]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Mips / MipsConstantIslandPass.cpp
1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 // This pass is used to make Pc relative loads of constants.
12 // For now, only Mips16 will use this. 
13 //
14 // Loading constants inline is expensive on Mips16 and it's in general better
15 // to place the constant nearby in code space and then it can be loaded with a
16 // simple 16 bit load instruction.
17 //
18 // The constants can be not just numbers but addresses of functions and labels.
19 // This can be particularly helpful in static relocation mode for embedded
20 // non-linux targets.
21 //
22 //
23
24 #include "Mips.h"
25 #include "MCTargetDesc/MipsBaseInfo.h"
26 #include "Mips16InstrInfo.h"
27 #include "MipsMachineFunction.h"
28 #include "MipsTargetMachine.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/Format.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include <algorithm>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "mips-constant-islands"
50
51 STATISTIC(NumCPEs,       "Number of constpool entries");
52 STATISTIC(NumSplit,      "Number of uncond branches inserted");
53 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
54 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
55
56 // FIXME: This option should be removed once it has received sufficient testing.
57 static cl::opt<bool>
58 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
59           cl::desc("Align constant islands in code"));
60
61
62 // Rather than do make check tests with huge amounts of code, we force
63 // the test to use this amount.
64 //
65 static cl::opt<int> ConstantIslandsSmallOffset(
66   "mips-constant-islands-small-offset",
67   cl::init(0),
68   cl::desc("Make small offsets be this amount for testing purposes"),
69   cl::Hidden);
70
71 //
72 // For testing purposes we tell it to not use relaxed load forms so that it
73 // will split blocks.
74 //
75 static cl::opt<bool> NoLoadRelaxation(
76   "mips-constant-islands-no-load-relaxation",
77   cl::init(false),
78   cl::desc("Don't relax loads to long loads - for testing purposes"),
79   cl::Hidden);
80
81 static unsigned int branchTargetOperand(MachineInstr *MI) {
82   switch (MI->getOpcode()) {
83   case Mips::Bimm16:
84   case Mips::BimmX16:
85   case Mips::Bteqz16:
86   case Mips::BteqzX16:
87   case Mips::Btnez16:
88   case Mips::BtnezX16:
89   case Mips::JalB16:
90     return 0;
91   case Mips::BeqzRxImm16:
92   case Mips::BeqzRxImmX16:
93   case Mips::BnezRxImm16:
94   case Mips::BnezRxImmX16:
95     return 1;
96   }
97   llvm_unreachable("Unknown branch type");
98 }
99
100 static unsigned int longformBranchOpcode(unsigned int Opcode) {
101   switch (Opcode) {
102   case Mips::Bimm16:
103   case Mips::BimmX16:
104     return Mips::BimmX16;
105   case Mips::Bteqz16:
106   case Mips::BteqzX16:
107     return Mips::BteqzX16;
108   case Mips::Btnez16:
109   case Mips::BtnezX16:
110     return Mips::BtnezX16;
111   case Mips::JalB16:
112     return Mips::JalB16;
113   case Mips::BeqzRxImm16:
114   case Mips::BeqzRxImmX16:
115     return Mips::BeqzRxImmX16;
116   case Mips::BnezRxImm16:
117   case Mips::BnezRxImmX16:
118     return Mips::BnezRxImmX16;
119   }
120   llvm_unreachable("Unknown branch type");
121 }
122
123 //
124 // FIXME: need to go through this whole constant islands port and check the math
125 // for branch ranges and clean this up and make some functions to calculate things
126 // that are done many times identically.
127 // Need to refactor some of the code to call this routine.
128 //
129 static unsigned int branchMaxOffsets(unsigned int Opcode) {
130   unsigned Bits, Scale;
131   switch (Opcode) {
132     case Mips::Bimm16:
133       Bits = 11;
134       Scale = 2;
135       break;
136     case Mips::BimmX16:
137       Bits = 16;
138       Scale = 2;
139       break;
140     case Mips::BeqzRxImm16:
141       Bits = 8;
142       Scale = 2;
143       break;
144     case Mips::BeqzRxImmX16:
145       Bits = 16;
146       Scale = 2;
147       break;
148     case Mips::BnezRxImm16:
149       Bits = 8;
150       Scale = 2;
151       break;
152     case Mips::BnezRxImmX16:
153       Bits = 16;
154       Scale = 2;
155       break;
156     case Mips::Bteqz16:
157       Bits = 8;
158       Scale = 2;
159       break;
160     case Mips::BteqzX16:
161       Bits = 16;
162       Scale = 2;
163       break;
164     case Mips::Btnez16:
165       Bits = 8;
166       Scale = 2;
167       break;
168     case Mips::BtnezX16:
169       Bits = 16;
170       Scale = 2;
171       break;
172     default:
173       llvm_unreachable("Unknown branch type");
174   }
175   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
176   return MaxOffs;
177 }
178
179 namespace {
180
181
182   typedef MachineBasicBlock::iterator Iter;
183   typedef MachineBasicBlock::reverse_iterator ReverseIter;
184
185   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
186   /// requires constant pool entries to be scattered among the instructions
187   /// inside a function.  To do this, it completely ignores the normal LLVM
188   /// constant pool; instead, it places constants wherever it feels like with
189   /// special instructions.
190   ///
191   /// The terminology used in this pass includes:
192   ///   Islands - Clumps of constants placed in the function.
193   ///   Water   - Potential places where an island could be formed.
194   ///   CPE     - A constant pool entry that has been placed somewhere, which
195   ///             tracks a list of users.
196
197   class MipsConstantIslands : public MachineFunctionPass {
198
199     /// BasicBlockInfo - Information about the offset and size of a single
200     /// basic block.
201     struct BasicBlockInfo {
202       /// Offset - Distance from the beginning of the function to the beginning
203       /// of this basic block.
204       ///
205       /// Offsets are computed assuming worst case padding before an aligned
206       /// block. This means that subtracting basic block offsets always gives a
207       /// conservative estimate of the real distance which may be smaller.
208       ///
209       /// Because worst case padding is used, the computed offset of an aligned
210       /// block may not actually be aligned.
211       unsigned Offset;
212
213       /// Size - Size of the basic block in bytes.  If the block contains
214       /// inline assembly, this is a worst case estimate.
215       ///
216       /// The size does not include any alignment padding whether from the
217       /// beginning of the block, or from an aligned jump table at the end.
218       unsigned Size;
219
220       // FIXME: ignore LogAlign for this patch
221       //
222       unsigned postOffset(unsigned LogAlign = 0) const {
223         unsigned PO = Offset + Size;
224         return PO;
225       }
226
227       BasicBlockInfo() : Offset(0), Size(0) {}
228
229     };
230
231     std::vector<BasicBlockInfo> BBInfo;
232
233     /// WaterList - A sorted list of basic blocks where islands could be placed
234     /// (i.e. blocks that don't fall through to the following block, due
235     /// to a return, unreachable, or unconditional branch).
236     std::vector<MachineBasicBlock*> WaterList;
237
238     /// NewWaterList - The subset of WaterList that was created since the
239     /// previous iteration by inserting unconditional branches.
240     SmallSet<MachineBasicBlock*, 4> NewWaterList;
241
242     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
243
244     /// CPUser - One user of a constant pool, keeping the machine instruction
245     /// pointer, the constant pool being referenced, and the max displacement
246     /// allowed from the instruction to the CP.  The HighWaterMark records the
247     /// highest basic block where a new CPEntry can be placed.  To ensure this
248     /// pass terminates, the CP entries are initially placed at the end of the
249     /// function and then move monotonically to lower addresses.  The
250     /// exception to this rule is when the current CP entry for a particular
251     /// CPUser is out of range, but there is another CP entry for the same
252     /// constant value in range.  We want to use the existing in-range CP
253     /// entry, but if it later moves out of range, the search for new water
254     /// should resume where it left off.  The HighWaterMark is used to record
255     /// that point.
256     struct CPUser {
257       MachineInstr *MI;
258       MachineInstr *CPEMI;
259       MachineBasicBlock *HighWaterMark;
260     private:
261       unsigned MaxDisp;
262       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
263                                 // with different displacements
264       unsigned LongFormOpcode;
265     public:
266       bool NegOk;
267       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
268              bool neg,
269              unsigned longformmaxdisp, unsigned longformopcode)
270         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
271           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
272           NegOk(neg){
273         HighWaterMark = CPEMI->getParent();
274       }
275       /// getMaxDisp - Returns the maximum displacement supported by MI.
276       unsigned getMaxDisp() const {
277         unsigned xMaxDisp = ConstantIslandsSmallOffset?
278                             ConstantIslandsSmallOffset: MaxDisp;
279         return xMaxDisp;
280       }
281       void setMaxDisp(unsigned val) {
282         MaxDisp = val;
283       }
284       unsigned getLongFormMaxDisp() const {
285         return LongFormMaxDisp;
286       }
287       unsigned getLongFormOpcode() const {
288           return LongFormOpcode;
289       }
290     };
291
292     /// CPUsers - Keep track of all of the machine instructions that use various
293     /// constant pools and their max displacement.
294     std::vector<CPUser> CPUsers;
295
296   /// CPEntry - One per constant pool entry, keeping the machine instruction
297   /// pointer, the constpool index, and the number of CPUser's which
298   /// reference this entry.
299   struct CPEntry {
300     MachineInstr *CPEMI;
301     unsigned CPI;
302     unsigned RefCount;
303     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
304       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
305   };
306
307   /// CPEntries - Keep track of all of the constant pool entry machine
308   /// instructions. For each original constpool index (i.e. those that
309   /// existed upon entry to this pass), it keeps a vector of entries.
310   /// Original elements are cloned as we go along; the clones are
311   /// put in the vector of the original element, but have distinct CPIs.
312   std::vector<std::vector<CPEntry> > CPEntries;
313
314   /// ImmBranch - One per immediate branch, keeping the machine instruction
315   /// pointer, conditional or unconditional, the max displacement,
316   /// and (if isCond is true) the corresponding unconditional branch
317   /// opcode.
318   struct ImmBranch {
319     MachineInstr *MI;
320     unsigned MaxDisp : 31;
321     bool isCond : 1;
322     int UncondBr;
323     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
324       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
325   };
326
327   /// ImmBranches - Keep track of all the immediate branch instructions.
328   ///
329   std::vector<ImmBranch> ImmBranches;
330
331   /// HasFarJump - True if any far jump instruction has been emitted during
332   /// the branch fix up pass.
333   bool HasFarJump;
334
335   const MipsSubtarget *STI;
336   const Mips16InstrInfo *TII;
337   MipsFunctionInfo *MFI;
338   MachineFunction *MF;
339   MachineConstantPool *MCP;
340
341   unsigned PICLabelUId;
342   bool PrescannedForConstants;
343
344   void initPICLabelUId(unsigned UId) {
345     PICLabelUId = UId;
346   }
347
348
349   unsigned createPICLabelUId() {
350     return PICLabelUId++;
351   }
352
353   public:
354     static char ID;
355     MipsConstantIslands()
356         : MachineFunctionPass(ID), STI(nullptr), MF(nullptr), MCP(nullptr),
357           PrescannedForConstants(false) {}
358
359     const char *getPassName() const override {
360       return "Mips Constant Islands";
361     }
362
363     bool runOnMachineFunction(MachineFunction &F) override;
364
365     MachineFunctionProperties getRequiredProperties() const override {
366       return MachineFunctionProperties().set(
367           MachineFunctionProperties::Property::AllVRegsAllocated);
368     }
369
370     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
371     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
372     unsigned getCPELogAlign(const MachineInstr &CPEMI);
373     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
374     unsigned getOffsetOf(MachineInstr *MI) const;
375     unsigned getUserOffset(CPUser&) const;
376     void dumpBBs();
377
378     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
379                          unsigned Disp, bool NegativeOK);
380     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
381                          const CPUser &U);
382
383     void computeBlockSize(MachineBasicBlock *MBB);
384     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
385     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
386     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
387     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
388     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
389     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
390     bool findAvailableWater(CPUser&U, unsigned UserOffset,
391                             water_iterator &WaterIter);
392     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
393                         MachineBasicBlock *&NewMBB);
394     bool handleConstantPoolUser(unsigned CPUserIndex);
395     void removeDeadCPEMI(MachineInstr *CPEMI);
396     bool removeUnusedCPEntries();
397     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
398                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
399                           bool DoDump = false);
400     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
401                         CPUser &U, unsigned &Growth);
402     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
403     bool fixupImmediateBr(ImmBranch &Br);
404     bool fixupConditionalBr(ImmBranch &Br);
405     bool fixupUnconditionalBr(ImmBranch &Br);
406
407     void prescanForConstants();
408
409   private:
410
411   };
412
413   char MipsConstantIslands::ID = 0;
414 } // end of anonymous namespace
415
416 bool MipsConstantIslands::isOffsetInRange
417   (unsigned UserOffset, unsigned TrialOffset,
418    const CPUser &U) {
419   return isOffsetInRange(UserOffset, TrialOffset,
420                          U.getMaxDisp(), U.NegOk);
421 }
422 /// print block size and offset information - debugging
423 void MipsConstantIslands::dumpBBs() {
424   DEBUG({
425     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
426       const BasicBlockInfo &BBI = BBInfo[J];
427       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
428              << format(" size=%#x\n", BBInfo[J].Size);
429     }
430   });
431 }
432 /// Returns a pass that converts branches to long branches.
433 FunctionPass *llvm::createMipsConstantIslandPass() {
434   return new MipsConstantIslands();
435 }
436
437 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
438   // The intention is for this to be a mips16 only pass for now
439   // FIXME:
440   MF = &mf;
441   MCP = mf.getConstantPool();
442   STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
443   DEBUG(dbgs() << "constant island machine function " << "\n");
444   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
445     return false;
446   }
447   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
448   MFI = MF->getInfo<MipsFunctionInfo>();
449   DEBUG(dbgs() << "constant island processing " << "\n");
450   //
451   // will need to make predermination if there is any constants we need to
452   // put in constant islands. TBD.
453   //
454   if (!PrescannedForConstants) prescanForConstants();
455
456   HasFarJump = false;
457   // This pass invalidates liveness information when it splits basic blocks.
458   MF->getRegInfo().invalidateLiveness();
459
460   // Renumber all of the machine basic blocks in the function, guaranteeing that
461   // the numbers agree with the position of the block in the function.
462   MF->RenumberBlocks();
463
464   bool MadeChange = false;
465
466   // Perform the initial placement of the constant pool entries.  To start with,
467   // we put them all at the end of the function.
468   std::vector<MachineInstr*> CPEMIs;
469   if (!MCP->isEmpty())
470     doInitialPlacement(CPEMIs);
471
472   /// The next UID to take is the first unused one.
473   initPICLabelUId(CPEMIs.size());
474
475   // Do the initial scan of the function, building up information about the
476   // sizes of each block, the location of all the water, and finding all of the
477   // constant pool users.
478   initializeFunctionInfo(CPEMIs);
479   CPEMIs.clear();
480   DEBUG(dumpBBs());
481
482   /// Remove dead constant pool entries.
483   MadeChange |= removeUnusedCPEntries();
484
485   // Iteratively place constant pool entries and fix up branches until there
486   // is no change.
487   unsigned NoCPIters = 0, NoBRIters = 0;
488   (void)NoBRIters;
489   while (true) {
490     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
491     bool CPChange = false;
492     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
493       CPChange |= handleConstantPoolUser(i);
494     if (CPChange && ++NoCPIters > 30)
495       report_fatal_error("Constant Island pass failed to converge!");
496     DEBUG(dumpBBs());
497
498     // Clear NewWaterList now.  If we split a block for branches, it should
499     // appear as "new water" for the next iteration of constant pool placement.
500     NewWaterList.clear();
501
502     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
503     bool BRChange = false;
504     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
505       BRChange |= fixupImmediateBr(ImmBranches[i]);
506     if (BRChange && ++NoBRIters > 30)
507       report_fatal_error("Branch Fix Up pass failed to converge!");
508     DEBUG(dumpBBs());
509     if (!CPChange && !BRChange)
510       break;
511     MadeChange = true;
512   }
513
514   DEBUG(dbgs() << '\n'; dumpBBs());
515
516   BBInfo.clear();
517   WaterList.clear();
518   CPUsers.clear();
519   CPEntries.clear();
520   ImmBranches.clear();
521   return MadeChange;
522 }
523
524 /// doInitialPlacement - Perform the initial placement of the constant pool
525 /// entries.  To start with, we put them all at the end of the function.
526 void
527 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
528   // Create the basic block to hold the CPE's.
529   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
530   MF->push_back(BB);
531
532
533   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
534   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
535
536   // Mark the basic block as required by the const-pool.
537   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
538   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
539
540   // The function needs to be as aligned as the basic blocks. The linker may
541   // move functions around based on their alignment.
542   MF->ensureAlignment(BB->getAlignment());
543
544   // Order the entries in BB by descending alignment.  That ensures correct
545   // alignment of all entries as long as BB is sufficiently aligned.  Keep
546   // track of the insertion point for each alignment.  We are going to bucket
547   // sort the entries as they are created.
548   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
549
550   // Add all of the constants from the constant pool to the end block, use an
551   // identity mapping of CPI's to CPE's.
552   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
553
554   const DataLayout &TD = MF->getDataLayout();
555   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
556     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
557     assert(Size >= 4 && "Too small constant pool entry");
558     unsigned Align = CPs[i].getAlignment();
559     assert(isPowerOf2_32(Align) && "Invalid alignment");
560     // Verify that all constant pool entries are a multiple of their alignment.
561     // If not, we would have to pad them out so that instructions stay aligned.
562     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
563
564     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
565     unsigned LogAlign = Log2_32(Align);
566     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
567
568     MachineInstr *CPEMI =
569       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
570         .addImm(i).addConstantPoolIndex(i).addImm(Size);
571
572     CPEMIs.push_back(CPEMI);
573
574     // Ensure that future entries with higher alignment get inserted before
575     // CPEMI. This is bucket sort with iterators.
576     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
577       if (InsPoint[a] == InsAt)
578         InsPoint[a] = CPEMI;
579     // Add a new CPEntry, but no corresponding CPUser yet.
580     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
581     ++NumCPEs;
582     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
583                  << Size << ", align = " << Align <<'\n');
584   }
585   DEBUG(BB->dump());
586 }
587
588 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
589 /// into the block immediately after it.
590 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
591   // Get the next machine basic block in the function.
592   MachineFunction::iterator MBBI = MBB->getIterator();
593   // Can't fall off end of function.
594   if (std::next(MBBI) == MBB->getParent()->end())
595     return false;
596
597   MachineBasicBlock *NextBB = &*std::next(MBBI);
598   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
599        E = MBB->succ_end(); I != E; ++I)
600     if (*I == NextBB)
601       return true;
602
603   return false;
604 }
605
606 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
607 /// look up the corresponding CPEntry.
608 MipsConstantIslands::CPEntry
609 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
610                                         const MachineInstr *CPEMI) {
611   std::vector<CPEntry> &CPEs = CPEntries[CPI];
612   // Number of entries per constpool index should be small, just do a
613   // linear search.
614   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
615     if (CPEs[i].CPEMI == CPEMI)
616       return &CPEs[i];
617   }
618   return nullptr;
619 }
620
621 /// getCPELogAlign - Returns the required alignment of the constant pool entry
622 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
623 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr &CPEMI) {
624   assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
625
626   // Everything is 4-byte aligned unless AlignConstantIslands is set.
627   if (!AlignConstantIslands)
628     return 2;
629
630   unsigned CPI = CPEMI.getOperand(1).getIndex();
631   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
632   unsigned Align = MCP->getConstants()[CPI].getAlignment();
633   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
634   return Log2_32(Align);
635 }
636
637 /// initializeFunctionInfo - Do the initial scan of the function, building up
638 /// information about the sizes of each block, the location of all the water,
639 /// and finding all of the constant pool users.
640 void MipsConstantIslands::
641 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
642   BBInfo.clear();
643   BBInfo.resize(MF->getNumBlockIDs());
644
645   // First thing, compute the size of all basic blocks, and see if the function
646   // has any inline assembly in it. If so, we have to be conservative about
647   // alignment assumptions, as we don't know for sure the size of any
648   // instructions in the inline assembly.
649   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
650     computeBlockSize(&*I);
651
652
653   // Compute block offsets.
654   adjustBBOffsetsAfter(&MF->front());
655
656   // Now go back through the instructions and build up our data structures.
657   for (MachineBasicBlock &MBB : *MF) {
658     // If this block doesn't fall through into the next MBB, then this is
659     // 'water' that a constant pool island could be placed.
660     if (!BBHasFallthrough(&MBB))
661       WaterList.push_back(&MBB);
662     for (MachineInstr &MI : MBB) {
663       if (MI.isDebugValue())
664         continue;
665
666       int Opc = MI.getOpcode();
667       if (MI.isBranch()) {
668         bool isCond = false;
669         unsigned Bits = 0;
670         unsigned Scale = 1;
671         int UOpc = Opc;
672         switch (Opc) {
673         default:
674           continue;  // Ignore other branches for now
675         case Mips::Bimm16:
676           Bits = 11;
677           Scale = 2;
678           isCond = false;
679           break;
680         case Mips::BimmX16:
681           Bits = 16;
682           Scale = 2;
683           isCond = false;
684           break;
685         case Mips::BeqzRxImm16:
686           UOpc=Mips::Bimm16;
687           Bits = 8;
688           Scale = 2;
689           isCond = true;
690           break;
691         case Mips::BeqzRxImmX16:
692           UOpc=Mips::Bimm16;
693           Bits = 16;
694           Scale = 2;
695           isCond = true;
696           break;
697         case Mips::BnezRxImm16:
698           UOpc=Mips::Bimm16;
699           Bits = 8;
700           Scale = 2;
701           isCond = true;
702           break;
703         case Mips::BnezRxImmX16:
704           UOpc=Mips::Bimm16;
705           Bits = 16;
706           Scale = 2;
707           isCond = true;
708           break;
709         case Mips::Bteqz16:
710           UOpc=Mips::Bimm16;
711           Bits = 8;
712           Scale = 2;
713           isCond = true;
714           break;
715         case Mips::BteqzX16:
716           UOpc=Mips::Bimm16;
717           Bits = 16;
718           Scale = 2;
719           isCond = true;
720           break;
721         case Mips::Btnez16:
722           UOpc=Mips::Bimm16;
723           Bits = 8;
724           Scale = 2;
725           isCond = true;
726           break;
727         case Mips::BtnezX16:
728           UOpc=Mips::Bimm16;
729           Bits = 16;
730           Scale = 2;
731           isCond = true;
732           break;
733         }
734         // Record this immediate branch.
735         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
736         ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
737       }
738
739       if (Opc == Mips::CONSTPOOL_ENTRY)
740         continue;
741
742
743       // Scan the instructions for constant pool operands.
744       for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
745         if (MI.getOperand(op).isCPI()) {
746
747           // We found one.  The addressing mode tells us the max displacement
748           // from the PC that this instruction permits.
749
750           // Basic size info comes from the TSFlags field.
751           unsigned Bits = 0;
752           unsigned Scale = 1;
753           bool NegOk = false;
754           unsigned LongFormBits = 0;
755           unsigned LongFormScale = 0;
756           unsigned LongFormOpcode = 0;
757           switch (Opc) {
758           default:
759             llvm_unreachable("Unknown addressing mode for CP reference!");
760           case Mips::LwRxPcTcp16:
761             Bits = 8;
762             Scale = 4;
763             LongFormOpcode = Mips::LwRxPcTcpX16;
764             LongFormBits = 14;
765             LongFormScale = 1;
766             break;
767           case Mips::LwRxPcTcpX16:
768             Bits = 14;
769             Scale = 1;
770             NegOk = true;
771             break;
772           }
773           // Remember that this is a user of a CP entry.
774           unsigned CPI = MI.getOperand(op).getIndex();
775           MachineInstr *CPEMI = CPEMIs[CPI];
776           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
777           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
778           CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
779                                    LongFormOpcode));
780
781           // Increment corresponding CPEntry reference count.
782           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
783           assert(CPE && "Cannot find a corresponding CPEntry!");
784           CPE->RefCount++;
785
786           // Instructions can only use one CP entry, don't bother scanning the
787           // rest of the operands.
788           break;
789
790         }
791
792     }
793   }
794
795 }
796
797 /// computeBlockSize - Compute the size and some alignment information for MBB.
798 /// This function updates BBInfo directly.
799 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
800   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
801   BBI.Size = 0;
802
803   for (const MachineInstr &MI : *MBB)
804     BBI.Size += TII->GetInstSizeInBytes(MI);
805 }
806
807 /// getOffsetOf - Return the current offset of the specified machine instruction
808 /// from the start of the function.  This offset changes as stuff is moved
809 /// around inside the function.
810 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
811   MachineBasicBlock *MBB = MI->getParent();
812
813   // The offset is composed of two things: the sum of the sizes of all MBB's
814   // before this instruction's block, and the offset from the start of the block
815   // it is in.
816   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
817
818   // Sum instructions before MI in MBB.
819   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
820     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
821     Offset += TII->GetInstSizeInBytes(*I);
822   }
823   return Offset;
824 }
825
826 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
827 /// ID.
828 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
829                               const MachineBasicBlock *RHS) {
830   return LHS->getNumber() < RHS->getNumber();
831 }
832
833 /// updateForInsertedWaterBlock - When a block is newly inserted into the
834 /// machine function, it upsets all of the block numbers.  Renumber the blocks
835 /// and update the arrays that parallel this numbering.
836 void MipsConstantIslands::updateForInsertedWaterBlock
837   (MachineBasicBlock *NewBB) {
838   // Renumber the MBB's to keep them consecutive.
839   NewBB->getParent()->RenumberBlocks(NewBB);
840
841   // Insert an entry into BBInfo to align it properly with the (newly
842   // renumbered) block numbers.
843   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
844
845   // Next, update WaterList.  Specifically, we need to add NewMBB as having
846   // available water after it.
847   water_iterator IP =
848     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
849                      CompareMBBNumbers);
850   WaterList.insert(IP, NewBB);
851 }
852
853 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
854   return getOffsetOf(U.MI);
855 }
856
857 /// Split the basic block containing MI into two blocks, which are joined by
858 /// an unconditional branch.  Update data structures and renumber blocks to
859 /// account for this change and returns the newly created block.
860 MachineBasicBlock *
861 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
862   MachineBasicBlock *OrigBB = MI.getParent();
863
864   // Create a new MBB for the code after the OrigBB.
865   MachineBasicBlock *NewBB =
866     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
867   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
868   MF->insert(MBBI, NewBB);
869
870   // Splice the instructions starting with MI over to NewBB.
871   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
872
873   // Add an unconditional branch from OrigBB to NewBB.
874   // Note the new unconditional branch is not being recorded.
875   // There doesn't seem to be meaningful DebugInfo available; this doesn't
876   // correspond to anything in the source.
877   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
878   ++NumSplit;
879
880   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
881   NewBB->transferSuccessors(OrigBB);
882
883   // OrigBB branches to NewBB.
884   OrigBB->addSuccessor(NewBB);
885
886   // Update internal data structures to account for the newly inserted MBB.
887   // This is almost the same as updateForInsertedWaterBlock, except that
888   // the Water goes after OrigBB, not NewBB.
889   MF->RenumberBlocks(NewBB);
890
891   // Insert an entry into BBInfo to align it properly with the (newly
892   // renumbered) block numbers.
893   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
894
895   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
896   // available water after it (but not if it's already there, which happens
897   // when splitting before a conditional branch that is followed by an
898   // unconditional branch - in that case we want to insert NewBB).
899   water_iterator IP =
900     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
901                      CompareMBBNumbers);
902   MachineBasicBlock* WaterBB = *IP;
903   if (WaterBB == OrigBB)
904     WaterList.insert(std::next(IP), NewBB);
905   else
906     WaterList.insert(IP, OrigBB);
907   NewWaterList.insert(OrigBB);
908
909   // Figure out how large the OrigBB is.  As the first half of the original
910   // block, it cannot contain a tablejump.  The size includes
911   // the new jump we added.  (It should be possible to do this without
912   // recounting everything, but it's very confusing, and this is rarely
913   // executed.)
914   computeBlockSize(OrigBB);
915
916   // Figure out how large the NewMBB is.  As the second half of the original
917   // block, it may contain a tablejump.
918   computeBlockSize(NewBB);
919
920   // All BBOffsets following these blocks must be modified.
921   adjustBBOffsetsAfter(OrigBB);
922
923   return NewBB;
924 }
925
926
927
928 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
929 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
930 /// constant pool entry).
931 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
932                                          unsigned TrialOffset, unsigned MaxDisp,
933                                          bool NegativeOK) {
934   if (UserOffset <= TrialOffset) {
935     // User before the Trial.
936     if (TrialOffset - UserOffset <= MaxDisp)
937       return true;
938   } else if (NegativeOK) {
939     if (UserOffset - TrialOffset <= MaxDisp)
940       return true;
941   }
942   return false;
943 }
944
945 /// isWaterInRange - Returns true if a CPE placed after the specified
946 /// Water (a basic block) will be in range for the specific MI.
947 ///
948 /// Compute how much the function will grow by inserting a CPE after Water.
949 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
950                                         MachineBasicBlock* Water, CPUser &U,
951                                         unsigned &Growth) {
952   unsigned CPELogAlign = getCPELogAlign(*U.CPEMI);
953   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
954   unsigned NextBlockOffset, NextBlockAlignment;
955   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
956   if (NextBlock == MF->end()) {
957     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
958     NextBlockAlignment = 0;
959   } else {
960     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
961     NextBlockAlignment = NextBlock->getAlignment();
962   }
963   unsigned Size = U.CPEMI->getOperand(2).getImm();
964   unsigned CPEEnd = CPEOffset + Size;
965
966   // The CPE may be able to hide in the alignment padding before the next
967   // block. It may also cause more padding to be required if it is more aligned
968   // that the next block.
969   if (CPEEnd > NextBlockOffset) {
970     Growth = CPEEnd - NextBlockOffset;
971     // Compute the padding that would go at the end of the CPE to align the next
972     // block.
973     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
974
975     // If the CPE is to be inserted before the instruction, that will raise
976     // the offset of the instruction. Also account for unknown alignment padding
977     // in blocks between CPE and the user.
978     if (CPEOffset < UserOffset)
979       UserOffset += Growth;
980   } else
981     // CPE fits in existing padding.
982     Growth = 0;
983
984   return isOffsetInRange(UserOffset, CPEOffset, U);
985 }
986
987 /// isCPEntryInRange - Returns true if the distance between specific MI and
988 /// specific ConstPool entry instruction can fit in MI's displacement field.
989 bool MipsConstantIslands::isCPEntryInRange
990   (MachineInstr *MI, unsigned UserOffset,
991    MachineInstr *CPEMI, unsigned MaxDisp,
992    bool NegOk, bool DoDump) {
993   unsigned CPEOffset  = getOffsetOf(CPEMI);
994
995   if (DoDump) {
996     DEBUG({
997       unsigned Block = MI->getParent()->getNumber();
998       const BasicBlockInfo &BBI = BBInfo[Block];
999       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1000              << " max delta=" << MaxDisp
1001              << format(" insn address=%#x", UserOffset)
1002              << " in BB#" << Block << ": "
1003              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1004              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1005                        int(CPEOffset-UserOffset));
1006     });
1007   }
1008
1009   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1010 }
1011
1012 #ifndef NDEBUG
1013 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1014 /// unconditionally branches to its only successor.
1015 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1016   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1017     return false;
1018   MachineBasicBlock *Succ = *MBB->succ_begin();
1019   MachineBasicBlock *Pred = *MBB->pred_begin();
1020   MachineInstr *PredMI = &Pred->back();
1021   if (PredMI->getOpcode() == Mips::Bimm16)
1022     return PredMI->getOperand(0).getMBB() == Succ;
1023   return false;
1024 }
1025 #endif
1026
1027 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1028   unsigned BBNum = BB->getNumber();
1029   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1030     // Get the offset and known bits at the end of the layout predecessor.
1031     // Include the alignment of the current block.
1032     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1033     BBInfo[i].Offset = Offset;
1034   }
1035 }
1036
1037 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1038 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1039 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1040 /// the entry, false if we didn't.
1041
1042 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1043                                                     MachineInstr *CPEMI) {
1044   // Find the old entry. Eliminate it if it is no longer used.
1045   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1046   assert(CPE && "Unexpected!");
1047   if (--CPE->RefCount == 0) {
1048     removeDeadCPEMI(CPEMI);
1049     CPE->CPEMI = nullptr;
1050     --NumCPEs;
1051     return true;
1052   }
1053   return false;
1054 }
1055
1056 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1057 /// if not, see if an in-range clone of the CPE is in range, and if so,
1058 /// change the data structures so the user references the clone.  Returns:
1059 /// 0 = no existing entry found
1060 /// 1 = entry found, and there were no code insertions or deletions
1061 /// 2 = entry found, and there were code insertions or deletions
1062 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1063 {
1064   MachineInstr *UserMI = U.MI;
1065   MachineInstr *CPEMI  = U.CPEMI;
1066
1067   // Check to see if the CPE is already in-range.
1068   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1069                        true)) {
1070     DEBUG(dbgs() << "In range\n");
1071     return 1;
1072   }
1073
1074   // No.  Look for previously created clones of the CPE that are in range.
1075   unsigned CPI = CPEMI->getOperand(1).getIndex();
1076   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1077   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1078     // We already tried this one
1079     if (CPEs[i].CPEMI == CPEMI)
1080       continue;
1081     // Removing CPEs can leave empty entries, skip
1082     if (CPEs[i].CPEMI == nullptr)
1083       continue;
1084     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1085                      U.NegOk)) {
1086       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1087                    << CPEs[i].CPI << "\n");
1088       // Point the CPUser node to the replacement
1089       U.CPEMI = CPEs[i].CPEMI;
1090       // Change the CPI in the instruction operand to refer to the clone.
1091       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1092         if (UserMI->getOperand(j).isCPI()) {
1093           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1094           break;
1095         }
1096       // Adjust the refcount of the clone...
1097       CPEs[i].RefCount++;
1098       // ...and the original.  If we didn't remove the old entry, none of the
1099       // addresses changed, so we don't need another pass.
1100       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1101     }
1102   }
1103   return 0;
1104 }
1105
1106 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1107 /// This version checks if the longer form of the instruction can be used to
1108 /// to satisfy things.
1109 /// if not, see if an in-range clone of the CPE is in range, and if so,
1110 /// change the data structures so the user references the clone.  Returns:
1111 /// 0 = no existing entry found
1112 /// 1 = entry found, and there were no code insertions or deletions
1113 /// 2 = entry found, and there were code insertions or deletions
1114 int MipsConstantIslands::findLongFormInRangeCPEntry
1115   (CPUser& U, unsigned UserOffset)
1116 {
1117   MachineInstr *UserMI = U.MI;
1118   MachineInstr *CPEMI  = U.CPEMI;
1119
1120   // Check to see if the CPE is already in-range.
1121   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1122                        U.getLongFormMaxDisp(), U.NegOk,
1123                        true)) {
1124     DEBUG(dbgs() << "In range\n");
1125     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1126     U.setMaxDisp(U.getLongFormMaxDisp());
1127     return 2;  // instruction is longer length now
1128   }
1129
1130   // No.  Look for previously created clones of the CPE that are in range.
1131   unsigned CPI = CPEMI->getOperand(1).getIndex();
1132   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1133   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1134     // We already tried this one
1135     if (CPEs[i].CPEMI == CPEMI)
1136       continue;
1137     // Removing CPEs can leave empty entries, skip
1138     if (CPEs[i].CPEMI == nullptr)
1139       continue;
1140     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1141                          U.getLongFormMaxDisp(), U.NegOk)) {
1142       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1143                    << CPEs[i].CPI << "\n");
1144       // Point the CPUser node to the replacement
1145       U.CPEMI = CPEs[i].CPEMI;
1146       // Change the CPI in the instruction operand to refer to the clone.
1147       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1148         if (UserMI->getOperand(j).isCPI()) {
1149           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1150           break;
1151         }
1152       // Adjust the refcount of the clone...
1153       CPEs[i].RefCount++;
1154       // ...and the original.  If we didn't remove the old entry, none of the
1155       // addresses changed, so we don't need another pass.
1156       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1157     }
1158   }
1159   return 0;
1160 }
1161
1162 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1163 /// the specific unconditional branch instruction.
1164 static inline unsigned getUnconditionalBrDisp(int Opc) {
1165   switch (Opc) {
1166   case Mips::Bimm16:
1167     return ((1<<10)-1)*2;
1168   case Mips::BimmX16:
1169     return ((1<<16)-1)*2;
1170   default:
1171     break;
1172   }
1173   return ((1<<16)-1)*2;
1174 }
1175
1176 /// findAvailableWater - Look for an existing entry in the WaterList in which
1177 /// we can place the CPE referenced from U so it's within range of U's MI.
1178 /// Returns true if found, false if not.  If it returns true, WaterIter
1179 /// is set to the WaterList entry.  
1180 /// To ensure that this pass
1181 /// terminates, the CPE location for a particular CPUser is only allowed to
1182 /// move to a lower address, so search backward from the end of the list and
1183 /// prefer the first water that is in range.
1184 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1185                                       water_iterator &WaterIter) {
1186   if (WaterList.empty())
1187     return false;
1188
1189   unsigned BestGrowth = ~0u;
1190   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1191        --IP) {
1192     MachineBasicBlock* WaterBB = *IP;
1193     // Check if water is in range and is either at a lower address than the
1194     // current "high water mark" or a new water block that was created since
1195     // the previous iteration by inserting an unconditional branch.  In the
1196     // latter case, we want to allow resetting the high water mark back to
1197     // this new water since we haven't seen it before.  Inserting branches
1198     // should be relatively uncommon and when it does happen, we want to be
1199     // sure to take advantage of it for all the CPEs near that block, so that
1200     // we don't insert more branches than necessary.
1201     unsigned Growth;
1202     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1203         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1204          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1205       // This is the least amount of required padding seen so far.
1206       BestGrowth = Growth;
1207       WaterIter = IP;
1208       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1209                    << " Growth=" << Growth << '\n');
1210
1211       // Keep looking unless it is perfect.
1212       if (BestGrowth == 0)
1213         return true;
1214     }
1215     if (IP == B)
1216       break;
1217   }
1218   return BestGrowth != ~0u;
1219 }
1220
1221 /// createNewWater - No existing WaterList entry will work for
1222 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1223 /// block is used if in range, and the conditional branch munged so control
1224 /// flow is correct.  Otherwise the block is split to create a hole with an
1225 /// unconditional branch around it.  In either case NewMBB is set to a
1226 /// block following which the new island can be inserted (the WaterList
1227 /// is not adjusted).
1228 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1229                                         unsigned UserOffset,
1230                                         MachineBasicBlock *&NewMBB) {
1231   CPUser &U = CPUsers[CPUserIndex];
1232   MachineInstr *UserMI = U.MI;
1233   MachineInstr *CPEMI  = U.CPEMI;
1234   unsigned CPELogAlign = getCPELogAlign(*CPEMI);
1235   MachineBasicBlock *UserMBB = UserMI->getParent();
1236   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1237
1238   // If the block does not end in an unconditional branch already, and if the
1239   // end of the block is within range, make new water there.  
1240   if (BBHasFallthrough(UserMBB)) {
1241     // Size of branch to insert.
1242     unsigned Delta = 2;
1243     // Compute the offset where the CPE will begin.
1244     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1245
1246     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1247       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1248             << format(", expected CPE offset %#x\n", CPEOffset));
1249       NewMBB = &*++UserMBB->getIterator();
1250       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1251       // it for branch lengthening; this new branch will not get out of range,
1252       // but if the preceding conditional branch is out of range, the targets
1253       // will be exchanged, and the altered branch may be out of range, so the
1254       // machinery has to know about it.
1255       int UncondBr = Mips::Bimm16;
1256       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1257       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1258       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1259                                       MaxDisp, false, UncondBr));
1260       BBInfo[UserMBB->getNumber()].Size += Delta;
1261       adjustBBOffsetsAfter(UserMBB);
1262       return;
1263     }
1264   }
1265
1266   // What a big block.  Find a place within the block to split it.  
1267
1268   // Try to split the block so it's fully aligned.  Compute the latest split
1269   // point where we can add a 4-byte branch instruction, and then align to
1270   // LogAlign which is the largest possible alignment in the function.
1271   unsigned LogAlign = MF->getAlignment();
1272   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1273   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1274   DEBUG(dbgs() << format("Split in middle of big block before %#x",
1275                          BaseInsertOffset));
1276
1277   // The 4 in the following is for the unconditional branch we'll be inserting
1278   // Alignment of the island is handled
1279   // inside isOffsetInRange.
1280   BaseInsertOffset -= 4;
1281
1282   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1283                << " la=" << LogAlign << '\n');
1284
1285   // This could point off the end of the block if we've already got constant
1286   // pool entries following this block; only the last one is in the water list.
1287   // Back past any possible branches (allow for a conditional and a maximally
1288   // long unconditional).
1289   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1290     BaseInsertOffset = UserBBI.postOffset() - 8;
1291     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1292   }
1293   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1294     CPEMI->getOperand(2).getImm();
1295   MachineBasicBlock::iterator MI = UserMI;
1296   ++MI;
1297   unsigned CPUIndex = CPUserIndex+1;
1298   unsigned NumCPUsers = CPUsers.size();
1299   //MachineInstr *LastIT = 0;
1300   for (unsigned Offset = UserOffset + TII->GetInstSizeInBytes(*UserMI);
1301        Offset < BaseInsertOffset;
1302        Offset += TII->GetInstSizeInBytes(*MI), MI = std::next(MI)) {
1303     assert(MI != UserMBB->end() && "Fell off end of block");
1304     if (CPUIndex < NumCPUsers &&
1305         CPUsers[CPUIndex].MI == static_cast<MachineInstr *>(MI)) {
1306       CPUser &U = CPUsers[CPUIndex];
1307       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1308         // Shift intertion point by one unit of alignment so it is within reach.
1309         BaseInsertOffset -= 1u << LogAlign;
1310         EndInsertOffset  -= 1u << LogAlign;
1311       }
1312       // This is overly conservative, as we don't account for CPEMIs being
1313       // reused within the block, but it doesn't matter much.  Also assume CPEs
1314       // are added in order with alignment padding.  We may eventually be able
1315       // to pack the aligned CPEs better.
1316       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1317       CPUIndex++;
1318     }
1319   }
1320
1321   NewMBB = splitBlockBeforeInstr(*--MI);
1322 }
1323
1324 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1325 /// is out-of-range.  If so, pick up the constant pool value and move it some
1326 /// place in-range.  Return true if we changed any addresses (thus must run
1327 /// another pass of branch lengthening), false otherwise.
1328 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1329   CPUser &U = CPUsers[CPUserIndex];
1330   MachineInstr *UserMI = U.MI;
1331   MachineInstr *CPEMI  = U.CPEMI;
1332   unsigned CPI = CPEMI->getOperand(1).getIndex();
1333   unsigned Size = CPEMI->getOperand(2).getImm();
1334   // Compute this only once, it's expensive.
1335   unsigned UserOffset = getUserOffset(U);
1336
1337   // See if the current entry is within range, or there is a clone of it
1338   // in range.
1339   int result = findInRangeCPEntry(U, UserOffset);
1340   if (result==1) return false;
1341   else if (result==2) return true;
1342
1343
1344   // Look for water where we can place this CPE.
1345   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1346   MachineBasicBlock *NewMBB;
1347   water_iterator IP;
1348   if (findAvailableWater(U, UserOffset, IP)) {
1349     DEBUG(dbgs() << "Found water in range\n");
1350     MachineBasicBlock *WaterBB = *IP;
1351
1352     // If the original WaterList entry was "new water" on this iteration,
1353     // propagate that to the new island.  This is just keeping NewWaterList
1354     // updated to match the WaterList, which will be updated below.
1355     if (NewWaterList.erase(WaterBB))
1356       NewWaterList.insert(NewIsland);
1357
1358     // The new CPE goes before the following block (NewMBB).
1359     NewMBB = &*++WaterBB->getIterator();
1360   } else {
1361     // No water found.
1362     // we first see if a longer form of the instrucion could have reached
1363     // the constant. in that case we won't bother to split
1364     if (!NoLoadRelaxation) {
1365       result = findLongFormInRangeCPEntry(U, UserOffset);
1366       if (result != 0) return true;
1367     }
1368     DEBUG(dbgs() << "No water found\n");
1369     createNewWater(CPUserIndex, UserOffset, NewMBB);
1370
1371     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1372     // called while handling branches so that the water will be seen on the
1373     // next iteration for constant pools, but in this context, we don't want
1374     // it.  Check for this so it will be removed from the WaterList.
1375     // Also remove any entry from NewWaterList.
1376     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1377     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1378     if (IP != WaterList.end())
1379       NewWaterList.erase(WaterBB);
1380
1381     // We are adding new water.  Update NewWaterList.
1382     NewWaterList.insert(NewIsland);
1383   }
1384
1385   // Remove the original WaterList entry; we want subsequent insertions in
1386   // this vicinity to go after the one we're about to insert.  This
1387   // considerably reduces the number of times we have to move the same CPE
1388   // more than once and is also important to ensure the algorithm terminates.
1389   if (IP != WaterList.end())
1390     WaterList.erase(IP);
1391
1392   // Okay, we know we can put an island before NewMBB now, do it!
1393   MF->insert(NewMBB->getIterator(), NewIsland);
1394
1395   // Update internal data structures to account for the newly inserted MBB.
1396   updateForInsertedWaterBlock(NewIsland);
1397
1398   // Decrement the old entry, and remove it if refcount becomes 0.
1399   decrementCPEReferenceCount(CPI, CPEMI);
1400
1401   // No existing clone of this CPE is within range.
1402   // We will be generating a new clone.  Get a UID for it.
1403   unsigned ID = createPICLabelUId();
1404
1405   // Now that we have an island to add the CPE to, clone the original CPE and
1406   // add it to the island.
1407   U.HighWaterMark = NewIsland;
1408   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1409                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1410   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1411   ++NumCPEs;
1412
1413   // Mark the basic block as aligned as required by the const-pool entry.
1414   NewIsland->setAlignment(getCPELogAlign(*U.CPEMI));
1415
1416   // Increase the size of the island block to account for the new entry.
1417   BBInfo[NewIsland->getNumber()].Size += Size;
1418   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1419
1420   // Finally, change the CPI in the instruction operand to be ID.
1421   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1422     if (UserMI->getOperand(i).isCPI()) {
1423       UserMI->getOperand(i).setIndex(ID);
1424       break;
1425     }
1426
1427   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1428         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1429
1430   return true;
1431 }
1432
1433 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1434 /// sizes and offsets of impacted basic blocks.
1435 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1436   MachineBasicBlock *CPEBB = CPEMI->getParent();
1437   unsigned Size = CPEMI->getOperand(2).getImm();
1438   CPEMI->eraseFromParent();
1439   BBInfo[CPEBB->getNumber()].Size -= Size;
1440   // All succeeding offsets have the current size value added in, fix this.
1441   if (CPEBB->empty()) {
1442     BBInfo[CPEBB->getNumber()].Size = 0;
1443
1444     // This block no longer needs to be aligned.
1445     CPEBB->setAlignment(0);
1446   } else
1447     // Entries are sorted by descending alignment, so realign from the front.
1448     CPEBB->setAlignment(getCPELogAlign(*CPEBB->begin()));
1449
1450   adjustBBOffsetsAfter(CPEBB);
1451   // An island has only one predecessor BB and one successor BB. Check if
1452   // this BB's predecessor jumps directly to this BB's successor. This
1453   // shouldn't happen currently.
1454   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1455   // FIXME: remove the empty blocks after all the work is done?
1456 }
1457
1458 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1459 /// are zero.
1460 bool MipsConstantIslands::removeUnusedCPEntries() {
1461   unsigned MadeChange = false;
1462   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1463       std::vector<CPEntry> &CPEs = CPEntries[i];
1464       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1465         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1466           removeDeadCPEMI(CPEs[j].CPEMI);
1467           CPEs[j].CPEMI = nullptr;
1468           MadeChange = true;
1469         }
1470       }
1471   }
1472   return MadeChange;
1473 }
1474
1475 /// isBBInRange - Returns true if the distance between specific MI and
1476 /// specific BB can fit in MI's displacement field.
1477 bool MipsConstantIslands::isBBInRange
1478   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1479
1480 unsigned PCAdj = 4;
1481
1482   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1483   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1484
1485   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1486                << " from BB#" << MI->getParent()->getNumber()
1487                << " max delta=" << MaxDisp
1488                << " from " << getOffsetOf(MI) << " to " << DestOffset
1489                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1490
1491   if (BrOffset <= DestOffset) {
1492     // Branch before the Dest.
1493     if (DestOffset-BrOffset <= MaxDisp)
1494       return true;
1495   } else {
1496     if (BrOffset-DestOffset <= MaxDisp)
1497       return true;
1498   }
1499   return false;
1500 }
1501
1502 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1503 /// away to fit in its displacement field.
1504 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1505   MachineInstr *MI = Br.MI;
1506   unsigned TargetOperand = branchTargetOperand(MI);
1507   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1508
1509   // Check to see if the DestBB is already in-range.
1510   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1511     return false;
1512
1513   if (!Br.isCond)
1514     return fixupUnconditionalBr(Br);
1515   return fixupConditionalBr(Br);
1516 }
1517
1518 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1519 /// too far away to fit in its displacement field. If the LR register has been
1520 /// spilled in the epilogue, then we can use BL to implement a far jump.
1521 /// Otherwise, add an intermediate branch instruction to a branch.
1522 bool
1523 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1524   MachineInstr *MI = Br.MI;
1525   MachineBasicBlock *MBB = MI->getParent();
1526   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1527   // Use BL to implement far jump.
1528   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1529   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1530     Br.MaxDisp = BimmX16MaxDisp;
1531     MI->setDesc(TII->get(Mips::BimmX16));
1532   }
1533   else {
1534     // need to give the math a more careful look here
1535     // this is really a segment address and not
1536     // a PC relative address. FIXME. But I think that
1537     // just reducing the bits by 1 as I've done is correct.
1538     // The basic block we are branching too much be longword aligned.
1539     // we know that RA is saved because we always save it right now.
1540     // this requirement will be relaxed later but we also have an alternate
1541     // way to implement this that I will implement that does not need jal.
1542     // We should have a way to back out this alignment restriction if we "can" later.
1543     // but it is not harmful.
1544     //
1545     DestBB->setAlignment(2);
1546     Br.MaxDisp = ((1<<24)-1) * 2;
1547     MI->setDesc(TII->get(Mips::JalB16));
1548   }
1549   BBInfo[MBB->getNumber()].Size += 2;
1550   adjustBBOffsetsAfter(MBB);
1551   HasFarJump = true;
1552   ++NumUBrFixed;
1553
1554   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1555
1556   return true;
1557 }
1558
1559
1560 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1561 /// far away to fit in its displacement field. It is converted to an inverse
1562 /// conditional branch + an unconditional branch to the destination.
1563 bool
1564 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1565   MachineInstr *MI = Br.MI;
1566   unsigned TargetOperand = branchTargetOperand(MI);
1567   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1568   unsigned Opcode = MI->getOpcode();
1569   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1570   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1571
1572   // Check to see if the DestBB is already in-range.
1573   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1574     Br.MaxDisp = LongFormMaxOff;
1575     MI->setDesc(TII->get(LongFormOpcode));
1576     return true;
1577   }
1578
1579   // Add an unconditional branch to the destination and invert the branch
1580   // condition to jump over it:
1581   // bteqz L1
1582   // =>
1583   // bnez L2
1584   // b   L1
1585   // L2:
1586
1587   // If the branch is at the end of its MBB and that has a fall-through block,
1588   // direct the updated conditional branch to the fall-through block. Otherwise,
1589   // split the MBB before the next instruction.
1590   MachineBasicBlock *MBB = MI->getParent();
1591   MachineInstr *BMI = &MBB->back();
1592   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1593   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1594  
1595   ++NumCBrFixed;
1596   if (BMI != MI) {
1597     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1598         BMI->isUnconditionalBranch()) {
1599       // Last MI in the BB is an unconditional branch. Can we simply invert the
1600       // condition and swap destinations:
1601       // beqz L1
1602       // b   L2
1603       // =>
1604       // bnez L2
1605       // b   L1
1606       unsigned BMITargetOperand = branchTargetOperand(BMI);
1607       MachineBasicBlock *NewDest = 
1608         BMI->getOperand(BMITargetOperand).getMBB();
1609       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1610         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1611                      << *BMI);
1612         MI->setDesc(TII->get(OppositeBranchOpcode));
1613         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1614         MI->getOperand(TargetOperand).setMBB(NewDest);
1615         return true;
1616       }
1617     }
1618   }
1619
1620
1621   if (NeedSplit) {
1622     splitBlockBeforeInstr(*MI);
1623     // No need for the branch to the next block. We're adding an unconditional
1624     // branch to the destination.
1625     int delta = TII->GetInstSizeInBytes(MBB->back());
1626     BBInfo[MBB->getNumber()].Size -= delta;
1627     MBB->back().eraseFromParent();
1628     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1629   }
1630   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1631
1632   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
1633                << " also invert condition and change dest. to BB#"
1634                << NextBB->getNumber() << "\n");
1635
1636   // Insert a new conditional branch and a new unconditional branch.
1637   // Also update the ImmBranch as well as adding a new entry for the new branch.
1638   if (MI->getNumExplicitOperands() == 2) {
1639     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1640            .addReg(MI->getOperand(0).getReg())
1641            .addMBB(NextBB);
1642   } else {
1643     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1644            .addMBB(NextBB);
1645   }
1646   Br.MI = &MBB->back();
1647   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(MBB->back());
1648   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1649   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(MBB->back());
1650   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1651   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1652
1653   // Remove the old conditional branch.  It may or may not still be in MBB.
1654   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(*MI);
1655   MI->eraseFromParent();
1656   adjustBBOffsetsAfter(MBB);
1657   return true;
1658 }
1659
1660
1661 void MipsConstantIslands::prescanForConstants() {
1662   unsigned J = 0;
1663   (void)J;
1664   for (MachineFunction::iterator B =
1665          MF->begin(), E = MF->end(); B != E; ++B) {
1666     for (MachineBasicBlock::instr_iterator I =
1667         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1668       switch(I->getDesc().getOpcode()) {
1669         case Mips::LwConstant32: {
1670           PrescannedForConstants = true;
1671           DEBUG(dbgs() << "constant island constant " << *I << "\n");
1672           J = I->getNumOperands();
1673           DEBUG(dbgs() << "num operands " << J  << "\n");
1674           MachineOperand& Literal = I->getOperand(1);
1675           if (Literal.isImm()) {
1676             int64_t V = Literal.getImm();
1677             DEBUG(dbgs() << "literal " << V  << "\n");
1678             Type *Int32Ty =
1679               Type::getInt32Ty(MF->getFunction()->getContext());
1680             const Constant *C = ConstantInt::get(Int32Ty, V);
1681             unsigned index = MCP->getConstantPoolIndex(C, 4);
1682             I->getOperand(2).ChangeToImmediate(index);
1683             DEBUG(dbgs() << "constant island constant " << *I << "\n");
1684             I->setDesc(TII->get(Mips::LwRxPcTcp16));
1685             I->RemoveOperand(1);
1686             I->RemoveOperand(1);
1687             I->addOperand(MachineOperand::CreateCPI(index, 0));
1688             I->addOperand(MachineOperand::CreateImm(4));
1689           }
1690           break;
1691         }
1692         default:
1693           break;
1694       }
1695     }
1696   }
1697 }