]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Lanai/LanaiISelLowering.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Lanai / LanaiISelLowering.cpp
1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LanaiTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LanaiISelLowering.h"
15 #include "Lanai.h"
16 #include "LanaiCondCode.h"
17 #include "LanaiMachineFunctionInfo.h"
18 #include "LanaiSubtarget.h"
19 #include "LanaiTargetObjectFile.h"
20 #include "MCTargetDesc/LanaiBaseInfo.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/TargetCallingConv.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CodeGen.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MachineValueType.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include <cassert>
51 #include <cmath>
52 #include <cstdint>
53 #include <cstdlib>
54 #include <utility>
55
56 #define DEBUG_TYPE "lanai-lower"
57
58 using namespace llvm;
59
60 // Limit on number of instructions the lowered multiplication may have before a
61 // call to the library function should be generated instead. The threshold is
62 // currently set to 14 as this was the smallest threshold that resulted in all
63 // constant multiplications being lowered. A threshold of 5 covered all cases
64 // except for one multiplication which required 14. mulsi3 requires 16
65 // instructions (including the prologue and epilogue but excluding instructions
66 // at call site). Until we can inline mulsi3, generating at most 14 instructions
67 // will be faster than invoking mulsi3.
68 static cl::opt<int> LanaiLowerConstantMulThreshold(
69     "lanai-constant-mul-threshold", cl::Hidden,
70     cl::desc("Maximum number of instruction to generate when lowering constant "
71              "multiplication instead of calling library function [default=14]"),
72     cl::init(14));
73
74 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
75                                          const LanaiSubtarget &STI)
76     : TargetLowering(TM) {
77   // Set up the register classes.
78   addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
79
80   // Compute derived properties from the register classes
81   TRI = STI.getRegisterInfo();
82   computeRegisterProperties(TRI);
83
84   setStackPointerRegisterToSaveRestore(Lanai::SP);
85
86   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
87   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
88   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
89   setOperationAction(ISD::SETCC, MVT::i32, Custom);
90   setOperationAction(ISD::SELECT, MVT::i32, Expand);
91   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
92
93   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
94   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
95   setOperationAction(ISD::JumpTable, MVT::i32, Custom);
96   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
97
98   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
99   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
100   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
101
102   setOperationAction(ISD::VASTART, MVT::Other, Custom);
103   setOperationAction(ISD::VAARG, MVT::Other, Expand);
104   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
105   setOperationAction(ISD::VAEND, MVT::Other, Expand);
106
107   setOperationAction(ISD::SDIV, MVT::i32, Expand);
108   setOperationAction(ISD::UDIV, MVT::i32, Expand);
109   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
110   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
111   setOperationAction(ISD::SREM, MVT::i32, Expand);
112   setOperationAction(ISD::UREM, MVT::i32, Expand);
113
114   setOperationAction(ISD::MUL, MVT::i32, Custom);
115   setOperationAction(ISD::MULHU, MVT::i32, Expand);
116   setOperationAction(ISD::MULHS, MVT::i32, Expand);
117   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
118   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
119
120   setOperationAction(ISD::ROTR, MVT::i32, Expand);
121   setOperationAction(ISD::ROTL, MVT::i32, Expand);
122   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
123   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
124   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
125
126   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
127   setOperationAction(ISD::CTPOP, MVT::i32, Legal);
128   setOperationAction(ISD::CTLZ, MVT::i32, Legal);
129   setOperationAction(ISD::CTTZ, MVT::i32, Legal);
130
131   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
132   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
133   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
134
135   // Extended load operations for i1 types must be promoted
136   for (MVT VT : MVT::integer_valuetypes()) {
137     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
138     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
139     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
140   }
141
142   setTargetDAGCombine(ISD::ADD);
143   setTargetDAGCombine(ISD::SUB);
144   setTargetDAGCombine(ISD::AND);
145   setTargetDAGCombine(ISD::OR);
146   setTargetDAGCombine(ISD::XOR);
147
148   // Function alignments (log2)
149   setMinFunctionAlignment(2);
150   setPrefFunctionAlignment(2);
151
152   setJumpIsExpensive(true);
153
154   // TODO: Setting the minimum jump table entries needed before a
155   // switch is transformed to a jump table to 100 to avoid creating jump tables
156   // as this was causing bad performance compared to a large group of if
157   // statements. Re-evaluate this on new benchmarks.
158   setMinimumJumpTableEntries(100);
159
160   // Use fast calling convention for library functions.
161   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
162     setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
163   }
164
165   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
166   MaxStoresPerMemsetOptSize = 8;
167   MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
168   MaxStoresPerMemcpyOptSize = 8;
169   MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
170   MaxStoresPerMemmoveOptSize = 8;
171
172   // Booleans always contain 0 or 1.
173   setBooleanContents(ZeroOrOneBooleanContent);
174 }
175
176 SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
177                                             SelectionDAG &DAG) const {
178   switch (Op.getOpcode()) {
179   case ISD::MUL:
180     return LowerMUL(Op, DAG);
181   case ISD::BR_CC:
182     return LowerBR_CC(Op, DAG);
183   case ISD::ConstantPool:
184     return LowerConstantPool(Op, DAG);
185   case ISD::GlobalAddress:
186     return LowerGlobalAddress(Op, DAG);
187   case ISD::BlockAddress:
188     return LowerBlockAddress(Op, DAG);
189   case ISD::JumpTable:
190     return LowerJumpTable(Op, DAG);
191   case ISD::SELECT_CC:
192     return LowerSELECT_CC(Op, DAG);
193   case ISD::SETCC:
194     return LowerSETCC(Op, DAG);
195   case ISD::SHL_PARTS:
196     return LowerSHL_PARTS(Op, DAG);
197   case ISD::SRL_PARTS:
198     return LowerSRL_PARTS(Op, DAG);
199   case ISD::VASTART:
200     return LowerVASTART(Op, DAG);
201   case ISD::DYNAMIC_STACKALLOC:
202     return LowerDYNAMIC_STACKALLOC(Op, DAG);
203   case ISD::RETURNADDR:
204     return LowerRETURNADDR(Op, DAG);
205   case ISD::FRAMEADDR:
206     return LowerFRAMEADDR(Op, DAG);
207   default:
208     llvm_unreachable("unimplemented operand");
209   }
210 }
211
212 //===----------------------------------------------------------------------===//
213 //                       Lanai Inline Assembly Support
214 //===----------------------------------------------------------------------===//
215
216 unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT /*VT*/,
217                                                 SelectionDAG & /*DAG*/) const {
218   // Only unallocatable registers should be matched here.
219   unsigned Reg = StringSwitch<unsigned>(RegName)
220                      .Case("pc", Lanai::PC)
221                      .Case("sp", Lanai::SP)
222                      .Case("fp", Lanai::FP)
223                      .Case("rr1", Lanai::RR1)
224                      .Case("r10", Lanai::R10)
225                      .Case("rr2", Lanai::RR2)
226                      .Case("r11", Lanai::R11)
227                      .Case("rca", Lanai::RCA)
228                      .Default(0);
229
230   if (Reg)
231     return Reg;
232   report_fatal_error("Invalid register name global variable");
233 }
234
235 std::pair<unsigned, const TargetRegisterClass *>
236 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
237                                                   StringRef Constraint,
238                                                   MVT VT) const {
239   if (Constraint.size() == 1)
240     // GCC Constraint Letters
241     switch (Constraint[0]) {
242     case 'r': // GENERAL_REGS
243       return std::make_pair(0U, &Lanai::GPRRegClass);
244     default:
245       break;
246     }
247
248   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
249 }
250
251 // Examine constraint type and operand type and determine a weight value.
252 // This object must already have been set up with the operand type
253 // and the current alternative constraint selected.
254 TargetLowering::ConstraintWeight
255 LanaiTargetLowering::getSingleConstraintMatchWeight(
256     AsmOperandInfo &Info, const char *Constraint) const {
257   ConstraintWeight Weight = CW_Invalid;
258   Value *CallOperandVal = Info.CallOperandVal;
259   // If we don't have a value, we can't do a match,
260   // but allow it at the lowest weight.
261   if (CallOperandVal == nullptr)
262     return CW_Default;
263   // Look at the constraint type.
264   switch (*Constraint) {
265   case 'I': // signed 16 bit immediate
266   case 'J': // integer zero
267   case 'K': // unsigned 16 bit immediate
268   case 'L': // immediate in the range 0 to 31
269   case 'M': // signed 32 bit immediate where lower 16 bits are 0
270   case 'N': // signed 26 bit immediate
271   case 'O': // integer zero
272     if (isa<ConstantInt>(CallOperandVal))
273       Weight = CW_Constant;
274     break;
275   default:
276     Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
277     break;
278   }
279   return Weight;
280 }
281
282 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops
283 // vector.  If it is invalid, don't add anything to Ops.
284 void LanaiTargetLowering::LowerAsmOperandForConstraint(
285     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
286     SelectionDAG &DAG) const {
287   SDValue Result(nullptr, 0);
288
289   // Only support length 1 constraints for now.
290   if (Constraint.length() > 1)
291     return;
292
293   char ConstraintLetter = Constraint[0];
294   switch (ConstraintLetter) {
295   case 'I': // Signed 16 bit constant
296     // If this fails, the parent routine will give an error
297     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
298       if (isInt<16>(C->getSExtValue())) {
299         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
300                                        Op.getValueType());
301         break;
302       }
303     }
304     return;
305   case 'J': // integer zero
306   case 'O':
307     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
308       if (C->getZExtValue() == 0) {
309         Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
310         break;
311       }
312     }
313     return;
314   case 'K': // unsigned 16 bit immediate
315     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
316       if (isUInt<16>(C->getZExtValue())) {
317         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
318                                        Op.getValueType());
319         break;
320       }
321     }
322     return;
323   case 'L': // immediate in the range 0 to 31
324     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
325       if (C->getZExtValue() <= 31) {
326         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
327                                        Op.getValueType());
328         break;
329       }
330     }
331     return;
332   case 'M': // signed 32 bit immediate where lower 16 bits are 0
333     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
334       int64_t Val = C->getSExtValue();
335       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
336         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
337         break;
338       }
339     }
340     return;
341   case 'N': // signed 26 bit immediate
342     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
343       int64_t Val = C->getSExtValue();
344       if ((Val >= -33554432) && (Val <= 33554431)) {
345         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
346         break;
347       }
348     }
349     return;
350   default:
351     break; // This will fall through to the generic implementation
352   }
353
354   if (Result.getNode()) {
355     Ops.push_back(Result);
356     return;
357   }
358
359   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
360 }
361
362 //===----------------------------------------------------------------------===//
363 //                      Calling Convention Implementation
364 //===----------------------------------------------------------------------===//
365
366 #include "LanaiGenCallingConv.inc"
367
368 static unsigned NumFixedArgs;
369 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
370                               CCValAssign::LocInfo LocInfo,
371                               ISD::ArgFlagsTy ArgFlags, CCState &State) {
372   // Handle fixed arguments with default CC.
373   // Note: Both the default and fast CC handle VarArg the same and hence the
374   // calling convention of the function is not considered here.
375   if (ValNo < NumFixedArgs) {
376     return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
377   }
378
379   // Promote i8/i16 args to i32
380   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
381     LocVT = MVT::i32;
382     if (ArgFlags.isSExt())
383       LocInfo = CCValAssign::SExt;
384     else if (ArgFlags.isZExt())
385       LocInfo = CCValAssign::ZExt;
386     else
387       LocInfo = CCValAssign::AExt;
388   }
389
390   // VarArgs get passed on stack
391   unsigned Offset = State.AllocateStack(4, 4);
392   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
393   return false;
394 }
395
396 SDValue LanaiTargetLowering::LowerFormalArguments(
397     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
398     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
399     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
400   switch (CallConv) {
401   case CallingConv::C:
402   case CallingConv::Fast:
403     return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
404   default:
405     report_fatal_error("Unsupported calling convention");
406   }
407 }
408
409 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
410                                        SmallVectorImpl<SDValue> &InVals) const {
411   SelectionDAG &DAG = CLI.DAG;
412   SDLoc &DL = CLI.DL;
413   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
414   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
415   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
416   SDValue Chain = CLI.Chain;
417   SDValue Callee = CLI.Callee;
418   bool &IsTailCall = CLI.IsTailCall;
419   CallingConv::ID CallConv = CLI.CallConv;
420   bool IsVarArg = CLI.IsVarArg;
421
422   // Lanai target does not yet support tail call optimization.
423   IsTailCall = false;
424
425   switch (CallConv) {
426   case CallingConv::Fast:
427   case CallingConv::C:
428     return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
429                           OutVals, Ins, DL, DAG, InVals);
430   default:
431     report_fatal_error("Unsupported calling convention");
432   }
433 }
434
435 // LowerCCCArguments - transform physical registers into virtual registers and
436 // generate load operations for arguments places on the stack.
437 SDValue LanaiTargetLowering::LowerCCCArguments(
438     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
439     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
440     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
441   MachineFunction &MF = DAG.getMachineFunction();
442   MachineFrameInfo &MFI = MF.getFrameInfo();
443   MachineRegisterInfo &RegInfo = MF.getRegInfo();
444   LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
445
446   // Assign locations to all of the incoming arguments.
447   SmallVector<CCValAssign, 16> ArgLocs;
448   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
449                  *DAG.getContext());
450   if (CallConv == CallingConv::Fast) {
451     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
452   } else {
453     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
454   }
455
456   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
457     CCValAssign &VA = ArgLocs[i];
458     if (VA.isRegLoc()) {
459       // Arguments passed in registers
460       EVT RegVT = VA.getLocVT();
461       switch (RegVT.getSimpleVT().SimpleTy) {
462       case MVT::i32: {
463         unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
464         RegInfo.addLiveIn(VA.getLocReg(), VReg);
465         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
466
467         // If this is an 8/16-bit value, it is really passed promoted to 32
468         // bits. Insert an assert[sz]ext to capture this, then truncate to the
469         // right size.
470         if (VA.getLocInfo() == CCValAssign::SExt)
471           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
472                                  DAG.getValueType(VA.getValVT()));
473         else if (VA.getLocInfo() == CCValAssign::ZExt)
474           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
475                                  DAG.getValueType(VA.getValVT()));
476
477         if (VA.getLocInfo() != CCValAssign::Full)
478           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
479
480         InVals.push_back(ArgValue);
481         break;
482       }
483       default:
484         LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
485                           << RegVT.getEVTString() << "\n");
486         llvm_unreachable("unhandled argument type");
487       }
488     } else {
489       // Sanity check
490       assert(VA.isMemLoc());
491       // Load the argument to a virtual register
492       unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
493       // Check that the argument fits in stack slot
494       if (ObjSize > 4) {
495         errs() << "LowerFormalArguments Unhandled argument type: "
496                << EVT(VA.getLocVT()).getEVTString() << "\n";
497       }
498       // Create the frame index object for this incoming parameter...
499       int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
500
501       // Create the SelectionDAG nodes corresponding to a load
502       // from this parameter
503       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
504       InVals.push_back(DAG.getLoad(
505           VA.getLocVT(), DL, Chain, FIN,
506           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
507     }
508   }
509
510   // The Lanai ABI for returning structs by value requires that we copy
511   // the sret argument into rv for the return. Save the argument into
512   // a virtual register so that we can access it from the return points.
513   if (MF.getFunction().hasStructRetAttr()) {
514     unsigned Reg = LanaiMFI->getSRetReturnReg();
515     if (!Reg) {
516       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
517       LanaiMFI->setSRetReturnReg(Reg);
518     }
519     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
520     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
521   }
522
523   if (IsVarArg) {
524     // Record the frame index of the first variable argument
525     // which is a value necessary to VASTART.
526     int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true);
527     LanaiMFI->setVarArgsFrameIndex(FI);
528   }
529
530   return Chain;
531 }
532
533 SDValue
534 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
535                                  bool IsVarArg,
536                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
537                                  const SmallVectorImpl<SDValue> &OutVals,
538                                  const SDLoc &DL, SelectionDAG &DAG) const {
539   // CCValAssign - represent the assignment of the return value to a location
540   SmallVector<CCValAssign, 16> RVLocs;
541
542   // CCState - Info about the registers and stack slot.
543   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
544                  *DAG.getContext());
545
546   // Analize return values.
547   CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
548
549   SDValue Flag;
550   SmallVector<SDValue, 4> RetOps(1, Chain);
551
552   // Copy the result values into the output registers.
553   for (unsigned i = 0; i != RVLocs.size(); ++i) {
554     CCValAssign &VA = RVLocs[i];
555     assert(VA.isRegLoc() && "Can only return in registers!");
556
557     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
558
559     // Guarantee that all emitted copies are stuck together with flags.
560     Flag = Chain.getValue(1);
561     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
562   }
563
564   // The Lanai ABI for returning structs by value requires that we copy
565   // the sret argument into rv for the return. We saved the argument into
566   // a virtual register in the entry block, so now we copy the value out
567   // and into rv.
568   if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) {
569     MachineFunction &MF = DAG.getMachineFunction();
570     LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
571     unsigned Reg = LanaiMFI->getSRetReturnReg();
572     assert(Reg &&
573            "SRetReturnReg should have been set in LowerFormalArguments().");
574     SDValue Val =
575         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
576
577     Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag);
578     Flag = Chain.getValue(1);
579     RetOps.push_back(
580         DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
581   }
582
583   RetOps[0] = Chain; // Update chain
584
585   unsigned Opc = LanaiISD::RET_FLAG;
586   if (Flag.getNode())
587     RetOps.push_back(Flag);
588
589   // Return Void
590   return DAG.getNode(Opc, DL, MVT::Other,
591                      ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
592 }
593
594 // LowerCCCCallTo - functions arguments are copied from virtual regs to
595 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
596 SDValue LanaiTargetLowering::LowerCCCCallTo(
597     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
598     bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs,
599     const SmallVectorImpl<SDValue> &OutVals,
600     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
601     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
602   // Analyze operands of the call, assigning locations to each operand.
603   SmallVector<CCValAssign, 16> ArgLocs;
604   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
605                  *DAG.getContext());
606   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
607   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
608
609   NumFixedArgs = 0;
610   if (IsVarArg && G) {
611     const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
612     if (CalleeFn)
613       NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
614   }
615   if (NumFixedArgs)
616     CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
617   else {
618     if (CallConv == CallingConv::Fast)
619       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
620     else
621       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
622   }
623
624   // Get a count of how many bytes are to be pushed on the stack.
625   unsigned NumBytes = CCInfo.getNextStackOffset();
626
627   // Create local copies for byval args.
628   SmallVector<SDValue, 8> ByValArgs;
629   for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
630     ISD::ArgFlagsTy Flags = Outs[I].Flags;
631     if (!Flags.isByVal())
632       continue;
633
634     SDValue Arg = OutVals[I];
635     unsigned Size = Flags.getByValSize();
636     unsigned Align = Flags.getByValAlign();
637
638     int FI = MFI.CreateStackObject(Size, Align, false);
639     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
640     SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
641
642     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
643                           /*IsVolatile=*/false,
644                           /*AlwaysInline=*/false,
645                           /*isTailCall=*/false, MachinePointerInfo(),
646                           MachinePointerInfo());
647     ByValArgs.push_back(FIPtr);
648   }
649
650   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
651
652   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
653   SmallVector<SDValue, 12> MemOpChains;
654   SDValue StackPtr;
655
656   // Walk the register/memloc assignments, inserting copies/loads.
657   for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
658     CCValAssign &VA = ArgLocs[I];
659     SDValue Arg = OutVals[I];
660     ISD::ArgFlagsTy Flags = Outs[I].Flags;
661
662     // Promote the value if needed.
663     switch (VA.getLocInfo()) {
664     case CCValAssign::Full:
665       break;
666     case CCValAssign::SExt:
667       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
668       break;
669     case CCValAssign::ZExt:
670       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
671       break;
672     case CCValAssign::AExt:
673       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
674       break;
675     default:
676       llvm_unreachable("Unknown loc info!");
677     }
678
679     // Use local copy if it is a byval arg.
680     if (Flags.isByVal())
681       Arg = ByValArgs[J++];
682
683     // Arguments that can be passed on register must be kept at RegsToPass
684     // vector
685     if (VA.isRegLoc()) {
686       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
687     } else {
688       assert(VA.isMemLoc());
689
690       if (StackPtr.getNode() == nullptr)
691         StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
692                                       getPointerTy(DAG.getDataLayout()));
693
694       SDValue PtrOff =
695           DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
696                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
697
698       MemOpChains.push_back(
699           DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
700     }
701   }
702
703   // Transform all store nodes into one single node because all store nodes are
704   // independent of each other.
705   if (!MemOpChains.empty())
706     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
707                         ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
708
709   SDValue InFlag;
710
711   // Build a sequence of copy-to-reg nodes chained together with token chain and
712   // flag operands which copy the outgoing args into registers.  The InFlag in
713   // necessary since all emitted instructions must be stuck together.
714   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
715     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
716                              RegsToPass[I].second, InFlag);
717     InFlag = Chain.getValue(1);
718   }
719
720   // If the callee is a GlobalAddress node (quite common, every direct call is)
721   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
722   // Likewise ExternalSymbol -> TargetExternalSymbol.
723   uint8_t OpFlag = LanaiII::MO_NO_FLAG;
724   if (G) {
725     Callee = DAG.getTargetGlobalAddress(
726         G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
727   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
728     Callee = DAG.getTargetExternalSymbol(
729         E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
730   }
731
732   // Returns a chain & a flag for retval copy to use.
733   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
734   SmallVector<SDValue, 8> Ops;
735   Ops.push_back(Chain);
736   Ops.push_back(Callee);
737
738   // Add a register mask operand representing the call-preserved registers.
739   // TODO: Should return-twice functions be handled?
740   const uint32_t *Mask =
741       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
742   assert(Mask && "Missing call preserved mask for calling convention");
743   Ops.push_back(DAG.getRegisterMask(Mask));
744
745   // Add argument registers to the end of the list so that they are
746   // known live into the call.
747   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
748     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
749                                   RegsToPass[I].second.getValueType()));
750
751   if (InFlag.getNode())
752     Ops.push_back(InFlag);
753
754   Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
755                       ArrayRef<SDValue>(&Ops[0], Ops.size()));
756   InFlag = Chain.getValue(1);
757
758   // Create the CALLSEQ_END node.
759   Chain = DAG.getCALLSEQ_END(
760       Chain,
761       DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
762       DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag,
763       DL);
764   InFlag = Chain.getValue(1);
765
766   // Handle result values, copying them out of physregs into vregs that we
767   // return.
768   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
769                          InVals);
770 }
771
772 // LowerCallResult - Lower the result values of a call into the
773 // appropriate copies out of appropriate physical registers.
774 SDValue LanaiTargetLowering::LowerCallResult(
775     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
776     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
777     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
778   // Assign locations to each value returned by this call.
779   SmallVector<CCValAssign, 16> RVLocs;
780   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
781                  *DAG.getContext());
782
783   CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
784
785   // Copy all of the result registers out of their specified physreg.
786   for (unsigned I = 0; I != RVLocs.size(); ++I) {
787     Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
788                                RVLocs[I].getValVT(), InFlag)
789                 .getValue(1);
790     InFlag = Chain.getValue(2);
791     InVals.push_back(Chain.getValue(0));
792   }
793
794   return Chain;
795 }
796
797 //===----------------------------------------------------------------------===//
798 //                      Custom Lowerings
799 //===----------------------------------------------------------------------===//
800
801 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
802                                         SDValue &RHS, SelectionDAG &DAG) {
803   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
804
805   // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
806   // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
807   // and Lanai only supports integer comparisons, so only provide definitions
808   // for them.
809   switch (SetCCOpcode) {
810   case ISD::SETEQ:
811     return LPCC::ICC_EQ;
812   case ISD::SETGT:
813     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
814       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
815         // X > -1 -> X >= 0 -> is_plus(X)
816         RHS = DAG.getConstant(0, DL, RHS.getValueType());
817         return LPCC::ICC_PL;
818       }
819     return LPCC::ICC_GT;
820   case ISD::SETUGT:
821     return LPCC::ICC_UGT;
822   case ISD::SETLT:
823     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
824       if (RHSC->getZExtValue() == 0)
825         // X < 0 -> is_minus(X)
826         return LPCC::ICC_MI;
827     return LPCC::ICC_LT;
828   case ISD::SETULT:
829     return LPCC::ICC_ULT;
830   case ISD::SETLE:
831     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
832       if (RHSC->getZExtValue() == 0xFFFFFFFF) {
833         // X <= -1 -> X < 0 -> is_minus(X)
834         RHS = DAG.getConstant(0, DL, RHS.getValueType());
835         return LPCC::ICC_MI;
836       }
837     return LPCC::ICC_LE;
838   case ISD::SETULE:
839     return LPCC::ICC_ULE;
840   case ISD::SETGE:
841     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
842       if (RHSC->getZExtValue() == 0)
843         // X >= 0 -> is_plus(X)
844         return LPCC::ICC_PL;
845     return LPCC::ICC_GE;
846   case ISD::SETUGE:
847     return LPCC::ICC_UGE;
848   case ISD::SETNE:
849     return LPCC::ICC_NE;
850   case ISD::SETONE:
851   case ISD::SETUNE:
852   case ISD::SETOGE:
853   case ISD::SETOLE:
854   case ISD::SETOLT:
855   case ISD::SETOGT:
856   case ISD::SETOEQ:
857   case ISD::SETUEQ:
858   case ISD::SETO:
859   case ISD::SETUO:
860     llvm_unreachable("Unsupported comparison.");
861   default:
862     llvm_unreachable("Unknown integer condition code!");
863   }
864 }
865
866 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
867   SDValue Chain = Op.getOperand(0);
868   SDValue Cond = Op.getOperand(1);
869   SDValue LHS = Op.getOperand(2);
870   SDValue RHS = Op.getOperand(3);
871   SDValue Dest = Op.getOperand(4);
872   SDLoc DL(Op);
873
874   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
875   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
876   SDValue Flag =
877       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
878
879   return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
880                      TargetCC, Flag);
881 }
882
883 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
884   EVT VT = Op->getValueType(0);
885   if (VT != MVT::i32)
886     return SDValue();
887
888   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
889   if (!C)
890     return SDValue();
891
892   int64_t MulAmt = C->getSExtValue();
893   int32_t HighestOne = -1;
894   uint32_t NonzeroEntries = 0;
895   int SignedDigit[32] = {0};
896
897   // Convert to non-adjacent form (NAF) signed-digit representation.
898   // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
899   // minimal Hamming weight representation of a number (on average 1/3 of the
900   // digits will be non-zero vs 1/2 for regular binary representation). And as
901   // the non-zero digits will be the only digits contributing to the instruction
902   // count, this is desirable. The next loop converts it to NAF (following the
903   // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
904   // choosing the non-zero coefficients such that the resulting quotient is
905   // divisible by 2 which will cause the next coefficient to be zero.
906   int64_t E = std::abs(MulAmt);
907   int S = (MulAmt < 0 ? -1 : 1);
908   int I = 0;
909   while (E > 0) {
910     int ZI = 0;
911     if (E % 2 == 1) {
912       ZI = 2 - (E % 4);
913       if (ZI != 0)
914         ++NonzeroEntries;
915     }
916     SignedDigit[I] = S * ZI;
917     if (SignedDigit[I] == 1)
918       HighestOne = I;
919     E = (E - ZI) / 2;
920     ++I;
921   }
922
923   // Compute number of instructions required. Due to differences in lowering
924   // between the different processors this count is not exact.
925   // Start by assuming a shift and a add/sub for every non-zero entry (hence
926   // every non-zero entry requires 1 shift and 1 add/sub except for the first
927   // entry).
928   int32_t InstrRequired = 2 * NonzeroEntries - 1;
929   // Correct possible over-adding due to shift by 0 (which is not emitted).
930   if (std::abs(MulAmt) % 2 == 1)
931     --InstrRequired;
932   // Return if the form generated would exceed the instruction threshold.
933   if (InstrRequired > LanaiLowerConstantMulThreshold)
934     return SDValue();
935
936   SDValue Res;
937   SDLoc DL(Op);
938   SDValue V = Op->getOperand(0);
939
940   // Initialize the running sum. Set the running sum to the maximal shifted
941   // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
942   // term NAF).
943   if (HighestOne == -1)
944     Res = DAG.getConstant(0, DL, MVT::i32);
945   else {
946     Res = DAG.getNode(ISD::SHL, DL, VT, V,
947                       DAG.getConstant(HighestOne, DL, MVT::i32));
948     SignedDigit[HighestOne] = 0;
949   }
950
951   // Assemble multiplication from shift, add, sub using NAF form and running
952   // sum.
953   for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]);
954        ++I) {
955     if (SignedDigit[I] == 0)
956       continue;
957
958     // Shifted multiplicand (v<<i).
959     SDValue Op =
960         DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
961     if (SignedDigit[I] == 1)
962       Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
963     else if (SignedDigit[I] == -1)
964       Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
965   }
966   return Res;
967 }
968
969 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
970   SDValue LHS = Op.getOperand(0);
971   SDValue RHS = Op.getOperand(1);
972   SDValue Cond = Op.getOperand(2);
973   SDLoc DL(Op);
974
975   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
976   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
977   SDValue Flag =
978       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
979
980   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
981 }
982
983 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
984                                             SelectionDAG &DAG) const {
985   SDValue LHS = Op.getOperand(0);
986   SDValue RHS = Op.getOperand(1);
987   SDValue TrueV = Op.getOperand(2);
988   SDValue FalseV = Op.getOperand(3);
989   SDValue Cond = Op.getOperand(4);
990   SDLoc DL(Op);
991
992   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
993   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
994   SDValue Flag =
995       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
996
997   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
998   return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
999                      Flag);
1000 }
1001
1002 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1003   MachineFunction &MF = DAG.getMachineFunction();
1004   LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1005
1006   SDLoc DL(Op);
1007   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1008                                  getPointerTy(DAG.getDataLayout()));
1009
1010   // vastart just stores the address of the VarArgsFrameIndex slot into the
1011   // memory location argument.
1012   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1013   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1014                       MachinePointerInfo(SV));
1015 }
1016
1017 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1018                                                      SelectionDAG &DAG) const {
1019   SDValue Chain = Op.getOperand(0);
1020   SDValue Size = Op.getOperand(1);
1021   SDLoc DL(Op);
1022
1023   unsigned SPReg = getStackPointerRegisterToSaveRestore();
1024
1025   // Get a reference to the stack pointer.
1026   SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1027
1028   // Subtract the dynamic size from the actual stack size to
1029   // obtain the new stack size.
1030   SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1031
1032   // For Lanai, the outgoing memory arguments area should be on top of the
1033   // alloca area on the stack i.e., the outgoing memory arguments should be
1034   // at a lower address than the alloca area. Move the alloca area down the
1035   // stack by adding back the space reserved for outgoing arguments to SP
1036   // here.
1037   //
1038   // We do not know what the size of the outgoing args is at this point.
1039   // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1040   // stack pointer. We replace this instruction with on that has the correct,
1041   // known offset in emitPrologue().
1042   SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1043
1044   // The Sub result contains the new stack start address, so it
1045   // must be placed in the stack pointer register.
1046   SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1047
1048   SDValue Ops[2] = {ArgAdjust, CopyChain};
1049   return DAG.getMergeValues(Ops, DL);
1050 }
1051
1052 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1053                                              SelectionDAG &DAG) const {
1054   MachineFunction &MF = DAG.getMachineFunction();
1055   MachineFrameInfo &MFI = MF.getFrameInfo();
1056   MFI.setReturnAddressIsTaken(true);
1057
1058   EVT VT = Op.getValueType();
1059   SDLoc DL(Op);
1060   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1061   if (Depth) {
1062     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1063     const unsigned Offset = -4;
1064     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1065                               DAG.getIntPtrConstant(Offset, DL));
1066     return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1067   }
1068
1069   // Return the link register, which contains the return address.
1070   // Mark it an implicit live-in.
1071   unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1072   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1073 }
1074
1075 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1076                                             SelectionDAG &DAG) const {
1077   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1078   MFI.setFrameAddressIsTaken(true);
1079
1080   EVT VT = Op.getValueType();
1081   SDLoc DL(Op);
1082   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1083   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1084   while (Depth--) {
1085     const unsigned Offset = -8;
1086     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1087                               DAG.getIntPtrConstant(Offset, DL));
1088     FrameAddr =
1089         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1090   }
1091   return FrameAddr;
1092 }
1093
1094 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1095   switch (Opcode) {
1096   case LanaiISD::ADJDYNALLOC:
1097     return "LanaiISD::ADJDYNALLOC";
1098   case LanaiISD::RET_FLAG:
1099     return "LanaiISD::RET_FLAG";
1100   case LanaiISD::CALL:
1101     return "LanaiISD::CALL";
1102   case LanaiISD::SELECT_CC:
1103     return "LanaiISD::SELECT_CC";
1104   case LanaiISD::SETCC:
1105     return "LanaiISD::SETCC";
1106   case LanaiISD::SUBBF:
1107     return "LanaiISD::SUBBF";
1108   case LanaiISD::SET_FLAG:
1109     return "LanaiISD::SET_FLAG";
1110   case LanaiISD::BR_CC:
1111     return "LanaiISD::BR_CC";
1112   case LanaiISD::Wrapper:
1113     return "LanaiISD::Wrapper";
1114   case LanaiISD::HI:
1115     return "LanaiISD::HI";
1116   case LanaiISD::LO:
1117     return "LanaiISD::LO";
1118   case LanaiISD::SMALL:
1119     return "LanaiISD::SMALL";
1120   default:
1121     return nullptr;
1122   }
1123 }
1124
1125 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1126                                                SelectionDAG &DAG) const {
1127   SDLoc DL(Op);
1128   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1129   const Constant *C = N->getConstVal();
1130   const LanaiTargetObjectFile *TLOF =
1131       static_cast<const LanaiTargetObjectFile *>(
1132           getTargetMachine().getObjFileLowering());
1133
1134   // If the code model is small or constant will be placed in the small section,
1135   // then assume address will fit in 21-bits.
1136   if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1137       TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1138     SDValue Small = DAG.getTargetConstantPool(
1139         C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG);
1140     return DAG.getNode(ISD::OR, DL, MVT::i32,
1141                        DAG.getRegister(Lanai::R0, MVT::i32),
1142                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1143   } else {
1144     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1145     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1146
1147     SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1148                                            N->getOffset(), OpFlagHi);
1149     SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1150                                            N->getOffset(), OpFlagLo);
1151     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1152     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1153     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1154     return Result;
1155   }
1156 }
1157
1158 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1159                                                 SelectionDAG &DAG) const {
1160   SDLoc DL(Op);
1161   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1162   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1163
1164   const LanaiTargetObjectFile *TLOF =
1165       static_cast<const LanaiTargetObjectFile *>(
1166           getTargetMachine().getObjFileLowering());
1167
1168   // If the code model is small or global variable will be placed in the small
1169   // section, then assume address will fit in 21-bits.
1170   const GlobalObject *GO = GV->getBaseObject();
1171   if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) {
1172     SDValue Small = DAG.getTargetGlobalAddress(
1173         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1174     return DAG.getNode(ISD::OR, DL, MVT::i32,
1175                        DAG.getRegister(Lanai::R0, MVT::i32),
1176                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1177   } else {
1178     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1179     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1180
1181     // Create the TargetGlobalAddress node, folding in the constant offset.
1182     SDValue Hi = DAG.getTargetGlobalAddress(
1183         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1184     SDValue Lo = DAG.getTargetGlobalAddress(
1185         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1186     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1187     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1188     return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1189   }
1190 }
1191
1192 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1193                                                SelectionDAG &DAG) const {
1194   SDLoc DL(Op);
1195   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1196
1197   uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1198   uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1199
1200   SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1201   SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1202   Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1203   Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1204   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1205   return Result;
1206 }
1207
1208 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1209                                             SelectionDAG &DAG) const {
1210   SDLoc DL(Op);
1211   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1212
1213   // If the code model is small assume address will fit in 21-bits.
1214   if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1215     SDValue Small = DAG.getTargetJumpTable(
1216         JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1217     return DAG.getNode(ISD::OR, DL, MVT::i32,
1218                        DAG.getRegister(Lanai::R0, MVT::i32),
1219                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1220   } else {
1221     uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1222     uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1223
1224     SDValue Hi = DAG.getTargetJumpTable(
1225         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1226     SDValue Lo = DAG.getTargetJumpTable(
1227         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1228     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1229     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1230     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1231     return Result;
1232   }
1233 }
1234
1235 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op,
1236                                             SelectionDAG &DAG) const {
1237   EVT VT = Op.getValueType();
1238   unsigned VTBits = VT.getSizeInBits();
1239   SDLoc dl(Op);
1240   assert(Op.getNumOperands() == 3 && "Unexpected SHL!");
1241   SDValue ShOpLo = Op.getOperand(0);
1242   SDValue ShOpHi = Op.getOperand(1);
1243   SDValue ShAmt = Op.getOperand(2);
1244
1245   // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt:
1246   //   LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt))
1247   //   HiBitsForHi = ShOpHi << ShAmt
1248   //   Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi)
1249   //   Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt)
1250   //   return (Hi << 32) | Lo;
1251
1252   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1253                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1254   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1255
1256   // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We
1257   // wanted 0, so CSEL it directly.
1258   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1259   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1260   LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi);
1261
1262   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1263                                    DAG.getConstant(VTBits, dl, MVT::i32));
1264   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1265   SDValue HiForNormalShift =
1266       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
1267
1268   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1269
1270   SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE);
1271   SDValue Hi =
1272       DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift);
1273
1274   // Lanai shifts of larger than register sizes are wrapped rather than
1275   // clamped, so we can't just emit "lo << b" if b is too big.
1276   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1277   SDValue Lo = DAG.getSelect(
1278       dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift);
1279
1280   SDValue Ops[2] = {Lo, Hi};
1281   return DAG.getMergeValues(Ops, dl);
1282 }
1283
1284 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1285                                             SelectionDAG &DAG) const {
1286   MVT VT = Op.getSimpleValueType();
1287   unsigned VTBits = VT.getSizeInBits();
1288   SDLoc dl(Op);
1289   SDValue ShOpLo = Op.getOperand(0);
1290   SDValue ShOpHi = Op.getOperand(1);
1291   SDValue ShAmt = Op.getOperand(2);
1292
1293   // Performs the following for a >> b:
1294   //   unsigned r_high = a_high >> b;
1295   //   r_high = (32 - b <= 0) ? 0 : r_high;
1296   //
1297   //   unsigned r_low = a_low >> b;
1298   //   r_low = (32 - b <= 0) ? r_high : r_low;
1299   //   r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1300   //   return (unsigned long long)r_high << 32 | r_low;
1301   // Note: This takes advantage of Lanai's shift behavior to avoid needing to
1302   // mask the shift amount.
1303
1304   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1305   SDValue NegatedPlus32 = DAG.getNode(
1306       ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1307   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1308
1309   SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1310   Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1311
1312   SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1313   Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1314   SDValue CarryBits =
1315       DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1316   SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1317   Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1318                      DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1319
1320   SDValue Ops[2] = {Lo, Hi};
1321   return DAG.getMergeValues(Ops, dl);
1322 }
1323
1324 // Helper function that checks if N is a null or all ones constant.
1325 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1326   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1327 }
1328
1329 // Return true if N is conditionally 0 or all ones.
1330 // Detects these expressions where cc is an i1 value:
1331 //
1332 //   (select cc 0, y)   [AllOnes=0]
1333 //   (select cc y, 0)   [AllOnes=0]
1334 //   (zext cc)          [AllOnes=0]
1335 //   (sext cc)          [AllOnes=0/1]
1336 //   (select cc -1, y)  [AllOnes=1]
1337 //   (select cc y, -1)  [AllOnes=1]
1338 //
1339 // * AllOnes determines whether to check for an all zero (AllOnes false) or an
1340 //   all ones operand (AllOnes true).
1341 // * Invert is set when N is the all zero/ones constant when CC is false.
1342 // * OtherOp is set to the alternative value of N.
1343 //
1344 // For example, for (select cc X, Y) and AllOnes = 0 if:
1345 // * X = 0, Invert = False and OtherOp = Y
1346 // * Y = 0, Invert = True and OtherOp = X
1347 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1348                                        bool &Invert, SDValue &OtherOp,
1349                                        SelectionDAG &DAG) {
1350   switch (N->getOpcode()) {
1351   default:
1352     return false;
1353   case ISD::SELECT: {
1354     CC = N->getOperand(0);
1355     SDValue N1 = N->getOperand(1);
1356     SDValue N2 = N->getOperand(2);
1357     if (isZeroOrAllOnes(N1, AllOnes)) {
1358       Invert = false;
1359       OtherOp = N2;
1360       return true;
1361     }
1362     if (isZeroOrAllOnes(N2, AllOnes)) {
1363       Invert = true;
1364       OtherOp = N1;
1365       return true;
1366     }
1367     return false;
1368   }
1369   case ISD::ZERO_EXTEND: {
1370     // (zext cc) can never be the all ones value.
1371     if (AllOnes)
1372       return false;
1373     CC = N->getOperand(0);
1374     if (CC.getValueType() != MVT::i1)
1375       return false;
1376     SDLoc dl(N);
1377     EVT VT = N->getValueType(0);
1378     OtherOp = DAG.getConstant(1, dl, VT);
1379     Invert = true;
1380     return true;
1381   }
1382   case ISD::SIGN_EXTEND: {
1383     CC = N->getOperand(0);
1384     if (CC.getValueType() != MVT::i1)
1385       return false;
1386     SDLoc dl(N);
1387     EVT VT = N->getValueType(0);
1388     Invert = !AllOnes;
1389     if (AllOnes)
1390       // When looking for an AllOnes constant, N is an sext, and the 'other'
1391       // value is 0.
1392       OtherOp = DAG.getConstant(0, dl, VT);
1393     else
1394       OtherOp =
1395           DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT);
1396     return true;
1397   }
1398   }
1399 }
1400
1401 // Combine a constant select operand into its use:
1402 //
1403 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
1404 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
1405 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
1406 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
1407 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
1408 //
1409 // The transform is rejected if the select doesn't have a constant operand that
1410 // is null, or all ones when AllOnes is set.
1411 //
1412 // Also recognize sext/zext from i1:
1413 //
1414 //   (add (zext cc), x) -> (select cc (add x, 1), x)
1415 //   (add (sext cc), x) -> (select cc (add x, -1), x)
1416 //
1417 // These transformations eventually create predicated instructions.
1418 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1419                                    TargetLowering::DAGCombinerInfo &DCI,
1420                                    bool AllOnes) {
1421   SelectionDAG &DAG = DCI.DAG;
1422   EVT VT = N->getValueType(0);
1423   SDValue NonConstantVal;
1424   SDValue CCOp;
1425   bool SwapSelectOps;
1426   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1427                                   NonConstantVal, DAG))
1428     return SDValue();
1429
1430   // Slct is now know to be the desired identity constant when CC is true.
1431   SDValue TrueVal = OtherOp;
1432   SDValue FalseVal =
1433       DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1434   // Unless SwapSelectOps says CC should be false.
1435   if (SwapSelectOps)
1436     std::swap(TrueVal, FalseVal);
1437
1438   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1439 }
1440
1441 // Attempt combineSelectAndUse on each operand of a commutative operator N.
1442 static SDValue
1443 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1444                                bool AllOnes) {
1445   SDValue N0 = N->getOperand(0);
1446   SDValue N1 = N->getOperand(1);
1447   if (N0.getNode()->hasOneUse())
1448     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1449       return Result;
1450   if (N1.getNode()->hasOneUse())
1451     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1452       return Result;
1453   return SDValue();
1454 }
1455
1456 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
1457 static SDValue PerformSUBCombine(SDNode *N,
1458                                  TargetLowering::DAGCombinerInfo &DCI) {
1459   SDValue N0 = N->getOperand(0);
1460   SDValue N1 = N->getOperand(1);
1461
1462   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1463   if (N1.getNode()->hasOneUse())
1464     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1465       return Result;
1466
1467   return SDValue();
1468 }
1469
1470 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1471                                                DAGCombinerInfo &DCI) const {
1472   switch (N->getOpcode()) {
1473   default:
1474     break;
1475   case ISD::ADD:
1476   case ISD::OR:
1477   case ISD::XOR:
1478     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1479   case ISD::AND:
1480     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1481   case ISD::SUB:
1482     return PerformSUBCombine(N, DCI);
1483   }
1484
1485   return SDValue();
1486 }
1487
1488 void LanaiTargetLowering::computeKnownBitsForTargetNode(
1489     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1490     const SelectionDAG &DAG, unsigned Depth) const {
1491   unsigned BitWidth = Known.getBitWidth();
1492   switch (Op.getOpcode()) {
1493   default:
1494     break;
1495   case LanaiISD::SETCC:
1496     Known = KnownBits(BitWidth);
1497     Known.Zero.setBits(1, BitWidth);
1498     break;
1499   case LanaiISD::SELECT_CC:
1500     KnownBits Known2;
1501     Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1502     Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1503     Known.Zero &= Known2.Zero;
1504     Known.One &= Known2.One;
1505     break;
1506   }
1507 }