]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Hexagon/HexagonSplitDouble.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Hexagon / HexagonSplitDouble.cpp
1 //===- HexagonSplitDouble.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hsdr"
11
12 #include "HexagonInstrInfo.h"
13 #include "HexagonRegisterInfo.h"
14 #include "HexagonSubtarget.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <limits>
41 #include <map>
42 #include <set>
43 #include <utility>
44 #include <vector>
45
46 using namespace llvm;
47
48 namespace llvm {
49
50   FunctionPass *createHexagonSplitDoubleRegs();
51   void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
52
53 } // end namespace llvm
54
55 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
56     cl::desc("Maximum number of split partitions"));
57 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
58     cl::desc("Do not split loads or stores"));
59   static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false),
60       cl::desc("Split all partitions"));
61
62 namespace {
63
64   class HexagonSplitDoubleRegs : public MachineFunctionPass {
65   public:
66     static char ID;
67
68     HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {}
69
70     StringRef getPassName() const override {
71       return "Hexagon Split Double Registers";
72     }
73
74     void getAnalysisUsage(AnalysisUsage &AU) const override {
75       AU.addRequired<MachineLoopInfo>();
76       AU.addPreserved<MachineLoopInfo>();
77       MachineFunctionPass::getAnalysisUsage(AU);
78     }
79
80     bool runOnMachineFunction(MachineFunction &MF) override;
81
82   private:
83     static const TargetRegisterClass *const DoubleRC;
84
85     const HexagonRegisterInfo *TRI = nullptr;
86     const HexagonInstrInfo *TII = nullptr;
87     const MachineLoopInfo *MLI;
88     MachineRegisterInfo *MRI;
89
90     using USet = std::set<unsigned>;
91     using UUSetMap = std::map<unsigned, USet>;
92     using UUPair = std::pair<unsigned, unsigned>;
93     using UUPairMap = std::map<unsigned, UUPair>;
94     using LoopRegMap = std::map<const MachineLoop *, USet>;
95
96     bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
97     bool isVolatileInstr(const MachineInstr *MI) const;
98     bool isFixedInstr(const MachineInstr *MI) const;
99     void partitionRegisters(UUSetMap &P2Rs);
100     int32_t profit(const MachineInstr *MI) const;
101     int32_t profit(unsigned Reg) const;
102     bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
103
104     void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
105     void collectIndRegs(LoopRegMap &IRM);
106
107     void createHalfInstr(unsigned Opc, MachineInstr *MI,
108         const UUPairMap &PairMap, unsigned SubR);
109     void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
110     void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
111     void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
112     void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
113     void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
114     void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
115     bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
116     void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
117     void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
118     bool splitPartition(const USet &Part);
119
120     static int Counter;
121
122     static void dump_partition(raw_ostream&, const USet&,
123        const TargetRegisterInfo&);
124   };
125
126 } // end anonymous namespace
127
128 char HexagonSplitDoubleRegs::ID;
129 int HexagonSplitDoubleRegs::Counter = 0;
130 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
131     &Hexagon::DoubleRegsRegClass;
132
133 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
134   "Hexagon Split Double Registers", false, false)
135
136 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
137 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
138       const USet &Part, const TargetRegisterInfo &TRI) {
139   dbgs() << '{';
140   for (auto I : Part)
141     dbgs() << ' ' << printReg(I, &TRI);
142   dbgs() << " }";
143 }
144 #endif
145
146 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
147   for (auto I : IRM) {
148     const USet &Rs = I.second;
149     if (Rs.find(Reg) != Rs.end())
150       return true;
151   }
152   return false;
153 }
154
155 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
156   for (auto &I : MI->memoperands())
157     if (I->isVolatile())
158       return true;
159   return false;
160 }
161
162 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
163   if (MI->mayLoad() || MI->mayStore())
164     if (MemRefsFixed || isVolatileInstr(MI))
165       return true;
166   if (MI->isDebugInstr())
167     return false;
168
169   unsigned Opc = MI->getOpcode();
170   switch (Opc) {
171     default:
172       return true;
173
174     case TargetOpcode::PHI:
175     case TargetOpcode::COPY:
176       break;
177
178     case Hexagon::L2_loadrd_io:
179       // Not handling stack stores (only reg-based addresses).
180       if (MI->getOperand(1).isReg())
181         break;
182       return true;
183     case Hexagon::S2_storerd_io:
184       // Not handling stack stores (only reg-based addresses).
185       if (MI->getOperand(0).isReg())
186         break;
187       return true;
188     case Hexagon::L2_loadrd_pi:
189     case Hexagon::S2_storerd_pi:
190
191     case Hexagon::A2_tfrpi:
192     case Hexagon::A2_combineii:
193     case Hexagon::A4_combineir:
194     case Hexagon::A4_combineii:
195     case Hexagon::A4_combineri:
196     case Hexagon::A2_combinew:
197     case Hexagon::CONST64:
198
199     case Hexagon::A2_sxtw:
200
201     case Hexagon::A2_andp:
202     case Hexagon::A2_orp:
203     case Hexagon::A2_xorp:
204     case Hexagon::S2_asl_i_p_or:
205     case Hexagon::S2_asl_i_p:
206     case Hexagon::S2_asr_i_p:
207     case Hexagon::S2_lsr_i_p:
208       break;
209   }
210
211   for (auto &Op : MI->operands()) {
212     if (!Op.isReg())
213       continue;
214     unsigned R = Op.getReg();
215     if (!TargetRegisterInfo::isVirtualRegister(R))
216       return true;
217   }
218   return false;
219 }
220
221 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
222   using UUMap = std::map<unsigned, unsigned>;
223   using UVect = std::vector<unsigned>;
224
225   unsigned NumRegs = MRI->getNumVirtRegs();
226   BitVector DoubleRegs(NumRegs);
227   for (unsigned i = 0; i < NumRegs; ++i) {
228     unsigned R = TargetRegisterInfo::index2VirtReg(i);
229     if (MRI->getRegClass(R) == DoubleRC)
230       DoubleRegs.set(i);
231   }
232
233   BitVector FixedRegs(NumRegs);
234   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
235     unsigned R = TargetRegisterInfo::index2VirtReg(x);
236     MachineInstr *DefI = MRI->getVRegDef(R);
237     // In some cases a register may exist, but never be defined or used.
238     // It should never appear anywhere, but mark it as "fixed", just to be
239     // safe.
240     if (!DefI || isFixedInstr(DefI))
241       FixedRegs.set(x);
242   }
243
244   UUSetMap AssocMap;
245   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
246     if (FixedRegs[x])
247       continue;
248     unsigned R = TargetRegisterInfo::index2VirtReg(x);
249     LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~");
250     USet &Asc = AssocMap[R];
251     for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
252          U != Z; ++U) {
253       MachineOperand &Op = *U;
254       MachineInstr *UseI = Op.getParent();
255       if (isFixedInstr(UseI))
256         continue;
257       for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
258         MachineOperand &MO = UseI->getOperand(i);
259         // Skip non-registers or registers with subregisters.
260         if (&MO == &Op || !MO.isReg() || MO.getSubReg())
261           continue;
262         unsigned T = MO.getReg();
263         if (!TargetRegisterInfo::isVirtualRegister(T)) {
264           FixedRegs.set(x);
265           continue;
266         }
267         if (MRI->getRegClass(T) != DoubleRC)
268           continue;
269         unsigned u = TargetRegisterInfo::virtReg2Index(T);
270         if (FixedRegs[u])
271           continue;
272         LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI));
273         Asc.insert(T);
274         // Make it symmetric.
275         AssocMap[T].insert(R);
276       }
277     }
278     LLVM_DEBUG(dbgs() << '\n');
279   }
280
281   UUMap R2P;
282   unsigned NextP = 1;
283   USet Visited;
284   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
285     unsigned R = TargetRegisterInfo::index2VirtReg(x);
286     if (Visited.count(R))
287       continue;
288     // Create a new partition for R.
289     unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
290     UVect WorkQ;
291     WorkQ.push_back(R);
292     for (unsigned i = 0; i < WorkQ.size(); ++i) {
293       unsigned T = WorkQ[i];
294       if (Visited.count(T))
295         continue;
296       R2P[T] = ThisP;
297       Visited.insert(T);
298       // Add all registers associated with T.
299       USet &Asc = AssocMap[T];
300       for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
301         WorkQ.push_back(*J);
302     }
303   }
304
305   for (auto I : R2P)
306     P2Rs[I.second].insert(I.first);
307 }
308
309 static inline int32_t profitImm(unsigned Imm) {
310   int32_t P = 0;
311   if (Imm == 0 || Imm == 0xFFFFFFFF)
312     P += 10;
313   return P;
314 }
315
316 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
317   unsigned ImmX = 0;
318   unsigned Opc = MI->getOpcode();
319   switch (Opc) {
320     case TargetOpcode::PHI:
321       for (const auto &Op : MI->operands())
322         if (!Op.getSubReg())
323           return 0;
324       return 10;
325     case TargetOpcode::COPY:
326       if (MI->getOperand(1).getSubReg() != 0)
327         return 10;
328       return 0;
329
330     case Hexagon::L2_loadrd_io:
331     case Hexagon::S2_storerd_io:
332       return -1;
333     case Hexagon::L2_loadrd_pi:
334     case Hexagon::S2_storerd_pi:
335       return 2;
336
337     case Hexagon::A2_tfrpi:
338     case Hexagon::CONST64: {
339       uint64_t D = MI->getOperand(1).getImm();
340       unsigned Lo = D & 0xFFFFFFFFULL;
341       unsigned Hi = D >> 32;
342       return profitImm(Lo) + profitImm(Hi);
343     }
344     case Hexagon::A2_combineii:
345     case Hexagon::A4_combineii: {
346       const MachineOperand &Op1 = MI->getOperand(1);
347       const MachineOperand &Op2 = MI->getOperand(2);
348       int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0;
349       int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0;
350       return Prof1 + Prof2;
351     }
352     case Hexagon::A4_combineri:
353       ImmX++;
354       // Fall through into A4_combineir.
355       LLVM_FALLTHROUGH;
356     case Hexagon::A4_combineir: {
357       ImmX++;
358       const MachineOperand &OpX = MI->getOperand(ImmX);
359       if (OpX.isImm()) {
360         int64_t V = OpX.getImm();
361         if (V == 0 || V == -1)
362           return 10;
363       }
364       // Fall through into A2_combinew.
365       LLVM_FALLTHROUGH;
366     }
367     case Hexagon::A2_combinew:
368       return 2;
369
370     case Hexagon::A2_sxtw:
371       return 3;
372
373     case Hexagon::A2_andp:
374     case Hexagon::A2_orp:
375     case Hexagon::A2_xorp: {
376       unsigned Rs = MI->getOperand(1).getReg();
377       unsigned Rt = MI->getOperand(2).getReg();
378       return profit(Rs) + profit(Rt);
379     }
380
381     case Hexagon::S2_asl_i_p_or: {
382       unsigned S = MI->getOperand(3).getImm();
383       if (S == 0 || S == 32)
384         return 10;
385       return -1;
386     }
387     case Hexagon::S2_asl_i_p:
388     case Hexagon::S2_asr_i_p:
389     case Hexagon::S2_lsr_i_p:
390       unsigned S = MI->getOperand(2).getImm();
391       if (S == 0 || S == 32)
392         return 10;
393       if (S == 16)
394         return 5;
395       if (S == 48)
396         return 7;
397       return -10;
398   }
399
400   return 0;
401 }
402
403 int32_t HexagonSplitDoubleRegs::profit(unsigned Reg) const {
404   assert(TargetRegisterInfo::isVirtualRegister(Reg));
405
406   const MachineInstr *DefI = MRI->getVRegDef(Reg);
407   switch (DefI->getOpcode()) {
408     case Hexagon::A2_tfrpi:
409     case Hexagon::CONST64:
410     case Hexagon::A2_combineii:
411     case Hexagon::A4_combineii:
412     case Hexagon::A4_combineri:
413     case Hexagon::A4_combineir:
414     case Hexagon::A2_combinew:
415       return profit(DefI);
416     default:
417       break;
418   }
419   return 0;
420 }
421
422 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
423       const {
424   unsigned FixedNum = 0, LoopPhiNum = 0;
425   int32_t TotalP = 0;
426
427   for (unsigned DR : Part) {
428     MachineInstr *DefI = MRI->getVRegDef(DR);
429     int32_t P = profit(DefI);
430     if (P == std::numeric_limits<int>::min())
431       return false;
432     TotalP += P;
433     // Reduce the profitability of splitting induction registers.
434     if (isInduction(DR, IRM))
435       TotalP -= 30;
436
437     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
438          U != W; ++U) {
439       MachineInstr *UseI = U->getParent();
440       if (isFixedInstr(UseI)) {
441         FixedNum++;
442         // Calculate the cost of generating REG_SEQUENCE instructions.
443         for (auto &Op : UseI->operands()) {
444           if (Op.isReg() && Part.count(Op.getReg()))
445             if (Op.getSubReg())
446               TotalP -= 2;
447         }
448         continue;
449       }
450       // If a register from this partition is used in a fixed instruction,
451       // and there is also a register in this partition that is used in
452       // a loop phi node, then decrease the splitting profit as this can
453       // confuse the modulo scheduler.
454       if (UseI->isPHI()) {
455         const MachineBasicBlock *PB = UseI->getParent();
456         const MachineLoop *L = MLI->getLoopFor(PB);
457         if (L && L->getHeader() == PB)
458           LoopPhiNum++;
459       }
460       // Splittable instruction.
461       int32_t P = profit(UseI);
462       if (P == std::numeric_limits<int>::min())
463         return false;
464       TotalP += P;
465     }
466   }
467
468   if (FixedNum > 0 && LoopPhiNum > 0)
469     TotalP -= 20*LoopPhiNum;
470
471   LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
472   if (SplitAll)
473     return true;
474   return TotalP > 0;
475 }
476
477 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
478       USet &Rs) {
479   const MachineBasicBlock *HB = L->getHeader();
480   const MachineBasicBlock *LB = L->getLoopLatch();
481   if (!HB || !LB)
482     return;
483
484   // Examine the latch branch. Expect it to be a conditional branch to
485   // the header (either "br-cond header" or "br-cond exit; br header").
486   MachineBasicBlock *TB = nullptr, *FB = nullptr;
487   MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
488   SmallVector<MachineOperand,2> Cond;
489   bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
490   // Only analyzable conditional branches. HII::analyzeBranch will put
491   // the branch opcode as the first element of Cond, and the predicate
492   // operand as the second.
493   if (BadLB || Cond.size() != 2)
494     return;
495   // Only simple jump-conditional (with or without negation).
496   if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
497     return;
498   // Must go to the header.
499   if (TB != HB && FB != HB)
500     return;
501   assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
502   // Expect a predicate register.
503   unsigned PR = Cond[1].getReg();
504   assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
505
506   // Get the registers on which the loop controlling compare instruction
507   // depends.
508   unsigned CmpR1 = 0, CmpR2 = 0;
509   const MachineInstr *CmpI = MRI->getVRegDef(PR);
510   while (CmpI->getOpcode() == Hexagon::C2_not)
511     CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
512
513   int Mask = 0, Val = 0;
514   bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
515   if (!OkCI)
516     return;
517   // Eliminate non-double input registers.
518   if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
519     CmpR1 = 0;
520   if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
521     CmpR2 = 0;
522   if (!CmpR1 && !CmpR2)
523     return;
524
525   // Now examine the top of the loop: the phi nodes that could poten-
526   // tially define loop induction registers. The registers defined by
527   // such a phi node would be used in a 64-bit add, which then would
528   // be used in the loop compare instruction.
529
530   // Get the set of all double registers defined by phi nodes in the
531   // loop header.
532   using UVect = std::vector<unsigned>;
533
534   UVect DP;
535   for (auto &MI : *HB) {
536     if (!MI.isPHI())
537       break;
538     const MachineOperand &MD = MI.getOperand(0);
539     unsigned R = MD.getReg();
540     if (MRI->getRegClass(R) == DoubleRC)
541       DP.push_back(R);
542   }
543   if (DP.empty())
544     return;
545
546   auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
547     for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
548          I != E; ++I) {
549       const MachineInstr *UseI = I->getParent();
550       if (UseI->getOpcode() != Hexagon::A2_addp)
551         continue;
552       // Get the output from the add. If it is one of the inputs to the
553       // loop-controlling compare instruction, then R is likely an induc-
554       // tion register.
555       unsigned T = UseI->getOperand(0).getReg();
556       if (T == CmpR1 || T == CmpR2)
557         return false;
558     }
559     return true;
560   };
561   UVect::iterator End = llvm::remove_if(DP, NoIndOp);
562   Rs.insert(DP.begin(), End);
563   Rs.insert(CmpR1);
564   Rs.insert(CmpR2);
565
566   LLVM_DEBUG({
567     dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
568     dump_partition(dbgs(), Rs, *TRI);
569     dbgs() << '\n';
570   });
571 }
572
573 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
574   using LoopVector = std::vector<MachineLoop *>;
575
576   LoopVector WorkQ;
577
578   for (auto I : *MLI)
579     WorkQ.push_back(I);
580   for (unsigned i = 0; i < WorkQ.size(); ++i) {
581     for (auto I : *WorkQ[i])
582       WorkQ.push_back(I);
583   }
584
585   USet Rs;
586   for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
587     MachineLoop *L = WorkQ[i];
588     Rs.clear();
589     collectIndRegsForLoop(L, Rs);
590     if (!Rs.empty())
591       IRM.insert(std::make_pair(L, Rs));
592   }
593 }
594
595 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
596       const UUPairMap &PairMap, unsigned SubR) {
597   MachineBasicBlock &B = *MI->getParent();
598   DebugLoc DL = MI->getDebugLoc();
599   MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
600
601   for (auto &Op : MI->operands()) {
602     if (!Op.isReg()) {
603       NewI->addOperand(Op);
604       continue;
605     }
606     // For register operands, set the subregister.
607     unsigned R = Op.getReg();
608     unsigned SR = Op.getSubReg();
609     bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
610     bool isKill = Op.isKill();
611     if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
612       isKill = false;
613       UUPairMap::const_iterator F = PairMap.find(R);
614       if (F == PairMap.end()) {
615         SR = SubR;
616       } else {
617         const UUPair &P = F->second;
618         R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
619         SR = 0;
620       }
621     }
622     auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
623           Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
624           Op.isInternalRead());
625     NewI->addOperand(CO);
626   }
627 }
628
629 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
630       const UUPairMap &PairMap) {
631   bool Load = MI->mayLoad();
632   unsigned OrigOpc = MI->getOpcode();
633   bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
634                   OrigOpc == Hexagon::S2_storerd_pi);
635   MachineInstr *LowI, *HighI;
636   MachineBasicBlock &B = *MI->getParent();
637   DebugLoc DL = MI->getDebugLoc();
638
639   // Index of the base-address-register operand.
640   unsigned AdrX = PostInc ? (Load ? 2 : 1)
641                           : (Load ? 1 : 0);
642   MachineOperand &AdrOp = MI->getOperand(AdrX);
643   unsigned RSA = getRegState(AdrOp);
644   MachineOperand &ValOp = Load ? MI->getOperand(0)
645                                : (PostInc ? MI->getOperand(3)
646                                           : MI->getOperand(2));
647   UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
648   assert(F != PairMap.end());
649
650   if (Load) {
651     const UUPair &P = F->second;
652     int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
653     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
654              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
655              .addImm(Off);
656     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
657               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
658               .addImm(Off+4);
659   } else {
660     const UUPair &P = F->second;
661     int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
662     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
663              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
664              .addImm(Off)
665              .addReg(P.first);
666     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
667               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
668               .addImm(Off+4)
669               .addReg(P.second);
670   }
671
672   if (PostInc) {
673     // Create the increment of the address register.
674     int64_t Inc = Load ? MI->getOperand(3).getImm()
675                        : MI->getOperand(2).getImm();
676     MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
677     const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
678     unsigned NewR = MRI->createVirtualRegister(RC);
679     assert(!UpdOp.getSubReg() && "Def operand with subreg");
680     BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
681       .addReg(AdrOp.getReg(), RSA)
682       .addImm(Inc);
683     MRI->replaceRegWith(UpdOp.getReg(), NewR);
684     // The original instruction will be deleted later.
685   }
686
687   // Generate a new pair of memory-operands.
688   MachineFunction &MF = *B.getParent();
689   for (auto &MO : MI->memoperands()) {
690     const MachinePointerInfo &Ptr = MO->getPointerInfo();
691     MachineMemOperand::Flags F = MO->getFlags();
692     int A = MO->getAlignment();
693
694     auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
695     LowI->addMemOperand(MF, Tmp1);
696     auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
697     HighI->addMemOperand(MF, Tmp2);
698   }
699 }
700
701 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
702       const UUPairMap &PairMap) {
703   MachineOperand &Op0 = MI->getOperand(0);
704   MachineOperand &Op1 = MI->getOperand(1);
705   assert(Op0.isReg() && Op1.isImm());
706   uint64_t V = Op1.getImm();
707
708   MachineBasicBlock &B = *MI->getParent();
709   DebugLoc DL = MI->getDebugLoc();
710   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
711   assert(F != PairMap.end());
712   const UUPair &P = F->second;
713
714   // The operand to A2_tfrsi can only have 32 significant bits. Immediate
715   // values in MachineOperand are stored as 64-bit integers, and so the
716   // value -1 may be represented either as 64-bit -1, or 4294967295. Both
717   // will have the 32 higher bits truncated in the end, but -1 will remain
718   // as -1, while the latter may appear to be a large unsigned value
719   // requiring a constant extender. The casting to int32_t will select the
720   // former representation. (The same reasoning applies to all 32-bit
721   // values.)
722   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
723     .addImm(int32_t(V & 0xFFFFFFFFULL));
724   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
725     .addImm(int32_t(V >> 32));
726 }
727
728 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
729       const UUPairMap &PairMap) {
730   MachineOperand &Op0 = MI->getOperand(0);
731   MachineOperand &Op1 = MI->getOperand(1);
732   MachineOperand &Op2 = MI->getOperand(2);
733   assert(Op0.isReg());
734
735   MachineBasicBlock &B = *MI->getParent();
736   DebugLoc DL = MI->getDebugLoc();
737   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
738   assert(F != PairMap.end());
739   const UUPair &P = F->second;
740
741   if (!Op1.isReg()) {
742     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
743       .add(Op1);
744   } else {
745     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
746       .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
747   }
748
749   if (!Op2.isReg()) {
750     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
751       .add(Op2);
752   } else {
753     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
754       .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
755   }
756 }
757
758 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
759       const UUPairMap &PairMap) {
760   MachineOperand &Op0 = MI->getOperand(0);
761   MachineOperand &Op1 = MI->getOperand(1);
762   assert(Op0.isReg() && Op1.isReg());
763
764   MachineBasicBlock &B = *MI->getParent();
765   DebugLoc DL = MI->getDebugLoc();
766   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
767   assert(F != PairMap.end());
768   const UUPair &P = F->second;
769   unsigned RS = getRegState(Op1);
770
771   BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
772     .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
773   BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
774     .addReg(Op1.getReg(), RS, Op1.getSubReg())
775     .addImm(31);
776 }
777
778 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
779       const UUPairMap &PairMap) {
780   using namespace Hexagon;
781
782   MachineOperand &Op0 = MI->getOperand(0);
783   MachineOperand &Op1 = MI->getOperand(1);
784   MachineOperand &Op2 = MI->getOperand(2);
785   assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
786   int64_t Sh64 = Op2.getImm();
787   assert(Sh64 >= 0 && Sh64 < 64);
788   unsigned S = Sh64;
789
790   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
791   assert(F != PairMap.end());
792   const UUPair &P = F->second;
793   unsigned LoR = P.first;
794   unsigned HiR = P.second;
795
796   unsigned Opc = MI->getOpcode();
797   bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
798   bool Left = !Right;
799   bool Signed = (Opc == S2_asr_i_p);
800
801   MachineBasicBlock &B = *MI->getParent();
802   DebugLoc DL = MI->getDebugLoc();
803   unsigned RS = getRegState(Op1);
804   unsigned ShiftOpc = Left ? S2_asl_i_r
805                            : (Signed ? S2_asr_i_r : S2_lsr_i_r);
806   unsigned LoSR = isub_lo;
807   unsigned HiSR = isub_hi;
808
809   if (S == 0) {
810     // No shift, subregister copy.
811     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
812       .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
813     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
814       .addReg(Op1.getReg(), RS, HiSR);
815   } else if (S < 32) {
816     const TargetRegisterClass *IntRC = &IntRegsRegClass;
817     unsigned TmpR = MRI->createVirtualRegister(IntRC);
818     // Expansion:
819     // Shift left:    DR = shl R, #s
820     //   LoR  = shl R.lo, #s
821     //   TmpR = extractu R.lo, #s, #32-s
822     //   HiR  = or (TmpR, asl(R.hi, #s))
823     // Shift right:   DR = shr R, #s
824     //   HiR  = shr R.hi, #s
825     //   TmpR = shr R.lo, #s
826     //   LoR  = insert TmpR, R.hi, #s, #32-s
827
828     // Shift left:
829     //   LoR  = shl R.lo, #s
830     // Shift right:
831     //   TmpR = shr R.lo, #s
832
833     // Make a special case for A2_aslh and A2_asrh (they are predicable as
834     // opposed to S2_asl_i_r/S2_asr_i_r).
835     if (S == 16 && Left)
836       BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
837         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
838     else if (S == 16 && Signed)
839       BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
840         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
841     else
842       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
843         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
844         .addImm(S);
845
846     if (Left) {
847       // TmpR = extractu R.lo, #s, #32-s
848       BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
849         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
850         .addImm(S)
851         .addImm(32-S);
852       // HiR  = or (TmpR, asl(R.hi, #s))
853       BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
854         .addReg(TmpR)
855         .addReg(Op1.getReg(), RS, HiSR)
856         .addImm(S);
857     } else {
858       // HiR  = shr R.hi, #s
859       BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
860         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
861         .addImm(S);
862       // LoR  = insert TmpR, R.hi, #s, #32-s
863       BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
864         .addReg(TmpR)
865         .addReg(Op1.getReg(), RS, HiSR)
866         .addImm(S)
867         .addImm(32-S);
868     }
869   } else if (S == 32) {
870     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
871       .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
872     if (!Signed)
873       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
874         .addImm(0);
875     else  // Must be right shift.
876       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
877         .addReg(Op1.getReg(), RS, HiSR)
878         .addImm(31);
879   } else if (S < 64) {
880     S -= 32;
881     if (S == 16 && Left)
882       BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
883         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
884     else if (S == 16 && Signed)
885       BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
886         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
887     else
888       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
889         .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
890         .addImm(S);
891
892     if (Signed)
893       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
894         .addReg(Op1.getReg(), RS, HiSR)
895         .addImm(31);
896     else
897       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
898         .addImm(0);
899   }
900 }
901
902 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
903       const UUPairMap &PairMap) {
904   using namespace Hexagon;
905
906   MachineOperand &Op0 = MI->getOperand(0);
907   MachineOperand &Op1 = MI->getOperand(1);
908   MachineOperand &Op2 = MI->getOperand(2);
909   MachineOperand &Op3 = MI->getOperand(3);
910   assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
911   int64_t Sh64 = Op3.getImm();
912   assert(Sh64 >= 0 && Sh64 < 64);
913   unsigned S = Sh64;
914
915   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
916   assert(F != PairMap.end());
917   const UUPair &P = F->second;
918   unsigned LoR = P.first;
919   unsigned HiR = P.second;
920
921   MachineBasicBlock &B = *MI->getParent();
922   DebugLoc DL = MI->getDebugLoc();
923   unsigned RS1 = getRegState(Op1);
924   unsigned RS2 = getRegState(Op2);
925   const TargetRegisterClass *IntRC = &IntRegsRegClass;
926
927   unsigned LoSR = isub_lo;
928   unsigned HiSR = isub_hi;
929
930   // Op0 = S2_asl_i_p_or Op1, Op2, Op3
931   // means:  Op0 = or (Op1, asl(Op2, Op3))
932
933   // Expansion of
934   //   DR = or (R1, asl(R2, #s))
935   //
936   //   LoR  = or (R1.lo, asl(R2.lo, #s))
937   //   Tmp1 = extractu R2.lo, #s, #32-s
938   //   Tmp2 = or R1.hi, Tmp1
939   //   HiR  = or (Tmp2, asl(R2.hi, #s))
940
941   if (S == 0) {
942     // DR  = or (R1, asl(R2, #0))
943     //    -> or (R1, R2)
944     // i.e. LoR = or R1.lo, R2.lo
945     //      HiR = or R1.hi, R2.hi
946     BuildMI(B, MI, DL, TII->get(A2_or), LoR)
947       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
948       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
949     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
950       .addReg(Op1.getReg(), RS1, HiSR)
951       .addReg(Op2.getReg(), RS2, HiSR);
952   } else if (S < 32) {
953     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
954       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
955       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
956       .addImm(S);
957     unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
958     BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
959       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
960       .addImm(S)
961       .addImm(32-S);
962     unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
963     BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
964       .addReg(Op1.getReg(), RS1, HiSR)
965       .addReg(TmpR1);
966     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
967       .addReg(TmpR2)
968       .addReg(Op2.getReg(), RS2, HiSR)
969       .addImm(S);
970   } else if (S == 32) {
971     // DR  = or (R1, asl(R2, #32))
972     //    -> or R1, R2.lo
973     // LoR = R1.lo
974     // HiR = or R1.hi, R2.lo
975     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
976       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
977     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
978       .addReg(Op1.getReg(), RS1, HiSR)
979       .addReg(Op2.getReg(), RS2, LoSR);
980   } else if (S < 64) {
981     // DR  = or (R1, asl(R2, #s))
982     //
983     // LoR = R1:lo
984     // HiR = or (R1:hi, asl(R2:lo, #s-32))
985     S -= 32;
986     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
987       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
988     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
989       .addReg(Op1.getReg(), RS1, HiSR)
990       .addReg(Op2.getReg(), RS2, LoSR)
991       .addImm(S);
992   }
993 }
994
995 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
996       const UUPairMap &PairMap) {
997   using namespace Hexagon;
998
999   LLVM_DEBUG(dbgs() << "Splitting: " << *MI);
1000   bool Split = false;
1001   unsigned Opc = MI->getOpcode();
1002
1003   switch (Opc) {
1004     case TargetOpcode::PHI:
1005     case TargetOpcode::COPY: {
1006       unsigned DstR = MI->getOperand(0).getReg();
1007       if (MRI->getRegClass(DstR) == DoubleRC) {
1008         createHalfInstr(Opc, MI, PairMap, isub_lo);
1009         createHalfInstr(Opc, MI, PairMap, isub_hi);
1010         Split = true;
1011       }
1012       break;
1013     }
1014     case A2_andp:
1015       createHalfInstr(A2_and, MI, PairMap, isub_lo);
1016       createHalfInstr(A2_and, MI, PairMap, isub_hi);
1017       Split = true;
1018       break;
1019     case A2_orp:
1020       createHalfInstr(A2_or, MI, PairMap, isub_lo);
1021       createHalfInstr(A2_or, MI, PairMap, isub_hi);
1022       Split = true;
1023       break;
1024     case A2_xorp:
1025       createHalfInstr(A2_xor, MI, PairMap, isub_lo);
1026       createHalfInstr(A2_xor, MI, PairMap, isub_hi);
1027       Split = true;
1028       break;
1029
1030     case L2_loadrd_io:
1031     case L2_loadrd_pi:
1032     case S2_storerd_io:
1033     case S2_storerd_pi:
1034       splitMemRef(MI, PairMap);
1035       Split = true;
1036       break;
1037
1038     case A2_tfrpi:
1039     case CONST64:
1040       splitImmediate(MI, PairMap);
1041       Split = true;
1042       break;
1043
1044     case A2_combineii:
1045     case A4_combineir:
1046     case A4_combineii:
1047     case A4_combineri:
1048     case A2_combinew:
1049       splitCombine(MI, PairMap);
1050       Split = true;
1051       break;
1052
1053     case A2_sxtw:
1054       splitExt(MI, PairMap);
1055       Split = true;
1056       break;
1057
1058     case S2_asl_i_p:
1059     case S2_asr_i_p:
1060     case S2_lsr_i_p:
1061       splitShift(MI, PairMap);
1062       Split = true;
1063       break;
1064
1065     case S2_asl_i_p_or:
1066       splitAslOr(MI, PairMap);
1067       Split = true;
1068       break;
1069
1070     default:
1071       llvm_unreachable("Instruction not splitable");
1072       return false;
1073   }
1074
1075   return Split;
1076 }
1077
1078 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1079       const UUPairMap &PairMap) {
1080   for (auto &Op : MI->operands()) {
1081     if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1082       continue;
1083     unsigned R = Op.getReg();
1084     UUPairMap::const_iterator F = PairMap.find(R);
1085     if (F == PairMap.end())
1086       continue;
1087     const UUPair &P = F->second;
1088     switch (Op.getSubReg()) {
1089       case Hexagon::isub_lo:
1090         Op.setReg(P.first);
1091         break;
1092       case Hexagon::isub_hi:
1093         Op.setReg(P.second);
1094         break;
1095     }
1096     Op.setSubReg(0);
1097   }
1098 }
1099
1100 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1101       const UUPairMap &PairMap) {
1102   MachineBasicBlock &B = *MI->getParent();
1103   DebugLoc DL = MI->getDebugLoc();
1104
1105   for (auto &Op : MI->operands()) {
1106     if (!Op.isReg() || !Op.isUse())
1107       continue;
1108     unsigned R = Op.getReg();
1109     if (!TargetRegisterInfo::isVirtualRegister(R))
1110       continue;
1111     if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1112       continue;
1113     UUPairMap::const_iterator F = PairMap.find(R);
1114     if (F == PairMap.end())
1115       continue;
1116     const UUPair &Pr = F->second;
1117     unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
1118     BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1119       .addReg(Pr.first)
1120       .addImm(Hexagon::isub_lo)
1121       .addReg(Pr.second)
1122       .addImm(Hexagon::isub_hi);
1123     Op.setReg(NewDR);
1124   }
1125 }
1126
1127 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1128   using MISet = std::set<MachineInstr *>;
1129
1130   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1131   bool Changed = false;
1132
1133   LLVM_DEBUG(dbgs() << "Splitting partition: ";
1134              dump_partition(dbgs(), Part, *TRI); dbgs() << '\n');
1135
1136   UUPairMap PairMap;
1137
1138   MISet SplitIns;
1139   for (unsigned DR : Part) {
1140     MachineInstr *DefI = MRI->getVRegDef(DR);
1141     SplitIns.insert(DefI);
1142
1143     // Collect all instructions, including fixed ones.  We won't split them,
1144     // but we need to visit them again to insert the REG_SEQUENCE instructions.
1145     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1146          U != W; ++U)
1147       SplitIns.insert(U->getParent());
1148
1149     unsigned LoR = MRI->createVirtualRegister(IntRC);
1150     unsigned HiR = MRI->createVirtualRegister(IntRC);
1151     LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
1152                       << printReg(HiR, TRI) << ':' << printReg(LoR, TRI)
1153                       << '\n');
1154     PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1155   }
1156
1157   MISet Erase;
1158   for (auto MI : SplitIns) {
1159     if (isFixedInstr(MI)) {
1160       collapseRegPairs(MI, PairMap);
1161     } else {
1162       bool Done = splitInstr(MI, PairMap);
1163       if (Done)
1164         Erase.insert(MI);
1165       Changed |= Done;
1166     }
1167   }
1168
1169   for (unsigned DR : Part) {
1170     // Before erasing "double" instructions, revisit all uses of the double
1171     // registers in this partition, and replace all uses of them with subre-
1172     // gisters, with the corresponding single registers.
1173     MISet Uses;
1174     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1175          U != W; ++U)
1176       Uses.insert(U->getParent());
1177     for (auto M : Uses)
1178       replaceSubregUses(M, PairMap);
1179   }
1180
1181   for (auto MI : Erase) {
1182     MachineBasicBlock *B = MI->getParent();
1183     B->erase(MI);
1184   }
1185
1186   return Changed;
1187 }
1188
1189 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1190   if (skipFunction(MF.getFunction()))
1191     return false;
1192
1193   LLVM_DEBUG(dbgs() << "Splitting double registers in function: "
1194                     << MF.getName() << '\n');
1195
1196   auto &ST = MF.getSubtarget<HexagonSubtarget>();
1197   TRI = ST.getRegisterInfo();
1198   TII = ST.getInstrInfo();
1199   MRI = &MF.getRegInfo();
1200   MLI = &getAnalysis<MachineLoopInfo>();
1201
1202   UUSetMap P2Rs;
1203   LoopRegMap IRM;
1204
1205   collectIndRegs(IRM);
1206   partitionRegisters(P2Rs);
1207
1208   LLVM_DEBUG({
1209     dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1210     for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1211       dbgs() << '#' << I->first << " -> ";
1212       dump_partition(dbgs(), I->second, *TRI);
1213       dbgs() << '\n';
1214     }
1215   });
1216
1217   bool Changed = false;
1218   int Limit = MaxHSDR;
1219
1220   for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1221     if (I->first == 0)
1222       continue;
1223     if (Limit >= 0 && Counter >= Limit)
1224       break;
1225     USet &Part = I->second;
1226     LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first
1227                       << '\n');
1228     if (!isProfitable(Part, IRM))
1229       continue;
1230     Counter++;
1231     Changed |= splitPartition(Part);
1232   }
1233
1234   return Changed;
1235 }
1236
1237 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1238   return new HexagonSplitDoubleRegs();
1239 }