]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp
Merge ^/head r305087 through r305219.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Hexagon / HexagonBitTracker.cpp
1 //===--- HexagonBitTracker.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/CodeGen/MachineRegisterInfo.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/Support/Debug.h"
13 #include "llvm/Support/raw_ostream.h"
14
15 #include "Hexagon.h"
16 #include "HexagonInstrInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonTargetMachine.h"
19 #include "HexagonBitTracker.h"
20
21 using namespace llvm;
22
23 typedef BitTracker BT;
24
25 HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
26                                    MachineRegisterInfo &mri,
27                                    const HexagonInstrInfo &tii,
28                                    MachineFunction &mf)
29     : MachineEvaluator(tri, mri), MF(mf), MFI(*mf.getFrameInfo()), TII(tii) {
30   // Populate the VRX map (VR to extension-type).
31   // Go over all the formal parameters of the function. If a given parameter
32   // P is sign- or zero-extended, locate the virtual register holding that
33   // parameter and create an entry in the VRX map indicating the type of ex-
34   // tension (and the source type).
35   // This is a bit complicated to do accurately, since the memory layout in-
36   // formation is necessary to precisely determine whether an aggregate para-
37   // meter will be passed in a register or in memory. What is given in MRI
38   // is the association between the physical register that is live-in (i.e.
39   // holds an argument), and the virtual register that this value will be
40   // copied into. This, by itself, is not sufficient to map back the virtual
41   // register to a formal parameter from Function (since consecutive live-ins
42   // from MRI may not correspond to consecutive formal parameters from Func-
43   // tion). To avoid the complications with in-memory arguments, only consi-
44   // der the initial sequence of formal parameters that are known to be
45   // passed via registers.
46   unsigned AttrIdx = 0;
47   unsigned InVirtReg, InPhysReg = 0;
48   const Function &F = *MF.getFunction();
49   typedef Function::const_arg_iterator arg_iterator;
50   for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
51     AttrIdx++;
52     const Argument &Arg = *I;
53     Type *ATy = Arg.getType();
54     unsigned Width = 0;
55     if (ATy->isIntegerTy())
56       Width = ATy->getIntegerBitWidth();
57     else if (ATy->isPointerTy())
58       Width = 32;
59     // If pointer size is not set through target data, it will default to
60     // Module::AnyPointerSize.
61     if (Width == 0 || Width > 64)
62       break;
63     InPhysReg = getNextPhysReg(InPhysReg, Width);
64     if (!InPhysReg)
65       break;
66     InVirtReg = getVirtRegFor(InPhysReg);
67     if (!InVirtReg)
68       continue;
69     AttributeSet Attrs = F.getAttributes();
70     if (Attrs.hasAttribute(AttrIdx, Attribute::SExt))
71       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
72     else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt))
73       VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
74   }
75 }
76
77
78 BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
79   if (Sub == 0)
80     return MachineEvaluator::mask(Reg, 0);
81   using namespace Hexagon;
82   const TargetRegisterClass *RC = MRI.getRegClass(Reg);
83   unsigned ID = RC->getID();
84   uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
85   switch (ID) {
86     case DoubleRegsRegClassID:
87     case VecDblRegsRegClassID:
88     case VecDblRegs128BRegClassID:
89       return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1)
90                                    : BT::BitMask(RW, 2*RW-1);
91     default:
92       break;
93   }
94 #ifndef NDEBUG
95   dbgs() << PrintReg(Reg, &TRI, Sub) << '\n';
96 #endif
97   llvm_unreachable("Unexpected register/subregister");
98 }
99
100 namespace {
101 class RegisterRefs {
102   std::vector<BT::RegisterRef> Vector;
103
104 public:
105   RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
106     for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
107       const MachineOperand &MO = MI.getOperand(i);
108       if (MO.isReg())
109         Vector[i] = BT::RegisterRef(MO);
110       // For indices that don't correspond to registers, the entry will
111       // remain constructed via the default constructor.
112     }
113   }
114
115   size_t size() const { return Vector.size(); }
116   const BT::RegisterRef &operator[](unsigned n) const {
117     // The main purpose of this operator is to assert with bad argument.
118     assert(n < Vector.size());
119     return Vector[n];
120   }
121 };
122 }
123
124 bool HexagonEvaluator::evaluate(const MachineInstr &MI,
125                                 const CellMapType &Inputs,
126                                 CellMapType &Outputs) const {
127   unsigned NumDefs = 0;
128
129   // Sanity verification: there should not be any defs with subregisters.
130   for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
131     const MachineOperand &MO = MI.getOperand(i);
132     if (!MO.isReg() || !MO.isDef())
133       continue;
134     NumDefs++;
135     assert(MO.getSubReg() == 0);
136   }
137
138   if (NumDefs == 0)
139     return false;
140
141   if (MI.mayLoad())
142     return evaluateLoad(MI, Inputs, Outputs);
143
144   // Check COPY instructions that copy formal parameters into virtual
145   // registers. Such parameters can be sign- or zero-extended at the
146   // call site, and we should take advantage of this knowledge. The MRI
147   // keeps a list of pairs of live-in physical and virtual registers,
148   // which provides information about which virtual registers will hold
149   // the argument values. The function will still contain instructions
150   // defining those virtual registers, and in practice those are COPY
151   // instructions from a physical to a virtual register. In such cases,
152   // applying the argument extension to the virtual register can be seen
153   // as simply mirroring the extension that had already been applied to
154   // the physical register at the call site. If the defining instruction
155   // was not a COPY, it would not be clear how to mirror that extension
156   // on the callee's side. For that reason, only check COPY instructions
157   // for potential extensions.
158   if (MI.isCopy()) {
159     if (evaluateFormalCopy(MI, Inputs, Outputs))
160       return true;
161   }
162
163   // Beyond this point, if any operand is a global, skip that instruction.
164   // The reason is that certain instructions that can take an immediate
165   // operand can also have a global symbol in that operand. To avoid
166   // checking what kind of operand a given instruction has individually
167   // for each instruction, do it here. Global symbols as operands gene-
168   // rally do not provide any useful information.
169   for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
170     const MachineOperand &MO = MI.getOperand(i);
171     if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
172         MO.isCPI())
173       return false;
174   }
175
176   RegisterRefs Reg(MI);
177   unsigned Opc = MI.getOpcode();
178   using namespace Hexagon;
179 #define op(i) MI.getOperand(i)
180 #define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
181 #define im(i) MI.getOperand(i).getImm()
182
183   // If the instruction has no register operands, skip it.
184   if (Reg.size() == 0)
185     return false;
186
187   // Record result for register in operand 0.
188   auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
189         -> bool {
190     putCell(Reg[0], Val, Outputs);
191     return true;
192   };
193   // Get the cell corresponding to the N-th operand.
194   auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
195                                         uint16_t W) -> BT::RegisterCell {
196     const MachineOperand &Op = MI.getOperand(N);
197     if (Op.isImm())
198       return eIMM(Op.getImm(), W);
199     if (!Op.isReg())
200       return RegisterCell::self(0, W);
201     assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
202     return rc(N);
203   };
204   // Extract RW low bits of the cell.
205   auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
206         -> BT::RegisterCell {
207     assert(RW <= RC.width());
208     return eXTR(RC, 0, RW);
209   };
210   // Extract RW high bits of the cell.
211   auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
212         -> BT::RegisterCell {
213     uint16_t W = RC.width();
214     assert(RW <= W);
215     return eXTR(RC, W-RW, W);
216   };
217   // Extract N-th halfword (counting from the least significant position).
218   auto half = [this] (const BT::RegisterCell &RC, unsigned N)
219         -> BT::RegisterCell {
220     assert(N*16+16 <= RC.width());
221     return eXTR(RC, N*16, N*16+16);
222   };
223   // Shuffle bits (pick even/odd from cells and merge into result).
224   auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
225                          uint16_t BW, bool Odd) -> BT::RegisterCell {
226     uint16_t I = Odd, Ws = Rs.width();
227     assert(Ws == Rt.width());
228     RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
229     I += 2;
230     while (I*BW < Ws) {
231       RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
232       I += 2;
233     }
234     return RC;
235   };
236
237   // The bitwidth of the 0th operand. In most (if not all) of the
238   // instructions below, the 0th operand is the defined register.
239   // Pre-compute the bitwidth here, because it is needed in many cases
240   // cases below.
241   uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
242
243   switch (Opc) {
244     // Transfer immediate:
245
246     case A2_tfrsi:
247     case A2_tfrpi:
248     case CONST32:
249     case CONST32_Float_Real:
250     case CONST32_Int_Real:
251     case CONST64_Float_Real:
252     case CONST64_Int_Real:
253       return rr0(eIMM(im(1), W0), Outputs);
254     case TFR_PdFalse:
255       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
256     case TFR_PdTrue:
257       return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
258     case TFR_FI: {
259       int FI = op(1).getIndex();
260       int Off = op(2).getImm();
261       unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
262       unsigned L = Log2_32(A);
263       RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
264       RC.fill(0, L, BT::BitValue::Zero);
265       return rr0(RC, Outputs);
266     }
267
268     // Transfer register:
269
270     case A2_tfr:
271     case A2_tfrp:
272     case C2_pxfer_map:
273       return rr0(rc(1), Outputs);
274     case C2_tfrpr: {
275       uint16_t RW = W0;
276       uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
277       assert(PW <= RW);
278       RegisterCell PC = eXTR(rc(1), 0, PW);
279       RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
280       RC.fill(PW, RW, BT::BitValue::Zero);
281       return rr0(RC, Outputs);
282     }
283     case C2_tfrrp: {
284       RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
285       W0 = 8; // XXX Pred size
286       return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
287     }
288
289     // Arithmetic:
290
291     case A2_abs:
292     case A2_absp:
293       // TODO
294       break;
295
296     case A2_addsp: {
297       uint16_t W1 = getRegBitWidth(Reg[1]);
298       assert(W0 == 64 && W1 == 32);
299       RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
300       RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
301       return rr0(RC, Outputs);
302     }
303     case A2_add:
304     case A2_addp:
305       return rr0(eADD(rc(1), rc(2)), Outputs);
306     case A2_addi:
307       return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
308     case S4_addi_asl_ri: {
309       RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
310       return rr0(RC, Outputs);
311     }
312     case S4_addi_lsr_ri: {
313       RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
314       return rr0(RC, Outputs);
315     }
316     case S4_addaddi: {
317       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
318       return rr0(RC, Outputs);
319     }
320     case M4_mpyri_addi: {
321       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
322       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
323       return rr0(RC, Outputs);
324     }
325     case M4_mpyrr_addi: {
326       RegisterCell M = eMLS(rc(2), rc(3));
327       RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
328       return rr0(RC, Outputs);
329     }
330     case M4_mpyri_addr_u2: {
331       RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
332       RegisterCell RC = eADD(rc(1), lo(M, W0));
333       return rr0(RC, Outputs);
334     }
335     case M4_mpyri_addr: {
336       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
337       RegisterCell RC = eADD(rc(1), lo(M, W0));
338       return rr0(RC, Outputs);
339     }
340     case M4_mpyrr_addr: {
341       RegisterCell M = eMLS(rc(2), rc(3));
342       RegisterCell RC = eADD(rc(1), lo(M, W0));
343       return rr0(RC, Outputs);
344     }
345     case S4_subaddi: {
346       RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
347       return rr0(RC, Outputs);
348     }
349     case M2_accii: {
350       RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
351       return rr0(RC, Outputs);
352     }
353     case M2_acci: {
354       RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
355       return rr0(RC, Outputs);
356     }
357     case M2_subacc: {
358       RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
359       return rr0(RC, Outputs);
360     }
361     case S2_addasl_rrri: {
362       RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
363       return rr0(RC, Outputs);
364     }
365     case C4_addipc: {
366       RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
367       RPC.fill(0, 2, BT::BitValue::Zero);
368       return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
369     }
370     case A2_sub:
371     case A2_subp:
372       return rr0(eSUB(rc(1), rc(2)), Outputs);
373     case A2_subri:
374       return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
375     case S4_subi_asl_ri: {
376       RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
377       return rr0(RC, Outputs);
378     }
379     case S4_subi_lsr_ri: {
380       RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
381       return rr0(RC, Outputs);
382     }
383     case M2_naccii: {
384       RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
385       return rr0(RC, Outputs);
386     }
387     case M2_nacci: {
388       RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
389       return rr0(RC, Outputs);
390     }
391     // 32-bit negation is done by "Rd = A2_subri 0, Rs"
392     case A2_negp:
393       return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
394
395     case M2_mpy_up: {
396       RegisterCell M = eMLS(rc(1), rc(2));
397       return rr0(hi(M, W0), Outputs);
398     }
399     case M2_dpmpyss_s0:
400       return rr0(eMLS(rc(1), rc(2)), Outputs);
401     case M2_dpmpyss_acc_s0:
402       return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
403     case M2_dpmpyss_nac_s0:
404       return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
405     case M2_mpyi: {
406       RegisterCell M = eMLS(rc(1), rc(2));
407       return rr0(lo(M, W0), Outputs);
408     }
409     case M2_macsip: {
410       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
411       RegisterCell RC = eADD(rc(1), lo(M, W0));
412       return rr0(RC, Outputs);
413     }
414     case M2_macsin: {
415       RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
416       RegisterCell RC = eSUB(rc(1), lo(M, W0));
417       return rr0(RC, Outputs);
418     }
419     case M2_maci: {
420       RegisterCell M = eMLS(rc(2), rc(3));
421       RegisterCell RC = eADD(rc(1), lo(M, W0));
422       return rr0(RC, Outputs);
423     }
424     case M2_mpysmi: {
425       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
426       return rr0(lo(M, 32), Outputs);
427     }
428     case M2_mpysin: {
429       RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
430       return rr0(lo(M, 32), Outputs);
431     }
432     case M2_mpysip: {
433       RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
434       return rr0(lo(M, 32), Outputs);
435     }
436     case M2_mpyu_up: {
437       RegisterCell M = eMLU(rc(1), rc(2));
438       return rr0(hi(M, W0), Outputs);
439     }
440     case M2_dpmpyuu_s0:
441       return rr0(eMLU(rc(1), rc(2)), Outputs);
442     case M2_dpmpyuu_acc_s0:
443       return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
444     case M2_dpmpyuu_nac_s0:
445       return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
446     //case M2_mpysu_up:
447
448     // Logical/bitwise:
449
450     case A2_andir:
451       return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
452     case A2_and:
453     case A2_andp:
454       return rr0(eAND(rc(1), rc(2)), Outputs);
455     case A4_andn:
456     case A4_andnp:
457       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
458     case S4_andi_asl_ri: {
459       RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
460       return rr0(RC, Outputs);
461     }
462     case S4_andi_lsr_ri: {
463       RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
464       return rr0(RC, Outputs);
465     }
466     case M4_and_and:
467       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
468     case M4_and_andn:
469       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
470     case M4_and_or:
471       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
472     case M4_and_xor:
473       return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
474     case A2_orir:
475       return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
476     case A2_or:
477     case A2_orp:
478       return rr0(eORL(rc(1), rc(2)), Outputs);
479     case A4_orn:
480     case A4_ornp:
481       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
482     case S4_ori_asl_ri: {
483       RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
484       return rr0(RC, Outputs);
485     }
486     case S4_ori_lsr_ri: {
487       RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
488       return rr0(RC, Outputs);
489     }
490     case M4_or_and:
491       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
492     case M4_or_andn:
493       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
494     case S4_or_andi:
495     case S4_or_andix: {
496       RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
497       return rr0(RC, Outputs);
498     }
499     case S4_or_ori: {
500       RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
501       return rr0(RC, Outputs);
502     }
503     case M4_or_or:
504       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
505     case M4_or_xor:
506       return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
507     case A2_xor:
508     case A2_xorp:
509       return rr0(eXOR(rc(1), rc(2)), Outputs);
510     case M4_xor_and:
511       return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
512     case M4_xor_andn:
513       return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
514     case M4_xor_or:
515       return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
516     case M4_xor_xacc:
517       return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
518     case A2_not:
519     case A2_notp:
520       return rr0(eNOT(rc(1)), Outputs);
521
522     case S2_asl_i_r:
523     case S2_asl_i_p:
524       return rr0(eASL(rc(1), im(2)), Outputs);
525     case A2_aslh:
526       return rr0(eASL(rc(1), 16), Outputs);
527     case S2_asl_i_r_acc:
528     case S2_asl_i_p_acc:
529       return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
530     case S2_asl_i_r_nac:
531     case S2_asl_i_p_nac:
532       return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
533     case S2_asl_i_r_and:
534     case S2_asl_i_p_and:
535       return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
536     case S2_asl_i_r_or:
537     case S2_asl_i_p_or:
538       return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
539     case S2_asl_i_r_xacc:
540     case S2_asl_i_p_xacc:
541       return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
542     case S2_asl_i_vh:
543     case S2_asl_i_vw:
544       // TODO
545       break;
546
547     case S2_asr_i_r:
548     case S2_asr_i_p:
549       return rr0(eASR(rc(1), im(2)), Outputs);
550     case A2_asrh:
551       return rr0(eASR(rc(1), 16), Outputs);
552     case S2_asr_i_r_acc:
553     case S2_asr_i_p_acc:
554       return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
555     case S2_asr_i_r_nac:
556     case S2_asr_i_p_nac:
557       return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
558     case S2_asr_i_r_and:
559     case S2_asr_i_p_and:
560       return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
561     case S2_asr_i_r_or:
562     case S2_asr_i_p_or:
563       return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
564     case S2_asr_i_r_rnd: {
565       // The input is first sign-extended to 64 bits, then the output
566       // is truncated back to 32 bits.
567       assert(W0 == 32);
568       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
569       RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
570       return rr0(eXTR(RC, 0, W0), Outputs);
571     }
572     case S2_asr_i_r_rnd_goodsyntax: {
573       int64_t S = im(2);
574       if (S == 0)
575         return rr0(rc(1), Outputs);
576       // Result: S2_asr_i_r_rnd Rs, u5-1
577       RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
578       RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
579       return rr0(eXTR(RC, 0, W0), Outputs);
580     }
581     case S2_asr_r_vh:
582     case S2_asr_i_vw:
583     case S2_asr_i_svw_trun:
584       // TODO
585       break;
586
587     case S2_lsr_i_r:
588     case S2_lsr_i_p:
589       return rr0(eLSR(rc(1), im(2)), Outputs);
590     case S2_lsr_i_r_acc:
591     case S2_lsr_i_p_acc:
592       return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
593     case S2_lsr_i_r_nac:
594     case S2_lsr_i_p_nac:
595       return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
596     case S2_lsr_i_r_and:
597     case S2_lsr_i_p_and:
598       return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
599     case S2_lsr_i_r_or:
600     case S2_lsr_i_p_or:
601       return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
602     case S2_lsr_i_r_xacc:
603     case S2_lsr_i_p_xacc:
604       return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
605
606     case S2_clrbit_i: {
607       RegisterCell RC = rc(1);
608       RC[im(2)] = BT::BitValue::Zero;
609       return rr0(RC, Outputs);
610     }
611     case S2_setbit_i: {
612       RegisterCell RC = rc(1);
613       RC[im(2)] = BT::BitValue::One;
614       return rr0(RC, Outputs);
615     }
616     case S2_togglebit_i: {
617       RegisterCell RC = rc(1);
618       uint16_t BX = im(2);
619       RC[BX] = RC[BX].is(0) ? BT::BitValue::One
620                             : RC[BX].is(1) ? BT::BitValue::Zero
621                                            : BT::BitValue::self();
622       return rr0(RC, Outputs);
623     }
624
625     case A4_bitspliti: {
626       uint16_t W1 = getRegBitWidth(Reg[1]);
627       uint16_t BX = im(2);
628       // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
629       const BT::BitValue Zero = BT::BitValue::Zero;
630       RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
631                                         .fill(W1+(W1-BX), W0, Zero);
632       RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
633       RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
634       return rr0(RC, Outputs);
635     }
636     case S4_extract:
637     case S4_extractp:
638     case S2_extractu:
639     case S2_extractup: {
640       uint16_t Wd = im(2), Of = im(3);
641       assert(Wd <= W0);
642       if (Wd == 0)
643         return rr0(eIMM(0, W0), Outputs);
644       // If the width extends beyond the register size, pad the register
645       // with 0 bits.
646       RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
647       RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
648       // Ext is short, need to extend it with 0s or sign bit.
649       RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
650       if (Opc == S2_extractu || Opc == S2_extractup)
651         return rr0(eZXT(RC, Wd), Outputs);
652       return rr0(eSXT(RC, Wd), Outputs);
653     }
654     case S2_insert:
655     case S2_insertp: {
656       uint16_t Wd = im(3), Of = im(4);
657       assert(Wd < W0 && Of < W0);
658       // If Wd+Of exceeds W0, the inserted bits are truncated.
659       if (Wd+Of > W0)
660         Wd = W0-Of;
661       if (Wd == 0)
662         return rr0(rc(1), Outputs);
663       return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
664     }
665
666     // Bit permutations:
667
668     case A2_combineii:
669     case A4_combineii:
670     case A4_combineir:
671     case A4_combineri:
672     case A2_combinew:
673       assert(W0 % 2 == 0);
674       return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
675     case A2_combine_ll:
676     case A2_combine_lh:
677     case A2_combine_hl:
678     case A2_combine_hh: {
679       assert(W0 == 32);
680       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
681       // Low half in the output is 0 for _ll and _hl, 1 otherwise:
682       unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
683       // High half in the output is 0 for _ll and _lh, 1 otherwise:
684       unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
685       RegisterCell R1 = rc(1);
686       RegisterCell R2 = rc(2);
687       RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
688       return rr0(RC, Outputs);
689     }
690     case S2_packhl: {
691       assert(W0 == 64);
692       assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
693       RegisterCell R1 = rc(1);
694       RegisterCell R2 = rc(2);
695       RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
696                                    .cat(half(R1, 1));
697       return rr0(RC, Outputs);
698     }
699     case S2_shuffeb: {
700       RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
701       return rr0(RC, Outputs);
702     }
703     case S2_shuffeh: {
704       RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
705       return rr0(RC, Outputs);
706     }
707     case S2_shuffob: {
708       RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
709       return rr0(RC, Outputs);
710     }
711     case S2_shuffoh: {
712       RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
713       return rr0(RC, Outputs);
714     }
715     case C2_mask: {
716       uint16_t WR = W0;
717       uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
718       assert(WR == 64 && WP == 8);
719       RegisterCell R1 = rc(1);
720       RegisterCell RC(WR);
721       for (uint16_t i = 0; i < WP; ++i) {
722         const BT::BitValue &V = R1[i];
723         BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
724         RC.fill(i*8, i*8+8, F);
725       }
726       return rr0(RC, Outputs);
727     }
728
729     // Mux:
730
731     case C2_muxii:
732     case C2_muxir:
733     case C2_muxri:
734     case C2_mux: {
735       BT::BitValue PC0 = rc(1)[0];
736       RegisterCell R2 = cop(2, W0);
737       RegisterCell R3 = cop(3, W0);
738       if (PC0.is(0) || PC0.is(1))
739         return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
740       R2.meet(R3, Reg[0].Reg);
741       return rr0(R2, Outputs);
742     }
743     case C2_vmux:
744       // TODO
745       break;
746
747     // Sign- and zero-extension:
748
749     case A2_sxtb:
750       return rr0(eSXT(rc(1), 8), Outputs);
751     case A2_sxth:
752       return rr0(eSXT(rc(1), 16), Outputs);
753     case A2_sxtw: {
754       uint16_t W1 = getRegBitWidth(Reg[1]);
755       assert(W0 == 64 && W1 == 32);
756       RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
757       return rr0(RC, Outputs);
758     }
759     case A2_zxtb:
760       return rr0(eZXT(rc(1), 8), Outputs);
761     case A2_zxth:
762       return rr0(eZXT(rc(1), 16), Outputs);
763
764     // Bit count:
765
766     case S2_cl0:
767     case S2_cl0p:
768       // Always produce a 32-bit result.
769       return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs);
770     case S2_cl1:
771     case S2_cl1p:
772       return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs);
773     case S2_clb:
774     case S2_clbp: {
775       uint16_t W1 = getRegBitWidth(Reg[1]);
776       RegisterCell R1 = rc(1);
777       BT::BitValue TV = R1[W1-1];
778       if (TV.is(0) || TV.is(1))
779         return rr0(eCLB(R1, TV, 32), Outputs);
780       break;
781     }
782     case S2_ct0:
783     case S2_ct0p:
784       return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs);
785     case S2_ct1:
786     case S2_ct1p:
787       return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs);
788     case S5_popcountp:
789       // TODO
790       break;
791
792     case C2_all8: {
793       RegisterCell P1 = rc(1);
794       bool Has0 = false, All1 = true;
795       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
796         if (!P1[i].is(1))
797           All1 = false;
798         if (!P1[i].is(0))
799           continue;
800         Has0 = true;
801         break;
802       }
803       if (!Has0 && !All1)
804         break;
805       RegisterCell RC(W0);
806       RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
807       return rr0(RC, Outputs);
808     }
809     case C2_any8: {
810       RegisterCell P1 = rc(1);
811       bool Has1 = false, All0 = true;
812       for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
813         if (!P1[i].is(0))
814           All0 = false;
815         if (!P1[i].is(1))
816           continue;
817         Has1 = true;
818         break;
819       }
820       if (!Has1 && !All0)
821         break;
822       RegisterCell RC(W0);
823       RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
824       return rr0(RC, Outputs);
825     }
826     case C2_and:
827       return rr0(eAND(rc(1), rc(2)), Outputs);
828     case C2_andn:
829       return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
830     case C2_not:
831       return rr0(eNOT(rc(1)), Outputs);
832     case C2_or:
833       return rr0(eORL(rc(1), rc(2)), Outputs);
834     case C2_orn:
835       return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
836     case C2_xor:
837       return rr0(eXOR(rc(1), rc(2)), Outputs);
838     case C4_and_and:
839       return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
840     case C4_and_andn:
841       return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
842     case C4_and_or:
843       return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
844     case C4_and_orn:
845       return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
846     case C4_or_and:
847       return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
848     case C4_or_andn:
849       return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
850     case C4_or_or:
851       return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
852     case C4_or_orn:
853       return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
854     case C2_bitsclr:
855     case C2_bitsclri:
856     case C2_bitsset:
857     case C4_nbitsclr:
858     case C4_nbitsclri:
859     case C4_nbitsset:
860       // TODO
861       break;
862     case S2_tstbit_i:
863     case S4_ntstbit_i: {
864       BT::BitValue V = rc(1)[im(2)];
865       if (V.is(0) || V.is(1)) {
866         // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
867         bool TV = (Opc == S2_tstbit_i);
868         BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
869         return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
870       }
871       break;
872     }
873
874     default:
875       return MachineEvaluator::evaluate(MI, Inputs, Outputs);
876   }
877   #undef im
878   #undef rc
879   #undef op
880   return false;
881 }
882
883 bool HexagonEvaluator::evaluate(const MachineInstr &BI,
884                                 const CellMapType &Inputs,
885                                 BranchTargetList &Targets,
886                                 bool &FallsThru) const {
887   // We need to evaluate one branch at a time. TII::AnalyzeBranch checks
888   // all the branches in a basic block at once, so we cannot use it.
889   unsigned Opc = BI.getOpcode();
890   bool SimpleBranch = false;
891   bool Negated = false;
892   switch (Opc) {
893     case Hexagon::J2_jumpf:
894     case Hexagon::J2_jumpfnew:
895     case Hexagon::J2_jumpfnewpt:
896       Negated = true;
897     case Hexagon::J2_jumpt:
898     case Hexagon::J2_jumptnew:
899     case Hexagon::J2_jumptnewpt:
900       // Simple branch:  if([!]Pn) jump ...
901       // i.e. Op0 = predicate, Op1 = branch target.
902       SimpleBranch = true;
903       break;
904     case Hexagon::J2_jump:
905       Targets.insert(BI.getOperand(0).getMBB());
906       FallsThru = false;
907       return true;
908     default:
909       // If the branch is of unknown type, assume that all successors are
910       // executable.
911       return false;
912   }
913
914   if (!SimpleBranch)
915     return false;
916
917   // BI is a conditional branch if we got here.
918   RegisterRef PR = BI.getOperand(0);
919   RegisterCell PC = getCell(PR, Inputs);
920   const BT::BitValue &Test = PC[0];
921
922   // If the condition is neither true nor false, then it's unknown.
923   if (!Test.is(0) && !Test.is(1))
924     return false;
925
926   // "Test.is(!Negated)" means "branch condition is true".
927   if (!Test.is(!Negated)) {
928     // Condition known to be false.
929     FallsThru = true;
930     return true;
931   }
932
933   Targets.insert(BI.getOperand(1).getMBB());
934   FallsThru = false;
935   return true;
936 }
937
938 bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
939                                     const CellMapType &Inputs,
940                                     CellMapType &Outputs) const {
941   if (TII.isPredicated(MI))
942     return false;
943   assert(MI.mayLoad() && "A load that mayn't?");
944   unsigned Opc = MI.getOpcode();
945
946   uint16_t BitNum;
947   bool SignEx;
948   using namespace Hexagon;
949
950   switch (Opc) {
951     default:
952       return false;
953
954 #if 0
955     // memb_fifo
956     case L2_loadalignb_pbr:
957     case L2_loadalignb_pcr:
958     case L2_loadalignb_pi:
959     // memh_fifo
960     case L2_loadalignh_pbr:
961     case L2_loadalignh_pcr:
962     case L2_loadalignh_pi:
963     // membh
964     case L2_loadbsw2_pbr:
965     case L2_loadbsw2_pci:
966     case L2_loadbsw2_pcr:
967     case L2_loadbsw2_pi:
968     case L2_loadbsw4_pbr:
969     case L2_loadbsw4_pci:
970     case L2_loadbsw4_pcr:
971     case L2_loadbsw4_pi:
972     // memubh
973     case L2_loadbzw2_pbr:
974     case L2_loadbzw2_pci:
975     case L2_loadbzw2_pcr:
976     case L2_loadbzw2_pi:
977     case L2_loadbzw4_pbr:
978     case L2_loadbzw4_pci:
979     case L2_loadbzw4_pcr:
980     case L2_loadbzw4_pi:
981 #endif
982
983     case L2_loadrbgp:
984     case L2_loadrb_io:
985     case L2_loadrb_pbr:
986     case L2_loadrb_pci:
987     case L2_loadrb_pcr:
988     case L2_loadrb_pi:
989     case L4_loadrb_abs:
990     case L4_loadrb_ap:
991     case L4_loadrb_rr:
992     case L4_loadrb_ur:
993       BitNum = 8;
994       SignEx = true;
995       break;
996
997     case L2_loadrubgp:
998     case L2_loadrub_io:
999     case L2_loadrub_pbr:
1000     case L2_loadrub_pci:
1001     case L2_loadrub_pcr:
1002     case L2_loadrub_pi:
1003     case L4_loadrub_abs:
1004     case L4_loadrub_ap:
1005     case L4_loadrub_rr:
1006     case L4_loadrub_ur:
1007       BitNum = 8;
1008       SignEx = false;
1009       break;
1010
1011     case L2_loadrhgp:
1012     case L2_loadrh_io:
1013     case L2_loadrh_pbr:
1014     case L2_loadrh_pci:
1015     case L2_loadrh_pcr:
1016     case L2_loadrh_pi:
1017     case L4_loadrh_abs:
1018     case L4_loadrh_ap:
1019     case L4_loadrh_rr:
1020     case L4_loadrh_ur:
1021       BitNum = 16;
1022       SignEx = true;
1023       break;
1024
1025     case L2_loadruhgp:
1026     case L2_loadruh_io:
1027     case L2_loadruh_pbr:
1028     case L2_loadruh_pci:
1029     case L2_loadruh_pcr:
1030     case L2_loadruh_pi:
1031     case L4_loadruh_rr:
1032     case L4_loadruh_abs:
1033     case L4_loadruh_ap:
1034     case L4_loadruh_ur:
1035       BitNum = 16;
1036       SignEx = false;
1037       break;
1038
1039     case L2_loadrigp:
1040     case L2_loadri_io:
1041     case L2_loadri_pbr:
1042     case L2_loadri_pci:
1043     case L2_loadri_pcr:
1044     case L2_loadri_pi:
1045     case L2_loadw_locked:
1046     case L4_loadri_abs:
1047     case L4_loadri_ap:
1048     case L4_loadri_rr:
1049     case L4_loadri_ur:
1050     case LDriw_pred:
1051       BitNum = 32;
1052       SignEx = true;
1053       break;
1054
1055     case L2_loadrdgp:
1056     case L2_loadrd_io:
1057     case L2_loadrd_pbr:
1058     case L2_loadrd_pci:
1059     case L2_loadrd_pcr:
1060     case L2_loadrd_pi:
1061     case L4_loadd_locked:
1062     case L4_loadrd_abs:
1063     case L4_loadrd_ap:
1064     case L4_loadrd_rr:
1065     case L4_loadrd_ur:
1066       BitNum = 64;
1067       SignEx = true;
1068       break;
1069   }
1070
1071   const MachineOperand &MD = MI.getOperand(0);
1072   assert(MD.isReg() && MD.isDef());
1073   RegisterRef RD = MD;
1074
1075   uint16_t W = getRegBitWidth(RD);
1076   assert(W >= BitNum && BitNum > 0);
1077   RegisterCell Res(W);
1078
1079   for (uint16_t i = 0; i < BitNum; ++i)
1080     Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1081
1082   if (SignEx) {
1083     const BT::BitValue &Sign = Res[BitNum-1];
1084     for (uint16_t i = BitNum; i < W; ++i)
1085       Res[i] = BT::BitValue::ref(Sign);
1086   } else {
1087     for (uint16_t i = BitNum; i < W; ++i)
1088       Res[i] = BT::BitValue::Zero;
1089   }
1090
1091   putCell(RD, Res, Outputs);
1092   return true;
1093 }
1094
1095 bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1096                                           const CellMapType &Inputs,
1097                                           CellMapType &Outputs) const {
1098   // If MI defines a formal parameter, but is not a copy (loads are handled
1099   // in evaluateLoad), then it's not clear what to do.
1100   assert(MI.isCopy());
1101
1102   RegisterRef RD = MI.getOperand(0);
1103   RegisterRef RS = MI.getOperand(1);
1104   assert(RD.Sub == 0);
1105   if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1106     return false;
1107   RegExtMap::const_iterator F = VRX.find(RD.Reg);
1108   if (F == VRX.end())
1109     return false;
1110
1111   uint16_t EW = F->second.Width;
1112   // Store RD's cell into the map. This will associate the cell with a virtual
1113   // register, and make zero-/sign-extends possible (otherwise we would be ex-
1114   // tending "self" bit values, which will have no effect, since "self" values
1115   // cannot be references to anything).
1116   putCell(RD, getCell(RS, Inputs), Outputs);
1117
1118   RegisterCell Res;
1119   // Read RD's cell from the outputs instead of RS's cell from the inputs:
1120   if (F->second.Type == ExtType::SExt)
1121     Res = eSXT(getCell(RD, Outputs), EW);
1122   else if (F->second.Type == ExtType::ZExt)
1123     Res = eZXT(getCell(RD, Outputs), EW);
1124
1125   putCell(RD, Res, Outputs);
1126   return true;
1127 }
1128
1129
1130 unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1131   using namespace Hexagon;
1132   bool Is64 = DoubleRegsRegClass.contains(PReg);
1133   assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1134
1135   static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1136   static const unsigned Phys64[] = { D0, D1, D2 };
1137   const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1138   const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1139
1140   // Return the first parameter register of the required width.
1141   if (PReg == 0)
1142     return (Width <= 32) ? Phys32[0] : Phys64[0];
1143
1144   // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1145   // next register.
1146   unsigned Idx32 = 0, Idx64 = 0;
1147   if (!Is64) {
1148     while (Idx32 < Num32) {
1149       if (Phys32[Idx32] == PReg)
1150         break;
1151       Idx32++;
1152     }
1153     Idx64 = Idx32/2;
1154   } else {
1155     while (Idx64 < Num64) {
1156       if (Phys64[Idx64] == PReg)
1157         break;
1158       Idx64++;
1159     }
1160     Idx32 = Idx64*2+1;
1161   }
1162
1163   if (Width <= 32)
1164     return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1165   return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1166 }
1167
1168
1169 unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1170   typedef MachineRegisterInfo::livein_iterator iterator;
1171   for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1172     if (I->first == PReg)
1173       return I->second;
1174   }
1175   return 0;
1176 }