]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Hexagon / HexagonInstrInfo.h
1 //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
15 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
16
17 #include "MCTargetDesc/HexagonBaseInfo.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/ValueTypes.h"
23 #include "llvm/Support/MachineValueType.h"
24 #include <cstdint>
25 #include <vector>
26
27 #define GET_INSTRINFO_HEADER
28 #include "HexagonGenInstrInfo.inc"
29
30 namespace llvm {
31
32 class HexagonSubtarget;
33 class MachineBranchProbabilityInfo;
34 class MachineFunction;
35 class MachineInstr;
36 class MachineOperand;
37 class TargetRegisterInfo;
38
39 class HexagonInstrInfo : public HexagonGenInstrInfo {
40   const HexagonSubtarget &Subtarget;
41
42   enum BundleAttribute {
43     memShufDisabledMask = 0x4
44   };
45
46   virtual void anchor();
47
48 public:
49   explicit HexagonInstrInfo(HexagonSubtarget &ST);
50
51   /// TargetInstrInfo overrides.
52
53   /// If the specified machine instruction is a direct
54   /// load from a stack slot, return the virtual or physical register number of
55   /// the destination along with the FrameIndex of the loaded stack slot.  If
56   /// not, return 0.  This predicate must return 0 if the instruction has
57   /// any side effects other than loading from the stack slot.
58   unsigned isLoadFromStackSlot(const MachineInstr &MI,
59                                int &FrameIndex) const override;
60
61   /// If the specified machine instruction is a direct
62   /// store to a stack slot, return the virtual or physical register number of
63   /// the source reg along with the FrameIndex of the loaded stack slot.  If
64   /// not, return 0.  This predicate must return 0 if the instruction has
65   /// any side effects other than storing to the stack slot.
66   unsigned isStoreToStackSlot(const MachineInstr &MI,
67                               int &FrameIndex) const override;
68
69   /// Check if the instruction or the bundle of instructions has
70   /// load from stack slots. Return the frameindex and machine memory operand
71   /// if true.
72   bool hasLoadFromStackSlot(
73       const MachineInstr &MI,
74       SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
75
76   /// Check if the instruction or the bundle of instructions has
77   /// store to stack slots. Return the frameindex and machine memory operand
78   /// if true.
79   bool hasStoreToStackSlot(
80       const MachineInstr &MI,
81       SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
82
83   /// Analyze the branching code at the end of MBB, returning
84   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
85   /// implemented for a target).  Upon success, this returns false and returns
86   /// with the following information in various cases:
87   ///
88   /// 1. If this block ends with no branches (it just falls through to its succ)
89   ///    just return false, leaving TBB/FBB null.
90   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
91   ///    the destination block.
92   /// 3. If this block ends with a conditional branch and it falls through to a
93   ///    successor block, it sets TBB to be the branch destination block and a
94   ///    list of operands that evaluate the condition. These operands can be
95   ///    passed to other TargetInstrInfo methods to create new branches.
96   /// 4. If this block ends with a conditional branch followed by an
97   ///    unconditional branch, it returns the 'true' destination in TBB, the
98   ///    'false' destination in FBB, and a list of operands that evaluate the
99   ///    condition.  These operands can be passed to other TargetInstrInfo
100   ///    methods to create new branches.
101   ///
102   /// Note that removeBranch and insertBranch must be implemented to support
103   /// cases where this method returns success.
104   ///
105   /// If AllowModify is true, then this routine is allowed to modify the basic
106   /// block (e.g. delete instructions after the unconditional branch).
107   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
108                      MachineBasicBlock *&FBB,
109                      SmallVectorImpl<MachineOperand> &Cond,
110                      bool AllowModify) const override;
111
112   /// Remove the branching code at the end of the specific MBB.
113   /// This is only invoked in cases where AnalyzeBranch returns success. It
114   /// returns the number of instructions that were removed.
115   unsigned removeBranch(MachineBasicBlock &MBB,
116                         int *BytesRemoved = nullptr) const override;
117
118   /// Insert branch code into the end of the specified MachineBasicBlock.
119   /// The operands to this method are the same as those
120   /// returned by AnalyzeBranch.  This is only invoked in cases where
121   /// AnalyzeBranch returns success. It returns the number of instructions
122   /// inserted.
123   ///
124   /// It is also invoked by tail merging to add unconditional branches in
125   /// cases where AnalyzeBranch doesn't apply because there was no original
126   /// branch to analyze.  At least this much must be implemented, else tail
127   /// merging needs to be disabled.
128   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
129                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
130                         const DebugLoc &DL,
131                         int *BytesAdded = nullptr) const override;
132
133   /// Analyze the loop code, return true if it cannot be understood. Upon
134   /// success, this function returns false and returns information about the
135   /// induction variable and compare instruction used at the end.
136   bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
137                    MachineInstr *&CmpInst) const override;
138
139   /// Generate code to reduce the loop iteration by one and check if the loop
140   /// is finished.  Return the value/register of the new loop count.  We need
141   /// this function when peeling off one or more iterations of a loop. This
142   /// function assumes the nth iteration is peeled first.
143   unsigned reduceLoopCount(MachineBasicBlock &MBB,
144                            MachineInstr *IndVar, MachineInstr &Cmp,
145                            SmallVectorImpl<MachineOperand> &Cond,
146                            SmallVectorImpl<MachineInstr *> &PrevInsts,
147                            unsigned Iter, unsigned MaxIter) const override;
148
149   /// Return true if it's profitable to predicate
150   /// instructions with accumulated instruction latency of "NumCycles"
151   /// of the specified basic block, where the probability of the instructions
152   /// being executed is given by Probability, and Confidence is a measure
153   /// of our confidence that it will be properly predicted.
154   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
155                            unsigned ExtraPredCycles,
156                            BranchProbability Probability) const override;
157
158   /// Second variant of isProfitableToIfCvt. This one
159   /// checks for the case where two basic blocks from true and false path
160   /// of a if-then-else (diamond) are predicated on mutally exclusive
161   /// predicates, where the probability of the true path being taken is given
162   /// by Probability, and Confidence is a measure of our confidence that it
163   /// will be properly predicted.
164   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
165                            unsigned NumTCycles, unsigned ExtraTCycles,
166                            MachineBasicBlock &FMBB,
167                            unsigned NumFCycles, unsigned ExtraFCycles,
168                            BranchProbability Probability) const override;
169
170   /// Return true if it's profitable for if-converter to duplicate instructions
171   /// of specified accumulated instruction latencies in the specified MBB to
172   /// enable if-conversion.
173   /// The probability of the instructions being executed is given by
174   /// Probability, and Confidence is a measure of our confidence that it
175   /// will be properly predicted.
176   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
177                                  BranchProbability Probability) const override;
178
179   /// Emit instructions to copy a pair of physical registers.
180   ///
181   /// This function should support copies within any legal register class as
182   /// well as any cross-class copies created during instruction selection.
183   ///
184   /// The source and destination registers may overlap, which may require a
185   /// careful implementation when multiple copy instructions are required for
186   /// large registers. See for example the ARM target.
187   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
188                    const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
189                    bool KillSrc) const override;
190
191   /// Store the specified register of the given register class to the specified
192   /// stack frame index. The store instruction is to be added to the given
193   /// machine basic block before the specified machine instruction. If isKill
194   /// is true, the register operand is the last use and must be marked kill.
195   void storeRegToStackSlot(MachineBasicBlock &MBB,
196                            MachineBasicBlock::iterator MBBI,
197                            unsigned SrcReg, bool isKill, int FrameIndex,
198                            const TargetRegisterClass *RC,
199                            const TargetRegisterInfo *TRI) const override;
200
201   /// Load the specified register of the given register class from the specified
202   /// stack frame index. The load instruction is to be added to the given
203   /// machine basic block before the specified machine instruction.
204   void loadRegFromStackSlot(MachineBasicBlock &MBB,
205                             MachineBasicBlock::iterator MBBI,
206                             unsigned DestReg, int FrameIndex,
207                             const TargetRegisterClass *RC,
208                             const TargetRegisterInfo *TRI) const override;
209
210   /// This function is called for all pseudo instructions
211   /// that remain after register allocation. Many pseudo instructions are
212   /// created to help register allocation. This is the place to convert them
213   /// into real instructions. The target can edit MI in place, or it can insert
214   /// new instructions and erase MI. The function should return true if
215   /// anything was changed.
216   bool expandPostRAPseudo(MachineInstr &MI) const override;
217
218   /// Get the base register and byte offset of a load/store instr.
219   bool getMemOperandWithOffset(MachineInstr &LdSt, MachineOperand *&BaseOp,
220                                int64_t &Offset,
221                                const TargetRegisterInfo *TRI) const override;
222
223   /// Reverses the branch condition of the specified condition list,
224   /// returning false on success and true if it cannot be reversed.
225   bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
226         const override;
227
228   /// Insert a noop into the instruction stream at the specified point.
229   void insertNoop(MachineBasicBlock &MBB,
230                   MachineBasicBlock::iterator MI) const override;
231
232   /// Returns true if the instruction is already predicated.
233   bool isPredicated(const MachineInstr &MI) const override;
234
235   /// Return true for post-incremented instructions.
236   bool isPostIncrement(const MachineInstr &MI) const override;
237
238   /// Convert the instruction into a predicated instruction.
239   /// It returns true if the operation was successful.
240   bool PredicateInstruction(MachineInstr &MI,
241                             ArrayRef<MachineOperand> Cond) const override;
242
243   /// Returns true if the first specified predicate
244   /// subsumes the second, e.g. GE subsumes GT.
245   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
246                          ArrayRef<MachineOperand> Pred2) const override;
247
248   /// If the specified instruction defines any predicate
249   /// or condition code register(s) used for predication, returns true as well
250   /// as the definition predicate(s) by reference.
251   bool DefinesPredicate(MachineInstr &MI,
252                         std::vector<MachineOperand> &Pred) const override;
253
254   /// Return true if the specified instruction can be predicated.
255   /// By default, this returns true for every instruction with a
256   /// PredicateOperand.
257   bool isPredicable(const MachineInstr &MI) const override;
258
259   /// Test if the given instruction should be considered a scheduling boundary.
260   /// This primarily includes labels and terminators.
261   bool isSchedulingBoundary(const MachineInstr &MI,
262                             const MachineBasicBlock *MBB,
263                             const MachineFunction &MF) const override;
264
265   /// Measure the specified inline asm to determine an approximation of its
266   /// length.
267   unsigned getInlineAsmLength(const char *Str,
268                               const MCAsmInfo &MAI) const override;
269
270   /// Allocate and return a hazard recognizer to use for this target when
271   /// scheduling the machine instructions after register allocation.
272   ScheduleHazardRecognizer*
273   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
274                                      const ScheduleDAG *DAG) const override;
275
276   /// For a comparison instruction, return the source registers
277   /// in SrcReg and SrcReg2 if having two register operands, and the value it
278   /// compares against in CmpValue. Return true if the comparison instruction
279   /// can be analyzed.
280   bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
281                       unsigned &SrcReg2, int &Mask, int &Value) const override;
282
283   /// Compute the instruction latency of a given instruction.
284   /// If the instruction has higher cost when predicated, it's returned via
285   /// PredCost.
286   unsigned getInstrLatency(const InstrItineraryData *ItinData,
287                            const MachineInstr &MI,
288                            unsigned *PredCost = nullptr) const override;
289
290   /// Create machine specific model for scheduling.
291   DFAPacketizer *
292   CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
293
294   // Sometimes, it is possible for the target
295   // to tell, even without aliasing information, that two MIs access different
296   // memory addresses. This function returns true if two MIs access different
297   // memory addresses and false otherwise.
298   bool
299   areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
300                                   AliasAnalysis *AA = nullptr) const override;
301
302   /// For instructions with a base and offset, return the position of the
303   /// base register and offset operands.
304   bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos,
305                                 unsigned &OffsetPos) const override;
306
307   /// If the instruction is an increment of a constant value, return the amount.
308   bool getIncrementValue(const MachineInstr &MI, int &Value) const override;
309
310   /// getOperandLatency - Compute and return the use operand latency of a given
311   /// pair of def and use.
312   /// In most cases, the static scheduling itinerary was enough to determine the
313   /// operand latency. But it may not be possible for instructions with variable
314   /// number of defs / uses.
315   ///
316   /// This is a raw interface to the itinerary that may be directly overriden by
317   /// a target. Use computeOperandLatency to get the best estimate of latency.
318   int getOperandLatency(const InstrItineraryData *ItinData,
319                         const MachineInstr &DefMI, unsigned DefIdx,
320                         const MachineInstr &UseMI,
321                         unsigned UseIdx) const override;
322
323   /// Decompose the machine operand's target flags into two values - the direct
324   /// target flag value and any of bit flags that are applied.
325   std::pair<unsigned, unsigned>
326   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
327
328   /// Return an array that contains the direct target flag values and their
329   /// names.
330   ///
331   /// MIR Serialization is able to serialize only the target flags that are
332   /// defined by this method.
333   ArrayRef<std::pair<unsigned, const char *>>
334   getSerializableDirectMachineOperandTargetFlags() const override;
335
336   /// Return an array that contains the bitmask target flag values and their
337   /// names.
338   ///
339   /// MIR Serialization is able to serialize only the target flags that are
340   /// defined by this method.
341   ArrayRef<std::pair<unsigned, const char *>>
342   getSerializableBitmaskMachineOperandTargetFlags() const override;
343
344   bool isTailCall(const MachineInstr &MI) const override;
345
346   /// HexagonInstrInfo specifics.
347
348   unsigned createVR(MachineFunction *MF, MVT VT) const;
349   MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp,
350                               MachineBasicBlock *TargetBB,
351                               SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
352
353   bool isBaseImmOffset(const MachineInstr &MI) const;
354   bool isAbsoluteSet(const MachineInstr &MI) const;
355   bool isAccumulator(const MachineInstr &MI) const;
356   bool isAddrModeWithOffset(const MachineInstr &MI) const;
357   bool isComplex(const MachineInstr &MI) const;
358   bool isCompoundBranchInstr(const MachineInstr &MI) const;
359   bool isConstExtended(const MachineInstr &MI) const;
360   bool isDeallocRet(const MachineInstr &MI) const;
361   bool isDependent(const MachineInstr &ProdMI,
362                    const MachineInstr &ConsMI) const;
363   bool isDotCurInst(const MachineInstr &MI) const;
364   bool isDotNewInst(const MachineInstr &MI) const;
365   bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const;
366   bool isEarlySourceInstr(const MachineInstr &MI) const;
367   bool isEndLoopN(unsigned Opcode) const;
368   bool isExpr(unsigned OpType) const;
369   bool isExtendable(const MachineInstr &MI) const;
370   bool isExtended(const MachineInstr &MI) const;
371   bool isFloat(const MachineInstr &MI) const;
372   bool isHVXMemWithAIndirect(const MachineInstr &I,
373                              const MachineInstr &J) const;
374   bool isIndirectCall(const MachineInstr &MI) const;
375   bool isIndirectL4Return(const MachineInstr &MI) const;
376   bool isJumpR(const MachineInstr &MI) const;
377   bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const;
378   bool isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
379                                   const MachineInstr &ESMI) const;
380   bool isLateResultInstr(const MachineInstr &MI) const;
381   bool isLateSourceInstr(const MachineInstr &MI) const;
382   bool isLoopN(const MachineInstr &MI) const;
383   bool isMemOp(const MachineInstr &MI) const;
384   bool isNewValue(const MachineInstr &MI) const;
385   bool isNewValue(unsigned Opcode) const;
386   bool isNewValueInst(const MachineInstr &MI) const;
387   bool isNewValueJump(const MachineInstr &MI) const;
388   bool isNewValueJump(unsigned Opcode) const;
389   bool isNewValueStore(const MachineInstr &MI) const;
390   bool isNewValueStore(unsigned Opcode) const;
391   bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const;
392   bool isPredicatedNew(const MachineInstr &MI) const;
393   bool isPredicatedNew(unsigned Opcode) const;
394   bool isPredicatedTrue(const MachineInstr &MI) const;
395   bool isPredicatedTrue(unsigned Opcode) const;
396   bool isPredicated(unsigned Opcode) const;
397   bool isPredicateLate(unsigned Opcode) const;
398   bool isPredictedTaken(unsigned Opcode) const;
399   bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const;
400   bool isSignExtendingLoad(const MachineInstr &MI) const;
401   bool isSolo(const MachineInstr &MI) const;
402   bool isSpillPredRegOp(const MachineInstr &MI) const;
403   bool isTC1(const MachineInstr &MI) const;
404   bool isTC2(const MachineInstr &MI) const;
405   bool isTC2Early(const MachineInstr &MI) const;
406   bool isTC4x(const MachineInstr &MI) const;
407   bool isToBeScheduledASAP(const MachineInstr &MI1,
408                            const MachineInstr &MI2) const;
409   bool isHVXVec(const MachineInstr &MI) const;
410   bool isValidAutoIncImm(const EVT VT, const int Offset) const;
411   bool isValidOffset(unsigned Opcode, int Offset,
412                      const TargetRegisterInfo *TRI, bool Extend = true) const;
413   bool isVecAcc(const MachineInstr &MI) const;
414   bool isVecALU(const MachineInstr &MI) const;
415   bool isVecUsableNextPacket(const MachineInstr &ProdMI,
416                              const MachineInstr &ConsMI) const;
417   bool isZeroExtendingLoad(const MachineInstr &MI) const;
418
419   bool addLatencyToSchedule(const MachineInstr &MI1,
420                             const MachineInstr &MI2) const;
421   bool canExecuteInBundle(const MachineInstr &First,
422                           const MachineInstr &Second) const;
423   bool doesNotReturn(const MachineInstr &CallMI) const;
424   bool hasEHLabel(const MachineBasicBlock *B) const;
425   bool hasNonExtEquivalent(const MachineInstr &MI) const;
426   bool hasPseudoInstrPair(const MachineInstr &MI) const;
427   bool hasUncondBranch(const MachineBasicBlock *B) const;
428   bool mayBeCurLoad(const MachineInstr &MI) const;
429   bool mayBeNewStore(const MachineInstr &MI) const;
430   bool producesStall(const MachineInstr &ProdMI,
431                      const MachineInstr &ConsMI) const;
432   bool producesStall(const MachineInstr &MI,
433                      MachineBasicBlock::const_instr_iterator MII) const;
434   bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const;
435   bool PredOpcodeHasJMP_c(unsigned Opcode) const;
436   bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
437
438   unsigned getAddrMode(const MachineInstr &MI) const;
439   MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset,
440                                    unsigned &AccessSize) const;
441   SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
442   unsigned getCExtOpNum(const MachineInstr &MI) const;
443   HexagonII::CompoundGroup
444   getCompoundCandidateGroup(const MachineInstr &MI) const;
445   unsigned getCompoundOpcode(const MachineInstr &GA,
446                              const MachineInstr &GB) const;
447   int getCondOpcode(int Opc, bool sense) const;
448   int getDotCurOp(const MachineInstr &MI) const;
449   int getNonDotCurOp(const MachineInstr &MI) const;
450   int getDotNewOp(const MachineInstr &MI) const;
451   int getDotNewPredJumpOp(const MachineInstr &MI,
452                           const MachineBranchProbabilityInfo *MBPI) const;
453   int getDotNewPredOp(const MachineInstr &MI,
454                       const MachineBranchProbabilityInfo *MBPI) const;
455   int getDotOldOp(const MachineInstr &MI) const;
456   HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI)
457                                                          const;
458   short getEquivalentHWInstr(const MachineInstr &MI) const;
459   unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
460                                       const MachineInstr &MI) const;
461   bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
462   unsigned getInvertedPredicatedOpcode(const int Opc) const;
463   int getMaxValue(const MachineInstr &MI) const;
464   unsigned getMemAccessSize(const MachineInstr &MI) const;
465   int getMinValue(const MachineInstr &MI) const;
466   short getNonExtOpcode(const MachineInstr &MI) const;
467   bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
468                   unsigned &PredRegPos, unsigned &PredRegFlags) const;
469   short getPseudoInstrPair(const MachineInstr &MI) const;
470   short getRegForm(const MachineInstr &MI) const;
471   unsigned getSize(const MachineInstr &MI) const;
472   uint64_t getType(const MachineInstr &MI) const;
473   unsigned getUnits(const MachineInstr &MI) const;
474
475   MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const;
476
477   /// getInstrTimingClassLatency - Compute the instruction latency of a given
478   /// instruction using Timing Class information, if available.
479   unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
480   unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;
481
482   void immediateExtend(MachineInstr &MI) const;
483   bool invertAndChangeJumpTarget(MachineInstr &MI,
484                                  MachineBasicBlock *NewTarget) const;
485   void genAllInsnTimingClasses(MachineFunction &MF) const;
486   bool reversePredSense(MachineInstr &MI) const;
487   unsigned reversePrediction(unsigned Opcode) const;
488   bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
489
490   void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const;
491   bool getBundleNoShuf(const MachineInstr &MIB) const;
492   // Addressing mode relations.
493   short changeAddrMode_abs_io(short Opc) const;
494   short changeAddrMode_io_abs(short Opc) const;
495   short changeAddrMode_io_pi(short Opc) const;
496   short changeAddrMode_io_rr(short Opc) const;
497   short changeAddrMode_pi_io(short Opc) const;
498   short changeAddrMode_rr_io(short Opc) const;
499   short changeAddrMode_rr_ur(short Opc) const;
500   short changeAddrMode_ur_rr(short Opc) const;
501
502   short changeAddrMode_abs_io(const MachineInstr &MI) const {
503     return changeAddrMode_abs_io(MI.getOpcode());
504   }
505   short changeAddrMode_io_abs(const MachineInstr &MI) const {
506     return changeAddrMode_io_abs(MI.getOpcode());
507   }
508   short changeAddrMode_io_rr(const MachineInstr &MI) const {
509     return changeAddrMode_io_rr(MI.getOpcode());
510   }
511   short changeAddrMode_rr_io(const MachineInstr &MI) const {
512     return changeAddrMode_rr_io(MI.getOpcode());
513   }
514   short changeAddrMode_rr_ur(const MachineInstr &MI) const {
515     return changeAddrMode_rr_ur(MI.getOpcode());
516   }
517   short changeAddrMode_ur_rr(const MachineInstr &MI) const {
518     return changeAddrMode_ur_rr(MI.getOpcode());
519   }
520 };
521
522 } // end namespace llvm
523
524 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H