]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp
MFV r337220: 8375 Kernel memory leak in nvpair code
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Mips / MipsConstantIslandPass.cpp
1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass is used to make Pc relative loads of constants.
11 // For now, only Mips16 will use this. 
12 //
13 // Loading constants inline is expensive on Mips16 and it's in general better
14 // to place the constant nearby in code space and then it can be loaded with a
15 // simple 16 bit load instruction.
16 //
17 // The constants can be not just numbers but addresses of functions and labels.
18 // This can be particularly helpful in static relocation mode for embedded
19 // non-linux targets.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "Mips.h"
24 #include "Mips16InstrInfo.h"
25 #include "MipsMachineFunction.h"
26 #include "MipsSubtarget.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <iterator>
56 #include <vector>
57
58 using namespace llvm;
59
60 #define DEBUG_TYPE "mips-constant-islands"
61
62 STATISTIC(NumCPEs,       "Number of constpool entries");
63 STATISTIC(NumSplit,      "Number of uncond branches inserted");
64 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
65 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
66
67 // FIXME: This option should be removed once it has received sufficient testing.
68 static cl::opt<bool>
69 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
70           cl::desc("Align constant islands in code"));
71
72 // Rather than do make check tests with huge amounts of code, we force
73 // the test to use this amount.
74 static cl::opt<int> ConstantIslandsSmallOffset(
75   "mips-constant-islands-small-offset",
76   cl::init(0),
77   cl::desc("Make small offsets be this amount for testing purposes"),
78   cl::Hidden);
79
80 // For testing purposes we tell it to not use relaxed load forms so that it
81 // will split blocks.
82 static cl::opt<bool> NoLoadRelaxation(
83   "mips-constant-islands-no-load-relaxation",
84   cl::init(false),
85   cl::desc("Don't relax loads to long loads - for testing purposes"),
86   cl::Hidden);
87
88 static unsigned int branchTargetOperand(MachineInstr *MI) {
89   switch (MI->getOpcode()) {
90   case Mips::Bimm16:
91   case Mips::BimmX16:
92   case Mips::Bteqz16:
93   case Mips::BteqzX16:
94   case Mips::Btnez16:
95   case Mips::BtnezX16:
96   case Mips::JalB16:
97     return 0;
98   case Mips::BeqzRxImm16:
99   case Mips::BeqzRxImmX16:
100   case Mips::BnezRxImm16:
101   case Mips::BnezRxImmX16:
102     return 1;
103   }
104   llvm_unreachable("Unknown branch type");
105 }
106
107 static unsigned int longformBranchOpcode(unsigned int Opcode) {
108   switch (Opcode) {
109   case Mips::Bimm16:
110   case Mips::BimmX16:
111     return Mips::BimmX16;
112   case Mips::Bteqz16:
113   case Mips::BteqzX16:
114     return Mips::BteqzX16;
115   case Mips::Btnez16:
116   case Mips::BtnezX16:
117     return Mips::BtnezX16;
118   case Mips::JalB16:
119     return Mips::JalB16;
120   case Mips::BeqzRxImm16:
121   case Mips::BeqzRxImmX16:
122     return Mips::BeqzRxImmX16;
123   case Mips::BnezRxImm16:
124   case Mips::BnezRxImmX16:
125     return Mips::BnezRxImmX16;
126   }
127   llvm_unreachable("Unknown branch type");
128 }
129
130 // FIXME: need to go through this whole constant islands port and check the math
131 // for branch ranges and clean this up and make some functions to calculate things
132 // that are done many times identically.
133 // Need to refactor some of the code to call this routine.
134 static unsigned int branchMaxOffsets(unsigned int Opcode) {
135   unsigned Bits, Scale;
136   switch (Opcode) {
137     case Mips::Bimm16:
138       Bits = 11;
139       Scale = 2;
140       break;
141     case Mips::BimmX16:
142       Bits = 16;
143       Scale = 2;
144       break;
145     case Mips::BeqzRxImm16:
146       Bits = 8;
147       Scale = 2;
148       break;
149     case Mips::BeqzRxImmX16:
150       Bits = 16;
151       Scale = 2;
152       break;
153     case Mips::BnezRxImm16:
154       Bits = 8;
155       Scale = 2;
156       break;
157     case Mips::BnezRxImmX16:
158       Bits = 16;
159       Scale = 2;
160       break;
161     case Mips::Bteqz16:
162       Bits = 8;
163       Scale = 2;
164       break;
165     case Mips::BteqzX16:
166       Bits = 16;
167       Scale = 2;
168       break;
169     case Mips::Btnez16:
170       Bits = 8;
171       Scale = 2;
172       break;
173     case Mips::BtnezX16:
174       Bits = 16;
175       Scale = 2;
176       break;
177     default:
178       llvm_unreachable("Unknown branch type");
179   }
180   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
181   return MaxOffs;
182 }
183
184 namespace {
185
186   using Iter = MachineBasicBlock::iterator;
187   using ReverseIter = MachineBasicBlock::reverse_iterator;
188
189   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
190   /// requires constant pool entries to be scattered among the instructions
191   /// inside a function.  To do this, it completely ignores the normal LLVM
192   /// constant pool; instead, it places constants wherever it feels like with
193   /// special instructions.
194   ///
195   /// The terminology used in this pass includes:
196   ///   Islands - Clumps of constants placed in the function.
197   ///   Water   - Potential places where an island could be formed.
198   ///   CPE     - A constant pool entry that has been placed somewhere, which
199   ///             tracks a list of users.
200
201   class MipsConstantIslands : public MachineFunctionPass {
202     /// BasicBlockInfo - Information about the offset and size of a single
203     /// basic block.
204     struct BasicBlockInfo {
205       /// Offset - Distance from the beginning of the function to the beginning
206       /// of this basic block.
207       ///
208       /// Offsets are computed assuming worst case padding before an aligned
209       /// block. This means that subtracting basic block offsets always gives a
210       /// conservative estimate of the real distance which may be smaller.
211       ///
212       /// Because worst case padding is used, the computed offset of an aligned
213       /// block may not actually be aligned.
214       unsigned Offset = 0;
215
216       /// Size - Size of the basic block in bytes.  If the block contains
217       /// inline assembly, this is a worst case estimate.
218       ///
219       /// The size does not include any alignment padding whether from the
220       /// beginning of the block, or from an aligned jump table at the end.
221       unsigned Size = 0;
222
223       BasicBlockInfo() = default;
224
225       // FIXME: ignore LogAlign for this patch
226       //
227       unsigned postOffset(unsigned LogAlign = 0) const {
228         unsigned PO = Offset + Size;
229         return PO;
230       }
231     };
232
233     std::vector<BasicBlockInfo> BBInfo;
234
235     /// WaterList - A sorted list of basic blocks where islands could be placed
236     /// (i.e. blocks that don't fall through to the following block, due
237     /// to a return, unreachable, or unconditional branch).
238     std::vector<MachineBasicBlock*> WaterList;
239
240     /// NewWaterList - The subset of WaterList that was created since the
241     /// previous iteration by inserting unconditional branches.
242     SmallSet<MachineBasicBlock*, 4> NewWaterList;
243
244     using water_iterator = std::vector<MachineBasicBlock *>::iterator;
245
246     /// CPUser - One user of a constant pool, keeping the machine instruction
247     /// pointer, the constant pool being referenced, and the max displacement
248     /// allowed from the instruction to the CP.  The HighWaterMark records the
249     /// highest basic block where a new CPEntry can be placed.  To ensure this
250     /// pass terminates, the CP entries are initially placed at the end of the
251     /// function and then move monotonically to lower addresses.  The
252     /// exception to this rule is when the current CP entry for a particular
253     /// CPUser is out of range, but there is another CP entry for the same
254     /// constant value in range.  We want to use the existing in-range CP
255     /// entry, but if it later moves out of range, the search for new water
256     /// should resume where it left off.  The HighWaterMark is used to record
257     /// that point.
258     struct CPUser {
259       MachineInstr *MI;
260       MachineInstr *CPEMI;
261       MachineBasicBlock *HighWaterMark;
262
263     private:
264       unsigned MaxDisp;
265       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
266                                 // with different displacements
267       unsigned LongFormOpcode;
268
269     public:
270       bool NegOk;
271
272       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
273              bool neg,
274              unsigned longformmaxdisp, unsigned longformopcode)
275         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
276           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
277           NegOk(neg){
278         HighWaterMark = CPEMI->getParent();
279       }
280
281       /// getMaxDisp - Returns the maximum displacement supported by MI.
282       unsigned getMaxDisp() const {
283         unsigned xMaxDisp = ConstantIslandsSmallOffset?
284                             ConstantIslandsSmallOffset: MaxDisp;
285         return xMaxDisp;
286       }
287
288       void setMaxDisp(unsigned val) {
289         MaxDisp = val;
290       }
291
292       unsigned getLongFormMaxDisp() const {
293         return LongFormMaxDisp;
294       }
295
296       unsigned getLongFormOpcode() const {
297           return LongFormOpcode;
298       }
299     };
300
301     /// CPUsers - Keep track of all of the machine instructions that use various
302     /// constant pools and their max displacement.
303     std::vector<CPUser> CPUsers;
304
305   /// CPEntry - One per constant pool entry, keeping the machine instruction
306   /// pointer, the constpool index, and the number of CPUser's which
307   /// reference this entry.
308   struct CPEntry {
309     MachineInstr *CPEMI;
310     unsigned CPI;
311     unsigned RefCount;
312
313     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
314       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
315   };
316
317   /// CPEntries - Keep track of all of the constant pool entry machine
318   /// instructions. For each original constpool index (i.e. those that
319   /// existed upon entry to this pass), it keeps a vector of entries.
320   /// Original elements are cloned as we go along; the clones are
321   /// put in the vector of the original element, but have distinct CPIs.
322   std::vector<std::vector<CPEntry>> CPEntries;
323
324   /// ImmBranch - One per immediate branch, keeping the machine instruction
325   /// pointer, conditional or unconditional, the max displacement,
326   /// and (if isCond is true) the corresponding unconditional branch
327   /// opcode.
328   struct ImmBranch {
329     MachineInstr *MI;
330     unsigned MaxDisp : 31;
331     bool isCond : 1;
332     int UncondBr;
333
334     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
335       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
336   };
337
338   /// ImmBranches - Keep track of all the immediate branch instructions.
339   ///
340   std::vector<ImmBranch> ImmBranches;
341
342   /// HasFarJump - True if any far jump instruction has been emitted during
343   /// the branch fix up pass.
344   bool HasFarJump;
345
346   const MipsSubtarget *STI = nullptr;
347   const Mips16InstrInfo *TII;
348   MipsFunctionInfo *MFI;
349   MachineFunction *MF = nullptr;
350   MachineConstantPool *MCP = nullptr;
351
352   unsigned PICLabelUId;
353   bool PrescannedForConstants = false;
354
355   void initPICLabelUId(unsigned UId) {
356     PICLabelUId = UId;
357   }
358
359   unsigned createPICLabelUId() {
360     return PICLabelUId++;
361   }
362
363   public:
364     static char ID;
365
366     MipsConstantIslands() : MachineFunctionPass(ID) {}
367
368     StringRef getPassName() const override { return "Mips Constant Islands"; }
369
370     bool runOnMachineFunction(MachineFunction &F) override;
371
372     MachineFunctionProperties getRequiredProperties() const override {
373       return MachineFunctionProperties().set(
374           MachineFunctionProperties::Property::NoVRegs);
375     }
376
377     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
378     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
379     unsigned getCPELogAlign(const MachineInstr &CPEMI);
380     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
381     unsigned getOffsetOf(MachineInstr *MI) const;
382     unsigned getUserOffset(CPUser&) const;
383     void dumpBBs();
384
385     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
386                          unsigned Disp, bool NegativeOK);
387     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
388                          const CPUser &U);
389
390     void computeBlockSize(MachineBasicBlock *MBB);
391     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
392     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
393     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
394     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
395     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
396     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
397     bool findAvailableWater(CPUser&U, unsigned UserOffset,
398                             water_iterator &WaterIter);
399     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
400                         MachineBasicBlock *&NewMBB);
401     bool handleConstantPoolUser(unsigned CPUserIndex);
402     void removeDeadCPEMI(MachineInstr *CPEMI);
403     bool removeUnusedCPEntries();
404     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
405                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
406                           bool DoDump = false);
407     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
408                         CPUser &U, unsigned &Growth);
409     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
410     bool fixupImmediateBr(ImmBranch &Br);
411     bool fixupConditionalBr(ImmBranch &Br);
412     bool fixupUnconditionalBr(ImmBranch &Br);
413
414     void prescanForConstants();
415   };
416
417 } // end anonymous namespace
418
419 char MipsConstantIslands::ID = 0;
420
421 bool MipsConstantIslands::isOffsetInRange
422   (unsigned UserOffset, unsigned TrialOffset,
423    const CPUser &U) {
424   return isOffsetInRange(UserOffset, TrialOffset,
425                          U.getMaxDisp(), U.NegOk);
426 }
427
428 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
429 /// print block size and offset information - debugging
430 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() {
431   for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
432     const BasicBlockInfo &BBI = BBInfo[J];
433     dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
434            << format(" size=%#x\n", BBInfo[J].Size);
435   }
436 }
437 #endif
438
439 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
440   // The intention is for this to be a mips16 only pass for now
441   // FIXME:
442   MF = &mf;
443   MCP = mf.getConstantPool();
444   STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
445   DEBUG(dbgs() << "constant island machine function " << "\n");
446   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
447     return false;
448   }
449   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
450   MFI = MF->getInfo<MipsFunctionInfo>();
451   DEBUG(dbgs() << "constant island processing " << "\n");
452   //
453   // will need to make predermination if there is any constants we need to
454   // put in constant islands. TBD.
455   //
456   if (!PrescannedForConstants) prescanForConstants();
457
458   HasFarJump = false;
459   // This pass invalidates liveness information when it splits basic blocks.
460   MF->getRegInfo().invalidateLiveness();
461
462   // Renumber all of the machine basic blocks in the function, guaranteeing that
463   // the numbers agree with the position of the block in the function.
464   MF->RenumberBlocks();
465
466   bool MadeChange = false;
467
468   // Perform the initial placement of the constant pool entries.  To start with,
469   // we put them all at the end of the function.
470   std::vector<MachineInstr*> CPEMIs;
471   if (!MCP->isEmpty())
472     doInitialPlacement(CPEMIs);
473
474   /// The next UID to take is the first unused one.
475   initPICLabelUId(CPEMIs.size());
476
477   // Do the initial scan of the function, building up information about the
478   // sizes of each block, the location of all the water, and finding all of the
479   // constant pool users.
480   initializeFunctionInfo(CPEMIs);
481   CPEMIs.clear();
482   DEBUG(dumpBBs());
483
484   /// Remove dead constant pool entries.
485   MadeChange |= removeUnusedCPEntries();
486
487   // Iteratively place constant pool entries and fix up branches until there
488   // is no change.
489   unsigned NoCPIters = 0, NoBRIters = 0;
490   (void)NoBRIters;
491   while (true) {
492     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
493     bool CPChange = false;
494     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
495       CPChange |= handleConstantPoolUser(i);
496     if (CPChange && ++NoCPIters > 30)
497       report_fatal_error("Constant Island pass failed to converge!");
498     DEBUG(dumpBBs());
499
500     // Clear NewWaterList now.  If we split a block for branches, it should
501     // appear as "new water" for the next iteration of constant pool placement.
502     NewWaterList.clear();
503
504     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
505     bool BRChange = false;
506     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
507       BRChange |= fixupImmediateBr(ImmBranches[i]);
508     if (BRChange && ++NoBRIters > 30)
509       report_fatal_error("Branch Fix Up pass failed to converge!");
510     DEBUG(dumpBBs());
511     if (!CPChange && !BRChange)
512       break;
513     MadeChange = true;
514   }
515
516   DEBUG(dbgs() << '\n'; dumpBBs());
517
518   BBInfo.clear();
519   WaterList.clear();
520   CPUsers.clear();
521   CPEntries.clear();
522   ImmBranches.clear();
523   return MadeChange;
524 }
525
526 /// doInitialPlacement - Perform the initial placement of the constant pool
527 /// entries.  To start with, we put them all at the end of the function.
528 void
529 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
530   // Create the basic block to hold the CPE's.
531   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
532   MF->push_back(BB);
533
534   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
535   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
536
537   // Mark the basic block as required by the const-pool.
538   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
539   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
540
541   // The function needs to be as aligned as the basic blocks. The linker may
542   // move functions around based on their alignment.
543   MF->ensureAlignment(BB->getAlignment());
544
545   // Order the entries in BB by descending alignment.  That ensures correct
546   // alignment of all entries as long as BB is sufficiently aligned.  Keep
547   // track of the insertion point for each alignment.  We are going to bucket
548   // sort the entries as they are created.
549   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
550
551   // Add all of the constants from the constant pool to the end block, use an
552   // identity mapping of CPI's to CPE's.
553   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
554
555   const DataLayout &TD = MF->getDataLayout();
556   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
557     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
558     assert(Size >= 4 && "Too small constant pool entry");
559     unsigned Align = CPs[i].getAlignment();
560     assert(isPowerOf2_32(Align) && "Invalid alignment");
561     // Verify that all constant pool entries are a multiple of their alignment.
562     // If not, we would have to pad them out so that instructions stay aligned.
563     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
564
565     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
566     unsigned LogAlign = Log2_32(Align);
567     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
568
569     MachineInstr *CPEMI =
570       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
571         .addImm(i).addConstantPoolIndex(i).addImm(Size);
572
573     CPEMIs.push_back(CPEMI);
574
575     // Ensure that future entries with higher alignment get inserted before
576     // CPEMI. This is bucket sort with iterators.
577     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
578       if (InsPoint[a] == InsAt)
579         InsPoint[a] = CPEMI;
580     // Add a new CPEntry, but no corresponding CPUser yet.
581     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
582     ++NumCPEs;
583     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
584                  << Size << ", align = " << Align <<'\n');
585   }
586   DEBUG(BB->dump());
587 }
588
589 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
590 /// into the block immediately after it.
591 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
592   // Get the next machine basic block in the function.
593   MachineFunction::iterator MBBI = MBB->getIterator();
594   // Can't fall off end of function.
595   if (std::next(MBBI) == MBB->getParent()->end())
596     return false;
597
598   MachineBasicBlock *NextBB = &*std::next(MBBI);
599   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
600        E = MBB->succ_end(); I != E; ++I)
601     if (*I == NextBB)
602       return true;
603
604   return false;
605 }
606
607 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
608 /// look up the corresponding CPEntry.
609 MipsConstantIslands::CPEntry
610 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
611                                         const MachineInstr *CPEMI) {
612   std::vector<CPEntry> &CPEs = CPEntries[CPI];
613   // Number of entries per constpool index should be small, just do a
614   // linear search.
615   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
616     if (CPEs[i].CPEMI == CPEMI)
617       return &CPEs[i];
618   }
619   return nullptr;
620 }
621
622 /// getCPELogAlign - Returns the required alignment of the constant pool entry
623 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
624 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr &CPEMI) {
625   assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
626
627   // Everything is 4-byte aligned unless AlignConstantIslands is set.
628   if (!AlignConstantIslands)
629     return 2;
630
631   unsigned CPI = CPEMI.getOperand(1).getIndex();
632   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
633   unsigned Align = MCP->getConstants()[CPI].getAlignment();
634   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
635   return Log2_32(Align);
636 }
637
638 /// initializeFunctionInfo - Do the initial scan of the function, building up
639 /// information about the sizes of each block, the location of all the water,
640 /// and finding all of the constant pool users.
641 void MipsConstantIslands::
642 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
643   BBInfo.clear();
644   BBInfo.resize(MF->getNumBlockIDs());
645
646   // First thing, compute the size of all basic blocks, and see if the function
647   // has any inline assembly in it. If so, we have to be conservative about
648   // alignment assumptions, as we don't know for sure the size of any
649   // instructions in the inline assembly.
650   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
651     computeBlockSize(&*I);
652
653   // Compute block offsets.
654   adjustBBOffsetsAfter(&MF->front());
655
656   // Now go back through the instructions and build up our data structures.
657   for (MachineBasicBlock &MBB : *MF) {
658     // If this block doesn't fall through into the next MBB, then this is
659     // 'water' that a constant pool island could be placed.
660     if (!BBHasFallthrough(&MBB))
661       WaterList.push_back(&MBB);
662     for (MachineInstr &MI : MBB) {
663       if (MI.isDebugValue())
664         continue;
665
666       int Opc = MI.getOpcode();
667       if (MI.isBranch()) {
668         bool isCond = false;
669         unsigned Bits = 0;
670         unsigned Scale = 1;
671         int UOpc = Opc;
672         switch (Opc) {
673         default:
674           continue;  // Ignore other branches for now
675         case Mips::Bimm16:
676           Bits = 11;
677           Scale = 2;
678           isCond = false;
679           break;
680         case Mips::BimmX16:
681           Bits = 16;
682           Scale = 2;
683           isCond = false;
684           break;
685         case Mips::BeqzRxImm16:
686           UOpc=Mips::Bimm16;
687           Bits = 8;
688           Scale = 2;
689           isCond = true;
690           break;
691         case Mips::BeqzRxImmX16:
692           UOpc=Mips::Bimm16;
693           Bits = 16;
694           Scale = 2;
695           isCond = true;
696           break;
697         case Mips::BnezRxImm16:
698           UOpc=Mips::Bimm16;
699           Bits = 8;
700           Scale = 2;
701           isCond = true;
702           break;
703         case Mips::BnezRxImmX16:
704           UOpc=Mips::Bimm16;
705           Bits = 16;
706           Scale = 2;
707           isCond = true;
708           break;
709         case Mips::Bteqz16:
710           UOpc=Mips::Bimm16;
711           Bits = 8;
712           Scale = 2;
713           isCond = true;
714           break;
715         case Mips::BteqzX16:
716           UOpc=Mips::Bimm16;
717           Bits = 16;
718           Scale = 2;
719           isCond = true;
720           break;
721         case Mips::Btnez16:
722           UOpc=Mips::Bimm16;
723           Bits = 8;
724           Scale = 2;
725           isCond = true;
726           break;
727         case Mips::BtnezX16:
728           UOpc=Mips::Bimm16;
729           Bits = 16;
730           Scale = 2;
731           isCond = true;
732           break;
733         }
734         // Record this immediate branch.
735         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
736         ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
737       }
738
739       if (Opc == Mips::CONSTPOOL_ENTRY)
740         continue;
741
742       // Scan the instructions for constant pool operands.
743       for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
744         if (MI.getOperand(op).isCPI()) {
745           // We found one.  The addressing mode tells us the max displacement
746           // from the PC that this instruction permits.
747
748           // Basic size info comes from the TSFlags field.
749           unsigned Bits = 0;
750           unsigned Scale = 1;
751           bool NegOk = false;
752           unsigned LongFormBits = 0;
753           unsigned LongFormScale = 0;
754           unsigned LongFormOpcode = 0;
755           switch (Opc) {
756           default:
757             llvm_unreachable("Unknown addressing mode for CP reference!");
758           case Mips::LwRxPcTcp16:
759             Bits = 8;
760             Scale = 4;
761             LongFormOpcode = Mips::LwRxPcTcpX16;
762             LongFormBits = 14;
763             LongFormScale = 1;
764             break;
765           case Mips::LwRxPcTcpX16:
766             Bits = 14;
767             Scale = 1;
768             NegOk = true;
769             break;
770           }
771           // Remember that this is a user of a CP entry.
772           unsigned CPI = MI.getOperand(op).getIndex();
773           MachineInstr *CPEMI = CPEMIs[CPI];
774           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
775           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
776           CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
777                                    LongFormOpcode));
778
779           // Increment corresponding CPEntry reference count.
780           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
781           assert(CPE && "Cannot find a corresponding CPEntry!");
782           CPE->RefCount++;
783
784           // Instructions can only use one CP entry, don't bother scanning the
785           // rest of the operands.
786           break;
787         }
788     }
789   }
790 }
791
792 /// computeBlockSize - Compute the size and some alignment information for MBB.
793 /// This function updates BBInfo directly.
794 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
795   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
796   BBI.Size = 0;
797
798   for (const MachineInstr &MI : *MBB)
799     BBI.Size += TII->getInstSizeInBytes(MI);
800 }
801
802 /// getOffsetOf - Return the current offset of the specified machine instruction
803 /// from the start of the function.  This offset changes as stuff is moved
804 /// around inside the function.
805 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
806   MachineBasicBlock *MBB = MI->getParent();
807
808   // The offset is composed of two things: the sum of the sizes of all MBB's
809   // before this instruction's block, and the offset from the start of the block
810   // it is in.
811   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
812
813   // Sum instructions before MI in MBB.
814   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
815     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
816     Offset += TII->getInstSizeInBytes(*I);
817   }
818   return Offset;
819 }
820
821 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
822 /// ID.
823 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
824                               const MachineBasicBlock *RHS) {
825   return LHS->getNumber() < RHS->getNumber();
826 }
827
828 /// updateForInsertedWaterBlock - When a block is newly inserted into the
829 /// machine function, it upsets all of the block numbers.  Renumber the blocks
830 /// and update the arrays that parallel this numbering.
831 void MipsConstantIslands::updateForInsertedWaterBlock
832   (MachineBasicBlock *NewBB) {
833   // Renumber the MBB's to keep them consecutive.
834   NewBB->getParent()->RenumberBlocks(NewBB);
835
836   // Insert an entry into BBInfo to align it properly with the (newly
837   // renumbered) block numbers.
838   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
839
840   // Next, update WaterList.  Specifically, we need to add NewMBB as having
841   // available water after it.
842   water_iterator IP =
843     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
844                      CompareMBBNumbers);
845   WaterList.insert(IP, NewBB);
846 }
847
848 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
849   return getOffsetOf(U.MI);
850 }
851
852 /// Split the basic block containing MI into two blocks, which are joined by
853 /// an unconditional branch.  Update data structures and renumber blocks to
854 /// account for this change and returns the newly created block.
855 MachineBasicBlock *
856 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
857   MachineBasicBlock *OrigBB = MI.getParent();
858
859   // Create a new MBB for the code after the OrigBB.
860   MachineBasicBlock *NewBB =
861     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
862   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
863   MF->insert(MBBI, NewBB);
864
865   // Splice the instructions starting with MI over to NewBB.
866   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
867
868   // Add an unconditional branch from OrigBB to NewBB.
869   // Note the new unconditional branch is not being recorded.
870   // There doesn't seem to be meaningful DebugInfo available; this doesn't
871   // correspond to anything in the source.
872   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
873   ++NumSplit;
874
875   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
876   NewBB->transferSuccessors(OrigBB);
877
878   // OrigBB branches to NewBB.
879   OrigBB->addSuccessor(NewBB);
880
881   // Update internal data structures to account for the newly inserted MBB.
882   // This is almost the same as updateForInsertedWaterBlock, except that
883   // the Water goes after OrigBB, not NewBB.
884   MF->RenumberBlocks(NewBB);
885
886   // Insert an entry into BBInfo to align it properly with the (newly
887   // renumbered) block numbers.
888   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
889
890   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
891   // available water after it (but not if it's already there, which happens
892   // when splitting before a conditional branch that is followed by an
893   // unconditional branch - in that case we want to insert NewBB).
894   water_iterator IP =
895     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
896                      CompareMBBNumbers);
897   MachineBasicBlock* WaterBB = *IP;
898   if (WaterBB == OrigBB)
899     WaterList.insert(std::next(IP), NewBB);
900   else
901     WaterList.insert(IP, OrigBB);
902   NewWaterList.insert(OrigBB);
903
904   // Figure out how large the OrigBB is.  As the first half of the original
905   // block, it cannot contain a tablejump.  The size includes
906   // the new jump we added.  (It should be possible to do this without
907   // recounting everything, but it's very confusing, and this is rarely
908   // executed.)
909   computeBlockSize(OrigBB);
910
911   // Figure out how large the NewMBB is.  As the second half of the original
912   // block, it may contain a tablejump.
913   computeBlockSize(NewBB);
914
915   // All BBOffsets following these blocks must be modified.
916   adjustBBOffsetsAfter(OrigBB);
917
918   return NewBB;
919 }
920
921 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
922 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
923 /// constant pool entry).
924 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
925                                          unsigned TrialOffset, unsigned MaxDisp,
926                                          bool NegativeOK) {
927   if (UserOffset <= TrialOffset) {
928     // User before the Trial.
929     if (TrialOffset - UserOffset <= MaxDisp)
930       return true;
931   } else if (NegativeOK) {
932     if (UserOffset - TrialOffset <= MaxDisp)
933       return true;
934   }
935   return false;
936 }
937
938 /// isWaterInRange - Returns true if a CPE placed after the specified
939 /// Water (a basic block) will be in range for the specific MI.
940 ///
941 /// Compute how much the function will grow by inserting a CPE after Water.
942 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
943                                         MachineBasicBlock* Water, CPUser &U,
944                                         unsigned &Growth) {
945   unsigned CPELogAlign = getCPELogAlign(*U.CPEMI);
946   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
947   unsigned NextBlockOffset, NextBlockAlignment;
948   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
949   if (NextBlock == MF->end()) {
950     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
951     NextBlockAlignment = 0;
952   } else {
953     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
954     NextBlockAlignment = NextBlock->getAlignment();
955   }
956   unsigned Size = U.CPEMI->getOperand(2).getImm();
957   unsigned CPEEnd = CPEOffset + Size;
958
959   // The CPE may be able to hide in the alignment padding before the next
960   // block. It may also cause more padding to be required if it is more aligned
961   // that the next block.
962   if (CPEEnd > NextBlockOffset) {
963     Growth = CPEEnd - NextBlockOffset;
964     // Compute the padding that would go at the end of the CPE to align the next
965     // block.
966     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
967
968     // If the CPE is to be inserted before the instruction, that will raise
969     // the offset of the instruction. Also account for unknown alignment padding
970     // in blocks between CPE and the user.
971     if (CPEOffset < UserOffset)
972       UserOffset += Growth;
973   } else
974     // CPE fits in existing padding.
975     Growth = 0;
976
977   return isOffsetInRange(UserOffset, CPEOffset, U);
978 }
979
980 /// isCPEntryInRange - Returns true if the distance between specific MI and
981 /// specific ConstPool entry instruction can fit in MI's displacement field.
982 bool MipsConstantIslands::isCPEntryInRange
983   (MachineInstr *MI, unsigned UserOffset,
984    MachineInstr *CPEMI, unsigned MaxDisp,
985    bool NegOk, bool DoDump) {
986   unsigned CPEOffset  = getOffsetOf(CPEMI);
987
988   if (DoDump) {
989     DEBUG({
990       unsigned Block = MI->getParent()->getNumber();
991       const BasicBlockInfo &BBI = BBInfo[Block];
992       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
993              << " max delta=" << MaxDisp
994              << format(" insn address=%#x", UserOffset) << " in "
995              << printMBBReference(*MI->getParent()) << ": "
996              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
997              << format("CPE address=%#x offset=%+d: ", CPEOffset,
998                        int(CPEOffset - UserOffset));
999     });
1000   }
1001
1002   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1003 }
1004
1005 #ifndef NDEBUG
1006 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1007 /// unconditionally branches to its only successor.
1008 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1009   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1010     return false;
1011   MachineBasicBlock *Succ = *MBB->succ_begin();
1012   MachineBasicBlock *Pred = *MBB->pred_begin();
1013   MachineInstr *PredMI = &Pred->back();
1014   if (PredMI->getOpcode() == Mips::Bimm16)
1015     return PredMI->getOperand(0).getMBB() == Succ;
1016   return false;
1017 }
1018 #endif
1019
1020 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1021   unsigned BBNum = BB->getNumber();
1022   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1023     // Get the offset and known bits at the end of the layout predecessor.
1024     // Include the alignment of the current block.
1025     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1026     BBInfo[i].Offset = Offset;
1027   }
1028 }
1029
1030 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1031 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1032 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1033 /// the entry, false if we didn't.
1034 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1035                                                     MachineInstr *CPEMI) {
1036   // Find the old entry. Eliminate it if it is no longer used.
1037   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1038   assert(CPE && "Unexpected!");
1039   if (--CPE->RefCount == 0) {
1040     removeDeadCPEMI(CPEMI);
1041     CPE->CPEMI = nullptr;
1042     --NumCPEs;
1043     return true;
1044   }
1045   return false;
1046 }
1047
1048 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1049 /// if not, see if an in-range clone of the CPE is in range, and if so,
1050 /// change the data structures so the user references the clone.  Returns:
1051 /// 0 = no existing entry found
1052 /// 1 = entry found, and there were no code insertions or deletions
1053 /// 2 = entry found, and there were code insertions or deletions
1054 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1055 {
1056   MachineInstr *UserMI = U.MI;
1057   MachineInstr *CPEMI  = U.CPEMI;
1058
1059   // Check to see if the CPE is already in-range.
1060   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1061                        true)) {
1062     DEBUG(dbgs() << "In range\n");
1063     return 1;
1064   }
1065
1066   // No.  Look for previously created clones of the CPE that are in range.
1067   unsigned CPI = CPEMI->getOperand(1).getIndex();
1068   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1069   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1070     // We already tried this one
1071     if (CPEs[i].CPEMI == CPEMI)
1072       continue;
1073     // Removing CPEs can leave empty entries, skip
1074     if (CPEs[i].CPEMI == nullptr)
1075       continue;
1076     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1077                      U.NegOk)) {
1078       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1079                    << CPEs[i].CPI << "\n");
1080       // Point the CPUser node to the replacement
1081       U.CPEMI = CPEs[i].CPEMI;
1082       // Change the CPI in the instruction operand to refer to the clone.
1083       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1084         if (UserMI->getOperand(j).isCPI()) {
1085           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1086           break;
1087         }
1088       // Adjust the refcount of the clone...
1089       CPEs[i].RefCount++;
1090       // ...and the original.  If we didn't remove the old entry, none of the
1091       // addresses changed, so we don't need another pass.
1092       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1093     }
1094   }
1095   return 0;
1096 }
1097
1098 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1099 /// This version checks if the longer form of the instruction can be used to
1100 /// to satisfy things.
1101 /// if not, see if an in-range clone of the CPE is in range, and if so,
1102 /// change the data structures so the user references the clone.  Returns:
1103 /// 0 = no existing entry found
1104 /// 1 = entry found, and there were no code insertions or deletions
1105 /// 2 = entry found, and there were code insertions or deletions
1106 int MipsConstantIslands::findLongFormInRangeCPEntry
1107   (CPUser& U, unsigned UserOffset)
1108 {
1109   MachineInstr *UserMI = U.MI;
1110   MachineInstr *CPEMI  = U.CPEMI;
1111
1112   // Check to see if the CPE is already in-range.
1113   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1114                        U.getLongFormMaxDisp(), U.NegOk,
1115                        true)) {
1116     DEBUG(dbgs() << "In range\n");
1117     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1118     U.setMaxDisp(U.getLongFormMaxDisp());
1119     return 2;  // instruction is longer length now
1120   }
1121
1122   // No.  Look for previously created clones of the CPE that are in range.
1123   unsigned CPI = CPEMI->getOperand(1).getIndex();
1124   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1125   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1126     // We already tried this one
1127     if (CPEs[i].CPEMI == CPEMI)
1128       continue;
1129     // Removing CPEs can leave empty entries, skip
1130     if (CPEs[i].CPEMI == nullptr)
1131       continue;
1132     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1133                          U.getLongFormMaxDisp(), U.NegOk)) {
1134       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1135                    << CPEs[i].CPI << "\n");
1136       // Point the CPUser node to the replacement
1137       U.CPEMI = CPEs[i].CPEMI;
1138       // Change the CPI in the instruction operand to refer to the clone.
1139       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1140         if (UserMI->getOperand(j).isCPI()) {
1141           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1142           break;
1143         }
1144       // Adjust the refcount of the clone...
1145       CPEs[i].RefCount++;
1146       // ...and the original.  If we didn't remove the old entry, none of the
1147       // addresses changed, so we don't need another pass.
1148       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1149     }
1150   }
1151   return 0;
1152 }
1153
1154 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1155 /// the specific unconditional branch instruction.
1156 static inline unsigned getUnconditionalBrDisp(int Opc) {
1157   switch (Opc) {
1158   case Mips::Bimm16:
1159     return ((1<<10)-1)*2;
1160   case Mips::BimmX16:
1161     return ((1<<16)-1)*2;
1162   default:
1163     break;
1164   }
1165   return ((1<<16)-1)*2;
1166 }
1167
1168 /// findAvailableWater - Look for an existing entry in the WaterList in which
1169 /// we can place the CPE referenced from U so it's within range of U's MI.
1170 /// Returns true if found, false if not.  If it returns true, WaterIter
1171 /// is set to the WaterList entry.  
1172 /// To ensure that this pass
1173 /// terminates, the CPE location for a particular CPUser is only allowed to
1174 /// move to a lower address, so search backward from the end of the list and
1175 /// prefer the first water that is in range.
1176 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1177                                       water_iterator &WaterIter) {
1178   if (WaterList.empty())
1179     return false;
1180
1181   unsigned BestGrowth = ~0u;
1182   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1183        --IP) {
1184     MachineBasicBlock* WaterBB = *IP;
1185     // Check if water is in range and is either at a lower address than the
1186     // current "high water mark" or a new water block that was created since
1187     // the previous iteration by inserting an unconditional branch.  In the
1188     // latter case, we want to allow resetting the high water mark back to
1189     // this new water since we haven't seen it before.  Inserting branches
1190     // should be relatively uncommon and when it does happen, we want to be
1191     // sure to take advantage of it for all the CPEs near that block, so that
1192     // we don't insert more branches than necessary.
1193     unsigned Growth;
1194     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1195         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1196          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1197       // This is the least amount of required padding seen so far.
1198       BestGrowth = Growth;
1199       WaterIter = IP;
1200       DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1201                    << " Growth=" << Growth << '\n');
1202
1203       // Keep looking unless it is perfect.
1204       if (BestGrowth == 0)
1205         return true;
1206     }
1207     if (IP == B)
1208       break;
1209   }
1210   return BestGrowth != ~0u;
1211 }
1212
1213 /// createNewWater - No existing WaterList entry will work for
1214 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1215 /// block is used if in range, and the conditional branch munged so control
1216 /// flow is correct.  Otherwise the block is split to create a hole with an
1217 /// unconditional branch around it.  In either case NewMBB is set to a
1218 /// block following which the new island can be inserted (the WaterList
1219 /// is not adjusted).
1220 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1221                                         unsigned UserOffset,
1222                                         MachineBasicBlock *&NewMBB) {
1223   CPUser &U = CPUsers[CPUserIndex];
1224   MachineInstr *UserMI = U.MI;
1225   MachineInstr *CPEMI  = U.CPEMI;
1226   unsigned CPELogAlign = getCPELogAlign(*CPEMI);
1227   MachineBasicBlock *UserMBB = UserMI->getParent();
1228   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1229
1230   // If the block does not end in an unconditional branch already, and if the
1231   // end of the block is within range, make new water there.  
1232   if (BBHasFallthrough(UserMBB)) {
1233     // Size of branch to insert.
1234     unsigned Delta = 2;
1235     // Compute the offset where the CPE will begin.
1236     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1237
1238     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1239       DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1240                    << format(", expected CPE offset %#x\n", CPEOffset));
1241       NewMBB = &*++UserMBB->getIterator();
1242       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1243       // it for branch lengthening; this new branch will not get out of range,
1244       // but if the preceding conditional branch is out of range, the targets
1245       // will be exchanged, and the altered branch may be out of range, so the
1246       // machinery has to know about it.
1247       int UncondBr = Mips::Bimm16;
1248       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1249       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1250       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1251                                       MaxDisp, false, UncondBr));
1252       BBInfo[UserMBB->getNumber()].Size += Delta;
1253       adjustBBOffsetsAfter(UserMBB);
1254       return;
1255     }
1256   }
1257
1258   // What a big block.  Find a place within the block to split it.  
1259
1260   // Try to split the block so it's fully aligned.  Compute the latest split
1261   // point where we can add a 4-byte branch instruction, and then align to
1262   // LogAlign which is the largest possible alignment in the function.
1263   unsigned LogAlign = MF->getAlignment();
1264   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1265   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1266   DEBUG(dbgs() << format("Split in middle of big block before %#x",
1267                          BaseInsertOffset));
1268
1269   // The 4 in the following is for the unconditional branch we'll be inserting
1270   // Alignment of the island is handled
1271   // inside isOffsetInRange.
1272   BaseInsertOffset -= 4;
1273
1274   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1275                << " la=" << LogAlign << '\n');
1276
1277   // This could point off the end of the block if we've already got constant
1278   // pool entries following this block; only the last one is in the water list.
1279   // Back past any possible branches (allow for a conditional and a maximally
1280   // long unconditional).
1281   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1282     BaseInsertOffset = UserBBI.postOffset() - 8;
1283     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1284   }
1285   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1286     CPEMI->getOperand(2).getImm();
1287   MachineBasicBlock::iterator MI = UserMI;
1288   ++MI;
1289   unsigned CPUIndex = CPUserIndex+1;
1290   unsigned NumCPUsers = CPUsers.size();
1291   //MachineInstr *LastIT = 0;
1292   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1293        Offset < BaseInsertOffset;
1294        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1295     assert(MI != UserMBB->end() && "Fell off end of block");
1296     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1297       CPUser &U = CPUsers[CPUIndex];
1298       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1299         // Shift intertion point by one unit of alignment so it is within reach.
1300         BaseInsertOffset -= 1u << LogAlign;
1301         EndInsertOffset  -= 1u << LogAlign;
1302       }
1303       // This is overly conservative, as we don't account for CPEMIs being
1304       // reused within the block, but it doesn't matter much.  Also assume CPEs
1305       // are added in order with alignment padding.  We may eventually be able
1306       // to pack the aligned CPEs better.
1307       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1308       CPUIndex++;
1309     }
1310   }
1311
1312   NewMBB = splitBlockBeforeInstr(*--MI);
1313 }
1314
1315 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1316 /// is out-of-range.  If so, pick up the constant pool value and move it some
1317 /// place in-range.  Return true if we changed any addresses (thus must run
1318 /// another pass of branch lengthening), false otherwise.
1319 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1320   CPUser &U = CPUsers[CPUserIndex];
1321   MachineInstr *UserMI = U.MI;
1322   MachineInstr *CPEMI  = U.CPEMI;
1323   unsigned CPI = CPEMI->getOperand(1).getIndex();
1324   unsigned Size = CPEMI->getOperand(2).getImm();
1325   // Compute this only once, it's expensive.
1326   unsigned UserOffset = getUserOffset(U);
1327
1328   // See if the current entry is within range, or there is a clone of it
1329   // in range.
1330   int result = findInRangeCPEntry(U, UserOffset);
1331   if (result==1) return false;
1332   else if (result==2) return true;
1333
1334   // Look for water where we can place this CPE.
1335   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1336   MachineBasicBlock *NewMBB;
1337   water_iterator IP;
1338   if (findAvailableWater(U, UserOffset, IP)) {
1339     DEBUG(dbgs() << "Found water in range\n");
1340     MachineBasicBlock *WaterBB = *IP;
1341
1342     // If the original WaterList entry was "new water" on this iteration,
1343     // propagate that to the new island.  This is just keeping NewWaterList
1344     // updated to match the WaterList, which will be updated below.
1345     if (NewWaterList.erase(WaterBB))
1346       NewWaterList.insert(NewIsland);
1347
1348     // The new CPE goes before the following block (NewMBB).
1349     NewMBB = &*++WaterBB->getIterator();
1350   } else {
1351     // No water found.
1352     // we first see if a longer form of the instrucion could have reached
1353     // the constant. in that case we won't bother to split
1354     if (!NoLoadRelaxation) {
1355       result = findLongFormInRangeCPEntry(U, UserOffset);
1356       if (result != 0) return true;
1357     }
1358     DEBUG(dbgs() << "No water found\n");
1359     createNewWater(CPUserIndex, UserOffset, NewMBB);
1360
1361     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1362     // called while handling branches so that the water will be seen on the
1363     // next iteration for constant pools, but in this context, we don't want
1364     // it.  Check for this so it will be removed from the WaterList.
1365     // Also remove any entry from NewWaterList.
1366     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1367     IP = llvm::find(WaterList, WaterBB);
1368     if (IP != WaterList.end())
1369       NewWaterList.erase(WaterBB);
1370
1371     // We are adding new water.  Update NewWaterList.
1372     NewWaterList.insert(NewIsland);
1373   }
1374
1375   // Remove the original WaterList entry; we want subsequent insertions in
1376   // this vicinity to go after the one we're about to insert.  This
1377   // considerably reduces the number of times we have to move the same CPE
1378   // more than once and is also important to ensure the algorithm terminates.
1379   if (IP != WaterList.end())
1380     WaterList.erase(IP);
1381
1382   // Okay, we know we can put an island before NewMBB now, do it!
1383   MF->insert(NewMBB->getIterator(), NewIsland);
1384
1385   // Update internal data structures to account for the newly inserted MBB.
1386   updateForInsertedWaterBlock(NewIsland);
1387
1388   // Decrement the old entry, and remove it if refcount becomes 0.
1389   decrementCPEReferenceCount(CPI, CPEMI);
1390
1391   // No existing clone of this CPE is within range.
1392   // We will be generating a new clone.  Get a UID for it.
1393   unsigned ID = createPICLabelUId();
1394
1395   // Now that we have an island to add the CPE to, clone the original CPE and
1396   // add it to the island.
1397   U.HighWaterMark = NewIsland;
1398   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1399                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1400   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1401   ++NumCPEs;
1402
1403   // Mark the basic block as aligned as required by the const-pool entry.
1404   NewIsland->setAlignment(getCPELogAlign(*U.CPEMI));
1405
1406   // Increase the size of the island block to account for the new entry.
1407   BBInfo[NewIsland->getNumber()].Size += Size;
1408   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1409
1410   // Finally, change the CPI in the instruction operand to be ID.
1411   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1412     if (UserMI->getOperand(i).isCPI()) {
1413       UserMI->getOperand(i).setIndex(ID);
1414       break;
1415     }
1416
1417   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1418         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1419
1420   return true;
1421 }
1422
1423 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1424 /// sizes and offsets of impacted basic blocks.
1425 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1426   MachineBasicBlock *CPEBB = CPEMI->getParent();
1427   unsigned Size = CPEMI->getOperand(2).getImm();
1428   CPEMI->eraseFromParent();
1429   BBInfo[CPEBB->getNumber()].Size -= Size;
1430   // All succeeding offsets have the current size value added in, fix this.
1431   if (CPEBB->empty()) {
1432     BBInfo[CPEBB->getNumber()].Size = 0;
1433
1434     // This block no longer needs to be aligned.
1435     CPEBB->setAlignment(0);
1436   } else
1437     // Entries are sorted by descending alignment, so realign from the front.
1438     CPEBB->setAlignment(getCPELogAlign(*CPEBB->begin()));
1439
1440   adjustBBOffsetsAfter(CPEBB);
1441   // An island has only one predecessor BB and one successor BB. Check if
1442   // this BB's predecessor jumps directly to this BB's successor. This
1443   // shouldn't happen currently.
1444   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1445   // FIXME: remove the empty blocks after all the work is done?
1446 }
1447
1448 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1449 /// are zero.
1450 bool MipsConstantIslands::removeUnusedCPEntries() {
1451   unsigned MadeChange = false;
1452   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1453       std::vector<CPEntry> &CPEs = CPEntries[i];
1454       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1455         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1456           removeDeadCPEMI(CPEs[j].CPEMI);
1457           CPEs[j].CPEMI = nullptr;
1458           MadeChange = true;
1459         }
1460       }
1461   }
1462   return MadeChange;
1463 }
1464
1465 /// isBBInRange - Returns true if the distance between specific MI and
1466 /// specific BB can fit in MI's displacement field.
1467 bool MipsConstantIslands::isBBInRange
1468   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1469   unsigned PCAdj = 4;
1470   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1471   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1472
1473   DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1474                << " from " << printMBBReference(*MI->getParent())
1475                << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1476                << " to " << DestOffset << " offset "
1477                << int(DestOffset - BrOffset) << "\t" << *MI);
1478
1479   if (BrOffset <= DestOffset) {
1480     // Branch before the Dest.
1481     if (DestOffset-BrOffset <= MaxDisp)
1482       return true;
1483   } else {
1484     if (BrOffset-DestOffset <= MaxDisp)
1485       return true;
1486   }
1487   return false;
1488 }
1489
1490 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1491 /// away to fit in its displacement field.
1492 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1493   MachineInstr *MI = Br.MI;
1494   unsigned TargetOperand = branchTargetOperand(MI);
1495   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1496
1497   // Check to see if the DestBB is already in-range.
1498   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1499     return false;
1500
1501   if (!Br.isCond)
1502     return fixupUnconditionalBr(Br);
1503   return fixupConditionalBr(Br);
1504 }
1505
1506 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1507 /// too far away to fit in its displacement field. If the LR register has been
1508 /// spilled in the epilogue, then we can use BL to implement a far jump.
1509 /// Otherwise, add an intermediate branch instruction to a branch.
1510 bool
1511 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1512   MachineInstr *MI = Br.MI;
1513   MachineBasicBlock *MBB = MI->getParent();
1514   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1515   // Use BL to implement far jump.
1516   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1517   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1518     Br.MaxDisp = BimmX16MaxDisp;
1519     MI->setDesc(TII->get(Mips::BimmX16));
1520   }
1521   else {
1522     // need to give the math a more careful look here
1523     // this is really a segment address and not
1524     // a PC relative address. FIXME. But I think that
1525     // just reducing the bits by 1 as I've done is correct.
1526     // The basic block we are branching too much be longword aligned.
1527     // we know that RA is saved because we always save it right now.
1528     // this requirement will be relaxed later but we also have an alternate
1529     // way to implement this that I will implement that does not need jal.
1530     // We should have a way to back out this alignment restriction if we "can" later.
1531     // but it is not harmful.
1532     //
1533     DestBB->setAlignment(2);
1534     Br.MaxDisp = ((1<<24)-1) * 2;
1535     MI->setDesc(TII->get(Mips::JalB16));
1536   }
1537   BBInfo[MBB->getNumber()].Size += 2;
1538   adjustBBOffsetsAfter(MBB);
1539   HasFarJump = true;
1540   ++NumUBrFixed;
1541
1542   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1543
1544   return true;
1545 }
1546
1547 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1548 /// far away to fit in its displacement field. It is converted to an inverse
1549 /// conditional branch + an unconditional branch to the destination.
1550 bool
1551 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1552   MachineInstr *MI = Br.MI;
1553   unsigned TargetOperand = branchTargetOperand(MI);
1554   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1555   unsigned Opcode = MI->getOpcode();
1556   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1557   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1558
1559   // Check to see if the DestBB is already in-range.
1560   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1561     Br.MaxDisp = LongFormMaxOff;
1562     MI->setDesc(TII->get(LongFormOpcode));
1563     return true;
1564   }
1565
1566   // Add an unconditional branch to the destination and invert the branch
1567   // condition to jump over it:
1568   // bteqz L1
1569   // =>
1570   // bnez L2
1571   // b   L1
1572   // L2:
1573
1574   // If the branch is at the end of its MBB and that has a fall-through block,
1575   // direct the updated conditional branch to the fall-through block. Otherwise,
1576   // split the MBB before the next instruction.
1577   MachineBasicBlock *MBB = MI->getParent();
1578   MachineInstr *BMI = &MBB->back();
1579   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1580   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1581  
1582   ++NumCBrFixed;
1583   if (BMI != MI) {
1584     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1585         BMI->isUnconditionalBranch()) {
1586       // Last MI in the BB is an unconditional branch. Can we simply invert the
1587       // condition and swap destinations:
1588       // beqz L1
1589       // b   L2
1590       // =>
1591       // bnez L2
1592       // b   L1
1593       unsigned BMITargetOperand = branchTargetOperand(BMI);
1594       MachineBasicBlock *NewDest = 
1595         BMI->getOperand(BMITargetOperand).getMBB();
1596       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1597         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1598                      << *BMI);
1599         MI->setDesc(TII->get(OppositeBranchOpcode));
1600         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1601         MI->getOperand(TargetOperand).setMBB(NewDest);
1602         return true;
1603       }
1604     }
1605   }
1606
1607   if (NeedSplit) {
1608     splitBlockBeforeInstr(*MI);
1609     // No need for the branch to the next block. We're adding an unconditional
1610     // branch to the destination.
1611     int delta = TII->getInstSizeInBytes(MBB->back());
1612     BBInfo[MBB->getNumber()].Size -= delta;
1613     MBB->back().eraseFromParent();
1614     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1615   }
1616   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1617
1618   DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1619                << " also invert condition and change dest. to "
1620                << printMBBReference(*NextBB) << "\n");
1621
1622   // Insert a new conditional branch and a new unconditional branch.
1623   // Also update the ImmBranch as well as adding a new entry for the new branch.
1624   if (MI->getNumExplicitOperands() == 2) {
1625     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1626            .addReg(MI->getOperand(0).getReg())
1627            .addMBB(NextBB);
1628   } else {
1629     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1630            .addMBB(NextBB);
1631   }
1632   Br.MI = &MBB->back();
1633   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1634   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1635   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1636   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1637   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1638
1639   // Remove the old conditional branch.  It may or may not still be in MBB.
1640   BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1641   MI->eraseFromParent();
1642   adjustBBOffsetsAfter(MBB);
1643   return true;
1644 }
1645
1646 void MipsConstantIslands::prescanForConstants() {
1647   unsigned J = 0;
1648   (void)J;
1649   for (MachineFunction::iterator B =
1650          MF->begin(), E = MF->end(); B != E; ++B) {
1651     for (MachineBasicBlock::instr_iterator I =
1652         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1653       switch(I->getDesc().getOpcode()) {
1654         case Mips::LwConstant32: {
1655           PrescannedForConstants = true;
1656           DEBUG(dbgs() << "constant island constant " << *I << "\n");
1657           J = I->getNumOperands();
1658           DEBUG(dbgs() << "num operands " << J << "\n");
1659           MachineOperand& Literal = I->getOperand(1);
1660           if (Literal.isImm()) {
1661             int64_t V = Literal.getImm();
1662             DEBUG(dbgs() << "literal " << V << "\n");
1663             Type *Int32Ty =
1664               Type::getInt32Ty(MF->getFunction().getContext());
1665             const Constant *C = ConstantInt::get(Int32Ty, V);
1666             unsigned index = MCP->getConstantPoolIndex(C, 4);
1667             I->getOperand(2).ChangeToImmediate(index);
1668             DEBUG(dbgs() << "constant island constant " << *I << "\n");
1669             I->setDesc(TII->get(Mips::LwRxPcTcp16));
1670             I->RemoveOperand(1);
1671             I->RemoveOperand(1);
1672             I->addOperand(MachineOperand::CreateCPI(index, 0));
1673             I->addOperand(MachineOperand::CreateImm(4));
1674           }
1675           break;
1676         }
1677         default:
1678           break;
1679       }
1680     }
1681   }
1682 }
1683
1684 /// Returns a pass that converts branches to long branches.
1685 FunctionPass *llvm::createMipsConstantIslandPass() {
1686   return new MipsConstantIslands();
1687 }