]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Hexagon/HexagonExpandCondsets.cpp
MFV r313071:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Hexagon / HexagonExpandCondsets.cpp
1 //===--- HexagonExpandCondsets.cpp ----------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 // Replace mux instructions with the corresponding legal instructions.
11 // It is meant to work post-SSA, but still on virtual registers. It was
12 // originally placed between register coalescing and machine instruction
13 // scheduler.
14 // In this place in the optimization sequence, live interval analysis had
15 // been performed, and the live intervals should be preserved. A large part
16 // of the code deals with preserving the liveness information.
17 //
18 // Liveness tracking aside, the main functionality of this pass is divided
19 // into two steps. The first step is to replace an instruction
20 //   vreg0 = C2_mux vreg1, vreg2, vreg3
21 // with a pair of conditional transfers
22 //   vreg0 = A2_tfrt vreg1, vreg2
23 //   vreg0 = A2_tfrf vreg1, vreg3
24 // It is the intention that the execution of this pass could be terminated
25 // after this step, and the code generated would be functionally correct.
26 //
27 // If the uses of the source values vreg1 and vreg2 are kills, and their
28 // definitions are predicable, then in the second step, the conditional
29 // transfers will then be rewritten as predicated instructions. E.g.
30 //   vreg0 = A2_or vreg1, vreg2
31 //   vreg3 = A2_tfrt vreg99, vreg0<kill>
32 // will be rewritten as
33 //   vreg3 = A2_port vreg99, vreg1, vreg2
34 //
35 // This replacement has two variants: "up" and "down". Consider this case:
36 //   vreg0 = A2_or vreg1, vreg2
37 //   ... [intervening instructions] ...
38 //   vreg3 = A2_tfrt vreg99, vreg0<kill>
39 // variant "up":
40 //   vreg3 = A2_port vreg99, vreg1, vreg2
41 //   ... [intervening instructions, vreg0->vreg3] ...
42 //   [deleted]
43 // variant "down":
44 //   [deleted]
45 //   ... [intervening instructions] ...
46 //   vreg3 = A2_port vreg99, vreg1, vreg2
47 //
48 // Both, one or none of these variants may be valid, and checks are made
49 // to rule out inapplicable variants.
50 //
51 // As an additional optimization, before either of the two steps above is
52 // executed, the pass attempts to coalesce the target register with one of
53 // the source registers, e.g. given an instruction
54 //   vreg3 = C2_mux vreg0, vreg1, vreg2
55 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
56 // the instruction would then be (for example)
57 //   vreg3 = C2_mux vreg0, vreg3, vreg2
58 // and, under certain circumstances, this could result in only one predicated
59 // instruction:
60 //   vreg3 = A2_tfrf vreg0, vreg2
61 //
62
63 // Splitting a definition of a register into two predicated transfers
64 // creates a complication in liveness tracking. Live interval computation
65 // will see both instructions as actual definitions, and will mark the
66 // first one as dead. The definition is not actually dead, and this
67 // situation will need to be fixed. For example:
68 //   vreg1<def,dead> = A2_tfrt ...  ; marked as dead
69 //   vreg1<def> = A2_tfrf ...
70 //
71 // Since any of the individual predicated transfers may end up getting
72 // removed (in case it is an identity copy), some pre-existing def may
73 // be marked as dead after live interval recomputation:
74 //   vreg1<def,dead> = ...          ; marked as dead
75 //   ...
76 //   vreg1<def> = A2_tfrf ...       ; if A2_tfrt is removed
77 // This case happens if vreg1 was used as a source in A2_tfrt, which means
78 // that is it actually live at the A2_tfrf, and so the now dead definition
79 // of vreg1 will need to be updated to non-dead at some point.
80 //
81 // This issue could be remedied by adding implicit uses to the predicated
82 // transfers, but this will create a problem with subsequent predication,
83 // since the transfers will no longer be possible to reorder. To avoid
84 // that, the initial splitting will not add any implicit uses. These
85 // implicit uses will be added later, after predication. The extra price,
86 // however, is that finding the locations where the implicit uses need
87 // to be added, and updating the live ranges will be more involved.
88 //
89 // An additional problem appears when subregister liveness tracking is
90 // enabled. In such a scenario, the live interval for the super-register
91 // will have live ranges for each subregister (i.e. subranges). This sub-
92 // range contains all liveness information about the subregister, except
93 // for one case: a "read-undef" flag from another subregister will not
94 // be reflected: given
95 //   vreg1:subreg_hireg<def,read-undef> = ...  ; "undefines" subreg_loreg
96 // the subrange for subreg_loreg will not have any indication that it is
97 // undefined at this point. Calculating subregister liveness based only
98 // on the information from the subrange may create a segment which spans
99 // over such a "read-undef" flag. This would create inconsistencies in
100 // the liveness data, resulting in assertions or incorrect code.
101 // Example:
102 //   vreg1:subreg_loreg<def> = ...
103 //   vreg1:subreg_hireg<def, read-undef> = ... ; "undefines" subreg_loreg
104 //   ...
105 //   vreg1:subreg_loreg<def> = A2_tfrt ...     ; may end up with imp-use
106 //                                             ; of subreg_loreg
107 // The remedy takes advantage of the fact, that at this point we have
108 // an unconditional definition of the subregister. What this means is
109 // that any preceding value in this subregister will be overwritten,
110 // or in other words, the last use before this def is a kill. This also
111 // implies that the first of the predicated transfers at this location
112 // should not have any implicit uses.
113 // Assume for a moment that no part of the corresponding super-register
114 // is used as a source. In such case, the entire super-register can be
115 // considered undefined immediately before this instruction. Because of
116 // that, we can insert an IMPLICIT_DEF of the super-register at this
117 // location, which will cause it to be reflected in all the associated
118 // subranges. What is important here is that if an IMPLICIT_DEF of
119 // subreg_loreg was used, we would lose the indication that subreg_hireg
120 // is also considered undefined. This could lead to having implicit uses
121 // incorrectly added.
122 //
123 // What is left is the two cases when the super-register is used as a
124 // source.
125 // * Case 1: the used part is the same as the one that is defined:
126 //   vreg1<def> = ...
127 //   ...
128 //   vreg1:subreg_loreg<def,read-undef> = C2_mux ..., vreg1:subreg_loreg
129 // In the end, the subreg_loreg should be marked as live at the point of
130 // the splitting:
131 //   vreg1:subreg_loreg<def,read-undef> = A2_tfrt ; should have imp-use
132 //   vreg1:subreg_loreg<def,read-undef> = A2_tfrf ; should have imp-use
133 // Hence, an IMPLICIT_DEF of only vreg1:subreg_hireg would be sufficient.
134 // * Case 2: the used part does not overlap the part being defined:
135 //   vreg1<def> = ...
136 //   ...
137 //   vreg1:subreg_loreg<def,read-undef> = C2_mux ..., vreg1:subreg_hireg
138 // For this case, we insert an IMPLICIT_DEF of vreg1:subreg_hireg after
139 // the C2_mux.
140
141 #define DEBUG_TYPE "expand-condsets"
142
143 #include "HexagonTargetMachine.h"
144 #include "llvm/ADT/SetVector.h"
145 #include "llvm/CodeGen/Passes.h"
146 #include "llvm/CodeGen/LiveInterval.h"
147 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
148 #include "llvm/CodeGen/MachineDominators.h"
149 #include "llvm/CodeGen/MachineFunction.h"
150 #include "llvm/CodeGen/MachineInstrBuilder.h"
151 #include "llvm/CodeGen/MachineRegisterInfo.h"
152 #include "llvm/Target/TargetInstrInfo.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetRegisterInfo.h"
155 #include "llvm/Support/CommandLine.h"
156 #include "llvm/Support/Debug.h"
157 #include "llvm/Support/raw_ostream.h"
158
159 #include <algorithm>
160 #include <iterator>
161 #include <set>
162 #include <utility>
163
164 using namespace llvm;
165
166 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
167   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
168 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
169   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
170
171 namespace llvm {
172   void initializeHexagonExpandCondsetsPass(PassRegistry&);
173   FunctionPass *createHexagonExpandCondsets();
174 }
175
176 namespace {
177   class HexagonExpandCondsets : public MachineFunctionPass {
178   public:
179     static char ID;
180     HexagonExpandCondsets() :
181         MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
182         LIS(0), CoaLimitActive(false),
183         TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
184       if (OptCoaLimit.getPosition())
185         CoaLimitActive = true, CoaLimit = OptCoaLimit;
186       if (OptTfrLimit.getPosition())
187         TfrLimitActive = true, TfrLimit = OptTfrLimit;
188       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
189     }
190
191     const char *getPassName() const override {
192       return "Hexagon Expand Condsets";
193     }
194     void getAnalysisUsage(AnalysisUsage &AU) const override {
195       AU.addRequired<LiveIntervals>();
196       AU.addPreserved<LiveIntervals>();
197       AU.addPreserved<SlotIndexes>();
198       AU.addRequired<MachineDominatorTree>();
199       AU.addPreserved<MachineDominatorTree>();
200       MachineFunctionPass::getAnalysisUsage(AU);
201     }
202     bool runOnMachineFunction(MachineFunction &MF) override;
203
204   private:
205     const HexagonInstrInfo *HII;
206     const TargetRegisterInfo *TRI;
207     MachineDominatorTree *MDT;
208     MachineRegisterInfo *MRI;
209     LiveIntervals *LIS;
210     std::set<MachineInstr*> LocalImpDefs;
211
212     bool CoaLimitActive, TfrLimitActive;
213     unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
214
215     struct RegisterRef {
216       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
217           Sub(Op.getSubReg()) {}
218       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
219       bool operator== (RegisterRef RR) const {
220         return Reg == RR.Reg && Sub == RR.Sub;
221       }
222       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
223       bool operator< (RegisterRef RR) const {
224         return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
225       }
226       unsigned Reg, Sub;
227     };
228
229     typedef DenseMap<unsigned,unsigned> ReferenceMap;
230     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
231     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
232     unsigned getMaskForSub(unsigned Sub);
233     bool isCondset(const MachineInstr &MI);
234     LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
235
236     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
237     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
238
239     void removeImpDefSegments(LiveRange &Range);
240     void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
241     void updateKillFlags(unsigned Reg);
242     void updateDeadFlags(unsigned Reg);
243     void recalculateLiveInterval(unsigned Reg);
244     void removeInstr(MachineInstr &MI);
245     void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
246         bool UpdateKills, bool UpdateDeads);
247
248     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
249     MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
250         MachineBasicBlock::iterator At, unsigned DstR,
251         unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
252         bool ReadUndef, bool ImpUse);
253     bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
254     bool splitInBlock(MachineBasicBlock &B, std::set<unsigned> &UpdRegs);
255
256     bool isPredicable(MachineInstr *MI);
257     MachineInstr *getReachingDefForPred(RegisterRef RD,
258         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
259     bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
260     bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
261     void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
262                      MachineBasicBlock::iterator Where,
263                      const MachineOperand &PredOp, bool Cond,
264                      std::set<unsigned> &UpdRegs);
265     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
266         bool Cond, MachineBasicBlock::iterator First,
267         MachineBasicBlock::iterator Last);
268     bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
269     bool predicateInBlock(MachineBasicBlock &B,
270         std::set<unsigned> &UpdRegs);
271
272     bool isIntReg(RegisterRef RR, unsigned &BW);
273     bool isIntraBlocks(LiveInterval &LI);
274     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
275     bool coalesceSegments(MachineFunction &MF);
276   };
277 }
278
279 char HexagonExpandCondsets::ID = 0;
280
281 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
282   "Hexagon Expand Condsets", false, false)
283 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
284 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
285 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
286 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
287   "Hexagon Expand Condsets", false, false)
288
289 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
290   switch (Sub) {
291     case Hexagon::subreg_loreg:
292       return Sub_Low;
293     case Hexagon::subreg_hireg:
294       return Sub_High;
295     case Hexagon::NoSubRegister:
296       return Sub_None;
297   }
298   llvm_unreachable("Invalid subregister");
299 }
300
301 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
302   unsigned Opc = MI.getOpcode();
303   switch (Opc) {
304     case Hexagon::C2_mux:
305     case Hexagon::C2_muxii:
306     case Hexagon::C2_muxir:
307     case Hexagon::C2_muxri:
308     case Hexagon::MUX64_rr:
309         return true;
310       break;
311   }
312   return false;
313 }
314
315
316 LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
317   assert(TargetRegisterInfo::isVirtualRegister(Reg));
318   return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
319                   : MRI->getMaxLaneMaskForVReg(Reg);
320 }
321
322
323 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
324       unsigned Exec) {
325   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
326   ReferenceMap::iterator F = Map.find(RR.Reg);
327   if (F == Map.end())
328     Map.insert(std::make_pair(RR.Reg, Mask));
329   else
330     F->second |= Mask;
331 }
332
333
334 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
335       unsigned Exec) {
336   ReferenceMap::iterator F = Map.find(RR.Reg);
337   if (F == Map.end())
338     return false;
339   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
340   if (Mask & F->second)
341     return true;
342   return false;
343 }
344
345
346 void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
347   auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
348     // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
349     MachineInstr *MI = LIS->getInstructionFromIndex(K);
350     for (auto &Op : MI->operands()) {
351       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
352         continue;
353       LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
354       if ((SLM & LM) == SLM) {
355         // Only set the kill flag on the first encountered use of Reg in this
356         // instruction.
357         Op.setIsKill(true);
358         break;
359       }
360     }
361   };
362
363   LiveInterval &LI = LIS->getInterval(Reg);
364   for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
365     if (!I->end.isRegister())
366       continue;
367     // Do not mark the end of the segment as <kill>, if the next segment
368     // starts with a predicated instruction.
369     auto NextI = std::next(I);
370     if (NextI != E && NextI->start.isRegister()) {
371       MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
372       if (HII->isPredicated(*DefI))
373         continue;
374     }
375     bool WholeReg = true;
376     if (LI.hasSubRanges()) {
377       auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
378         LiveRange::iterator F = S.find(I->end);
379         return F != S.end() && I->end == F->end;
380       };
381       // Check if all subranges end at I->end. If so, make sure to kill
382       // the whole register.
383       for (LiveInterval::SubRange &S : LI.subranges()) {
384         if (EndsAtI(S))
385           KillAt(I->end, S.LaneMask);
386         else
387           WholeReg = false;
388       }
389     }
390     if (WholeReg)
391       KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
392   }
393 }
394
395
396 void HexagonExpandCondsets::removeImpDefSegments(LiveRange &Range) {
397   auto StartImpDef = [this] (LiveRange::Segment &S) -> bool {
398     return S.start.isRegister() &&
399            LocalImpDefs.count(LIS->getInstructionFromIndex(S.start));
400   };
401   Range.segments.erase(std::remove_if(Range.begin(), Range.end(), StartImpDef),
402                        Range.end());
403 }
404
405 void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
406       LiveRange &Range) {
407   assert(TargetRegisterInfo::isVirtualRegister(Reg));
408   if (Range.empty())
409     return;
410
411   auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> bool {
412     if (!Op.isReg() || !Op.isDef())
413       return false;
414     unsigned DR = Op.getReg(), DSR = Op.getSubReg();
415     if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg)
416       return false;
417     LaneBitmask SLM = getLaneMask(DR, DSR);
418     return (SLM & LM) != 0;
419   };
420
421   // The splitting step will create pairs of predicated definitions without
422   // any implicit uses (since implicit uses would interfere with predication).
423   // This can cause the reaching defs to become dead after live range
424   // recomputation, even though they are not really dead.
425   // We need to identify predicated defs that need implicit uses, and
426   // dead defs that are not really dead, and correct both problems.
427
428   SetVector<MachineBasicBlock*> Defs;
429   auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
430                           MachineBasicBlock *Dest) -> bool {
431     for (MachineBasicBlock *D : Defs)
432       if (D != Dest && MDT->dominates(D, Dest))
433         return true;
434
435     MachineBasicBlock *Entry = &Dest->getParent()->front();
436     SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
437     for (unsigned i = 0; i < Work.size(); ++i) {
438       MachineBasicBlock *B = Work[i];
439       if (Defs.count(B))
440         continue;
441       if (B == Entry)
442         return false;
443       for (auto *P : B->predecessors())
444         Work.insert(P);
445     }
446     return true;
447   };
448
449   // First, try to extend live range within individual basic blocks. This
450   // will leave us only with dead defs that do not reach any predicated
451   // defs in the same block.
452   SmallVector<SlotIndex,4> PredDefs;
453   for (auto &Seg : Range) {
454     if (!Seg.start.isRegister())
455       continue;
456     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
457     if (LocalImpDefs.count(DefI))
458       continue;
459     Defs.insert(DefI->getParent());
460     if (HII->isPredicated(*DefI))
461       PredDefs.push_back(Seg.start);
462   }
463   for (auto &SI : PredDefs) {
464     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
465     if (Range.extendInBlock(LIS->getMBBStartIdx(BB), SI))
466       SI = SlotIndex();
467   }
468
469   // Calculate reachability for those predicated defs that were not handled
470   // by the in-block extension.
471   SmallVector<SlotIndex,4> ExtTo;
472   for (auto &SI : PredDefs) {
473     if (!SI.isValid())
474       continue;
475     MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
476     if (BB->pred_empty())
477       continue;
478     // If the defs from this range reach SI via all predecessors, it is live.
479     if (Dominate(Defs, BB))
480       ExtTo.push_back(SI);
481   }
482   LIS->extendToIndices(Range, ExtTo);
483
484   // Remove <dead> flags from all defs that are not dead after live range
485   // extension, and collect all def operands. They will be used to generate
486   // the necessary implicit uses.
487   std::set<RegisterRef> DefRegs;
488   for (auto &Seg : Range) {
489     if (!Seg.start.isRegister())
490       continue;
491     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
492     if (LocalImpDefs.count(DefI))
493       continue;
494     for (auto &Op : DefI->operands()) {
495       if (Seg.start.isDead() || !IsRegDef(Op))
496         continue;
497       DefRegs.insert(Op);
498       Op.setIsDead(false);
499     }
500   }
501
502
503   // Finally, add implicit uses to each predicated def that is reached
504   // by other defs. Remove segments started by implicit-defs first, since
505   // they do not define registers.
506   removeImpDefSegments(Range);
507
508   for (auto &Seg : Range) {
509     if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
510       continue;
511     MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
512     if (!HII->isPredicated(*DefI))
513       continue;
514     MachineFunction &MF = *DefI->getParent()->getParent();
515     // Construct the set of all necessary implicit uses, based on the def
516     // operands in the instruction.
517     std::set<RegisterRef> ImpUses;
518     for (auto &Op : DefI->operands())
519       if (Op.isReg() && Op.isDef() && DefRegs.count(Op))
520         ImpUses.insert(Op);
521     for (RegisterRef R : ImpUses)
522       MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
523   }
524 }
525
526
527 void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
528   LiveInterval &LI = LIS->getInterval(Reg);
529   if (LI.hasSubRanges()) {
530     for (LiveInterval::SubRange &S : LI.subranges()) {
531       updateDeadsInRange(Reg, S.LaneMask, S);
532       LIS->shrinkToUses(S, Reg);
533       // LI::shrinkToUses will add segments started by implicit-defs.
534       // Remove them again.
535       removeImpDefSegments(S);
536     }
537     LI.clear();
538     LIS->constructMainRangeFromSubranges(LI);
539   } else {
540     updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
541   }
542 }
543
544
545 void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
546   LIS->removeInterval(Reg);
547   LIS->createAndComputeVirtRegInterval(Reg);
548 }
549
550 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
551   LIS->RemoveMachineInstrFromMaps(MI);
552   MI.eraseFromParent();
553 }
554
555
556 void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
557       bool Recalc, bool UpdateKills, bool UpdateDeads) {
558   UpdateKills |= UpdateDeads;
559   for (auto R : RegSet) {
560     if (Recalc)
561       recalculateLiveInterval(R);
562     if (UpdateKills)
563       MRI->clearKillFlags(R);
564     if (UpdateDeads)
565       updateDeadFlags(R);
566     // Fixing <dead> flags may extend live ranges, so reset <kill> flags
567     // after that.
568     if (UpdateKills)
569       updateKillFlags(R);
570     LIS->getInterval(R).verify();
571   }
572 }
573
574
575 /// Get the opcode for a conditional transfer of the value in SO (source
576 /// operand). The condition (true/false) is given in Cond.
577 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
578       bool IfTrue) {
579   using namespace Hexagon;
580   if (SO.isReg()) {
581     unsigned PhysR;
582     RegisterRef RS = SO;
583     if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
584       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
585       assert(VC->begin() != VC->end() && "Empty register class");
586       PhysR = *VC->begin();
587     } else {
588       assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
589       PhysR = RS.Reg;
590     }
591     unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
592     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
593     switch (RC->getSize()) {
594       case 4:
595         return IfTrue ? A2_tfrt : A2_tfrf;
596       case 8:
597         return IfTrue ? A2_tfrpt : A2_tfrpf;
598     }
599     llvm_unreachable("Invalid register operand");
600   }
601   if (SO.isImm() || SO.isFPImm())
602     return IfTrue ? C2_cmoveit : C2_cmoveif;
603   llvm_unreachable("Unexpected source operand");
604 }
605
606
607 /// Generate a conditional transfer, copying the value SrcOp to the
608 /// destination register DstR:DstSR, and using the predicate register from
609 /// PredOp. The Cond argument specifies whether the predicate is to be
610 /// if(PredOp), or if(!PredOp).
611 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
612       MachineBasicBlock::iterator At,
613       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
614       bool PredSense, bool ReadUndef, bool ImpUse) {
615   MachineInstr *MI = SrcOp.getParent();
616   MachineBasicBlock &B = *At->getParent();
617   const DebugLoc &DL = MI->getDebugLoc();
618
619   // Don't avoid identity copies here (i.e. if the source and the destination
620   // are the same registers). It is actually better to generate them here,
621   // since this would cause the copy to potentially be predicated in the next
622   // step. The predication will remove such a copy if it is unable to
623   /// predicate.
624
625   unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
626   unsigned State = RegState::Define | (ReadUndef ? RegState::Undef : 0);
627   MachineInstrBuilder MIB = BuildMI(B, At, DL, HII->get(Opc))
628         .addReg(DstR, State, DstSR)
629         .addOperand(PredOp)
630         .addOperand(SrcOp);
631
632   // We don't want any kills yet.
633   MIB->clearKillInfo();
634   DEBUG(dbgs() << "created an initial copy: " << *MIB);
635   return &*MIB;
636 }
637
638
639 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
640 /// performs all necessary changes to complete the replacement.
641 bool HexagonExpandCondsets::split(MachineInstr &MI,
642                                   std::set<unsigned> &UpdRegs) {
643   if (TfrLimitActive) {
644     if (TfrCounter >= TfrLimit)
645       return false;
646     TfrCounter++;
647   }
648   DEBUG(dbgs() << "\nsplitting BB#" << MI.getParent()->getNumber() << ": "
649                << MI);
650   MachineOperand &MD = MI.getOperand(0);  // Definition
651   MachineOperand &MP = MI.getOperand(1);  // Predicate register
652   MachineOperand &MS1 = MI.getOperand(2); // Source value #1
653   MachineOperand &MS2 = MI.getOperand(3); // Source value #2
654   assert(MD.isDef());
655   unsigned DR = MD.getReg(), DSR = MD.getSubReg();
656   bool ReadUndef = MD.isUndef();
657   MachineBasicBlock::iterator At = MI;
658
659   if (ReadUndef && DSR != 0 && MRI->shouldTrackSubRegLiveness(DR)) {
660     unsigned NewSR = 0;
661     MachineBasicBlock::iterator DefAt = At;
662     bool SameReg = (MS1.isReg() && DR == MS1.getReg()) ||
663                    (MS2.isReg() && DR == MS2.getReg());
664     if (SameReg) {
665       NewSR = (DSR == Hexagon::subreg_loreg) ? Hexagon::subreg_hireg
666                                              : Hexagon::subreg_loreg;
667       // Advance the insertion point if the subregisters differ between
668       // the source and the target (with the same super-register).
669       // Note: this case has never occured during tests.
670       if ((MS1.isReg() && NewSR == MS1.getSubReg()) ||
671           (MS2.isReg() && NewSR == MS2.getSubReg()))
672         ++DefAt;
673     }
674     // Use "At", since "DefAt" may be end().
675     MachineBasicBlock &B = *At->getParent();
676     DebugLoc DL = At->getDebugLoc();
677     auto ImpD = BuildMI(B, DefAt, DL, HII->get(TargetOpcode::IMPLICIT_DEF))
678                   .addReg(DR, RegState::Define, NewSR);
679     LIS->InsertMachineInstrInMaps(*ImpD);
680     LocalImpDefs.insert(&*ImpD);
681   }
682
683   // First, create the two invididual conditional transfers, and add each
684   // of them to the live intervals information. Do that first and then remove
685   // the old instruction from live intervals.
686   MachineInstr *TfrT =
687       genCondTfrFor(MI.getOperand(2), At, DR, DSR, MP, true, ReadUndef, false);
688   MachineInstr *TfrF =
689       genCondTfrFor(MI.getOperand(3), At, DR, DSR, MP, false, ReadUndef, true);
690   LIS->InsertMachineInstrInMaps(*TfrT);
691   LIS->InsertMachineInstrInMaps(*TfrF);
692
693   // Will need to recalculate live intervals for all registers in MI.
694   for (auto &Op : MI.operands())
695     if (Op.isReg())
696       UpdRegs.insert(Op.getReg());
697
698   removeInstr(MI);
699   return true;
700 }
701
702
703 /// Split all MUX instructions in the given block into pairs of conditional
704 /// transfers.
705 bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B,
706       std::set<unsigned> &UpdRegs) {
707   bool Changed = false;
708   MachineBasicBlock::iterator I, E, NextI;
709   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
710     NextI = std::next(I);
711     if (isCondset(*I))
712       Changed |= split(*I, UpdRegs);
713   }
714   return Changed;
715 }
716
717
718 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
719   if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
720     return false;
721   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
722     return false;
723   // Reject instructions with multiple defs (e.g. post-increment loads).
724   bool HasDef = false;
725   for (auto &Op : MI->operands()) {
726     if (!Op.isReg() || !Op.isDef())
727       continue;
728     if (HasDef)
729       return false;
730     HasDef = true;
731   }
732   for (auto &Mo : MI->memoperands())
733     if (Mo->isVolatile())
734       return false;
735   return true;
736 }
737
738
739 /// Find the reaching definition for a predicated use of RD. The RD is used
740 /// under the conditions given by PredR and Cond, and this function will ignore
741 /// definitions that set RD under the opposite conditions.
742 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
743       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
744   MachineBasicBlock &B = *UseIt->getParent();
745   MachineBasicBlock::iterator I = UseIt, S = B.begin();
746   if (I == S)
747     return 0;
748
749   bool PredValid = true;
750   do {
751     --I;
752     MachineInstr *MI = &*I;
753     // Check if this instruction can be ignored, i.e. if it is predicated
754     // on the complementary condition.
755     if (PredValid && HII->isPredicated(*MI)) {
756       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
757         continue;
758     }
759
760     // Check the defs. If the PredR is defined, invalidate it. If RD is
761     // defined, return the instruction or 0, depending on the circumstances.
762     for (auto &Op : MI->operands()) {
763       if (!Op.isReg() || !Op.isDef())
764         continue;
765       RegisterRef RR = Op;
766       if (RR.Reg == PredR) {
767         PredValid = false;
768         continue;
769       }
770       if (RR.Reg != RD.Reg)
771         continue;
772       // If the "Reg" part agrees, there is still the subregister to check.
773       // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
774       // not vreg1 (w/o subregisters).
775       if (RR.Sub == RD.Sub)
776         return MI;
777       if (RR.Sub == 0 || RD.Sub == 0)
778         return 0;
779       // We have different subregisters, so we can continue looking.
780     }
781   } while (I != S);
782
783   return 0;
784 }
785
786
787 /// Check if the instruction MI can be safely moved over a set of instructions
788 /// whose side-effects (in terms of register defs and uses) are expressed in
789 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
790 /// that depend on the same predicate register to allow moving instructions
791 /// over instructions predicated on the opposite condition.
792 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
793                                         ReferenceMap &Uses) {
794   // In order to be able to safely move MI over instructions that define
795   // "Defs" and use "Uses", no def operand from MI can be defined or used
796   // and no use operand can be defined.
797   for (auto &Op : MI.operands()) {
798     if (!Op.isReg())
799       continue;
800     RegisterRef RR = Op;
801     // For physical register we would need to check register aliases, etc.
802     // and we don't want to bother with that. It would be of little value
803     // before the actual register rewriting (from virtual to physical).
804     if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
805       return false;
806     // No redefs for any operand.
807     if (isRefInMap(RR, Defs, Exec_Then))
808       return false;
809     // For defs, there cannot be uses.
810     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
811       return false;
812   }
813   return true;
814 }
815
816
817 /// Check if the instruction accessing memory (TheI) can be moved to the
818 /// location ToI.
819 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
820                                          bool IsDown) {
821   bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
822   if (!IsLoad && !IsStore)
823     return true;
824   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
825     return true;
826   if (TheI.hasUnmodeledSideEffects())
827     return false;
828
829   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
830   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
831   bool Ordered = TheI.hasOrderedMemoryRef();
832
833   // Search for aliased memory reference in (StartI, EndI).
834   for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
835     MachineInstr *MI = &*I;
836     if (MI->hasUnmodeledSideEffects())
837       return false;
838     bool L = MI->mayLoad(), S = MI->mayStore();
839     if (!L && !S)
840       continue;
841     if (Ordered && MI->hasOrderedMemoryRef())
842       return false;
843
844     bool Conflict = (L && IsStore) || S;
845     if (Conflict)
846       return false;
847   }
848   return true;
849 }
850
851
852 /// Generate a predicated version of MI (where the condition is given via
853 /// PredR and Cond) at the point indicated by Where.
854 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
855                                         MachineInstr &MI,
856                                         MachineBasicBlock::iterator Where,
857                                         const MachineOperand &PredOp, bool Cond,
858                                         std::set<unsigned> &UpdRegs) {
859   // The problem with updating live intervals is that we can move one def
860   // past another def. In particular, this can happen when moving an A2_tfrt
861   // over an A2_tfrf defining the same register. From the point of view of
862   // live intervals, these two instructions are two separate definitions,
863   // and each one starts another live segment. LiveIntervals's "handleMove"
864   // does not allow such moves, so we need to handle it ourselves. To avoid
865   // invalidating liveness data while we are using it, the move will be
866   // implemented in 4 steps: (1) add a clone of the instruction MI at the
867   // target location, (2) update liveness, (3) delete the old instruction,
868   // and (4) update liveness again.
869
870   MachineBasicBlock &B = *MI.getParent();
871   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
872   unsigned Opc = MI.getOpcode();
873   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
874   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
875   unsigned Ox = 0, NP = MI.getNumOperands();
876   // Skip all defs from MI first.
877   while (Ox < NP) {
878     MachineOperand &MO = MI.getOperand(Ox);
879     if (!MO.isReg() || !MO.isDef())
880       break;
881     Ox++;
882   }
883   // Add the new def, then the predicate register, then the rest of the
884   // operands.
885   MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
886   MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
887             PredOp.getSubReg());
888   while (Ox < NP) {
889     MachineOperand &MO = MI.getOperand(Ox);
890     if (!MO.isReg() || !MO.isImplicit())
891       MB.addOperand(MO);
892     Ox++;
893   }
894
895   MachineFunction &MF = *B.getParent();
896   MachineInstr::mmo_iterator I = MI.memoperands_begin();
897   unsigned NR = std::distance(I, MI.memoperands_end());
898   MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
899   for (unsigned i = 0; i < NR; ++i)
900     MemRefs[i] = *I++;
901   MB.setMemRefs(MemRefs, MemRefs+NR);
902
903   MachineInstr *NewI = MB;
904   NewI->clearKillInfo();
905   LIS->InsertMachineInstrInMaps(*NewI);
906
907   for (auto &Op : NewI->operands())
908     if (Op.isReg())
909       UpdRegs.insert(Op.getReg());
910 }
911
912
913 /// In the range [First, Last], rename all references to the "old" register RO
914 /// to the "new" register RN, but only in instructions predicated on the given
915 /// condition.
916 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
917       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
918       MachineBasicBlock::iterator Last) {
919   MachineBasicBlock::iterator End = std::next(Last);
920   for (MachineBasicBlock::iterator I = First; I != End; ++I) {
921     MachineInstr *MI = &*I;
922     // Do not touch instructions that are not predicated, or are predicated
923     // on the opposite condition.
924     if (!HII->isPredicated(*MI))
925       continue;
926     if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
927       continue;
928
929     for (auto &Op : MI->operands()) {
930       if (!Op.isReg() || RO != RegisterRef(Op))
931         continue;
932       Op.setReg(RN.Reg);
933       Op.setSubReg(RN.Sub);
934       // In practice, this isn't supposed to see any defs.
935       assert(!Op.isDef() && "Not expecting a def");
936     }
937   }
938 }
939
940
941 /// For a given conditional copy, predicate the definition of the source of
942 /// the copy under the given condition (using the same predicate register as
943 /// the copy).
944 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
945                                       std::set<unsigned> &UpdRegs) {
946   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
947   unsigned Opc = TfrI.getOpcode();
948   (void)Opc;
949   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
950   DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
951                << ": " << TfrI);
952
953   MachineOperand &MD = TfrI.getOperand(0);
954   MachineOperand &MP = TfrI.getOperand(1);
955   MachineOperand &MS = TfrI.getOperand(2);
956   // The source operand should be a <kill>. This is not strictly necessary,
957   // but it makes things a lot simpler. Otherwise, we would need to rename
958   // some registers, which would complicate the transformation considerably.
959   if (!MS.isKill())
960     return false;
961   // Avoid predicating instructions that define a subregister if subregister
962   // liveness tracking is not enabled.
963   if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
964     return false;
965
966   RegisterRef RT(MS);
967   unsigned PredR = MP.getReg();
968   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
969   if (!DefI || !isPredicable(DefI))
970     return false;
971
972   DEBUG(dbgs() << "Source def: " << *DefI);
973
974   // Collect the information about registers defined and used between the
975   // DefI and the TfrI.
976   // Map: reg -> bitmask of subregs
977   ReferenceMap Uses, Defs;
978   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
979
980   // Check if the predicate register is valid between DefI and TfrI.
981   // If it is, we can then ignore instructions predicated on the negated
982   // conditions when collecting def and use information.
983   bool PredValid = true;
984   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
985     if (!I->modifiesRegister(PredR, 0))
986       continue;
987     PredValid = false;
988     break;
989   }
990
991   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
992     MachineInstr *MI = &*I;
993     // If this instruction is predicated on the same register, it could
994     // potentially be ignored.
995     // By default assume that the instruction executes on the same condition
996     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
997     unsigned Exec = Exec_Then | Exec_Else;
998     if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
999       Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
1000
1001     for (auto &Op : MI->operands()) {
1002       if (!Op.isReg())
1003         continue;
1004       // We don't want to deal with physical registers. The reason is that
1005       // they can be aliased with other physical registers. Aliased virtual
1006       // registers must share the same register number, and can only differ
1007       // in the subregisters, which we are keeping track of. Physical
1008       // registers ters no longer have subregisters---their super- and
1009       // subregisters are other physical registers, and we are not checking
1010       // that.
1011       RegisterRef RR = Op;
1012       if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1013         return false;
1014
1015       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1016       addRefToMap(RR, Map, Exec);
1017     }
1018   }
1019
1020   // The situation:
1021   //   RT = DefI
1022   //   ...
1023   //   RD = TfrI ..., RT
1024
1025   // If the register-in-the-middle (RT) is used or redefined between
1026   // DefI and TfrI, we may not be able proceed with this transformation.
1027   // We can ignore a def that will not execute together with TfrI, and a
1028   // use that will. If there is such a use (that does execute together with
1029   // TfrI), we will not be able to move DefI down. If there is a use that
1030   // executed if TfrI's condition is false, then RT must be available
1031   // unconditionally (cannot be predicated).
1032   // Essentially, we need to be able to rename RT to RD in this segment.
1033   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1034     return false;
1035   RegisterRef RD = MD;
1036   // If the predicate register is defined between DefI and TfrI, the only
1037   // potential thing to do would be to move the DefI down to TfrI, and then
1038   // predicate. The reaching def (DefI) must be movable down to the location
1039   // of the TfrI.
1040   // If the target register of the TfrI (RD) is not used or defined between
1041   // DefI and TfrI, consider moving TfrI up to DefI.
1042   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
1043   bool CanDown = canMoveOver(*DefI, Defs, Uses);
1044   // The TfrI does not access memory, but DefI could. Check if it's safe
1045   // to move DefI down to TfrI.
1046   if (DefI->mayLoad() || DefI->mayStore())
1047     if (!canMoveMemTo(*DefI, TfrI, true))
1048       CanDown = false;
1049
1050   DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1051                << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1052   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1053   if (CanUp)
1054     predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
1055   else if (CanDown)
1056     predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
1057   else
1058     return false;
1059
1060   if (RT != RD) {
1061     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1062     UpdRegs.insert(RT.Reg);
1063   }
1064
1065   removeInstr(TfrI);
1066   removeInstr(*DefI);
1067   return true;
1068 }
1069
1070
1071 /// Predicate all cases of conditional copies in the specified block.
1072 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
1073       std::set<unsigned> &UpdRegs) {
1074   bool Changed = false;
1075   MachineBasicBlock::iterator I, E, NextI;
1076   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1077     NextI = std::next(I);
1078     unsigned Opc = I->getOpcode();
1079     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1080       bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
1081       if (!Done) {
1082         // If we didn't predicate I, we may need to remove it in case it is
1083         // an "identity" copy, e.g.  vreg1 = A2_tfrt vreg2, vreg1.
1084         if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
1085           for (auto &Op : I->operands())
1086             if (Op.isReg())
1087               UpdRegs.insert(Op.getReg());
1088           removeInstr(*I);
1089         }
1090       }
1091       Changed |= Done;
1092     }
1093   }
1094   return Changed;
1095 }
1096
1097
1098 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1099   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1100     return false;
1101   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1102   if (RC == &Hexagon::IntRegsRegClass) {
1103     BW = 32;
1104     return true;
1105   }
1106   if (RC == &Hexagon::DoubleRegsRegClass) {
1107     BW = (RR.Sub != 0) ? 32 : 64;
1108     return true;
1109   }
1110   return false;
1111 }
1112
1113
1114 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1115   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1116     LiveRange::Segment &LR = *I;
1117     // Range must start at a register...
1118     if (!LR.start.isRegister())
1119       return false;
1120     // ...and end in a register or in a dead slot.
1121     if (!LR.end.isRegister() && !LR.end.isDead())
1122       return false;
1123   }
1124   return true;
1125 }
1126
1127
1128 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1129   if (CoaLimitActive) {
1130     if (CoaCounter >= CoaLimit)
1131       return false;
1132     CoaCounter++;
1133   }
1134   unsigned BW1, BW2;
1135   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1136     return false;
1137   if (MRI->isLiveIn(R1.Reg))
1138     return false;
1139   if (MRI->isLiveIn(R2.Reg))
1140     return false;
1141
1142   LiveInterval &L1 = LIS->getInterval(R1.Reg);
1143   LiveInterval &L2 = LIS->getInterval(R2.Reg);
1144   bool Overlap = L1.overlaps(L2);
1145
1146   DEBUG(dbgs() << "compatible registers: ("
1147                << (Overlap ? "overlap" : "disjoint") << ")\n  "
1148                << PrintReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
1149                << PrintReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
1150   if (R1.Sub || R2.Sub)
1151     return false;
1152   if (Overlap)
1153     return false;
1154
1155   // Coalescing could have a negative impact on scheduling, so try to limit
1156   // to some reasonable extent. Only consider coalescing segments, when one
1157   // of them does not cross basic block boundaries.
1158   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1159     return false;
1160
1161   MRI->replaceRegWith(R2.Reg, R1.Reg);
1162
1163   // Move all live segments from L2 to L1.
1164   typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
1165   ValueInfoMap VM;
1166   for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1167     VNInfo *NewVN, *OldVN = I->valno;
1168     ValueInfoMap::iterator F = VM.find(OldVN);
1169     if (F == VM.end()) {
1170       NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1171       VM.insert(std::make_pair(OldVN, NewVN));
1172     } else {
1173       NewVN = F->second;
1174     }
1175     L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1176   }
1177   while (L2.begin() != L2.end())
1178     L2.removeSegment(*L2.begin());
1179
1180   updateKillFlags(R1.Reg);
1181   DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1182   L1.verify();
1183
1184   return true;
1185 }
1186
1187
1188 /// Attempt to coalesce one of the source registers to a MUX intruction with
1189 /// the destination register. This could lead to having only one predicated
1190 /// instruction in the end instead of two.
1191 bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
1192   SmallVector<MachineInstr*,16> Condsets;
1193   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1194     MachineBasicBlock &B = *I;
1195     for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
1196       MachineInstr *MI = &*J;
1197       if (!isCondset(*MI))
1198         continue;
1199       MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1200       if (!S1.isReg() && !S2.isReg())
1201         continue;
1202       Condsets.push_back(MI);
1203     }
1204   }
1205
1206   bool Changed = false;
1207   for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
1208     MachineInstr *CI = Condsets[i];
1209     RegisterRef RD = CI->getOperand(0);
1210     RegisterRef RP = CI->getOperand(1);
1211     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1212     bool Done = false;
1213     // Consider this case:
1214     //   vreg1 = instr1 ...
1215     //   vreg2 = instr2 ...
1216     //   vreg0 = C2_mux ..., vreg1, vreg2
1217     // If vreg0 was coalesced with vreg1, we could end up with the following
1218     // code:
1219     //   vreg0 = instr1 ...
1220     //   vreg2 = instr2 ...
1221     //   vreg0 = A2_tfrf ..., vreg2
1222     // which will later become:
1223     //   vreg0 = instr1 ...
1224     //   vreg0 = instr2_cNotPt ...
1225     // i.e. there will be an unconditional definition (instr1) of vreg0
1226     // followed by a conditional one. The output dependency was there before
1227     // and it unavoidable, but if instr1 is predicable, we will no longer be
1228     // able to predicate it here.
1229     // To avoid this scenario, don't coalesce the destination register with
1230     // a source register that is defined by a predicable instruction.
1231     if (S1.isReg()) {
1232       RegisterRef RS = S1;
1233       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1234       if (!RDef || !HII->isPredicable(*RDef))
1235         Done = coalesceRegisters(RD, RegisterRef(S1));
1236     }
1237     if (!Done && S2.isReg()) {
1238       RegisterRef RS = S2;
1239       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1240       if (!RDef || !HII->isPredicable(*RDef))
1241         Done = coalesceRegisters(RD, RegisterRef(S2));
1242     }
1243     Changed |= Done;
1244   }
1245   return Changed;
1246 }
1247
1248
1249 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1250   if (skipFunction(*MF.getFunction()))
1251     return false;
1252
1253   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1254   TRI = MF.getSubtarget().getRegisterInfo();
1255   MDT = &getAnalysis<MachineDominatorTree>();
1256   LIS = &getAnalysis<LiveIntervals>();
1257   MRI = &MF.getRegInfo();
1258   LocalImpDefs.clear();
1259
1260   DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
1261                    MF.getFunction()->getParent()));
1262
1263   bool Changed = false;
1264   std::set<unsigned> SplitUpd, PredUpd;
1265
1266   // Try to coalesce the target of a mux with one of its sources.
1267   // This could eliminate a register copy in some circumstances.
1268   Changed |= coalesceSegments(MF);
1269
1270   // First, simply split all muxes into a pair of conditional transfers
1271   // and update the live intervals to reflect the new arrangement. The
1272   // goal is to update the kill flags, since predication will rely on
1273   // them.
1274   for (auto &B : MF)
1275     Changed |= splitInBlock(B, SplitUpd);
1276   updateLiveness(SplitUpd, true, true, false);
1277
1278   // Traverse all blocks and collapse predicable instructions feeding
1279   // conditional transfers into predicated instructions.
1280   // Walk over all the instructions again, so we may catch pre-existing
1281   // cases that were not created in the previous step.
1282   for (auto &B : MF)
1283     Changed |= predicateInBlock(B, PredUpd);
1284
1285   updateLiveness(PredUpd, true, true, true);
1286   // Remove from SplitUpd all registers contained in PredUpd to avoid
1287   // unnecessary liveness recalculation.
1288   std::set<unsigned> Diff;
1289   std::set_difference(SplitUpd.begin(), SplitUpd.end(),
1290                       PredUpd.begin(), PredUpd.end(),
1291                       std::inserter(Diff, Diff.begin()));
1292   updateLiveness(Diff, false, false, true);
1293
1294   for (auto *ImpD : LocalImpDefs)
1295     removeInstr(*ImpD);
1296
1297   DEBUG({
1298     if (Changed)
1299       LIS->print(dbgs() << "After expand-condsets\n",
1300                  MF.getFunction()->getParent());
1301   });
1302
1303   return Changed;
1304 }
1305
1306
1307 //===----------------------------------------------------------------------===//
1308 //                         Public Constructor Functions
1309 //===----------------------------------------------------------------------===//
1310
1311 FunctionPass *llvm::createHexagonExpandCondsets() {
1312   return new HexagonExpandCondsets();
1313 }