName(RTLIB::UDIV_I64, nullptr);
195   setLibcallName(RTLIB::UDIV_I128, nullptr);
196
197   // Modulus rtlib functions (not supported)
198   setLibcallName(RTLIB::SREM_I8, nullptr);
199   setLibcallName(RTLIB::SREM_I16, nullptr);
200   setLibcallName(RTLIB::SREM_I32, nullptr);
201   setLibcallName(RTLIB::SREM_I64, nullptr);
202   setLibcallName(RTLIB::SREM_I128, nullptr);
203   setLibcallName(RTLIB::UREM_I8, nullptr);
204   setLibcallName(RTLIB::UREM_I16, nullptr);
205   setLibcallName(RTLIB::UREM_I32, nullptr);
206   setLibcallName(RTLIB::UREM_I64, nullptr);
207   setLibcallName(RTLIB::UREM_I128, nullptr);
208
209   // Division and modulus rtlib functions
210   setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
211   setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
212   setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
213   setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
214   setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
215   setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
216   setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
217   setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
218   setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
219   setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
220
221   // Several of the runtime library functions use a special calling conv
222   setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
223   setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
224   setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
225   setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
226
227   // Trigonometric rtlib functions
228   setLibcallName(RTLIB::SIN_F32, "sin");
229   setLibcallName(RTLIB::COS_F32, "cos");
230
231   setMinFunctionAlignment(1);
232   setMinimumJumpTableEntries(INT_MAX);
233 }
234
235 const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
236 #define NODE(name)       \
237   case AVRISD::name:     \
238     return #name
239
240   switch (Opcode) {
241   default:
242     return nullptr;
243     NODE(RET_FLAG);
244     NODE(RETI_FLAG);
245     NODE(CALL);
246     NODE(WRAPPER);
247     NODE(LSL);
248     NODE(LSR);
249     NODE(ROL);
250     NODE(ROR);
251     NODE(ASR);
252     NODE(LSLLOOP);
253     NODE(LSRLOOP);
254     NODE(ASRLOOP);
255     NODE(BRCOND);
256     NODE(CMP);
257     NODE(CMPC);
258     NODE(TST);
259     NODE(SELECT_CC);
260 #undef NODE
261   }
262 }
263
264 EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
265                                           EVT VT) const {
266   assert(!VT.isVector() && "No AVR SetCC type for vectors!");
267   return MVT::i8;
268 }
269
270 SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
271   //:TODO: this function has to be completely rewritten to produce optimal
272   // code, for now it's producing very long but correct code.
273   unsigned Opc8;
274   const SDNode *N = Op.getNode();
275   EVT VT = Op.getValueType();
276   SDLoc dl(N);
277
278   // Expand non-constant shifts to loops.
279   if (!isa<ConstantSDNode>(N->getOperand(1))) {
280     switch (Op.getOpcode()) {
281     default:
282       llvm_unreachable("Invalid shift opcode!");
283     case ISD::SHL:
284       return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
285                          N->getOperand(1));
286     case ISD::SRL:
287       return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
288                          N->getOperand(1));
289     case ISD::ROTL:
290       return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
291                          N->getOperand(1));
292     case ISD::ROTR:
293       return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
294                          N->getOperand(1));
295     case ISD::SRA:
296       return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
297                          N->getOperand(1));
298     }
299   }
300
301   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
302   SDValue Victim = N->getOperand(0);
303
304   switch (Op.getOpcode()) {
305   case ISD::SRA:
306     Opc8 = AVRISD::ASR;
307     break;
308   case ISD::ROTL:
309     Opc8 = AVRISD::ROL;
310     break;
311   case ISD::ROTR:
312     Opc8 = AVRISD::ROR;
313     break;
314   case ISD::SRL:
315     Opc8 = AVRISD::LSR;
316     break;
317   case ISD::SHL:
318     Opc8 = AVRISD::LSL;
319     break;
320   default:
321     llvm_unreachable("Invalid shift opcode");
322   }
323
324   while (ShiftAmount--) {
325     Victim = DAG.getNode(Opc8, dl, VT, Victim);
326   }
327
328   return Victim;
329 }
330
331 SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
332   unsigned Opcode = Op->getOpcode();
333   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
334          "Invalid opcode for Div/Rem lowering");
335   bool IsSigned = (Opcode == ISD::SDIVREM);
336   EVT VT = Op->getValueType(0);
337   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
338
339   RTLIB::Libcall LC;
340   switch (VT.getSimpleVT().SimpleTy) {
341   default:
342     llvm_unreachable("Unexpected request for libcall!");
343   case MVT::i8:
344     LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
345     break;
346   case MVT::i16:
347     LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
348     break;
349   case MVT::i32:
350     LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
351     break;
352   case MVT::i64:
353     LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
354     break;
355   case MVT::i128:
356     LC = IsSigned ? RTLIB::SDIVREM_I128 : RTLIB::UDIVREM_I128;
357     break;
358   }
359
360   SDValue InChain = DAG.getEntryNode();
361
362   TargetLowering::ArgListTy Args;
363   TargetLowering::ArgListEntry Entry;
364   for (SDValue const &Value : Op->op_values()) {
365     Entry.Node = Value;
366     Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
367     Entry.IsSExt = IsSigned;
368     Entry.IsZExt = !IsSigned;
369     Args.push_back(Entry);
370   }
371
372   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
373                                          getPointerTy(DAG.getDataLayout()));
374
375   Type *RetTy = (Type *)StructType::get(Ty, Ty);
376
377   SDLoc dl(Op);
378   TargetLowering::CallLoweringInfo CLI(DAG);
379   CLI.setDebugLoc(dl)
380       .setChain(InChain)
381       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
382       .setInRegister()
383       .setSExtResult(IsSigned)
384       .setZExtResult(!IsSigned);
385
386   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
387   return CallInfo.first;
388 }
389
390 SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
391                                               SelectionDAG &DAG) const {
392   auto DL = DAG.getDataLayout();
393
394   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
395   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
396
397   // Create the TargetGlobalAddress node, folding in the constant offset.
398   SDValue Result =
399       DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
400   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
401 }
402
403 SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
404                                              SelectionDAG &DAG) const {
405   auto DL = DAG.getDataLayout();
406   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
407
408   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
409
410   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
411 }
412
413 /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
414 static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
415   switch (CC) {
416   default:
417     llvm_unreachable("Unknown condition code!");
418   case ISD::SETEQ:
419     return AVRCC::COND_EQ;
420   case ISD::SETNE:
421     return AVRCC::COND_NE;
422   case ISD::SETGE:
423     return AVRCC::COND_GE;
424   case ISD::SETLT:
425     return AVRCC::COND_LT;
426   case ISD::SETUGE:
427     return AVRCC::COND_SH;
428   case ISD::SETULT:
429     return AVRCC::COND_LO;
430   }
431 }
432
433 /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
434 /// the given operands.
435 SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
436                                      SDValue &AVRcc, SelectionDAG &DAG,
437                                      SDLoc DL) const {
438   SDValue Cmp;
439   EVT VT = LHS.getValueType();
440   bool UseTest = false;
441
442   switch (CC) {
443   default:
444     break;
445   case ISD::SETLE: {
446     // Swap operands and reverse the branching condition.
447     std::swap(LHS, RHS);
448     CC = ISD::SETGE;
449     break;
450   }
451   case ISD::SETGT: {
452     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
453       switch (C->getSExtValue()) {
454       case -1: {
455         // When doing lhs > -1 use a tst instruction on the top part of lhs
456         // and use brpl instead of using a chain of cp/cpc.
457         UseTest = true;
458         AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
459         break;
460       }
461       case 0: {
462         // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
463         // __zero_reg__ in lhs.
464         RHS = LHS;
465         LHS = DAG.getConstant(0, DL, VT);
466         CC = ISD::SETLT;
467         break;
468       }
469       default: {
470         // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
471         // us to  fold the constant into the cmp instruction.
472         RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
473         CC = ISD::SETGE;
474         break;
475       }
476       }
477       break;
478     }
479     // Swap operands and reverse the branching condition.
480     std::swap(LHS, RHS);
481     CC = ISD::SETLT;
482     break;
483   }
484   case ISD::SETLT: {
485     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
486       switch (C->getSExtValue()) {
487       case 1: {
488         // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
489         // __zero_reg__ in lhs.
490         RHS = LHS;
491         LHS = DAG.getConstant(0, DL, VT);
492         CC = ISD::SETGE;
493         break;
494       }
495       case 0: {
496         // When doing lhs < 0 use a tst instruction on the top part of lhs
497         // and use brmi instead of using a chain of cp/cpc.
498         UseTest = true;
499         AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
500         break;
501       }
502       }
503     }
504     break;
505   }
506   case ISD::SETULE: {
507     // Swap operands and reverse the branching condition.
508     std::swap(LHS, RHS);
509     CC = ISD::SETUGE;
510     break;
511   }
512   case ISD::SETUGT: {
513     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
514     // fold the constant into the cmp instruction.
515     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
516       RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
517       CC = ISD::SETUGE;
518       break;
519     }
520     // Swap operands and reverse the branching condition.
521     std::swap(LHS, RHS);
522     CC = ISD::SETULT;
523     break;
524   }
525   }
526
527   // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
528   // using the default and/or/xor expansion code which is much longer.
529   if (VT == MVT::i32) {
530     SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
531                                 DAG.getIntPtrConstant(0, DL));
532     SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
533                                 DAG.getIntPtrConstant(1, DL));
534     SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
535                                 DAG.getIntPtrConstant(0, DL));
536     SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
537                                 DAG.getIntPtrConstant(1, DL));
538
539     if (UseTest) {
540       // When using tst we only care about the highest part.
541       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
542                                 DAG.getIntPtrConstant(1, DL));
543       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
544     } else {
545       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
546       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
547     }
548   } else if (VT == MVT::i64) {
549     SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
550                                 DAG.getIntPtrConstant(0, DL));
551     SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
552                                 DAG.getIntPtrConstant(1, DL));
553
554     SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
555                                DAG.getIntPtrConstant(0, DL));
556     SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
557                                DAG.getIntPtrConstant(1, DL));
558     SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
559                                DAG.getIntPtrConstant(0, DL));
560     SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
561                                DAG.getIntPtrConstant(1, DL));
562
563     SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
564                                 DAG.getIntPtrConstant(0, DL));
565     SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
566                                 DAG.getIntPtrConstant(1, DL));
567
568     SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
569                                DAG.getIntPtrConstant(0, DL));
570     SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
571                                DAG.getIntPtrConstant(1, DL));
572     SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
573                                DAG.getIntPtrConstant(0, DL));
574     SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
575                                DAG.getIntPtrConstant(1, DL));
576
577     if (UseTest) {
578       // When using tst we only care about the highest part.
579       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
580                                 DAG.getIntPtrConstant(1, DL));
581       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
582     } else {
583       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
584       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
585       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
586       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
587     }
588   } else if (VT == MVT::i8 || VT == MVT::i16) {
589     if (UseTest) {
590       // When using tst we only care about the highest part.
591       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
592                         (VT == MVT::i8)
593                             ? LHS
594                             : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
595                                           LHS, DAG.getIntPtrConstant(1, DL)));
596     } else {
597       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
598     }
599   } else {
600     llvm_unreachable("Invalid comparison size");
601   }
602
603   // When using a test instruction AVRcc is already set.
604   if (!UseTest) {
605     AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
606   }
607
608   return Cmp;
609 }
610
611 SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
612   SDValue Chain = Op.getOperand(0);
613   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
614   SDValue LHS = Op.getOperand(2);
615   SDValue RHS = Op.getOperand(3);
616   SDValue Dest = Op.getOperand(4);
617   SDLoc dl(Op);
618
619   SDValue TargetCC;
620   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
621
622   return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
623                      Cmp);
624 }
625
626 SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
627   SDValue LHS = Op.getOperand(0);
628   SDValue RHS = Op.getOperand(1);
629   SDValue TrueV = Op.getOperand(2);
630   SDValue FalseV = Op.getOperand(3);
631   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
632   SDLoc dl(Op);
633
634   SDValue TargetCC;
635   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
636
637   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
638   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
639
640   return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
641 }
642
643 SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
644   SDValue LHS = Op.getOperand(0);
645   SDValue RHS = Op.getOperand(1);
646   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
647   SDLoc DL(Op);
648
649   SDValue TargetCC;
650   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
651
652   SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
653   SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
654   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
655   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
656
657   return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
658 }
659
660 SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
661   const MachineFunction &MF = DAG.getMachineFunction();
662   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
663   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
664   auto DL = DAG.getDataLayout();
665   SDLoc dl(Op);
666
667   // Vastart just stores the address of the VarArgsFrameIndex slot into the
668   // memory location argument.
669   SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
670
671   return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
672                       MachinePointerInfo(SV), 0);
673 }
674
675 SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
676   switch (Op.getOpcode()) {
677   default:
678     llvm_unreachable("Don't know how to custom lower this!");
679   case ISD::SHL:
680   case ISD::SRA:
681   case ISD::SRL:
682   case ISD::ROTL:
683   case ISD::ROTR:
684     return LowerShifts(Op, DAG);
685   case ISD::GlobalAddress:
686     return LowerGlobalAddress(Op, DAG);
687   case ISD::BlockAddress:
688     return LowerBlockAddress(Op, DAG);
689   case ISD::BR_CC:
690     return LowerBR_CC(Op, DAG);
691   case ISD::SELECT_CC:
692     return LowerSELECT_CC(Op, DAG);
693   case ISD::SETCC:
694     return LowerSETCC(Op, DAG);
695   case ISD::VASTART:
696     return LowerVASTART(Op, DAG);
697   case ISD::SDIVREM:
698   case ISD::UDIVREM:
699     return LowerDivRem(Op, DAG);
700   }
701
702   return SDValue();
703 }
704
705 /// Replace a node with an illegal result type
706 /// with a new node built out of custom code.
707 void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
708                                            SmallVectorImpl<SDValue> &Results,
709                                            SelectionDAG &DAG) const {
710   SDLoc DL(N);
711
712   switch (N->getOpcode()) {
713   case ISD::ADD: {
714     // Convert add (x, imm) into sub (x, -imm).
715     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
716       SDValue Sub = DAG.getNode(
717           ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
718           DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
719       Results.push_back(Sub);
720     }
721     break;
722   }
723   default: {
724     SDValue Res = LowerOperation(SDValue(N, 0), DAG);
725
726     for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
727       Results.push_back(Res.getValue(I));
728
729     break;
730   }
731   }
732 }
733
734 /// Return true if the addressing mode represented
735 /// by AM is legal for this target, for a load/store of the specified type.
736 bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
737                                               const AddrMode &AM, Type *Ty,
738                                               unsigned AS, Instruction *I) const {
739   int64_t Offs = AM.BaseOffs;
740
741   // Allow absolute addresses.
742   if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
743     return true;
744   }
745
746   // Flash memory instructions only allow zero offsets.
747   if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
748     return false;
749   }
750
751   // Allow reg+<6bit> offset.
752   if (Offs < 0)
753     Offs = -Offs;
754   if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
755     return true;
756   }
757
758   return false;
759 }
760
761 /// Returns true by value, base pointer and
762 /// offset pointer and addressing mode by reference if the node's address
763 /// can be legally represented as pre-indexed load / store address.
764 bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
765                                                   SDValue &Offset,
766                                                   ISD::MemIndexedMode &AM,
767                                                   SelectionDAG &DAG) const {
768   EVT VT;
769   const SDNode *Op;
770   SDLoc DL(N);
771
772   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
773     VT = LD->getMemoryVT();
774     Op = LD->getBasePtr().getNode();
775     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
776       return false;
777     if (AVR::isProgramMemoryAccess(LD)) {
778       return false;
779     }
780   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
781     VT = ST->getMemoryVT();
782     Op = ST->getBasePtr().getNode();
783     if (AVR::isProgramMemoryAccess(ST)) {
784       return false;
785     }
786   } else {
787     return false;
788   }
789
790   if (VT != MVT::i8 && VT != MVT::i16) {
791     return false;
792   }
793
794   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
795     return false;
796   }
797
798   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
799     int RHSC = RHS->getSExtValue();
800     if (Op->getOpcode() == ISD::SUB)
801       RHSC = -RHSC;
802
803     if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
804       return false;
805     }
806
807     Base = Op->getOperand(0);
808     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
809     AM = ISD::PRE_DEC;
810
811     return true;
812   }
813
814   return false;
815 }
816
817 /// Returns true by value, base pointer and
818 /// offset pointer and addressing mode by reference if this node can be
819 /// combined with a load / store to form a post-indexed load / store.
820 bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
821                                                    SDValue &Base,
822                                                    SDValue &Offset,
823                                                    ISD::MemIndexedMode &AM,
824                                                    SelectionDAG &DAG) const {
825   EVT VT;
826   SDLoc DL(N);
827
828   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
829     VT = LD->getMemoryVT();
830     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
831       return false;
832   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
833     VT = ST->getMemoryVT();
834     if (AVR::isProgramMemoryAccess(ST)) {
835       return false;
836     }
837   } else {
838     return false;
839   }
840
841   if (VT != MVT::i8 && VT != MVT::i16) {
842     return false;
843   }
844
845   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
846     return false;
847   }
848
849   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
850     int RHSC = RHS->getSExtValue();
851     if (Op->getOpcode() == ISD::SUB)
852       RHSC = -RHSC;
853     if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
854       return false;
855     }
856
857     Base = Op->getOperand(0);
858     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
859     AM = ISD::POST_INC;
860
861     return true;
862   }
863
864   return false;
865 }
866
867 bool AVRTargetLowering::isOffsetFoldingLegal(
868     const GlobalAddressSDNode *GA) const {
869   return true;
870 }
871
872 //===----------------------------------------------------------------------===//
873 //             Formal Arguments Calling Convention Implementation
874 //===----------------------------------------------------------------------===//
875
876 #include "AVRGenCallingConv.inc"
877
878 /// For each argument in a function store the number of pieces it is composed
879 /// of.
880 static void parseFunctionArgs(const SmallVectorImpl<ISD::InputArg> &Ins,
881                               SmallVectorImpl<unsigned> &Out) {
882   for (const ISD::InputArg &Arg : Ins) {
883     if(Arg.PartOffset > 0) continue;
884     unsigned Bytes = ((Arg.ArgVT.getSizeInBits()) + 7) / 8;
885
886     Out.push_back((Bytes + 1) / 2);
887   }
888 }
889
890 /// For external symbols there is no function prototype information so we
891 /// have to rely directly on argument sizes.
892 static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
893                                     SmallVectorImpl<unsigned> &Out) {
894   for (unsigned i = 0, e = In.size(); i != e;) {
895     unsigned Size = 0;
896     unsigned Offset = 0;
897     while ((i != e) && (In[i].PartOffset == Offset)) {
898       Offset += In[i].VT.getStoreSize();
899       ++i;
900       ++Size;
901     }
902     Out.push_back(Size);
903   }
904 }
905
906 static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
907   SDValue Callee = CLI.Callee;
908
909   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
910     return G->getSymbol();
911   }
912
913   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
914     return G->getGlobal()->getName();
915   }
916
917   llvm_unreachable("don't know how to get the name for this callee");
918 }
919
920 /// Analyze incoming and outgoing function arguments. We need custom C++ code
921 /// to handle special constraints in the ABI like reversing the order of the
922 /// pieces of splitted arguments. In addition, all pieces of a certain argument
923 /// have to be passed either using registers or the stack but never mixing both.
924 static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
925                                      const Function *F, const DataLayout *TD,
926                                      const SmallVectorImpl<ISD::OutputArg> *Outs,
927                                      const SmallVectorImpl<ISD::InputArg> *Ins,
928                                      CallingConv::ID CallConv,
929                                      SmallVectorImpl<CCValAssign> &ArgLocs,
930                                      CCState &CCInfo, bool IsCall, bool IsVarArg) {
931   static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
932                                        AVR::R18, AVR::R16, AVR::R14,
933                                        AVR::R12, AVR::R10, AVR::R8};
934   static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
935                                         AVR::R19R18, AVR::R17R16, AVR::R15R14,
936                                         AVR::R13R12, AVR::R11R10, AVR::R9R8};
937   if (IsVarArg) {
938     // Variadic functions do not need all the analisys below.
939     if (IsCall) {
940       CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
941     } else {
942       CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
943     }
944     return;
945   }
946
947   // Fill in the Args array which will contain original argument sizes.
948   SmallVector<unsigned, 8> Args;
949   if (IsCall) {
950     parseExternFuncCallArgs(*Outs, Args);
951   } else {
952     assert(F != nullptr && "function should not be null");
953     parseFunctionArgs(*Ins, Args);
954   }
955
956   unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
957   // Variadic functions always use the stack.
958   bool UsesStack = false;
959   for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
960     unsigned Size = Args[i];
961
962     // If we have a zero-sized argument, don't attempt to lower it.
963     // AVR-GCC does not support zero-sized arguments and so we need not
964     // worry about ABI compatibility.
965     if (Size == 0) continue;
966
967     MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
968
969     // If we have plenty of regs to pass the whole argument do it.
970     if (!UsesStack && (Size <= RegsLeft)) {
971       const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
972
973       for (unsigned j = 0; j != Size; ++j) {
974         unsigned Reg = CCInfo.AllocateReg(
975             ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
976         CCInfo.addLoc(
977             CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
978         --RegsLeft;
979       }
980
981       // Reverse the order of the pieces to agree with the "big endian" format
982       // required in the calling convention ABI.
983       std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
984     } else {
985       // Pass the rest of arguments using the stack.
986       UsesStack = true;
987       for (unsigned j = 0; j != Size; ++j) {
988         unsigned Offset = CCInfo.AllocateStack(
989             TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
990             TD->getABITypeAlignment(
991                 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
992         CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
993                                           CCValAssign::Full));
994       }
995     }
996     pos += Size;
997   }
998 }
999
1000 static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
1001                                     const Function *F, const DataLayout *TD,
1002                                     const SmallVectorImpl<ISD::OutputArg> *Outs,
1003                                     const SmallVectorImpl<ISD::InputArg> *Ins,
1004                                     CallingConv::ID CallConv,
1005                                     SmallVectorImpl<CCValAssign> &ArgLocs,
1006                                     CCState &CCInfo, bool IsCall, bool IsVarArg) {
1007   StringRef FuncName = getFunctionName(CLI);
1008
1009   if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
1010     CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
1011   } else {
1012     analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
1013                              CallConv, ArgLocs, CCInfo,
1014                              IsCall, IsVarArg);
1015   }
1016 }
1017
1018 static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1019                              const Function *F, const DataLayout *TD,
1020                              const SmallVectorImpl<ISD::OutputArg> *Outs,
1021                              const SmallVectorImpl<ISD::InputArg> *Ins,
1022                              CallingConv::ID CallConv,
1023                              SmallVectorImpl<CCValAssign> &ArgLocs,
1024                              CCState &CCInfo, bool IsCall, bool IsVarArg) {
1025   switch (CallConv) {
1026     case CallingConv::AVR_BUILTIN: {
1027       analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
1028                               CallConv, ArgLocs, CCInfo,
1029                               IsCall, IsVarArg);
1030       return;
1031     }
1032     default: {
1033       analyzeStandardArguments(CLI, F, TD, Outs, Ins,
1034                                CallConv, ArgLocs, CCInfo,
1035                                IsCall, IsVarArg);
1036       return;
1037     }
1038   }
1039 }
1040
1041 SDValue AVRTargetLowering::LowerFormalArguments(
1042     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1043     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1044     SmallVectorImpl<SDValue> &InVals) const {
1045   MachineFunction &MF = DAG.getMachineFunction();
1046   MachineFrameInfo &MFI = MF.getFrameInfo();
1047   auto DL = DAG.getDataLayout();
1048
1049   // Assign locations to all of the incoming arguments.
1050   SmallVector<CCValAssign, 16> ArgLocs;
1051   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1052                  *DAG.getContext());
1053
1054   analyzeArguments(nullptr, &MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
1055                    false, isVarArg);
1056
1057   SDValue ArgValue;
1058   for (CCValAssign &VA : ArgLocs) {
1059
1060     // Arguments stored on registers.
1061     if (VA.isRegLoc()) {
1062       EVT RegVT = VA.getLocVT();
1063       const TargetRegisterClass *RC;
1064       if (RegVT == MVT::i8) {
1065         RC = &AVR::GPR8RegClass;
1066       } else if (RegVT == MVT::i16) {
1067         RC = &AVR::DREGSRegClass;
1068       } else {
1069         llvm_unreachable("Unknown argument type!");
1070       }
1071
1072       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1073       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1074
1075       // :NOTE: Clang should not promote any i8 into i16 but for safety the
1076       // following code will handle zexts or sexts generated by other
1077       // front ends. Otherwise:
1078       // If this is an 8 bit value, it is really passed promoted
1079       // to 16 bits. Insert an assert[sz]ext to capture this, then
1080       // truncate to the right size.
1081       switch (VA.getLocInfo()) {
1082       default:
1083         llvm_unreachable("Unknown loc info!");
1084       case CCValAssign::Full:
1085         break;
1086       case CCValAssign::BCvt:
1087         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1088         break;
1089       case CCValAssign::SExt:
1090         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1091                                DAG.getValueType(VA.getValVT()));
1092         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1093         break;
1094       case CCValAssign::ZExt:
1095         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1096                                DAG.getValueType(VA.getValVT()));
1097         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1098         break;
1099       }
1100
1101       InVals.push_back(ArgValue);
1102     } else {
1103       // Sanity check.
1104       assert(VA.isMemLoc());
1105
1106       EVT LocVT = VA.getLocVT();
1107
1108       // Create the frame index object for this incoming parameter.
1109       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1110                                      VA.getLocMemOffset(), true);
1111
1112       // Create the SelectionDAG nodes corresponding to a load
1113       // from this parameter.
1114       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1115       InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1116                                    MachinePointerInfo::getFixedStack(MF, FI),
1117                                    0));
1118     }
1119   }
1120
1121   // If the function takes variable number of arguments, make a frame index for
1122   // the start of the first vararg value... for expansion of llvm.va_start.
1123   if (isVarArg) {
1124     unsigned StackSize = CCInfo.getNextStackOffset();
1125     AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1126
1127     AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1128   }
1129
1130   return Chain;
1131 }
1132
1133 //===----------------------------------------------------------------------===//
1134 //                  Call Calling Convention Implementation
1135 //===----------------------------------------------------------------------===//
1136
1137 SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1138                                      SmallVectorImpl<SDValue> &InVals) const {
1139   SelectionDAG &DAG = CLI.DAG;
1140   SDLoc &DL = CLI.DL;
1141   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1142   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1143   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1144   SDValue Chain = CLI.Chain;
1145   SDValue Callee = CLI.Callee;
1146   bool &isTailCall = CLI.IsTailCall;
1147   CallingConv::ID CallConv = CLI.CallConv;
1148   bool isVarArg = CLI.IsVarArg;
1149
1150   MachineFunction &MF = DAG.getMachineFunction();
1151
1152   // AVR does not yet support tail call optimization.
1153   isTailCall = false;
1154
1155   // Analyze operands of the call, assigning locations to each operand.
1156   SmallVector<CCValAssign, 16> ArgLocs;
1157   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1158                  *DAG.getContext());
1159
1160   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1161   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1162   // node so that legalize doesn't hack it.
1163   const Function *F = nullptr;
1164   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1165     const GlobalValue *GV = G->getGlobal();
1166
1167     F = cast<Function>(GV);
1168     Callee =
1169         DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1170   } else if (const ExternalSymbolSDNode *ES =
1171                  dyn_cast<ExternalSymbolSDNode>(Callee)) {
1172     Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1173                                          getPointerTy(DAG.getDataLayout()));
1174   }
1175
1176   analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
1177                    true, isVarArg);
1178
1179   // Get a count of how many bytes are to be pushed on the stack.
1180   unsigned NumBytes = CCInfo.getNextStackOffset();
1181
1182   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1183
1184   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1185
1186   // First, walk the register assignments, inserting copies.
1187   unsigned AI, AE;
1188   bool HasStackArgs = false;
1189   for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1190     CCValAssign &VA = ArgLocs[AI];
1191     EVT RegVT = VA.getLocVT();
1192     SDValue Arg = OutVals[AI];
1193
1194     // Promote the value if needed. With Clang this should not happen.
1195     switch (VA.getLocInfo()) {
1196     default:
1197       llvm_unreachable("Unknown loc info!");
1198     case CCValAssign::Full:
1199       break;
1200     case CCValAssign::SExt:
1201       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1202       break;
1203     case CCValAssign::ZExt:
1204       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1205       break;
1206     case CCValAssign::AExt:
1207       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1208       break;
1209     case CCValAssign::BCvt:
1210       Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1211       break;
1212     }
1213
1214     // Stop when we encounter a stack argument, we need to process them
1215     // in reverse order in the loop below.
1216     if (VA.isMemLoc()) {
1217       HasStackArgs = true;
1218       break;
1219     }
1220
1221     // Arguments that can be passed on registers must be kept in the RegsToPass
1222     // vector.
1223     RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1224   }
1225
1226   // Second, stack arguments have to walked in reverse order by inserting
1227   // chained stores, this ensures their order is not changed by the scheduler
1228   // and that the push instruction sequence generated is correct, otherwise they
1229   // can be freely intermixed.
1230   if (HasStackArgs) {
1231     for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1232       unsigned Loc = AI - 1;
1233       CCValAssign &VA = ArgLocs[Loc];
1234       SDValue Arg = OutVals[Loc];
1235
1236       assert(VA.isMemLoc());
1237
1238       // SP points to one stack slot further so add one to adjust it.
1239       SDValue PtrOff = DAG.getNode(
1240           ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1241           DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1242           DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1243
1244       Chain =
1245           DAG.getStore(Chain, DL, Arg, PtrOff,
1246                        MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1247                        0);
1248     }
1249   }
1250
1251   // Build a sequence of copy-to-reg nodes chained together with token chain and
1252   // flag operands which copy the outgoing args into registers.  The InFlag in
1253   // necessary since all emited instructions must be stuck together.
1254   SDValue InFlag;
1255   for (auto Reg : RegsToPass) {
1256     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1257     InFlag = Chain.getValue(1);
1258   }
1259
1260   // Returns a chain & a flag for retval copy to use.
1261   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1262   SmallVector<SDValue, 8> Ops;
1263   Ops.push_back(Chain);
1264   Ops.push_back(Callee);
1265
1266   // Add argument registers to the end of the list so that they are known live
1267   // into the call.
1268   for (auto Reg : RegsToPass) {
1269     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1270   }
1271
1272   // Add a register mask operand representing the call-preserved registers.
1273   const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1274   const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
1275   const uint32_t *Mask =
1276       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1277   assert(Mask && "Missing call preserved mask for calling convention");
1278   Ops.push_back(DAG.getRegisterMask(Mask));
1279
1280   if (InFlag.getNode()) {
1281     Ops.push_back(InFlag);
1282   }
1283
1284   Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1285   InFlag = Chain.getValue(1);
1286
1287   // Create the CALLSEQ_END node.
1288   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1289                              DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1290
1291   if (!Ins.empty()) {
1292     InFlag = Chain.getValue(1);
1293   }
1294
1295   // Handle result values, copying them out of physregs into vregs that we
1296   // return.
1297   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1298                          InVals);
1299 }
1300
1301 /// Lower the result values of a call into the
1302 /// appropriate copies out of appropriate physical registers.
1303 ///
1304 SDValue AVRTargetLowering::LowerCallResult(
1305     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1306     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1307     SmallVectorImpl<SDValue> &InVals) const {
1308
1309   // Assign locations to each value returned by this call.
1310   SmallVector<CCValAssign, 16> RVLocs;
1311   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1312                  *DAG.getContext());
1313
1314   // Handle runtime calling convs.
1315   auto CCFunction = CCAssignFnForReturn(CallConv);
1316   CCInfo.AnalyzeCallResult(Ins, CCFunction);
1317
1318   if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
1319     // Reverse splitted return values to get the "big endian" format required
1320     // to agree with the calling convention ABI.
1321     std::reverse(RVLocs.begin(), RVLocs.end());
1322   }
1323
1324   // Copy all of the result registers out of their specified physreg.
1325   for (CCValAssign const &RVLoc : RVLocs) {
1326     Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1327                                InFlag)
1328                 .getValue(1);
1329     InFlag = Chain.getValue(2);
1330     InVals.push_back(Chain.getValue(0));
1331   }
1332
1333   return Chain;
1334 }
1335
1336 //===----------------------------------------------------------------------===//
1337 //               Return Value Calling Convention Implementation
1338 //===----------------------------------------------------------------------===//
1339
1340 CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
1341   switch (CC) {
1342   case CallingConv::AVR_BUILTIN:
1343     return RetCC_AVR_BUILTIN;
1344   default:
1345     return RetCC_AVR;
1346   }
1347 }
1348
1349 bool
1350 AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1351                                   MachineFunction &MF, bool isVarArg,
1352                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1353                                   LLVMContext &Context) const
1354 {
1355   SmallVector<CCValAssign, 16> RVLocs;
1356   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1357
1358   auto CCFunction = CCAssignFnForReturn(CallConv);
1359   return CCInfo.CheckReturn(Outs, CCFunction);
1360 }
1361
1362 SDValue
1363 AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1364                                bool isVarArg,
1365                                const SmallVectorImpl<ISD::OutputArg> &Outs,
1366                                const SmallVectorImpl<SDValue> &OutVals,
1367                                const SDLoc &dl, SelectionDAG &DAG) const {
1368   // CCValAssign - represent the assignment of the return value to locations.
1369   SmallVector<CCValAssign, 16> RVLocs;
1370
1371   // CCState - Info about the registers and stack slot.
1372   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1373                  *DAG.getContext());
1374
1375   // Analyze return values.
1376   auto CCFunction = CCAssignFnForReturn(CallConv);
1377   CCInfo.AnalyzeReturn(Outs, CCFunction);
1378
1379   // If this is the first return lowered for this function, add the regs to
1380   // the liveout set for the function.
1381   MachineFunction &MF = DAG.getMachineFunction();
1382   unsigned e = RVLocs.size();
1383
1384   // Reverse splitted return values to get the "big endian" format required
1385   // to agree with the calling convention ABI.
1386   if (e > 1) {
1387     std::reverse(RVLocs.begin(), RVLocs.end());
1388   }
1389
1390   SDValue Flag;
1391   SmallVector<SDValue, 4> RetOps(1, Chain);
1392   // Copy the result values into the output registers.
1393   for (unsigned i = 0; i != e; ++i) {
1394     CCValAssign &VA = RVLocs[i];
1395     assert(VA.isRegLoc() && "Can only return in registers!");
1396
1397     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1398
1399     // Guarantee that all emitted copies are stuck together with flags.
1400     Flag = Chain.getValue(1);
1401     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1402   }
1403
1404   // Don't emit the ret/reti instruction when the naked attribute is present in
1405   // the function being compiled.
1406   if (MF.getFunction().getAttributes().hasAttribute(
1407           AttributeList::FunctionIndex, Attribute::Naked)) {
1408     return Chain;
1409   }
1410
1411   unsigned RetOpc =
1412       (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
1413           ? AVRISD::RETI_FLAG
1414           : AVRISD::RET_FLAG;
1415
1416   RetOps[0] = Chain; // Update chain.
1417
1418   if (Flag.getNode()) {
1419     RetOps.push_back(Flag);
1420   }
1421
1422   return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1423 }
1424
1425 //===----------------------------------------------------------------------===//
1426 //  Custom Inserters
1427 //===----------------------------------------------------------------------===//
1428
1429 MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1430                                                   MachineBasicBlock *BB) const {
1431   unsigned Opc;
1432   const TargetRegisterClass *RC;
1433   bool HasRepeatedOperand = false;
1434   MachineFunction *F = BB->getParent();
1435   MachineRegisterInfo &RI = F->getRegInfo();
1436   const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1437   const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1438   DebugLoc dl = MI.getDebugLoc();
1439
1440   switch (MI.getOpcode()) {
1441   default:
1442     llvm_unreachable("Invalid shift opcode!");
1443   case AVR::Lsl8:
1444     Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
1445     RC = &AVR::GPR8RegClass;
1446     HasRepeatedOperand = true;
1447     break;
1448   case AVR::Lsl16:
1449     Opc = AVR::LSLWRd;
1450     RC = &AVR::DREGSRegClass;
1451     break;
1452   case AVR::Asr8:
1453     Opc = AVR::ASRRd;
1454     RC = &AVR::GPR8RegClass;
1455     break;
1456   case AVR::Asr16:
1457     Opc = AVR::ASRWRd;
1458     RC = &AVR::DREGSRegClass;
1459     break;
1460   case AVR::Lsr8:
1461     Opc = AVR::LSRRd;
1462     RC = &AVR::GPR8RegClass;
1463     break;
1464   case AVR::Lsr16:
1465     Opc = AVR::LSRWRd;
1466     RC = &AVR::DREGSRegClass;
1467     break;
1468   case AVR::Rol8:
1469     Opc = AVR::ADCRdRr; // ROL is an alias of ADC Rd, Rd
1470     RC = &AVR::GPR8RegClass;
1471     HasRepeatedOperand = true;
1472     break;
1473   case AVR::Rol16:
1474     Opc = AVR::ROLWRd;
1475     RC = &AVR::DREGSRegClass;
1476     break;
1477   case AVR::Ror8:
1478     Opc = AVR::RORRd;
1479     RC = &AVR::GPR8RegClass;
1480     break;
1481   case AVR::Ror16:
1482     Opc = AVR::RORWRd;
1483     RC = &AVR::DREGSRegClass;
1484     break;
1485   }
1486
1487   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1488
1489   MachineFunction::iterator I;
1490   for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
1491   if (I != F->end()) ++I;
1492
1493   // Create loop block.
1494   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1495   MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1496
1497   F->insert(I, LoopBB);
1498   F->insert(I, RemBB);
1499
1500   // Update machine-CFG edges by transferring all successors of the current
1501   // block to the block containing instructions after shift.
1502   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1503                 BB->end());
1504   RemBB->transferSuccessorsAndUpdatePHIs(BB);
1505
1506   // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1507   BB->addSuccessor(LoopBB);
1508   BB->addSuccessor(RemBB);
1509   LoopBB->addSuccessor(RemBB);
1510   LoopBB->addSuccessor(LoopBB);
1511
1512   unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1513   unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1514   unsigned ShiftReg = RI.createVirtualRegister(RC);
1515   unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1516   unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
1517   unsigned SrcReg = MI.getOperand(1).getReg();
1518   unsigned DstReg = MI.getOperand(0).getReg();
1519
1520   // BB:
1521   // cpi N, 0
1522   // breq RemBB
1523   BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
1524   BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1525
1526   // LoopBB:
1527   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1528   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
1529   // ShiftReg2 = shift ShiftReg
1530   // ShiftAmt2 = ShiftAmt - 1;
1531   BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1532       .addReg(SrcReg)
1533       .addMBB(BB)
1534       .addReg(ShiftReg2)
1535       .addMBB(LoopBB);
1536   BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1537       .addReg(ShiftAmtSrcReg)
1538       .addMBB(BB)
1539       .addReg(ShiftAmtReg2)
1540       .addMBB(LoopBB);
1541
1542   auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1543   if (HasRepeatedOperand)
1544     ShiftMI.addReg(ShiftReg);
1545
1546   BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1547       .addReg(ShiftAmtReg)
1548       .addImm(1);
1549   BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1550
1551   // RemBB:
1552   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1553   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1554       .addReg(SrcReg)
1555       .addMBB(BB)
1556       .addReg(ShiftReg2)
1557       .addMBB(LoopBB);
1558
1559   MI.eraseFromParent(); // The pseudo instruction is gone now.
1560   return RemBB;
1561 }
1562
1563 static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1564   if (I->getOpcode() == AVR::COPY) {
1565     unsigned SrcReg = I->getOperand(1).getReg();
1566     return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1567   }
1568
1569   return false;
1570 }
1571
1572 // The mul instructions wreak havock on our zero_reg R1. We need to clear it
1573 // after the result has been evacuated. This is probably not the best way to do
1574 // it, but it works for now.
1575 MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1576                                                 MachineBasicBlock *BB) const {
1577   const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1578   const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1579   MachineBasicBlock::iterator I(MI);
1580   ++I; // in any case insert *after* the mul instruction
1581   if (isCopyMulResult(I))
1582     ++I;
1583   if (isCopyMulResult(I))
1584     ++I;
1585   BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1586       .addReg(AVR::R1)
1587       .addReg(AVR::R1);
1588   return BB;
1589 }
1590
1591 MachineBasicBlock *
1592 AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1593                                                MachineBasicBlock *MBB) const {
1594   int Opc = MI.getOpcode();
1595
1596   // Pseudo shift instructions with a non constant shift amount are expanded
1597   // into a loop.
1598   switch (Opc) {
1599   case AVR::Lsl8:
1600   case AVR::Lsl16:
1601   case AVR::Lsr8:
1602   case AVR::Lsr16:
1603   case AVR::Rol8:
1604   case AVR::Rol16:
1605   case AVR::Ror8:
1606   case AVR::Ror16:
1607   case AVR::Asr8:
1608   case AVR::Asr16:
1609     return insertShift(MI, MBB);
1610   case AVR::MULRdRr:
1611   case AVR::MULSRdRr:
1612     return insertMul(MI, MBB);
1613   }
1614
1615   assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1616          "Unexpected instr type to insert");
1617
1618   const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1619                                 ->getParent()
1620                                 ->getSubtarget()
1621                                 .getInstrInfo();
1622   DebugLoc dl = MI.getDebugLoc();
1623
1624   // To "insert" a SELECT instruction, we insert the diamond
1625   // control-flow pattern. The incoming instruction knows the
1626   // destination vreg to set, the condition code register to branch
1627   // on, the true/false values to select between, and a branch opcode
1628   // to use.
1629
1630   MachineFunction *MF = MBB->getParent();
1631   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1632   MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1633   MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1634
1635   MachineFunction::iterator I;
1636   for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1637   if (I != MF->end()) ++I;
1638   MF->insert(I, trueMBB);
1639   MF->insert(I, falseMBB);
1640
1641   // Transfer remaining instructions and all successors of the current
1642   // block to the block which will contain the Phi node for the
1643   // select.
1644   trueMBB->splice(trueMBB->begin(), MBB,
1645                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1646   trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1647
1648   AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1649   BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1650   BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1651   MBB->addSuccessor(falseMBB);
1652   MBB->addSuccessor(trueMBB);
1653
1654   // Unconditionally flow back to the true block
1655   BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1656   falseMBB->addSuccessor(trueMBB);
1657
1658   // Set up the Phi node to determine where we came from
1659   BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1660     .addReg(MI.getOperand(1).getReg())
1661     .addMBB(MBB)
1662     .addReg(MI.getOperand(2).getReg())
1663     .addMBB(falseMBB) ;
1664
1665   MI.eraseFromParent(); // The pseudo instruction is gone now.
1666   return trueMBB;
1667 }
1668
1669 //===----------------------------------------------------------------------===//
1670 //  Inline Asm Support
1671 //===----------------------------------------------------------------------===//
1672
1673 AVRTargetLowering::ConstraintType
1674 AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1675   if (Constraint.size() == 1) {
1676     // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1677     switch (Constraint[0]) {
1678     case 'a': // Simple upper registers
1679     case 'b': // Base pointer registers pairs
1680     case 'd': // Upper register
1681     case 'l': // Lower registers
1682     case 'e': // Pointer register pairs
1683     case 'q': // Stack pointer register
1684     case 'r': // Any register
1685     case 'w': // Special upper register pairs
1686       return C_RegisterClass;
1687     case 't': // Temporary register
1688     case 'x': case 'X': // Pointer register pair X
1689     case 'y': case 'Y': // Pointer register pair Y
1690     case 'z': case 'Z': // Pointer register pair Z
1691       return C_Register;
1692     case 'Q': // A memory address based on Y or Z pointer with displacement.
1693       return C_Memory;
1694     case 'G': // Floating point constant
1695     case 'I': // 6-bit positive integer constant
1696     case 'J': // 6-bit negative integer constant
1697     case 'K': // Integer constant (Range: 2)
1698     case 'L': // Integer constant (Range: 0)
1699     case 'M': // 8-bit integer constant
1700     case 'N': // Integer constant (Range: -1)
1701     case 'O': // Integer constant (Range: 8, 16, 24)
1702     case 'P': // Integer constant (Range: 1)
1703     case 'R': // Integer constant (Range: -6 to 5)x
1704       return C_Other;
1705     default:
1706       break;
1707     }
1708   }
1709
1710   return TargetLowering::getConstraintType(Constraint);
1711 }
1712
1713 unsigned
1714 AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1715   // Not sure if this is actually the right thing to do, but we got to do
1716   // *something* [agnat]
1717   switch (ConstraintCode[0]) {
1718   case 'Q':
1719     return InlineAsm::Constraint_Q;
1720   }
1721   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1722 }
1723
1724 AVRTargetLowering::ConstraintWeight
1725 AVRTargetLowering::getSingleConstraintMatchWeight(
1726     AsmOperandInfo &info, const char *constraint) const {
1727   ConstraintWeight weight = CW_Invalid;
1728   Value *CallOperandVal = info.CallOperandVal;
1729
1730   // If we don't have a value, we can't do a match,
1731   // but allow it at the lowest weight.
1732   // (this behaviour has been copied from the ARM backend)
1733   if (!CallOperandVal) {
1734     return CW_Default;
1735   }
1736
1737   // Look at the constraint type.
1738   switch (*constraint) {
1739   default:
1740     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1741     break;
1742   case 'd':
1743   case 'r':
1744   case 'l':
1745     weight = CW_Register;
1746     break;
1747   case 'a':
1748   case 'b':
1749   case 'e':
1750   case 'q':
1751   case 't':
1752   case 'w':
1753   case 'x': case 'X':
1754   case 'y': case 'Y':
1755   case 'z': case 'Z':
1756     weight = CW_SpecificReg;
1757     break;
1758   case 'G':
1759     if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1760       if (C->isZero()) {
1761         weight = CW_Constant;
1762       }
1763     }
1764     break;
1765   case 'I':
1766     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1767       if (isUInt<6>(C->getZExtValue())) {
1768         weight = CW_Constant;
1769       }
1770     }
1771     break;
1772   case 'J':
1773     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1774       if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1775         weight = CW_Constant;
1776       }
1777     }
1778     break;
1779   case 'K':
1780     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1781       if (C->getZExtValue() == 2) {
1782         weight = CW_Constant;
1783       }
1784     }
1785     break;
1786   case 'L':
1787     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1788       if (C->getZExtValue() == 0) {
1789         weight = CW_Constant;
1790       }
1791     }
1792     break;
1793   case 'M':
1794     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1795       if (isUInt<8>(C->getZExtValue())) {
1796         weight = CW_Constant;
1797       }
1798     }
1799     break;
1800   case 'N':
1801     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1802       if (C->getSExtValue() == -1) {
1803         weight = CW_Constant;
1804       }
1805     }
1806     break;
1807   case 'O':
1808     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1809       if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1810           (C->getZExtValue() == 24)) {
1811         weight = CW_Constant;
1812       }
1813     }
1814     break;
1815   case 'P':
1816     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1817       if (C->getZExtValue() == 1) {
1818         weight = CW_Constant;
1819       }
1820     }
1821     break;
1822   case 'R':
1823     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1824       if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1825         weight = CW_Constant;
1826       }
1827     }
1828     break;
1829   case 'Q':
1830     weight = CW_Memory;
1831     break;
1832   }
1833
1834   return weight;
1835 }
1836
1837 std::pair<unsigned, const TargetRegisterClass *>
1838 AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1839                                                 StringRef Constraint,
1840                                                 MVT VT) const {
1841   auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine())
1842                  .getSubtargetImpl();
1843
1844   // We only support i8 and i16.
1845   //
1846   //:FIXME: remove this assert for now since it gets sometimes executed
1847   // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1848
1849   if (Constraint.size() == 1) {
1850     switch (Constraint[0]) {
1851     case 'a': // Simple upper registers r16..r23.
1852       return std::make_pair(0U, &AVR::LD8loRegClass);
1853     case 'b': // Base pointer registers: y, z.
1854       return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1855     case 'd': // Upper registers r16..r31.
1856       return std::make_pair(0U, &AVR::LD8RegClass);
1857     case 'l': // Lower registers r0..r15.
1858       return std::make_pair(0U, &AVR::GPR8loRegClass);
1859     case 'e': // Pointer register pairs: x, y, z.
1860       return std::make_pair(0U, &AVR::PTRREGSRegClass);
1861     case 'q': // Stack pointer register: SPH:SPL.
1862       return std::make_pair(0U, &AVR::GPRSPRegClass);
1863     case 'r': // Any register: r0..r31.
1864       if (VT == MVT::i8)
1865         return std::make_pair(0U, &AVR::GPR8RegClass);
1866
1867       assert(VT == MVT::i16 && "inline asm constraint too large");
1868       return std::make_pair(0U, &AVR::DREGSRegClass);
1869     case 't': // Temporary register: r0.
1870       return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1871     case 'w': // Special upper register pairs: r24, r26, r28, r30.
1872       return std::make_pair(0U, &AVR::IWREGSRegClass);
1873     case 'x': // Pointer register pair X: r27:r26.
1874     case 'X':
1875       return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1876     case 'y': // Pointer register pair Y: r29:r28.
1877     case 'Y':
1878       return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1879     case 'z': // Pointer register pair Z: r31:r30.
1880     case 'Z':
1881       return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1882     default:
1883       break;
1884     }
1885   }
1886
1887   return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(),
1888                                                       Constraint, VT);
1889 }
1890
1891 void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1892                                                      std::string &Constraint,
1893                                                      std::vector<SDValue> &Ops,
1894                                                      SelectionDAG &DAG) const {
1895   SDValue Result(0, 0);
1896   SDLoc DL(Op);
1897   EVT Ty = Op.getValueType();
1898
1899   // Currently only support length 1 constraints.
1900   if (Constraint.length() != 1) {
1901     return;
1902   }
1903
1904   char ConstraintLetter = Constraint[0];
1905   switch (ConstraintLetter) {
1906   default:
1907     break;
1908   // Deal with integers first:
1909   case 'I':
1910   case 'J':
1911   case 'K':
1912   case 'L':
1913   case 'M':
1914   case 'N':
1915   case 'O':
1916   case 'P':
1917   case 'R': {
1918     const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1919     if (!C) {
1920       return;
1921     }
1922
1923     int64_t CVal64 = C->getSExtValue();
1924     uint64_t CUVal64 = C->getZExtValue();
1925     switch (ConstraintLetter) {
1926     case 'I': // 0..63
1927       if (!isUInt<6>(CUVal64))
1928         return;
1929       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1930       break;
1931     case 'J': // -63..0
1932       if (CVal64 < -63 || CVal64 > 0)
1933         return;
1934       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1935       break;
1936     case 'K': // 2
1937       if (CUVal64 != 2)
1938         return;
1939       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1940       break;
1941     case 'L': // 0
1942       if (CUVal64 != 0)
1943         return;
1944       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1945       break;
1946     case 'M': // 0..255
1947       if (!isUInt<8>(CUVal64))
1948         return;
1949       // i8 type may be printed as a negative number,
1950       // e.g. 254 would be printed as -2,
1951       // so we force it to i16 at least.
1952       if (Ty.getSimpleVT() == MVT::i8) {
1953         Ty = MVT::i16;
1954       }
1955       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1956       break;
1957     case 'N': // -1
1958       if (CVal64 != -1)
1959         return;
1960       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1961       break;
1962     case 'O': // 8, 16, 24
1963       if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1964         return;
1965       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1966       break;
1967     case 'P': // 1
1968       if (CUVal64 != 1)
1969         return;
1970       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1971       break;
1972     case 'R': // -6..5
1973       if (CVal64 < -6 || CVal64 > 5)
1974         return;
1975       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1976       break;
1977     }
1978
1979     break;
1980   }
1981   case 'G':
1982     const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1983     if (!FC || !FC->isZero())
1984       return;
1985     // Soften float to i8 0
1986     Result = DAG.getTargetConstant(0, DL, MVT::i8);
1987     break;
1988   }
1989
1990   if (Result.getNode()) {
1991     Ops.push_back(Result);
1992     return;
1993   }
1994
1995   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1996 }
1997
1998 unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
1999                                               EVT VT,
2000                                               SelectionDAG &DAG) const {
2001   unsigned Reg;
2002
2003   if (VT == MVT::i8) {
2004     Reg = StringSwitch<unsigned>(RegName)
2005       .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
2006       .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
2007       .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
2008       .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
2009       .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
2010       .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
2011       .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
2012       .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
2013       .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
2014       .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
2015       .Case("r30", AVR::R30).Case("r31", AVR::R31)
2016       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2017       .Default(0);
2018   } else {
2019     Reg = StringSwitch<unsigned>(RegName)
2020       .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
2021       .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
2022       .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
2023       .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
2024       .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
2025       .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
2026       .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
2027       .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2028       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2029       .Default(0);
2030   }
2031
2032   if (Reg)
2033     return Reg;
2034
2035   report_fatal_error("Invalid register name global variable");
2036 }
2037
2038 } // end of namespace llvm