]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Hexagon / HexagonLoopIdiomRecognition.cpp
1 //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hexagon-lir"
11
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/MemoryLocation.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils.h"
61 #include <algorithm>
62 #include <array>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstdlib>
66 #include <deque>
67 #include <functional>
68 #include <iterator>
69 #include <map>
70 #include <set>
71 #include <utility>
72 #include <vector>
73
74 using namespace llvm;
75
76 static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
77   cl::Hidden, cl::init(false),
78   cl::desc("Disable generation of memcpy in loop idiom recognition"));
79
80 static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
81   cl::Hidden, cl::init(false),
82   cl::desc("Disable generation of memmove in loop idiom recognition"));
83
84 static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
85   cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
86   "check guarding the memmove."));
87
88 static cl::opt<unsigned> CompileTimeMemSizeThreshold(
89   "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
90   cl::desc("Threshold (in bytes) to perform the transformation, if the "
91     "runtime loop count (mem transfer size) is known at compile-time."));
92
93 static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
94   cl::Hidden, cl::init(true),
95   cl::desc("Only enable generating memmove in non-nested loops"));
96
97 cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy",
98   cl::Hidden, cl::init(false),
99   cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
100
101 static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
102   cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
103
104 static const char *HexagonVolatileMemcpyName
105   = "hexagon_memcpy_forward_vp4cp4n2";
106
107
108 namespace llvm {
109
110   void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
111   Pass *createHexagonLoopIdiomPass();
112
113 } // end namespace llvm
114
115 namespace {
116
117   class HexagonLoopIdiomRecognize : public LoopPass {
118   public:
119     static char ID;
120
121     explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
122       initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
123     }
124
125     StringRef getPassName() const override {
126       return "Recognize Hexagon-specific loop idioms";
127     }
128
129    void getAnalysisUsage(AnalysisUsage &AU) const override {
130       AU.addRequired<LoopInfoWrapperPass>();
131       AU.addRequiredID(LoopSimplifyID);
132       AU.addRequiredID(LCSSAID);
133       AU.addRequired<AAResultsWrapperPass>();
134       AU.addPreserved<AAResultsWrapperPass>();
135       AU.addRequired<ScalarEvolutionWrapperPass>();
136       AU.addRequired<DominatorTreeWrapperPass>();
137       AU.addRequired<TargetLibraryInfoWrapperPass>();
138       AU.addPreserved<TargetLibraryInfoWrapperPass>();
139     }
140
141     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
142
143   private:
144     int getSCEVStride(const SCEVAddRecExpr *StoreEv);
145     bool isLegalStore(Loop *CurLoop, StoreInst *SI);
146     void collectStores(Loop *CurLoop, BasicBlock *BB,
147         SmallVectorImpl<StoreInst*> &Stores);
148     bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
149     bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
150     bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
151         SmallVectorImpl<BasicBlock*> &ExitBlocks);
152     bool runOnCountableLoop(Loop *L);
153
154     AliasAnalysis *AA;
155     const DataLayout *DL;
156     DominatorTree *DT;
157     LoopInfo *LF;
158     const TargetLibraryInfo *TLI;
159     ScalarEvolution *SE;
160     bool HasMemcpy, HasMemmove;
161   };
162
163   struct Simplifier {
164     struct Rule {
165       using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
166       Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
167       StringRef Name;   // For debugging.
168       FuncType Fn;
169     };
170
171     void addRule(StringRef N, const Rule::FuncType &F) {
172       Rules.push_back(Rule(N, F));
173     }
174
175   private:
176     struct WorkListType {
177       WorkListType() = default;
178
179       void push_back(Value* V) {
180         // Do not push back duplicates.
181         if (!S.count(V)) { Q.push_back(V); S.insert(V); }
182       }
183
184       Value *pop_front_val() {
185         Value *V = Q.front(); Q.pop_front(); S.erase(V);
186         return V;
187       }
188
189       bool empty() const { return Q.empty(); }
190
191     private:
192       std::deque<Value*> Q;
193       std::set<Value*> S;
194     };
195
196     using ValueSetType = std::set<Value *>;
197
198     std::vector<Rule> Rules;
199
200   public:
201     struct Context {
202       using ValueMapType = DenseMap<Value *, Value *>;
203
204       Value *Root;
205       ValueSetType Used;    // The set of all cloned values used by Root.
206       ValueSetType Clones;  // The set of all cloned values.
207       LLVMContext &Ctx;
208
209       Context(Instruction *Exp)
210         : Ctx(Exp->getParent()->getParent()->getContext()) {
211         initialize(Exp);
212       }
213
214       ~Context() { cleanup(); }
215
216       void print(raw_ostream &OS, const Value *V) const;
217       Value *materialize(BasicBlock *B, BasicBlock::iterator At);
218
219     private:
220       friend struct Simplifier;
221
222       void initialize(Instruction *Exp);
223       void cleanup();
224
225       template <typename FuncT> void traverse(Value *V, FuncT F);
226       void record(Value *V);
227       void use(Value *V);
228       void unuse(Value *V);
229
230       bool equal(const Instruction *I, const Instruction *J) const;
231       Value *find(Value *Tree, Value *Sub) const;
232       Value *subst(Value *Tree, Value *OldV, Value *NewV);
233       void replace(Value *OldV, Value *NewV);
234       void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
235     };
236
237     Value *simplify(Context &C);
238   };
239
240   struct PE {
241     PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
242
243     const Simplifier::Context &C;
244     const Value *V;
245   };
246
247   LLVM_ATTRIBUTE_USED
248   raw_ostream &operator<<(raw_ostream &OS, const PE &P) {
249     P.C.print(OS, P.V ? P.V : P.C.Root);
250     return OS;
251   }
252
253 } // end anonymous namespace
254
255 char HexagonLoopIdiomRecognize::ID = 0;
256
257 INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
258     "Recognize Hexagon-specific loop idioms", false, false)
259 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
260 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
261 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
262 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
263 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
264 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
265 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
266 INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
267     "Recognize Hexagon-specific loop idioms", false, false)
268
269 template <typename FuncT>
270 void Simplifier::Context::traverse(Value *V, FuncT F) {
271   WorkListType Q;
272   Q.push_back(V);
273
274   while (!Q.empty()) {
275     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
276     if (!U || U->getParent())
277       continue;
278     if (!F(U))
279       continue;
280     for (Value *Op : U->operands())
281       Q.push_back(Op);
282   }
283 }
284
285 void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
286   const auto *U = dyn_cast<const Instruction>(V);
287   if (!U) {
288     OS << V << '(' << *V << ')';
289     return;
290   }
291
292   if (U->getParent()) {
293     OS << U << '(';
294     U->printAsOperand(OS, true);
295     OS << ')';
296     return;
297   }
298
299   unsigned N = U->getNumOperands();
300   if (N != 0)
301     OS << U << '(';
302   OS << U->getOpcodeName();
303   for (const Value *Op : U->operands()) {
304     OS << ' ';
305     print(OS, Op);
306   }
307   if (N != 0)
308     OS << ')';
309 }
310
311 void Simplifier::Context::initialize(Instruction *Exp) {
312   // Perform a deep clone of the expression, set Root to the root
313   // of the clone, and build a map from the cloned values to the
314   // original ones.
315   ValueMapType M;
316   BasicBlock *Block = Exp->getParent();
317   WorkListType Q;
318   Q.push_back(Exp);
319
320   while (!Q.empty()) {
321     Value *V = Q.pop_front_val();
322     if (M.find(V) != M.end())
323       continue;
324     if (Instruction *U = dyn_cast<Instruction>(V)) {
325       if (isa<PHINode>(U) || U->getParent() != Block)
326         continue;
327       for (Value *Op : U->operands())
328         Q.push_back(Op);
329       M.insert({U, U->clone()});
330     }
331   }
332
333   for (std::pair<Value*,Value*> P : M) {
334     Instruction *U = cast<Instruction>(P.second);
335     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
336       auto F = M.find(U->getOperand(i));
337       if (F != M.end())
338         U->setOperand(i, F->second);
339     }
340   }
341
342   auto R = M.find(Exp);
343   assert(R != M.end());
344   Root = R->second;
345
346   record(Root);
347   use(Root);
348 }
349
350 void Simplifier::Context::record(Value *V) {
351   auto Record = [this](Instruction *U) -> bool {
352     Clones.insert(U);
353     return true;
354   };
355   traverse(V, Record);
356 }
357
358 void Simplifier::Context::use(Value *V) {
359   auto Use = [this](Instruction *U) -> bool {
360     Used.insert(U);
361     return true;
362   };
363   traverse(V, Use);
364 }
365
366 void Simplifier::Context::unuse(Value *V) {
367   if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
368     return;
369
370   auto Unuse = [this](Instruction *U) -> bool {
371     if (!U->use_empty())
372       return false;
373     Used.erase(U);
374     return true;
375   };
376   traverse(V, Unuse);
377 }
378
379 Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
380   if (Tree == OldV)
381     return NewV;
382   if (OldV == NewV)
383     return Tree;
384
385   WorkListType Q;
386   Q.push_back(Tree);
387   while (!Q.empty()) {
388     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
389     // If U is not an instruction, or it's not a clone, skip it.
390     if (!U || U->getParent())
391       continue;
392     for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
393       Value *Op = U->getOperand(i);
394       if (Op == OldV) {
395         U->setOperand(i, NewV);
396         unuse(OldV);
397       } else {
398         Q.push_back(Op);
399       }
400     }
401   }
402   return Tree;
403 }
404
405 void Simplifier::Context::replace(Value *OldV, Value *NewV) {
406   if (Root == OldV) {
407     Root = NewV;
408     use(Root);
409     return;
410   }
411
412   // NewV may be a complex tree that has just been created by one of the
413   // transformation rules. We need to make sure that it is commoned with
414   // the existing Root to the maximum extent possible.
415   // Identify all subtrees of NewV (including NewV itself) that have
416   // equivalent counterparts in Root, and replace those subtrees with
417   // these counterparts.
418   WorkListType Q;
419   Q.push_back(NewV);
420   while (!Q.empty()) {
421     Value *V = Q.pop_front_val();
422     Instruction *U = dyn_cast<Instruction>(V);
423     if (!U || U->getParent())
424       continue;
425     if (Value *DupV = find(Root, V)) {
426       if (DupV != V)
427         NewV = subst(NewV, V, DupV);
428     } else {
429       for (Value *Op : U->operands())
430         Q.push_back(Op);
431     }
432   }
433
434   // Now, simply replace OldV with NewV in Root.
435   Root = subst(Root, OldV, NewV);
436   use(Root);
437 }
438
439 void Simplifier::Context::cleanup() {
440   for (Value *V : Clones) {
441     Instruction *U = cast<Instruction>(V);
442     if (!U->getParent())
443       U->dropAllReferences();
444   }
445
446   for (Value *V : Clones) {
447     Instruction *U = cast<Instruction>(V);
448     if (!U->getParent())
449       U->deleteValue();
450   }
451 }
452
453 bool Simplifier::Context::equal(const Instruction *I,
454                                 const Instruction *J) const {
455   if (I == J)
456     return true;
457   if (!I->isSameOperationAs(J))
458     return false;
459   if (isa<PHINode>(I))
460     return I->isIdenticalTo(J);
461
462   for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
463     Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
464     if (OpI == OpJ)
465       continue;
466     auto *InI = dyn_cast<const Instruction>(OpI);
467     auto *InJ = dyn_cast<const Instruction>(OpJ);
468     if (InI && InJ) {
469       if (!equal(InI, InJ))
470         return false;
471     } else if (InI != InJ || !InI)
472       return false;
473   }
474   return true;
475 }
476
477 Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
478   Instruction *SubI = dyn_cast<Instruction>(Sub);
479   WorkListType Q;
480   Q.push_back(Tree);
481
482   while (!Q.empty()) {
483     Value *V = Q.pop_front_val();
484     if (V == Sub)
485       return V;
486     Instruction *U = dyn_cast<Instruction>(V);
487     if (!U || U->getParent())
488       continue;
489     if (SubI && equal(SubI, U))
490       return U;
491     assert(!isa<PHINode>(U));
492     for (Value *Op : U->operands())
493       Q.push_back(Op);
494   }
495   return nullptr;
496 }
497
498 void Simplifier::Context::link(Instruction *I, BasicBlock *B,
499       BasicBlock::iterator At) {
500   if (I->getParent())
501     return;
502
503   for (Value *Op : I->operands()) {
504     if (Instruction *OpI = dyn_cast<Instruction>(Op))
505       link(OpI, B, At);
506   }
507
508   B->getInstList().insert(At, I);
509 }
510
511 Value *Simplifier::Context::materialize(BasicBlock *B,
512       BasicBlock::iterator At) {
513   if (Instruction *RootI = dyn_cast<Instruction>(Root))
514     link(RootI, B, At);
515   return Root;
516 }
517
518 Value *Simplifier::simplify(Context &C) {
519   WorkListType Q;
520   Q.push_back(C.Root);
521   unsigned Count = 0;
522   const unsigned Limit = SimplifyLimit;
523
524   while (!Q.empty()) {
525     if (Count++ >= Limit)
526       break;
527     Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
528     if (!U || U->getParent() || !C.Used.count(U))
529       continue;
530     bool Changed = false;
531     for (Rule &R : Rules) {
532       Value *W = R.Fn(U, C.Ctx);
533       if (!W)
534         continue;
535       Changed = true;
536       C.record(W);
537       C.replace(U, W);
538       Q.push_back(C.Root);
539       break;
540     }
541     if (!Changed) {
542       for (Value *Op : U->operands())
543         Q.push_back(Op);
544     }
545   }
546   return Count < Limit ? C.Root : nullptr;
547 }
548
549 //===----------------------------------------------------------------------===//
550 //
551 //          Implementation of PolynomialMultiplyRecognize
552 //
553 //===----------------------------------------------------------------------===//
554
555 namespace {
556
557   class PolynomialMultiplyRecognize {
558   public:
559     explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
560         const DominatorTree &dt, const TargetLibraryInfo &tli,
561         ScalarEvolution &se)
562       : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
563
564     bool recognize();
565
566   private:
567     using ValueSeq = SetVector<Value *>;
568
569     IntegerType *getPmpyType() const {
570       LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
571       return IntegerType::get(Ctx, 32);
572     }
573
574     bool isPromotableTo(Value *V, IntegerType *Ty);
575     void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
576     bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
577
578     Value *getCountIV(BasicBlock *BB);
579     bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
580     void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
581           ValueSeq &Late);
582     bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
583     bool commutesWithShift(Instruction *I);
584     bool highBitsAreZero(Value *V, unsigned IterCount);
585     bool keepsHighBitsZero(Value *V, unsigned IterCount);
586     bool isOperandShifted(Instruction *I, Value *Op);
587     bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
588           unsigned IterCount);
589     void cleanupLoopBody(BasicBlock *LoopB);
590
591     struct ParsedValues {
592       ParsedValues() = default;
593
594       Value *M = nullptr;
595       Value *P = nullptr;
596       Value *Q = nullptr;
597       Value *R = nullptr;
598       Value *X = nullptr;
599       Instruction *Res = nullptr;
600       unsigned IterCount = 0;
601       bool Left = false;
602       bool Inv = false;
603     };
604
605     bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
606     bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
607     bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
608           Value *CIV, ParsedValues &PV, bool PreScan);
609     unsigned getInverseMxN(unsigned QP);
610     Value *generate(BasicBlock::iterator At, ParsedValues &PV);
611
612     void setupPreSimplifier(Simplifier &S);
613     void setupPostSimplifier(Simplifier &S);
614
615     Loop *CurLoop;
616     const DataLayout &DL;
617     const DominatorTree &DT;
618     const TargetLibraryInfo &TLI;
619     ScalarEvolution &SE;
620   };
621
622 } // end anonymous namespace
623
624 Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
625   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
626   if (std::distance(PI, PE) != 2)
627     return nullptr;
628   BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
629
630   for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
631     auto *PN = cast<PHINode>(I);
632     Value *InitV = PN->getIncomingValueForBlock(PB);
633     if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
634       continue;
635     Value *IterV = PN->getIncomingValueForBlock(BB);
636     if (!isa<BinaryOperator>(IterV))
637       continue;
638     auto *BO = dyn_cast<BinaryOperator>(IterV);
639     if (BO->getOpcode() != Instruction::Add)
640       continue;
641     Value *IncV = nullptr;
642     if (BO->getOperand(0) == PN)
643       IncV = BO->getOperand(1);
644     else if (BO->getOperand(1) == PN)
645       IncV = BO->getOperand(0);
646     if (IncV == nullptr)
647       continue;
648
649     if (auto *T = dyn_cast<ConstantInt>(IncV))
650       if (T->getZExtValue() == 1)
651         return PN;
652   }
653   return nullptr;
654 }
655
656 static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
657   for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
658     Use &TheUse = UI.getUse();
659     ++UI;
660     if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
661       if (BB == II->getParent())
662         II->replaceUsesOfWith(I, J);
663   }
664 }
665
666 bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
667       Value *CIV, ParsedValues &PV) {
668   // Match the following:
669   //   select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
670   //   select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
671   // The condition may also check for equality with the masked value, i.e
672   //   select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
673   //   select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
674
675   Value *CondV = SelI->getCondition();
676   Value *TrueV = SelI->getTrueValue();
677   Value *FalseV = SelI->getFalseValue();
678
679   using namespace PatternMatch;
680
681   CmpInst::Predicate P;
682   Value *A = nullptr, *B = nullptr, *C = nullptr;
683
684   if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
685       !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
686     return false;
687   if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
688     return false;
689   // Matched: select (A & B) == C ? ... : ...
690   //          select (A & B) != C ? ... : ...
691
692   Value *X = nullptr, *Sh1 = nullptr;
693   // Check (A & B) for (X & (1 << i)):
694   if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
695     Sh1 = A;
696     X = B;
697   } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
698     Sh1 = B;
699     X = A;
700   } else {
701     // TODO: Could also check for an induction variable containing single
702     // bit shifted left by 1 in each iteration.
703     return false;
704   }
705
706   bool TrueIfZero;
707
708   // Check C against the possible values for comparison: 0 and (1 << i):
709   if (match(C, m_Zero()))
710     TrueIfZero = (P == CmpInst::ICMP_EQ);
711   else if (C == Sh1)
712     TrueIfZero = (P == CmpInst::ICMP_NE);
713   else
714     return false;
715
716   // So far, matched:
717   //   select (X & (1 << i)) ? ... : ...
718   // including variations of the check against zero/non-zero value.
719
720   Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
721   if (TrueIfZero) {
722     ShouldSameV = TrueV;
723     ShouldXoredV = FalseV;
724   } else {
725     ShouldSameV = FalseV;
726     ShouldXoredV = TrueV;
727   }
728
729   Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
730   Value *T = nullptr;
731   if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
732     // Matched: select +++ ? ... : Y ^ Z
733     //          select +++ ? Y ^ Z : ...
734     // where +++ denotes previously checked matches.
735     if (ShouldSameV == Y)
736       T = Z;
737     else if (ShouldSameV == Z)
738       T = Y;
739     else
740       return false;
741     R = ShouldSameV;
742     // Matched: select +++ ? R : R ^ T
743     //          select +++ ? R ^ T : R
744     // depending on TrueIfZero.
745
746   } else if (match(ShouldSameV, m_Zero())) {
747     // Matched: select +++ ? 0 : ...
748     //          select +++ ? ... : 0
749     if (!SelI->hasOneUse())
750       return false;
751     T = ShouldXoredV;
752     // Matched: select +++ ? 0 : T
753     //          select +++ ? T : 0
754
755     Value *U = *SelI->user_begin();
756     if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
757         !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
758       return false;
759     // Matched: xor (select +++ ? 0 : T), R
760     //          xor (select +++ ? T : 0), R
761   } else
762     return false;
763
764   // The xor input value T is isolated into its own match so that it could
765   // be checked against an induction variable containing a shifted bit
766   // (todo).
767   // For now, check against (Q << i).
768   if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
769       !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
770     return false;
771   // Matched: select +++ ? R : R ^ (Q << i)
772   //          select +++ ? R ^ (Q << i) : R
773
774   PV.X = X;
775   PV.Q = Q;
776   PV.R = R;
777   PV.Left = true;
778   return true;
779 }
780
781 bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
782       ParsedValues &PV) {
783   // Match the following:
784   //   select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
785   //   select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
786   // The condition may also check for equality with the masked value, i.e
787   //   select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
788   //   select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
789
790   Value *CondV = SelI->getCondition();
791   Value *TrueV = SelI->getTrueValue();
792   Value *FalseV = SelI->getFalseValue();
793
794   using namespace PatternMatch;
795
796   Value *C = nullptr;
797   CmpInst::Predicate P;
798   bool TrueIfZero;
799
800   if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
801       match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
802     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
803       return false;
804     // Matched: select C == 0 ? ... : ...
805     //          select C != 0 ? ... : ...
806     TrueIfZero = (P == CmpInst::ICMP_EQ);
807   } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
808              match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
809     if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
810       return false;
811     // Matched: select C == 1 ? ... : ...
812     //          select C != 1 ? ... : ...
813     TrueIfZero = (P == CmpInst::ICMP_NE);
814   } else
815     return false;
816
817   Value *X = nullptr;
818   if (!match(C, m_And(m_Value(X), m_One())) &&
819       !match(C, m_And(m_One(), m_Value(X))))
820     return false;
821   // Matched: select (X & 1) == +++ ? ... : ...
822   //          select (X & 1) != +++ ? ... : ...
823
824   Value *R = nullptr, *Q = nullptr;
825   if (TrueIfZero) {
826     // The select's condition is true if the tested bit is 0.
827     // TrueV must be the shift, FalseV must be the xor.
828     if (!match(TrueV, m_LShr(m_Value(R), m_One())))
829       return false;
830     // Matched: select +++ ? (R >> 1) : ...
831     if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
832         !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
833       return false;
834     // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
835     // with commuting ^.
836   } else {
837     // The select's condition is true if the tested bit is 1.
838     // TrueV must be the xor, FalseV must be the shift.
839     if (!match(FalseV, m_LShr(m_Value(R), m_One())))
840       return false;
841     // Matched: select +++ ? ... : (R >> 1)
842     if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
843         !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
844       return false;
845     // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
846     // with commuting ^.
847   }
848
849   PV.X = X;
850   PV.Q = Q;
851   PV.R = R;
852   PV.Left = false;
853   return true;
854 }
855
856 bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
857       BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
858       bool PreScan) {
859   using namespace PatternMatch;
860
861   // The basic pattern for R = P.Q is:
862   // for i = 0..31
863   //   R = phi (0, R')
864   //   if (P & (1 << i))        ; test-bit(P, i)
865   //     R' = R ^ (Q << i)
866   //
867   // Similarly, the basic pattern for R = (P/Q).Q - P
868   // for i = 0..31
869   //   R = phi(P, R')
870   //   if (R & (1 << i))
871   //     R' = R ^ (Q << i)
872
873   // There exist idioms, where instead of Q being shifted left, P is shifted
874   // right. This produces a result that is shifted right by 32 bits (the
875   // non-shifted result is 64-bit).
876   //
877   // For R = P.Q, this would be:
878   // for i = 0..31
879   //   R = phi (0, R')
880   //   if ((P >> i) & 1)
881   //     R' = (R >> 1) ^ Q      ; R is cycled through the loop, so it must
882   //   else                     ; be shifted by 1, not i.
883   //     R' = R >> 1
884   //
885   // And for the inverse:
886   // for i = 0..31
887   //   R = phi (P, R')
888   //   if (R & 1)
889   //     R' = (R >> 1) ^ Q
890   //   else
891   //     R' = R >> 1
892
893   // The left-shifting idioms share the same pattern:
894   //   select (X & (1 << i)) ? R ^ (Q << i) : R
895   // Similarly for right-shifting idioms:
896   //   select (X & 1) ? (R >> 1) ^ Q
897
898   if (matchLeftShift(SelI, CIV, PV)) {
899     // If this is a pre-scan, getting this far is sufficient.
900     if (PreScan)
901       return true;
902
903     // Need to make sure that the SelI goes back into R.
904     auto *RPhi = dyn_cast<PHINode>(PV.R);
905     if (!RPhi)
906       return false;
907     if (SelI != RPhi->getIncomingValueForBlock(LoopB))
908       return false;
909     PV.Res = SelI;
910
911     // If X is loop invariant, it must be the input polynomial, and the
912     // idiom is the basic polynomial multiply.
913     if (CurLoop->isLoopInvariant(PV.X)) {
914       PV.P = PV.X;
915       PV.Inv = false;
916     } else {
917       // X is not loop invariant. If X == R, this is the inverse pmpy.
918       // Otherwise, check for an xor with an invariant value. If the
919       // variable argument to the xor is R, then this is still a valid
920       // inverse pmpy.
921       PV.Inv = true;
922       if (PV.X != PV.R) {
923         Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
924         if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
925           return false;
926         auto *I1 = dyn_cast<Instruction>(X1);
927         auto *I2 = dyn_cast<Instruction>(X2);
928         if (!I1 || I1->getParent() != LoopB) {
929           Var = X2;
930           Inv = X1;
931         } else if (!I2 || I2->getParent() != LoopB) {
932           Var = X1;
933           Inv = X2;
934         } else
935           return false;
936         if (Var != PV.R)
937           return false;
938         PV.M = Inv;
939       }
940       // The input polynomial P still needs to be determined. It will be
941       // the entry value of R.
942       Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
943       PV.P = EntryP;
944     }
945
946     return true;
947   }
948
949   if (matchRightShift(SelI, PV)) {
950     // If this is an inverse pattern, the Q polynomial must be known at
951     // compile time.
952     if (PV.Inv && !isa<ConstantInt>(PV.Q))
953       return false;
954     if (PreScan)
955       return true;
956     // There is no exact matching of right-shift pmpy.
957     return false;
958   }
959
960   return false;
961 }
962
963 bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
964       IntegerType *DestTy) {
965   IntegerType *T = dyn_cast<IntegerType>(Val->getType());
966   if (!T || T->getBitWidth() > DestTy->getBitWidth())
967     return false;
968   if (T->getBitWidth() == DestTy->getBitWidth())
969     return true;
970   // Non-instructions are promotable. The reason why an instruction may not
971   // be promotable is that it may produce a different result if its operands
972   // and the result are promoted, for example, it may produce more non-zero
973   // bits. While it would still be possible to represent the proper result
974   // in a wider type, it may require adding additional instructions (which
975   // we don't want to do).
976   Instruction *In = dyn_cast<Instruction>(Val);
977   if (!In)
978     return true;
979   // The bitwidth of the source type is smaller than the destination.
980   // Check if the individual operation can be promoted.
981   switch (In->getOpcode()) {
982     case Instruction::PHI:
983     case Instruction::ZExt:
984     case Instruction::And:
985     case Instruction::Or:
986     case Instruction::Xor:
987     case Instruction::LShr: // Shift right is ok.
988     case Instruction::Select:
989     case Instruction::Trunc:
990       return true;
991     case Instruction::ICmp:
992       if (CmpInst *CI = cast<CmpInst>(In))
993         return CI->isEquality() || CI->isUnsigned();
994       llvm_unreachable("Cast failed unexpectedly");
995     case Instruction::Add:
996       return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
997   }
998   return false;
999 }
1000
1001 void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1002       IntegerType *DestTy, BasicBlock *LoopB) {
1003   Type *OrigTy = In->getType();
1004
1005   // Leave boolean values alone.
1006   if (!In->getType()->isIntegerTy(1))
1007     In->mutateType(DestTy);
1008   unsigned DestBW = DestTy->getBitWidth();
1009
1010   // Handle PHIs.
1011   if (PHINode *P = dyn_cast<PHINode>(In)) {
1012     unsigned N = P->getNumIncomingValues();
1013     for (unsigned i = 0; i != N; ++i) {
1014       BasicBlock *InB = P->getIncomingBlock(i);
1015       if (InB == LoopB)
1016         continue;
1017       Value *InV = P->getIncomingValue(i);
1018       IntegerType *Ty = cast<IntegerType>(InV->getType());
1019       // Do not promote values in PHI nodes of type i1.
1020       if (Ty != P->getType()) {
1021         // If the value type does not match the PHI type, the PHI type
1022         // must have been promoted.
1023         assert(Ty->getBitWidth() < DestBW);
1024         InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1025         P->setIncomingValue(i, InV);
1026       }
1027     }
1028   } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1029     Value *Op = Z->getOperand(0);
1030     if (Op->getType() == Z->getType())
1031       Z->replaceAllUsesWith(Op);
1032     Z->eraseFromParent();
1033     return;
1034   }
1035   if (TruncInst *T = dyn_cast<TruncInst>(In)) {
1036     IntegerType *TruncTy = cast<IntegerType>(OrigTy);
1037     Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1);
1038     Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask);
1039     T->replaceAllUsesWith(And);
1040     T->eraseFromParent();
1041     return;
1042   }
1043
1044   // Promote immediates.
1045   for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1046     if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1047       if (CI->getType()->getBitWidth() < DestBW)
1048         In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1049   }
1050 }
1051
1052 bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1053       BasicBlock *ExitB) {
1054   assert(LoopB);
1055   // Skip loops where the exit block has more than one predecessor. The values
1056   // coming from the loop block will be promoted to another type, and so the
1057   // values coming into the exit block from other predecessors would also have
1058   // to be promoted.
1059   if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1060     return false;
1061   IntegerType *DestTy = getPmpyType();
1062   // Check if the exit values have types that are no wider than the type
1063   // that we want to promote to.
1064   unsigned DestBW = DestTy->getBitWidth();
1065   for (PHINode &P : ExitB->phis()) {
1066     if (P.getNumIncomingValues() != 1)
1067       return false;
1068     assert(P.getIncomingBlock(0) == LoopB);
1069     IntegerType *T = dyn_cast<IntegerType>(P.getType());
1070     if (!T || T->getBitWidth() > DestBW)
1071       return false;
1072   }
1073
1074   // Check all instructions in the loop.
1075   for (Instruction &In : *LoopB)
1076     if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1077       return false;
1078
1079   // Perform the promotion.
1080   std::vector<Instruction*> LoopIns;
1081   std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1082                  [](Instruction &In) { return &In; });
1083   for (Instruction *In : LoopIns)
1084     promoteTo(In, DestTy, LoopB);
1085
1086   // Fix up the PHI nodes in the exit block.
1087   Instruction *EndI = ExitB->getFirstNonPHI();
1088   BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1089   for (auto I = ExitB->begin(); I != End; ++I) {
1090     PHINode *P = dyn_cast<PHINode>(I);
1091     if (!P)
1092       break;
1093     Type *Ty0 = P->getIncomingValue(0)->getType();
1094     Type *PTy = P->getType();
1095     if (PTy != Ty0) {
1096       assert(Ty0 == DestTy);
1097       // In order to create the trunc, P must have the promoted type.
1098       P->mutateType(Ty0);
1099       Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1100       // In order for the RAUW to work, the types of P and T must match.
1101       P->mutateType(PTy);
1102       P->replaceAllUsesWith(T);
1103       // Final update of the P's type.
1104       P->mutateType(Ty0);
1105       cast<Instruction>(T)->setOperand(0, P);
1106     }
1107   }
1108
1109   return true;
1110 }
1111
1112 bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1113       ValueSeq &Cycle) {
1114   // Out = ..., In, ...
1115   if (Out == In)
1116     return true;
1117
1118   auto *BB = cast<Instruction>(Out)->getParent();
1119   bool HadPhi = false;
1120
1121   for (auto U : Out->users()) {
1122     auto *I = dyn_cast<Instruction>(&*U);
1123     if (I == nullptr || I->getParent() != BB)
1124       continue;
1125     // Make sure that there are no multi-iteration cycles, e.g.
1126     //   p1 = phi(p2)
1127     //   p2 = phi(p1)
1128     // The cycle p1->p2->p1 would span two loop iterations.
1129     // Check that there is only one phi in the cycle.
1130     bool IsPhi = isa<PHINode>(I);
1131     if (IsPhi && HadPhi)
1132       return false;
1133     HadPhi |= IsPhi;
1134     if (Cycle.count(I))
1135       return false;
1136     Cycle.insert(I);
1137     if (findCycle(I, In, Cycle))
1138       break;
1139     Cycle.remove(I);
1140   }
1141   return !Cycle.empty();
1142 }
1143
1144 void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1145       ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1146   // All the values in the cycle that are between the phi node and the
1147   // divider instruction will be classified as "early", all other values
1148   // will be "late".
1149
1150   bool IsE = true;
1151   unsigned I, N = Cycle.size();
1152   for (I = 0; I < N; ++I) {
1153     Value *V = Cycle[I];
1154     if (DivI == V)
1155       IsE = false;
1156     else if (!isa<PHINode>(V))
1157       continue;
1158     // Stop if found either.
1159     break;
1160   }
1161   // "I" is the index of either DivI or the phi node, whichever was first.
1162   // "E" is "false" or "true" respectively.
1163   ValueSeq &First = !IsE ? Early : Late;
1164   for (unsigned J = 0; J < I; ++J)
1165     First.insert(Cycle[J]);
1166
1167   ValueSeq &Second = IsE ? Early : Late;
1168   Second.insert(Cycle[I]);
1169   for (++I; I < N; ++I) {
1170     Value *V = Cycle[I];
1171     if (DivI == V || isa<PHINode>(V))
1172       break;
1173     Second.insert(V);
1174   }
1175
1176   for (; I < N; ++I)
1177     First.insert(Cycle[I]);
1178 }
1179
1180 bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1181       ValueSeq &Early, ValueSeq &Late) {
1182   // Select is an exception, since the condition value does not have to be
1183   // classified in the same way as the true/false values. The true/false
1184   // values do have to be both early or both late.
1185   if (UseI->getOpcode() == Instruction::Select) {
1186     Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1187     if (Early.count(TV) || Early.count(FV)) {
1188       if (Late.count(TV) || Late.count(FV))
1189         return false;
1190       Early.insert(UseI);
1191     } else if (Late.count(TV) || Late.count(FV)) {
1192       if (Early.count(TV) || Early.count(FV))
1193         return false;
1194       Late.insert(UseI);
1195     }
1196     return true;
1197   }
1198
1199   // Not sure what would be the example of this, but the code below relies
1200   // on having at least one operand.
1201   if (UseI->getNumOperands() == 0)
1202     return true;
1203
1204   bool AE = true, AL = true;
1205   for (auto &I : UseI->operands()) {
1206     if (Early.count(&*I))
1207       AL = false;
1208     else if (Late.count(&*I))
1209       AE = false;
1210   }
1211   // If the operands appear "all early" and "all late" at the same time,
1212   // then it means that none of them are actually classified as either.
1213   // This is harmless.
1214   if (AE && AL)
1215     return true;
1216   // Conversely, if they are neither "all early" nor "all late", then
1217   // we have a mixture of early and late operands that is not a known
1218   // exception.
1219   if (!AE && !AL)
1220     return false;
1221
1222   // Check that we have covered the two special cases.
1223   assert(AE != AL);
1224
1225   if (AE)
1226     Early.insert(UseI);
1227   else
1228     Late.insert(UseI);
1229   return true;
1230 }
1231
1232 bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1233   switch (I->getOpcode()) {
1234     case Instruction::And:
1235     case Instruction::Or:
1236     case Instruction::Xor:
1237     case Instruction::LShr:
1238     case Instruction::Shl:
1239     case Instruction::Select:
1240     case Instruction::ICmp:
1241     case Instruction::PHI:
1242       break;
1243     default:
1244       return false;
1245   }
1246   return true;
1247 }
1248
1249 bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1250       unsigned IterCount) {
1251   auto *T = dyn_cast<IntegerType>(V->getType());
1252   if (!T)
1253     return false;
1254
1255   KnownBits Known(T->getBitWidth());
1256   computeKnownBits(V, Known, DL);
1257   return Known.countMinLeadingZeros() >= IterCount;
1258 }
1259
1260 bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1261       unsigned IterCount) {
1262   // Assume that all inputs to the value have the high bits zero.
1263   // Check if the value itself preserves the zeros in the high bits.
1264   if (auto *C = dyn_cast<ConstantInt>(V))
1265     return C->getValue().countLeadingZeros() >= IterCount;
1266
1267   if (auto *I = dyn_cast<Instruction>(V)) {
1268     switch (I->getOpcode()) {
1269       case Instruction::And:
1270       case Instruction::Or:
1271       case Instruction::Xor:
1272       case Instruction::LShr:
1273       case Instruction::Select:
1274       case Instruction::ICmp:
1275       case Instruction::PHI:
1276       case Instruction::ZExt:
1277         return true;
1278     }
1279   }
1280
1281   return false;
1282 }
1283
1284 bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1285   unsigned Opc = I->getOpcode();
1286   if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1287     return Op != I->getOperand(1);
1288   return true;
1289 }
1290
1291 bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1292       BasicBlock *ExitB, unsigned IterCount) {
1293   Value *CIV = getCountIV(LoopB);
1294   if (CIV == nullptr)
1295     return false;
1296   auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1297   if (CIVTy == nullptr)
1298     return false;
1299
1300   ValueSeq RShifts;
1301   ValueSeq Early, Late, Cycled;
1302
1303   // Find all value cycles that contain logical right shifts by 1.
1304   for (Instruction &I : *LoopB) {
1305     using namespace PatternMatch;
1306
1307     Value *V = nullptr;
1308     if (!match(&I, m_LShr(m_Value(V), m_One())))
1309       continue;
1310     ValueSeq C;
1311     if (!findCycle(&I, V, C))
1312       continue;
1313
1314     // Found a cycle.
1315     C.insert(&I);
1316     classifyCycle(&I, C, Early, Late);
1317     Cycled.insert(C.begin(), C.end());
1318     RShifts.insert(&I);
1319   }
1320
1321   // Find the set of all values affected by the shift cycles, i.e. all
1322   // cycled values, and (recursively) all their users.
1323   ValueSeq Users(Cycled.begin(), Cycled.end());
1324   for (unsigned i = 0; i < Users.size(); ++i) {
1325     Value *V = Users[i];
1326     if (!isa<IntegerType>(V->getType()))
1327       return false;
1328     auto *R = cast<Instruction>(V);
1329     // If the instruction does not commute with shifts, the loop cannot
1330     // be unshifted.
1331     if (!commutesWithShift(R))
1332       return false;
1333     for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
1334       auto *T = cast<Instruction>(*I);
1335       // Skip users from outside of the loop. They will be handled later.
1336       // Also, skip the right-shifts and phi nodes, since they mix early
1337       // and late values.
1338       if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1339         continue;
1340
1341       Users.insert(T);
1342       if (!classifyInst(T, Early, Late))
1343         return false;
1344     }
1345   }
1346
1347   if (Users.empty())
1348     return false;
1349
1350   // Verify that high bits remain zero.
1351   ValueSeq Internal(Users.begin(), Users.end());
1352   ValueSeq Inputs;
1353   for (unsigned i = 0; i < Internal.size(); ++i) {
1354     auto *R = dyn_cast<Instruction>(Internal[i]);
1355     if (!R)
1356       continue;
1357     for (Value *Op : R->operands()) {
1358       auto *T = dyn_cast<Instruction>(Op);
1359       if (T && T->getParent() != LoopB)
1360         Inputs.insert(Op);
1361       else
1362         Internal.insert(Op);
1363     }
1364   }
1365   for (Value *V : Inputs)
1366     if (!highBitsAreZero(V, IterCount))
1367       return false;
1368   for (Value *V : Internal)
1369     if (!keepsHighBitsZero(V, IterCount))
1370       return false;
1371
1372   // Finally, the work can be done. Unshift each user.
1373   IRBuilder<> IRB(LoopB);
1374   std::map<Value*,Value*> ShiftMap;
1375
1376   using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1377
1378   CastMapType CastMap;
1379
1380   auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1381         IntegerType *Ty) -> Value* {
1382     auto H = CM.find(std::make_pair(V, Ty));
1383     if (H != CM.end())
1384       return H->second;
1385     Value *CV = IRB.CreateIntCast(V, Ty, false);
1386     CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1387     return CV;
1388   };
1389
1390   for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
1391     using namespace PatternMatch;
1392
1393     if (isa<PHINode>(I) || !Users.count(&*I))
1394       continue;
1395
1396     // Match lshr x, 1.
1397     Value *V = nullptr;
1398     if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1399       replaceAllUsesOfWithIn(&*I, V, LoopB);
1400       continue;
1401     }
1402     // For each non-cycled operand, replace it with the corresponding
1403     // value shifted left.
1404     for (auto &J : I->operands()) {
1405       Value *Op = J.get();
1406       if (!isOperandShifted(&*I, Op))
1407         continue;
1408       if (Users.count(Op))
1409         continue;
1410       // Skip shifting zeros.
1411       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1412         continue;
1413       // Check if we have already generated a shift for this value.
1414       auto F = ShiftMap.find(Op);
1415       Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1416       if (W == nullptr) {
1417         IRB.SetInsertPoint(&*I);
1418         // First, the shift amount will be CIV or CIV+1, depending on
1419         // whether the value is early or late. Instead of creating CIV+1,
1420         // do a single shift of the value.
1421         Value *ShAmt = CIV, *ShVal = Op;
1422         auto *VTy = cast<IntegerType>(ShVal->getType());
1423         auto *ATy = cast<IntegerType>(ShAmt->getType());
1424         if (Late.count(&*I))
1425           ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1426         // Second, the types of the shifted value and the shift amount
1427         // must match.
1428         if (VTy != ATy) {
1429           if (VTy->getBitWidth() < ATy->getBitWidth())
1430             ShVal = upcast(CastMap, IRB, ShVal, ATy);
1431           else
1432             ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1433         }
1434         // Ready to generate the shift and memoize it.
1435         W = IRB.CreateShl(ShVal, ShAmt);
1436         ShiftMap.insert(std::make_pair(Op, W));
1437       }
1438       I->replaceUsesOfWith(Op, W);
1439     }
1440   }
1441
1442   // Update the users outside of the loop to account for having left
1443   // shifts. They would normally be shifted right in the loop, so shift
1444   // them right after the loop exit.
1445   // Take advantage of the loop-closed SSA form, which has all the post-
1446   // loop values in phi nodes.
1447   IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1448   for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1449     if (!isa<PHINode>(P))
1450       break;
1451     auto *PN = cast<PHINode>(P);
1452     Value *U = PN->getIncomingValueForBlock(LoopB);
1453     if (!Users.count(U))
1454       continue;
1455     Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1456     PN->replaceAllUsesWith(S);
1457     // The above RAUW will create
1458     //   S = lshr S, IterCount
1459     // so we need to fix it back into
1460     //   S = lshr PN, IterCount
1461     cast<User>(S)->replaceUsesOfWith(S, PN);
1462   }
1463
1464   return true;
1465 }
1466
1467 void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1468   for (auto &I : *LoopB)
1469     if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
1470       I.replaceAllUsesWith(SV);
1471
1472   for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
1473     N = std::next(I);
1474     RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
1475   }
1476 }
1477
1478 unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1479   // Arrays of coefficients of Q and the inverse, C.
1480   // Q[i] = coefficient at x^i.
1481   std::array<char,32> Q, C;
1482
1483   for (unsigned i = 0; i < 32; ++i) {
1484     Q[i] = QP & 1;
1485     QP >>= 1;
1486   }
1487   assert(Q[0] == 1);
1488
1489   // Find C, such that
1490   // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1491   //
1492   // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1493   // operations * and + are & and ^ respectively.
1494   //
1495   // Find C[i] recursively, by comparing i-th coefficient in the product
1496   // with 0 (or 1 for i=0).
1497   //
1498   // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1499   C[0] = 1;
1500   for (unsigned i = 1; i < 32; ++i) {
1501     // Solve for C[i] in:
1502     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1503     // This is equivalent to
1504     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1505     // which is
1506     //   C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1507     unsigned T = 0;
1508     for (unsigned j = 0; j < i; ++j)
1509       T = T ^ (C[j] & Q[i-j]);
1510     C[i] = T;
1511   }
1512
1513   unsigned QV = 0;
1514   for (unsigned i = 0; i < 32; ++i)
1515     if (C[i])
1516       QV |= (1 << i);
1517
1518   return QV;
1519 }
1520
1521 Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1522       ParsedValues &PV) {
1523   IRBuilder<> B(&*At);
1524   Module *M = At->getParent()->getParent()->getParent();
1525   Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1526
1527   Value *P = PV.P, *Q = PV.Q, *P0 = P;
1528   unsigned IC = PV.IterCount;
1529
1530   if (PV.M != nullptr)
1531     P0 = P = B.CreateXor(P, PV.M);
1532
1533   // Create a bit mask to clear the high bits beyond IterCount.
1534   auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1535
1536   if (PV.IterCount != 32)
1537     P = B.CreateAnd(P, BMI);
1538
1539   if (PV.Inv) {
1540     auto *QI = dyn_cast<ConstantInt>(PV.Q);
1541     assert(QI && QI->getBitWidth() <= 32);
1542
1543     // Again, clearing bits beyond IterCount.
1544     unsigned M = (1 << PV.IterCount) - 1;
1545     unsigned Tmp = (QI->getZExtValue() | 1) & M;
1546     unsigned QV = getInverseMxN(Tmp) & M;
1547     auto *QVI = ConstantInt::get(QI->getType(), QV);
1548     P = B.CreateCall(PMF, {P, QVI});
1549     P = B.CreateTrunc(P, QI->getType());
1550     if (IC != 32)
1551       P = B.CreateAnd(P, BMI);
1552   }
1553
1554   Value *R = B.CreateCall(PMF, {P, Q});
1555
1556   if (PV.M != nullptr)
1557     R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1558
1559   return R;
1560 }
1561
1562 static bool hasZeroSignBit(const Value *V) {
1563   if (const auto *CI = dyn_cast<const ConstantInt>(V))
1564     return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1565   const Instruction *I = dyn_cast<const Instruction>(V);
1566   if (!I)
1567     return false;
1568   switch (I->getOpcode()) {
1569     case Instruction::LShr:
1570       if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1571         return SI->getZExtValue() > 0;
1572       return false;
1573     case Instruction::Or:
1574     case Instruction::Xor:
1575       return hasZeroSignBit(I->getOperand(0)) &&
1576              hasZeroSignBit(I->getOperand(1));
1577     case Instruction::And:
1578       return hasZeroSignBit(I->getOperand(0)) ||
1579              hasZeroSignBit(I->getOperand(1));
1580   }
1581   return false;
1582 }
1583
1584 void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) {
1585   S.addRule("sink-zext",
1586     // Sink zext past bitwise operations.
1587     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1588       if (I->getOpcode() != Instruction::ZExt)
1589         return nullptr;
1590       Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1591       if (!T)
1592         return nullptr;
1593       switch (T->getOpcode()) {
1594         case Instruction::And:
1595         case Instruction::Or:
1596         case Instruction::Xor:
1597           break;
1598         default:
1599           return nullptr;
1600       }
1601       IRBuilder<> B(Ctx);
1602       return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1603                            B.CreateZExt(T->getOperand(0), I->getType()),
1604                            B.CreateZExt(T->getOperand(1), I->getType()));
1605     });
1606   S.addRule("xor/and -> and/xor",
1607     // (xor (and x a) (and y a)) -> (and (xor x y) a)
1608     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1609       if (I->getOpcode() != Instruction::Xor)
1610         return nullptr;
1611       Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1612       Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1613       if (!And0 || !And1)
1614         return nullptr;
1615       if (And0->getOpcode() != Instruction::And ||
1616           And1->getOpcode() != Instruction::And)
1617         return nullptr;
1618       if (And0->getOperand(1) != And1->getOperand(1))
1619         return nullptr;
1620       IRBuilder<> B(Ctx);
1621       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1622                          And0->getOperand(1));
1623     });
1624   S.addRule("sink binop into select",
1625     // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1626     // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1627     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1628       BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1629       if (!BO)
1630         return nullptr;
1631       Instruction::BinaryOps Op = BO->getOpcode();
1632       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1633         IRBuilder<> B(Ctx);
1634         Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1635         Value *Z = BO->getOperand(1);
1636         return B.CreateSelect(Sel->getCondition(),
1637                               B.CreateBinOp(Op, X, Z),
1638                               B.CreateBinOp(Op, Y, Z));
1639       }
1640       if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1641         IRBuilder<> B(Ctx);
1642         Value *X = BO->getOperand(0);
1643         Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1644         return B.CreateSelect(Sel->getCondition(),
1645                               B.CreateBinOp(Op, X, Y),
1646                               B.CreateBinOp(Op, X, Z));
1647       }
1648       return nullptr;
1649     });
1650   S.addRule("fold select-select",
1651     // (select c (select c x y) z) -> (select c x z)
1652     // (select c x (select c y z)) -> (select c x z)
1653     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1654       SelectInst *Sel = dyn_cast<SelectInst>(I);
1655       if (!Sel)
1656         return nullptr;
1657       IRBuilder<> B(Ctx);
1658       Value *C = Sel->getCondition();
1659       if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1660         if (Sel0->getCondition() == C)
1661           return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1662       }
1663       if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1664         if (Sel1->getCondition() == C)
1665           return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1666       }
1667       return nullptr;
1668     });
1669   S.addRule("or-signbit -> xor-signbit",
1670     // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1671     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1672       if (I->getOpcode() != Instruction::Or)
1673         return nullptr;
1674       ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1675       if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1676         return nullptr;
1677       if (!hasZeroSignBit(I->getOperand(0)))
1678         return nullptr;
1679       return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
1680     });
1681   S.addRule("sink lshr into binop",
1682     // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1683     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1684       if (I->getOpcode() != Instruction::LShr)
1685         return nullptr;
1686       BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1687       if (!BitOp)
1688         return nullptr;
1689       switch (BitOp->getOpcode()) {
1690         case Instruction::And:
1691         case Instruction::Or:
1692         case Instruction::Xor:
1693           break;
1694         default:
1695           return nullptr;
1696       }
1697       IRBuilder<> B(Ctx);
1698       Value *S = I->getOperand(1);
1699       return B.CreateBinOp(BitOp->getOpcode(),
1700                 B.CreateLShr(BitOp->getOperand(0), S),
1701                 B.CreateLShr(BitOp->getOperand(1), S));
1702     });
1703   S.addRule("expose bitop-const",
1704     // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1705     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1706       auto IsBitOp = [](unsigned Op) -> bool {
1707         switch (Op) {
1708           case Instruction::And:
1709           case Instruction::Or:
1710           case Instruction::Xor:
1711             return true;
1712         }
1713         return false;
1714       };
1715       BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1716       if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1717         return nullptr;
1718       BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1719       if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1720         return nullptr;
1721       ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1722       ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1723       if (!CA || !CB)
1724         return nullptr;
1725       IRBuilder<> B(Ctx);
1726       Value *X = BitOp2->getOperand(0);
1727       return B.CreateBinOp(BitOp2->getOpcode(), X,
1728                 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1729     });
1730 }
1731
1732 void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) {
1733   S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a",
1734     [](Instruction *I, LLVMContext &Ctx) -> Value* {
1735       if (I->getOpcode() != Instruction::And)
1736         return nullptr;
1737       Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0));
1738       ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1));
1739       if (!Xor || !C0)
1740         return nullptr;
1741       if (Xor->getOpcode() != Instruction::Xor)
1742         return nullptr;
1743       Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0));
1744       Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1));
1745       // Pick the first non-null and.
1746       if (!And0 || And0->getOpcode() != Instruction::And)
1747         std::swap(And0, And1);
1748       ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1));
1749       if (!C1)
1750         return nullptr;
1751       uint32_t V0 = C0->getZExtValue();
1752       uint32_t V1 = C1->getZExtValue();
1753       if (V0 != (V0 & V1))
1754         return nullptr;
1755       IRBuilder<> B(Ctx);
1756       return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0);
1757     });
1758 }
1759
1760 bool PolynomialMultiplyRecognize::recognize() {
1761   LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1762                     << *CurLoop << '\n');
1763   // Restrictions:
1764   // - The loop must consist of a single block.
1765   // - The iteration count must be known at compile-time.
1766   // - The loop must have an induction variable starting from 0, and
1767   //   incremented in each iteration of the loop.
1768   BasicBlock *LoopB = CurLoop->getHeader();
1769   LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1770
1771   if (LoopB != CurLoop->getLoopLatch())
1772     return false;
1773   BasicBlock *ExitB = CurLoop->getExitBlock();
1774   if (ExitB == nullptr)
1775     return false;
1776   BasicBlock *EntryB = CurLoop->getLoopPreheader();
1777   if (EntryB == nullptr)
1778     return false;
1779
1780   unsigned IterCount = 0;
1781   const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1782   if (isa<SCEVCouldNotCompute>(CT))
1783     return false;
1784   if (auto *CV = dyn_cast<SCEVConstant>(CT))
1785     IterCount = CV->getValue()->getZExtValue() + 1;
1786
1787   Value *CIV = getCountIV(LoopB);
1788   ParsedValues PV;
1789   Simplifier PreSimp;
1790   PV.IterCount = IterCount;
1791   LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount
1792                     << '\n');
1793
1794   setupPreSimplifier(PreSimp);
1795
1796   // Perform a preliminary scan of select instructions to see if any of them
1797   // looks like a generator of the polynomial multiply steps. Assume that a
1798   // loop can only contain a single transformable operation, so stop the
1799   // traversal after the first reasonable candidate was found.
1800   // XXX: Currently this approach can modify the loop before being 100% sure
1801   // that the transformation can be carried out.
1802   bool FoundPreScan = false;
1803   auto FeedsPHI = [LoopB](const Value *V) -> bool {
1804     for (const Value *U : V->users()) {
1805       if (const auto *P = dyn_cast<const PHINode>(U))
1806         if (P->getParent() == LoopB)
1807           return true;
1808     }
1809     return false;
1810   };
1811   for (Instruction &In : *LoopB) {
1812     SelectInst *SI = dyn_cast<SelectInst>(&In);
1813     if (!SI || !FeedsPHI(SI))
1814       continue;
1815
1816     Simplifier::Context C(SI);
1817     Value *T = PreSimp.simplify(C);
1818     SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1819     LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1820     if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1821       FoundPreScan = true;
1822       if (SelI != SI) {
1823         Value *NewSel = C.materialize(LoopB, SI->getIterator());
1824         SI->replaceAllUsesWith(NewSel);
1825         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1826       }
1827       break;
1828     }
1829   }
1830
1831   if (!FoundPreScan) {
1832     LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n");
1833     return false;
1834   }
1835
1836   if (!PV.Left) {
1837     // The right shift version actually only returns the higher bits of
1838     // the result (each iteration discards the LSB). If we want to convert it
1839     // to a left-shifting loop, the working data type must be at least as
1840     // wide as the target's pmpy instruction.
1841     if (!promoteTypes(LoopB, ExitB))
1842       return false;
1843     // Run post-promotion simplifications.
1844     Simplifier PostSimp;
1845     setupPostSimplifier(PostSimp);
1846     for (Instruction &In : *LoopB) {
1847       SelectInst *SI = dyn_cast<SelectInst>(&In);
1848       if (!SI || !FeedsPHI(SI))
1849         continue;
1850       Simplifier::Context C(SI);
1851       Value *T = PostSimp.simplify(C);
1852       SelectInst *SelI = dyn_cast_or_null<SelectInst>(T);
1853       if (SelI != SI) {
1854         Value *NewSel = C.materialize(LoopB, SI->getIterator());
1855         SI->replaceAllUsesWith(NewSel);
1856         RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1857       }
1858       break;
1859     }
1860
1861     if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1862       return false;
1863     cleanupLoopBody(LoopB);
1864   }
1865
1866   // Scan the loop again, find the generating select instruction.
1867   bool FoundScan = false;
1868   for (Instruction &In : *LoopB) {
1869     SelectInst *SelI = dyn_cast<SelectInst>(&In);
1870     if (!SelI)
1871       continue;
1872     LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1873     FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1874     if (FoundScan)
1875       break;
1876   }
1877   assert(FoundScan);
1878
1879   LLVM_DEBUG({
1880     StringRef PP = (PV.M ? "(P+M)" : "P");
1881     if (!PV.Inv)
1882       dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1883     else
1884       dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1885              << PP << "\n";
1886     dbgs() << "  Res:" << *PV.Res << "\n  P:" << *PV.P << "\n";
1887     if (PV.M)
1888       dbgs() << "  M:" << *PV.M << "\n";
1889     dbgs() << "  Q:" << *PV.Q << "\n";
1890     dbgs() << "  Iteration count:" << PV.IterCount << "\n";
1891   });
1892
1893   BasicBlock::iterator At(EntryB->getTerminator());
1894   Value *PM = generate(At, PV);
1895   if (PM == nullptr)
1896     return false;
1897
1898   if (PM->getType() != PV.Res->getType())
1899     PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1900
1901   PV.Res->replaceAllUsesWith(PM);
1902   PV.Res->eraseFromParent();
1903   return true;
1904 }
1905
1906 int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1907   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1908     return SC->getAPInt().getSExtValue();
1909   return 0;
1910 }
1911
1912 bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
1913   // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1914   if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
1915     return false;
1916
1917   Value *StoredVal = SI->getValueOperand();
1918   Value *StorePtr = SI->getPointerOperand();
1919
1920   // Reject stores that are so large that they overflow an unsigned.
1921   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1922   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1923     return false;
1924
1925   // See if the pointer expression is an AddRec like {base,+,1} on the current
1926   // loop, which indicates a strided store.  If we have something else, it's a
1927   // random store we can't handle.
1928   auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1929   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1930     return false;
1931
1932   // Check to see if the stride matches the size of the store.  If so, then we
1933   // know that every byte is touched in the loop.
1934   int Stride = getSCEVStride(StoreEv);
1935   if (Stride == 0)
1936     return false;
1937   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1938   if (StoreSize != unsigned(std::abs(Stride)))
1939     return false;
1940
1941   // The store must be feeding a non-volatile load.
1942   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1943   if (!LI || !LI->isSimple())
1944     return false;
1945
1946   // See if the pointer expression is an AddRec like {base,+,1} on the current
1947   // loop, which indicates a strided load.  If we have something else, it's a
1948   // random load we can't handle.
1949   Value *LoadPtr = LI->getPointerOperand();
1950   auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1951   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1952     return false;
1953
1954   // The store and load must share the same stride.
1955   if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1956     return false;
1957
1958   // Success.  This store can be converted into a memcpy.
1959   return true;
1960 }
1961
1962 /// mayLoopAccessLocation - Return true if the specified loop might access the
1963 /// specified pointer location, which is a loop-strided access.  The 'Access'
1964 /// argument specifies what the verboten forms of access are (read or write).
1965 static bool
1966 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1967                       const SCEV *BECount, unsigned StoreSize,
1968                       AliasAnalysis &AA,
1969                       SmallPtrSetImpl<Instruction *> &Ignored) {
1970   // Get the location that may be stored across the loop.  Since the access
1971   // is strided positively through memory, we say that the modified location
1972   // starts at the pointer and has infinite size.
1973   LocationSize AccessSize = LocationSize::unknown();
1974
1975   // If the loop iterates a fixed number of times, we can refine the access
1976   // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1977   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1978     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1979                                        StoreSize);
1980
1981   // TODO: For this to be really effective, we have to dive into the pointer
1982   // operand in the store.  Store to &A[i] of 100 will always return may alias
1983   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1984   // which will then no-alias a store to &A[100].
1985   MemoryLocation StoreLoc(Ptr, AccessSize);
1986
1987   for (auto *B : L->blocks())
1988     for (auto &I : *B)
1989       if (Ignored.count(&I) == 0 &&
1990           isModOrRefSet(
1991               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
1992         return true;
1993
1994   return false;
1995 }
1996
1997 void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
1998       SmallVectorImpl<StoreInst*> &Stores) {
1999   Stores.clear();
2000   for (Instruction &I : *BB)
2001     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2002       if (isLegalStore(CurLoop, SI))
2003         Stores.push_back(SI);
2004 }
2005
2006 bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
2007       StoreInst *SI, const SCEV *BECount) {
2008   assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
2009          "Expected only non-volatile stores, or Hexagon-specific memcpy"
2010          "to volatile destination.");
2011
2012   Value *StorePtr = SI->getPointerOperand();
2013   auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
2014   unsigned Stride = getSCEVStride(StoreEv);
2015   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
2016   if (Stride != StoreSize)
2017     return false;
2018
2019   // See if the pointer expression is an AddRec like {base,+,1} on the current
2020   // loop, which indicates a strided load.  If we have something else, it's a
2021   // random load we can't handle.
2022   LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
2023   auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
2024
2025   // The trip count of the loop and the base pointer of the addrec SCEV is
2026   // guaranteed to be loop invariant, which means that it should dominate the
2027   // header.  This allows us to insert code for it in the preheader.
2028   BasicBlock *Preheader = CurLoop->getLoopPreheader();
2029   Instruction *ExpPt = Preheader->getTerminator();
2030   IRBuilder<> Builder(ExpPt);
2031   SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
2032
2033   Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
2034
2035   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
2036   // this into a memcpy/memmove in the loop preheader now if we want.  However,
2037   // this would be unsafe to do if there is anything else in the loop that may
2038   // read or write the memory region we're storing to.  For memcpy, this
2039   // includes the load that feeds the stores.  Check for an alias by generating
2040   // the base address and checking everything.
2041   Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
2042       Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
2043   Value *LoadBasePtr = nullptr;
2044
2045   bool Overlap = false;
2046   bool DestVolatile = SI->isVolatile();
2047   Type *BECountTy = BECount->getType();
2048
2049   if (DestVolatile) {
2050     // The trip count must fit in i32, since it is the type of the "num_words"
2051     // argument to hexagon_memcpy_forward_vp4cp4n2.
2052     if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
2053 CleanupAndExit:
2054       // If we generated new code for the base pointer, clean up.
2055       Expander.clear();
2056       if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
2057         RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
2058         StoreBasePtr = nullptr;
2059       }
2060       if (LoadBasePtr) {
2061         RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2062         LoadBasePtr = nullptr;
2063       }
2064       return false;
2065     }
2066   }
2067
2068   SmallPtrSet<Instruction*, 2> Ignore1;
2069   Ignore1.insert(SI);
2070   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
2071                             StoreSize, *AA, Ignore1)) {
2072     // Check if the load is the offending instruction.
2073     Ignore1.insert(LI);
2074     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
2075                               BECount, StoreSize, *AA, Ignore1)) {
2076       // Still bad. Nothing we can do.
2077       goto CleanupAndExit;
2078     }
2079     // It worked with the load ignored.
2080     Overlap = true;
2081   }
2082
2083   if (!Overlap) {
2084     if (DisableMemcpyIdiom || !HasMemcpy)
2085       goto CleanupAndExit;
2086   } else {
2087     // Don't generate memmove if this function will be inlined. This is
2088     // because the caller will undergo this transformation after inlining.
2089     Function *Func = CurLoop->getHeader()->getParent();
2090     if (Func->hasFnAttribute(Attribute::AlwaysInline))
2091       goto CleanupAndExit;
2092
2093     // In case of a memmove, the call to memmove will be executed instead
2094     // of the loop, so we need to make sure that there is nothing else in
2095     // the loop than the load, store and instructions that these two depend
2096     // on.
2097     SmallVector<Instruction*,2> Insts;
2098     Insts.push_back(SI);
2099     Insts.push_back(LI);
2100     if (!coverLoop(CurLoop, Insts))
2101       goto CleanupAndExit;
2102
2103     if (DisableMemmoveIdiom || !HasMemmove)
2104       goto CleanupAndExit;
2105     bool IsNested = CurLoop->getParentLoop() != nullptr;
2106     if (IsNested && OnlyNonNestedMemmove)
2107       goto CleanupAndExit;
2108   }
2109
2110   // For a memcpy, we have to make sure that the input array is not being
2111   // mutated by the loop.
2112   LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2113       Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2114
2115   SmallPtrSet<Instruction*, 2> Ignore2;
2116   Ignore2.insert(SI);
2117   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
2118                             StoreSize, *AA, Ignore2))
2119     goto CleanupAndExit;
2120
2121   // Check the stride.
2122   bool StridePos = getSCEVStride(LoadEv) >= 0;
2123
2124   // Currently, the volatile memcpy only emulates traversing memory forward.
2125   if (!StridePos && DestVolatile)
2126     goto CleanupAndExit;
2127
2128   bool RuntimeCheck = (Overlap || DestVolatile);
2129
2130   BasicBlock *ExitB;
2131   if (RuntimeCheck) {
2132     // The runtime check needs a single exit block.
2133     SmallVector<BasicBlock*, 8> ExitBlocks;
2134     CurLoop->getUniqueExitBlocks(ExitBlocks);
2135     if (ExitBlocks.size() != 1)
2136       goto CleanupAndExit;
2137     ExitB = ExitBlocks[0];
2138   }
2139
2140   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
2141   // pointer size if it isn't already.
2142   LLVMContext &Ctx = SI->getContext();
2143   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
2144   DebugLoc DLoc = SI->getDebugLoc();
2145
2146   const SCEV *NumBytesS =
2147       SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2148   if (StoreSize != 1)
2149     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2150                                SCEV::FlagNUW);
2151   Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2152   if (Instruction *In = dyn_cast<Instruction>(NumBytes))
2153     if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2154       NumBytes = Simp;
2155
2156   CallInst *NewCall;
2157
2158   if (RuntimeCheck) {
2159     unsigned Threshold = RuntimeMemSizeThreshold;
2160     if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2161       uint64_t C = CI->getZExtValue();
2162       if (Threshold != 0 && C < Threshold)
2163         goto CleanupAndExit;
2164       if (C < CompileTimeMemSizeThreshold)
2165         goto CleanupAndExit;
2166     }
2167
2168     BasicBlock *Header = CurLoop->getHeader();
2169     Function *Func = Header->getParent();
2170     Loop *ParentL = LF->getLoopFor(Preheader);
2171     StringRef HeaderName = Header->getName();
2172
2173     // Create a new (empty) preheader, and update the PHI nodes in the
2174     // header to use the new preheader.
2175     BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2176                                                   Func, Header);
2177     if (ParentL)
2178       ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2179     IRBuilder<>(NewPreheader).CreateBr(Header);
2180     for (auto &In : *Header) {
2181       PHINode *PN = dyn_cast<PHINode>(&In);
2182       if (!PN)
2183         break;
2184       int bx = PN->getBasicBlockIndex(Preheader);
2185       if (bx >= 0)
2186         PN->setIncomingBlock(bx, NewPreheader);
2187     }
2188     DT->addNewBlock(NewPreheader, Preheader);
2189     DT->changeImmediateDominator(Header, NewPreheader);
2190
2191     // Check for safe conditions to execute memmove.
2192     // If stride is positive, copying things from higher to lower addresses
2193     // is equivalent to memmove.  For negative stride, it's the other way
2194     // around.  Copying forward in memory with positive stride may not be
2195     // same as memmove since we may be copying values that we just stored
2196     // in some previous iteration.
2197     Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2198     Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2199     Value *LowA = StridePos ? SA : LA;
2200     Value *HighA = StridePos ? LA : SA;
2201     Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2202     Value *Cond = CmpA;
2203
2204     // Check for distance between pointers. Since the case LowA < HighA
2205     // is checked for above, assume LowA >= HighA.
2206     Value *Dist = Builder.CreateSub(LowA, HighA);
2207     Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
2208     Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2209     Cond = CmpEither;
2210
2211     if (Threshold != 0) {
2212       Type *Ty = NumBytes->getType();
2213       Value *Thr = ConstantInt::get(Ty, Threshold);
2214       Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2215       Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2216       Cond = CmpBoth;
2217     }
2218     BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2219                                               Func, NewPreheader);
2220     if (ParentL)
2221       ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2222     Instruction *OldT = Preheader->getTerminator();
2223     Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2224     OldT->eraseFromParent();
2225     Preheader->setName(Preheader->getName()+".old");
2226     DT->addNewBlock(MemmoveB, Preheader);
2227     // Find the new immediate dominator of the exit block.
2228     BasicBlock *ExitD = Preheader;
2229     for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
2230       BasicBlock *PB = *PI;
2231       ExitD = DT->findNearestCommonDominator(ExitD, PB);
2232       if (!ExitD)
2233         break;
2234     }
2235     // If the prior immediate dominator of ExitB was dominated by the
2236     // old preheader, then the old preheader becomes the new immediate
2237     // dominator.  Otherwise don't change anything (because the newly
2238     // added blocks are dominated by the old preheader).
2239     if (ExitD && DT->dominates(Preheader, ExitD)) {
2240       DomTreeNode *BN = DT->getNode(ExitB);
2241       DomTreeNode *DN = DT->getNode(ExitD);
2242       BN->setIDom(DN);
2243     }
2244
2245     // Add a call to memmove to the conditional block.
2246     IRBuilder<> CondBuilder(MemmoveB);
2247     CondBuilder.CreateBr(ExitB);
2248     CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2249
2250     if (DestVolatile) {
2251       Type *Int32Ty = Type::getInt32Ty(Ctx);
2252       Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2253       Type *VoidTy = Type::getVoidTy(Ctx);
2254       Module *M = Func->getParent();
2255       Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy,
2256                                             Int32PtrTy, Int32PtrTy, Int32Ty);
2257       Function *Fn = cast<Function>(CF);
2258       Fn->setLinkage(Function::ExternalLinkage);
2259
2260       const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2261       const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2262       const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2263       Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2264                                                MemmoveB->getTerminator());
2265       if (Instruction *In = dyn_cast<Instruction>(NumWords))
2266         if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2267           NumWords = Simp;
2268
2269       Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2270                       ? StoreBasePtr
2271                       : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2272       Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2273                       ? LoadBasePtr
2274                       : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2275       NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2276     } else {
2277       NewCall = CondBuilder.CreateMemMove(StoreBasePtr, SI->getAlignment(),
2278                                           LoadBasePtr, LI->getAlignment(),
2279                                           NumBytes);
2280     }
2281   } else {
2282     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
2283                                    LoadBasePtr, LI->getAlignment(),
2284                                    NumBytes);
2285     // Okay, the memcpy has been formed.  Zap the original store and
2286     // anything that feeds into it.
2287     RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2288   }
2289
2290   NewCall->setDebugLoc(DLoc);
2291
2292   LLVM_DEBUG(dbgs() << "  Formed " << (Overlap ? "memmove: " : "memcpy: ")
2293                     << *NewCall << "\n"
2294                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2295                     << "    from store ptr=" << *StoreEv << " at: " << *SI
2296                     << "\n");
2297
2298   return true;
2299 }
2300
2301 // Check if the instructions in Insts, together with their dependencies
2302 // cover the loop in the sense that the loop could be safely eliminated once
2303 // the instructions in Insts are removed.
2304 bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2305       SmallVectorImpl<Instruction*> &Insts) const {
2306   SmallSet<BasicBlock*,8> LoopBlocks;
2307   for (auto *B : L->blocks())
2308     LoopBlocks.insert(B);
2309
2310   SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2311
2312   // Collect all instructions from the loop that the instructions in Insts
2313   // depend on (plus their dependencies, etc.).  These instructions will
2314   // constitute the expression trees that feed those in Insts, but the trees
2315   // will be limited only to instructions contained in the loop.
2316   for (unsigned i = 0; i < Worklist.size(); ++i) {
2317     Instruction *In = Worklist[i];
2318     for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2319       Instruction *OpI = dyn_cast<Instruction>(I);
2320       if (!OpI)
2321         continue;
2322       BasicBlock *PB = OpI->getParent();
2323       if (!LoopBlocks.count(PB))
2324         continue;
2325       Worklist.insert(OpI);
2326     }
2327   }
2328
2329   // Scan all instructions in the loop, if any of them have a user outside
2330   // of the loop, or outside of the expressions collected above, then either
2331   // the loop has a side-effect visible outside of it, or there are
2332   // instructions in it that are not involved in the original set Insts.
2333   for (auto *B : L->blocks()) {
2334     for (auto &In : *B) {
2335       if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2336         continue;
2337       if (!Worklist.count(&In) && In.mayHaveSideEffects())
2338         return false;
2339       for (const auto &K : In.users()) {
2340         Instruction *UseI = dyn_cast<Instruction>(K);
2341         if (!UseI)
2342           continue;
2343         BasicBlock *UseB = UseI->getParent();
2344         if (LF->getLoopFor(UseB) != L)
2345           return false;
2346       }
2347     }
2348   }
2349
2350   return true;
2351 }
2352
2353 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
2354 /// with the specified backedge count.  This block is known to be in the current
2355 /// loop and not in any subloops.
2356 bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2357       const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2358   // We can only promote stores in this block if they are unconditionally
2359   // executed in the loop.  For a block to be unconditionally executed, it has
2360   // to dominate all the exit blocks of the loop.  Verify this now.
2361   auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2362     return DT->dominates(BB, EB);
2363   };
2364   if (!all_of(ExitBlocks, DominatedByBB))
2365     return false;
2366
2367   bool MadeChange = false;
2368   // Look for store instructions, which may be optimized to memset/memcpy.
2369   SmallVector<StoreInst*,8> Stores;
2370   collectStores(CurLoop, BB, Stores);
2371
2372   // Optimize the store into a memcpy, if it feeds an similarly strided load.
2373   for (auto &SI : Stores)
2374     MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2375
2376   return MadeChange;
2377 }
2378
2379 bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2380   PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2381   if (PMR.recognize())
2382     return true;
2383
2384   if (!HasMemcpy && !HasMemmove)
2385     return false;
2386
2387   const SCEV *BECount = SE->getBackedgeTakenCount(L);
2388   assert(!isa<SCEVCouldNotCompute>(BECount) &&
2389          "runOnCountableLoop() called on a loop without a predictable"
2390          "backedge-taken count");
2391
2392   SmallVector<BasicBlock *, 8> ExitBlocks;
2393   L->getUniqueExitBlocks(ExitBlocks);
2394
2395   bool Changed = false;
2396
2397   // Scan all the blocks in the loop that are not in subloops.
2398   for (auto *BB : L->getBlocks()) {
2399     // Ignore blocks in subloops.
2400     if (LF->getLoopFor(BB) != L)
2401       continue;
2402     Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2403   }
2404
2405   return Changed;
2406 }
2407
2408 bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
2409   const Module &M = *L->getHeader()->getParent()->getParent();
2410   if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2411     return false;
2412
2413   if (skipLoop(L))
2414     return false;
2415
2416   // If the loop could not be converted to canonical form, it must have an
2417   // indirectbr in it, just give up.
2418   if (!L->getLoopPreheader())
2419     return false;
2420
2421   // Disable loop idiom recognition if the function's name is a common idiom.
2422   StringRef Name = L->getHeader()->getParent()->getName();
2423   if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2424     return false;
2425
2426   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2427   DL = &L->getHeader()->getModule()->getDataLayout();
2428   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2429   LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2430   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2431   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2432
2433   HasMemcpy = TLI->has(LibFunc_memcpy);
2434   HasMemmove = TLI->has(LibFunc_memmove);
2435
2436   if (SE->hasLoopInvariantBackedgeTakenCount(L))
2437     return runOnCountableLoop(L);
2438   return false;
2439 }
2440
2441 Pass *llvm::createHexagonLoopIdiomPass() {
2442   return new HexagonLoopIdiomRecognize();
2443 }