]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp
Import libucl 20170219
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Mips / MipsDelaySlotFiller.cpp
1 //===-- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Simple pass to fill delay slots with useful instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/MipsMCNaCl.h"
15 #include "Mips.h"
16 #include "MipsInstrInfo.h"
17 #include "MipsTargetMachine.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "delay-slot-filler"
36
37 STATISTIC(FilledSlots, "Number of delay slots filled");
38 STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that"
39                        " are not NOP.");
40
41 static cl::opt<bool> DisableDelaySlotFiller(
42   "disable-mips-delay-filler",
43   cl::init(false),
44   cl::desc("Fill all delay slots with NOPs."),
45   cl::Hidden);
46
47 static cl::opt<bool> DisableForwardSearch(
48   "disable-mips-df-forward-search",
49   cl::init(true),
50   cl::desc("Disallow MIPS delay filler to search forward."),
51   cl::Hidden);
52
53 static cl::opt<bool> DisableSuccBBSearch(
54   "disable-mips-df-succbb-search",
55   cl::init(true),
56   cl::desc("Disallow MIPS delay filler to search successor basic blocks."),
57   cl::Hidden);
58
59 static cl::opt<bool> DisableBackwardSearch(
60   "disable-mips-df-backward-search",
61   cl::init(false),
62   cl::desc("Disallow MIPS delay filler to search backward."),
63   cl::Hidden);
64
65 enum CompactBranchPolicy {
66   CB_Never,   ///< The policy 'never' may in some circumstances or for some
67               ///< ISAs not be absolutely adhered to.
68   CB_Optimal, ///< Optimal is the default and will produce compact branches
69               ///< when delay slots cannot be filled.
70   CB_Always   ///< 'always' may in some circumstances may not be
71               ///< absolutely adhered to there may not be a corresponding
72               ///< compact form of a branch.
73 };
74
75 static cl::opt<CompactBranchPolicy> MipsCompactBranchPolicy(
76   "mips-compact-branches",cl::Optional,
77   cl::init(CB_Optimal),
78   cl::desc("MIPS Specific: Compact branch policy."),
79   cl::values(
80     clEnumValN(CB_Never, "never", "Do not use compact branches if possible."),
81     clEnumValN(CB_Optimal, "optimal", "Use compact branches where appropiate (default)."),
82     clEnumValN(CB_Always, "always", "Always use compact branches if possible."),
83     clEnumValEnd
84   )
85 );
86
87 namespace {
88   typedef MachineBasicBlock::iterator Iter;
89   typedef MachineBasicBlock::reverse_iterator ReverseIter;
90   typedef SmallDenseMap<MachineBasicBlock*, MachineInstr*, 2> BB2BrMap;
91
92   class RegDefsUses {
93   public:
94     RegDefsUses(const TargetRegisterInfo &TRI);
95     void init(const MachineInstr &MI);
96
97     /// This function sets all caller-saved registers in Defs.
98     void setCallerSaved(const MachineInstr &MI);
99
100     /// This function sets all unallocatable registers in Defs.
101     void setUnallocatableRegs(const MachineFunction &MF);
102
103     /// Set bits in Uses corresponding to MBB's live-out registers except for
104     /// the registers that are live-in to SuccBB.
105     void addLiveOut(const MachineBasicBlock &MBB,
106                     const MachineBasicBlock &SuccBB);
107
108     bool update(const MachineInstr &MI, unsigned Begin, unsigned End);
109
110   private:
111     bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg,
112                           bool IsDef) const;
113
114     /// Returns true if Reg or its alias is in RegSet.
115     bool isRegInSet(const BitVector &RegSet, unsigned Reg) const;
116
117     const TargetRegisterInfo &TRI;
118     BitVector Defs, Uses;
119   };
120
121   /// Base class for inspecting loads and stores.
122   class InspectMemInstr {
123   public:
124     InspectMemInstr(bool ForbidMemInstr_)
125       : OrigSeenLoad(false), OrigSeenStore(false), SeenLoad(false),
126         SeenStore(false), ForbidMemInstr(ForbidMemInstr_) {}
127
128     /// Return true if MI cannot be moved to delay slot.
129     bool hasHazard(const MachineInstr &MI);
130
131     virtual ~InspectMemInstr() {}
132
133   protected:
134     /// Flags indicating whether loads or stores have been seen.
135     bool OrigSeenLoad, OrigSeenStore, SeenLoad, SeenStore;
136
137     /// Memory instructions are not allowed to move to delay slot if this flag
138     /// is true.
139     bool ForbidMemInstr;
140
141   private:
142     virtual bool hasHazard_(const MachineInstr &MI) = 0;
143   };
144
145   /// This subclass rejects any memory instructions.
146   class NoMemInstr : public InspectMemInstr {
147   public:
148     NoMemInstr() : InspectMemInstr(true) {}
149   private:
150     bool hasHazard_(const MachineInstr &MI) override { return true; }
151   };
152
153   /// This subclass accepts loads from stacks and constant loads.
154   class LoadFromStackOrConst : public InspectMemInstr {
155   public:
156     LoadFromStackOrConst() : InspectMemInstr(false) {}
157   private:
158     bool hasHazard_(const MachineInstr &MI) override;
159   };
160
161   /// This subclass uses memory dependence information to determine whether a
162   /// memory instruction can be moved to a delay slot.
163   class MemDefsUses : public InspectMemInstr {
164   public:
165     MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI);
166
167   private:
168     typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
169
170     bool hasHazard_(const MachineInstr &MI) override;
171
172     /// Update Defs and Uses. Return true if there exist dependences that
173     /// disqualify the delay slot candidate between V and values in Uses and
174     /// Defs.
175     bool updateDefsUses(ValueType V, bool MayStore);
176
177     /// Get the list of underlying objects of MI's memory operand.
178     bool getUnderlyingObjects(const MachineInstr &MI,
179                               SmallVectorImpl<ValueType> &Objects) const;
180
181     const MachineFrameInfo *MFI;
182     SmallPtrSet<ValueType, 4> Uses, Defs;
183     const DataLayout &DL;
184
185     /// Flags indicating whether loads or stores with no underlying objects have
186     /// been seen.
187     bool SeenNoObjLoad, SeenNoObjStore;
188   };
189
190   class Filler : public MachineFunctionPass {
191   public:
192     Filler(TargetMachine &tm)
193       : MachineFunctionPass(ID), TM(tm) { }
194
195     const char *getPassName() const override {
196       return "Mips Delay Slot Filler";
197     }
198
199     bool runOnMachineFunction(MachineFunction &F) override {
200       bool Changed = false;
201       for (MachineFunction::iterator FI = F.begin(), FE = F.end();
202            FI != FE; ++FI)
203         Changed |= runOnMachineBasicBlock(*FI);
204
205       // This pass invalidates liveness information when it reorders
206       // instructions to fill delay slot. Without this, -verify-machineinstrs
207       // will fail.
208       if (Changed)
209         F.getRegInfo().invalidateLiveness();
210
211       return Changed;
212     }
213
214     MachineFunctionProperties getRequiredProperties() const override {
215       return MachineFunctionProperties().set(
216           MachineFunctionProperties::Property::AllVRegsAllocated);
217     }
218
219     void getAnalysisUsage(AnalysisUsage &AU) const override {
220       AU.addRequired<MachineBranchProbabilityInfo>();
221       MachineFunctionPass::getAnalysisUsage(AU);
222     }
223
224   private:
225     bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
226
227     Iter replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch,
228                                   const DebugLoc &DL);
229
230     /// This function checks if it is valid to move Candidate to the delay slot
231     /// and returns true if it isn't. It also updates memory and register
232     /// dependence information.
233     bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
234                         InspectMemInstr &IM) const;
235
236     /// This function searches range [Begin, End) for an instruction that can be
237     /// moved to the delay slot. Returns true on success.
238     template<typename IterTy>
239     bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
240                      RegDefsUses &RegDU, InspectMemInstr &IM, Iter Slot,
241                      IterTy &Filler) const;
242
243     /// This function searches in the backward direction for an instruction that
244     /// can be moved to the delay slot. Returns true on success.
245     bool searchBackward(MachineBasicBlock &MBB, Iter Slot) const;
246
247     /// This function searches MBB in the forward direction for an instruction
248     /// that can be moved to the delay slot. Returns true on success.
249     bool searchForward(MachineBasicBlock &MBB, Iter Slot) const;
250
251     /// This function searches one of MBB's successor blocks for an instruction
252     /// that can be moved to the delay slot and inserts clones of the
253     /// instruction into the successor's predecessor blocks.
254     bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const;
255
256     /// Pick a successor block of MBB. Return NULL if MBB doesn't have a
257     /// successor block that is not a landing pad.
258     MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const;
259
260     /// This function analyzes MBB and returns an instruction with an unoccupied
261     /// slot that branches to Dst.
262     std::pair<MipsInstrInfo::BranchType, MachineInstr *>
263     getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const;
264
265     /// Examine Pred and see if it is possible to insert an instruction into
266     /// one of its branches delay slot or its end.
267     bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
268                      RegDefsUses &RegDU, bool &HasMultipleSuccs,
269                      BB2BrMap &BrMap) const;
270
271     bool terminateSearch(const MachineInstr &Candidate) const;
272
273     TargetMachine &TM;
274
275     static char ID;
276   };
277   char Filler::ID = 0;
278 } // end of anonymous namespace
279
280 static bool hasUnoccupiedSlot(const MachineInstr *MI) {
281   return MI->hasDelaySlot() && !MI->isBundledWithSucc();
282 }
283
284 /// This function inserts clones of Filler into predecessor blocks.
285 static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) {
286   MachineFunction *MF = Filler->getParent()->getParent();
287
288   for (BB2BrMap::const_iterator I = BrMap.begin(); I != BrMap.end(); ++I) {
289     if (I->second) {
290       MIBundleBuilder(I->second).append(MF->CloneMachineInstr(&*Filler));
291       ++UsefulSlots;
292     } else {
293       I->first->insert(I->first->end(), MF->CloneMachineInstr(&*Filler));
294     }
295   }
296 }
297
298 /// This function adds registers Filler defines to MBB's live-in register list.
299 static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) {
300   for (unsigned I = 0, E = Filler->getNumOperands(); I != E; ++I) {
301     const MachineOperand &MO = Filler->getOperand(I);
302     unsigned R;
303
304     if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg()))
305       continue;
306
307 #ifndef NDEBUG
308     const MachineFunction &MF = *MBB.getParent();
309     assert(MF.getSubtarget().getRegisterInfo()->getAllocatableSet(MF).test(R) &&
310            "Shouldn't move an instruction with unallocatable registers across "
311            "basic block boundaries.");
312 #endif
313
314     if (!MBB.isLiveIn(R))
315       MBB.addLiveIn(R);
316   }
317 }
318
319 RegDefsUses::RegDefsUses(const TargetRegisterInfo &TRI)
320     : TRI(TRI), Defs(TRI.getNumRegs(), false), Uses(TRI.getNumRegs(), false) {}
321
322 void RegDefsUses::init(const MachineInstr &MI) {
323   // Add all register operands which are explicit and non-variadic.
324   update(MI, 0, MI.getDesc().getNumOperands());
325
326   // If MI is a call, add RA to Defs to prevent users of RA from going into
327   // delay slot.
328   if (MI.isCall())
329     Defs.set(Mips::RA);
330
331   // Add all implicit register operands of branch instructions except
332   // register AT.
333   if (MI.isBranch()) {
334     update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands());
335     Defs.reset(Mips::AT);
336   }
337 }
338
339 void RegDefsUses::setCallerSaved(const MachineInstr &MI) {
340   assert(MI.isCall());
341
342   // Add RA/RA_64 to Defs to prevent users of RA/RA_64 from going into
343   // the delay slot. The reason is that RA/RA_64 must not be changed
344   // in the delay slot so that the callee can return to the caller.
345   if (MI.definesRegister(Mips::RA) || MI.definesRegister(Mips::RA_64)) {
346     Defs.set(Mips::RA);
347     Defs.set(Mips::RA_64);
348   }
349
350   // If MI is a call, add all caller-saved registers to Defs.
351   BitVector CallerSavedRegs(TRI.getNumRegs(), true);
352
353   CallerSavedRegs.reset(Mips::ZERO);
354   CallerSavedRegs.reset(Mips::ZERO_64);
355
356   for (const MCPhysReg *R = TRI.getCalleeSavedRegs(MI.getParent()->getParent());
357        *R; ++R)
358     for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI)
359       CallerSavedRegs.reset(*AI);
360
361   Defs |= CallerSavedRegs;
362 }
363
364 void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) {
365   BitVector AllocSet = TRI.getAllocatableSet(MF);
366
367   for (int R = AllocSet.find_first(); R != -1; R = AllocSet.find_next(R))
368     for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI)
369       AllocSet.set(*AI);
370
371   AllocSet.set(Mips::ZERO);
372   AllocSet.set(Mips::ZERO_64);
373
374   Defs |= AllocSet.flip();
375 }
376
377 void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB,
378                              const MachineBasicBlock &SuccBB) {
379   for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
380        SE = MBB.succ_end(); SI != SE; ++SI)
381     if (*SI != &SuccBB)
382       for (const auto &LI : (*SI)->liveins())
383         Uses.set(LI.PhysReg);
384 }
385
386 bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) {
387   BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs());
388   bool HasHazard = false;
389
390   for (unsigned I = Begin; I != End; ++I) {
391     const MachineOperand &MO = MI.getOperand(I);
392
393     if (MO.isReg() && MO.getReg())
394       HasHazard |= checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef());
395   }
396
397   Defs |= NewDefs;
398   Uses |= NewUses;
399
400   return HasHazard;
401 }
402
403 bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses,
404                                    unsigned Reg, bool IsDef) const {
405   if (IsDef) {
406     NewDefs.set(Reg);
407     // check whether Reg has already been defined or used.
408     return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg));
409   }
410
411   NewUses.set(Reg);
412   // check whether Reg has already been defined.
413   return isRegInSet(Defs, Reg);
414 }
415
416 bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const {
417   // Check Reg and all aliased Registers.
418   for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
419     if (RegSet.test(*AI))
420       return true;
421   return false;
422 }
423
424 bool InspectMemInstr::hasHazard(const MachineInstr &MI) {
425   if (!MI.mayStore() && !MI.mayLoad())
426     return false;
427
428   if (ForbidMemInstr)
429     return true;
430
431   OrigSeenLoad = SeenLoad;
432   OrigSeenStore = SeenStore;
433   SeenLoad |= MI.mayLoad();
434   SeenStore |= MI.mayStore();
435
436   // If MI is an ordered or volatile memory reference, disallow moving
437   // subsequent loads and stores to delay slot.
438   if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) {
439     ForbidMemInstr = true;
440     return true;
441   }
442
443   return hasHazard_(MI);
444 }
445
446 bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) {
447   if (MI.mayStore())
448     return true;
449
450   if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue())
451     return true;
452
453   if (const PseudoSourceValue *PSV =
454       (*MI.memoperands_begin())->getPseudoValue()) {
455     if (isa<FixedStackPseudoSourceValue>(PSV))
456       return false;
457     return !PSV->isConstant(nullptr) && !PSV->isStack();
458   }
459
460   return true;
461 }
462
463 MemDefsUses::MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI_)
464     : InspectMemInstr(false), MFI(MFI_), DL(DL), SeenNoObjLoad(false),
465       SeenNoObjStore(false) {}
466
467 bool MemDefsUses::hasHazard_(const MachineInstr &MI) {
468   bool HasHazard = false;
469   SmallVector<ValueType, 4> Objs;
470
471   // Check underlying object list.
472   if (getUnderlyingObjects(MI, Objs)) {
473     for (SmallVectorImpl<ValueType>::const_iterator I = Objs.begin();
474          I != Objs.end(); ++I)
475       HasHazard |= updateDefsUses(*I, MI.mayStore());
476
477     return HasHazard;
478   }
479
480   // No underlying objects found.
481   HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore);
482   HasHazard |= MI.mayLoad() || OrigSeenStore;
483
484   SeenNoObjLoad |= MI.mayLoad();
485   SeenNoObjStore |= MI.mayStore();
486
487   return HasHazard;
488 }
489
490 bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) {
491   if (MayStore)
492     return !Defs.insert(V).second || Uses.count(V) || SeenNoObjStore ||
493            SeenNoObjLoad;
494
495   Uses.insert(V);
496   return Defs.count(V) || SeenNoObjStore;
497 }
498
499 bool MemDefsUses::
500 getUnderlyingObjects(const MachineInstr &MI,
501                      SmallVectorImpl<ValueType> &Objects) const {
502   if (!MI.hasOneMemOperand() ||
503       (!(*MI.memoperands_begin())->getValue() &&
504        !(*MI.memoperands_begin())->getPseudoValue()))
505     return false;
506
507   if (const PseudoSourceValue *PSV =
508       (*MI.memoperands_begin())->getPseudoValue()) {
509     if (!PSV->isAliased(MFI))
510       return false;
511     Objects.push_back(PSV);
512     return true;
513   }
514
515   const Value *V = (*MI.memoperands_begin())->getValue();
516
517   SmallVector<Value *, 4> Objs;
518   GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
519
520   for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), E = Objs.end();
521        I != E; ++I) {
522     if (!isIdentifiedObject(V))
523       return false;
524
525     Objects.push_back(*I);
526   }
527
528   return true;
529 }
530
531 // Replace Branch with the compact branch instruction.
532 Iter Filler::replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch,
533                                       const DebugLoc &DL) {
534   const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
535   const MipsInstrInfo *TII = STI.getInstrInfo();
536
537   unsigned NewOpcode = TII->getEquivalentCompactForm(Branch);
538   Branch = TII->genInstrWithNewOpc(NewOpcode, Branch);
539
540   std::next(Branch)->eraseFromParent();
541   return Branch;
542 }
543
544 // For given opcode returns opcode of corresponding instruction with short
545 // delay slot.
546 static int getEquivalentCallShort(int Opcode) {
547   switch (Opcode) {
548   case Mips::BGEZAL:
549     return Mips::BGEZALS_MM;
550   case Mips::BLTZAL:
551     return Mips::BLTZALS_MM;
552   case Mips::JAL:
553     return Mips::JALS_MM;
554   case Mips::JALR:
555     return Mips::JALRS_MM;
556   case Mips::JALR16_MM:
557     return Mips::JALRS16_MM;
558   default:
559     llvm_unreachable("Unexpected call instruction for microMIPS.");
560   }
561 }
562
563 /// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
564 /// We assume there is only one delay slot per delayed instruction.
565 bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
566   bool Changed = false;
567   const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
568   bool InMicroMipsMode = STI.inMicroMipsMode();
569   const MipsInstrInfo *TII = STI.getInstrInfo();
570
571   if (InMicroMipsMode && STI.hasMips32r6()) {
572     // This is microMIPS32r6 or microMIPS64r6 processor. Delay slot for
573     // branching instructions is not needed.
574     return Changed;
575   }
576
577   for (Iter I = MBB.begin(); I != MBB.end(); ++I) {
578     if (!hasUnoccupiedSlot(&*I))
579       continue;
580
581     ++FilledSlots;
582     Changed = true;
583
584     // Delay slot filling is disabled at -O0.
585     if (!DisableDelaySlotFiller && (TM.getOptLevel() != CodeGenOpt::None)) {
586       bool Filled = false;
587
588       if (MipsCompactBranchPolicy.getValue() != CB_Always ||
589            !TII->getEquivalentCompactForm(I)) {
590         if (searchBackward(MBB, I)) {
591           Filled = true;
592         } else if (I->isTerminator()) {
593           if (searchSuccBBs(MBB, I)) {
594             Filled = true;
595           }
596         } else if (searchForward(MBB, I)) {
597           Filled = true;
598         }
599       }
600
601       if (Filled) {
602         // Get instruction with delay slot.
603         MachineBasicBlock::instr_iterator DSI = I.getInstrIterator();
604
605         if (InMicroMipsMode && TII->GetInstSizeInBytes(*std::next(DSI)) == 2 &&
606             DSI->isCall()) {
607           // If instruction in delay slot is 16b change opcode to
608           // corresponding instruction with short delay slot.
609           DSI->setDesc(TII->get(getEquivalentCallShort(DSI->getOpcode())));
610         }
611         continue;
612       }
613     }
614
615     // For microMIPS if instruction is BEQ or BNE with one ZERO register, then
616     // instead of adding NOP replace this instruction with the corresponding
617     // compact branch instruction, i.e. BEQZC or BNEZC. Additionally
618     // PseudoReturn and PseudoIndirectBranch are expanded to JR_MM, so they can
619     // be replaced with JRC16_MM.
620
621     // For MIPSR6 attempt to produce the corresponding compact (no delay slot)
622     // form of the CTI. For indirect jumps this will not require inserting a
623     // NOP and for branches will hopefully avoid requiring a NOP.
624     if ((InMicroMipsMode ||
625          (STI.hasMips32r6() && MipsCompactBranchPolicy != CB_Never)) &&
626         TII->getEquivalentCompactForm(I)) {
627       I = replaceWithCompactBranch(MBB, I, I->getDebugLoc());
628       continue;
629     }
630
631     // Bundle the NOP to the instruction with the delay slot.
632     BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
633     MIBundleBuilder(MBB, I, std::next(I, 2));
634   }
635
636   return Changed;
637 }
638
639 /// createMipsDelaySlotFillerPass - Returns a pass that fills in delay
640 /// slots in Mips MachineFunctions
641 FunctionPass *llvm::createMipsDelaySlotFillerPass(MipsTargetMachine &tm) {
642   return new Filler(tm);
643 }
644
645 template<typename IterTy>
646 bool Filler::searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
647                          RegDefsUses &RegDU, InspectMemInstr& IM, Iter Slot,
648                          IterTy &Filler) const {
649   bool IsReverseIter = std::is_convertible<IterTy, ReverseIter>::value;
650
651   for (IterTy I = Begin; I != End;) {
652     IterTy CurrI = I;
653     ++I;
654
655     // skip debug value
656     if (CurrI->isDebugValue())
657       continue;
658
659     if (terminateSearch(*CurrI))
660       break;
661
662     assert((!CurrI->isCall() && !CurrI->isReturn() && !CurrI->isBranch()) &&
663            "Cannot put calls, returns or branches in delay slot.");
664
665     if (CurrI->isKill()) {
666       CurrI->eraseFromParent();
667
668       // This special case is needed for reverse iterators, because when we
669       // erase an instruction, the iterators are updated to point to the next
670       // instruction.
671       if (IsReverseIter && I != End)
672         I = CurrI;
673       continue;
674     }
675
676     if (delayHasHazard(*CurrI, RegDU, IM))
677       continue;
678
679     const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
680     if (STI.isTargetNaCl()) {
681       // In NaCl, instructions that must be masked are forbidden in delay slots.
682       // We only check for loads, stores and SP changes.  Calls, returns and
683       // branches are not checked because non-NaCl targets never put them in
684       // delay slots.
685       unsigned AddrIdx;
686       if ((isBasePlusOffsetMemoryAccess(CurrI->getOpcode(), &AddrIdx) &&
687            baseRegNeedsLoadStoreMask(CurrI->getOperand(AddrIdx).getReg())) ||
688           CurrI->modifiesRegister(Mips::SP, STI.getRegisterInfo()))
689         continue;
690     }
691
692     bool InMicroMipsMode = STI.inMicroMipsMode();
693     const MipsInstrInfo *TII = STI.getInstrInfo();
694     unsigned Opcode = (*Slot).getOpcode();
695     if (InMicroMipsMode && TII->GetInstSizeInBytes(*CurrI) == 2 &&
696         (Opcode == Mips::JR || Opcode == Mips::PseudoIndirectBranch ||
697          Opcode == Mips::PseudoReturn))
698       continue;
699
700     Filler = CurrI;
701     return true;
702   }
703
704   return false;
705 }
706
707 bool Filler::searchBackward(MachineBasicBlock &MBB, Iter Slot) const {
708   if (DisableBackwardSearch)
709     return false;
710
711   auto *Fn = MBB.getParent();
712   RegDefsUses RegDU(*Fn->getSubtarget().getRegisterInfo());
713   MemDefsUses MemDU(Fn->getDataLayout(), Fn->getFrameInfo());
714   ReverseIter Filler;
715
716   RegDU.init(*Slot);
717
718   if (!searchRange(MBB, ReverseIter(Slot), MBB.rend(), RegDU, MemDU, Slot,
719                    Filler))
720     return false;
721
722   MBB.splice(std::next(Slot), &MBB, std::next(Filler).base());
723   MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
724   ++UsefulSlots;
725   return true;
726 }
727
728 bool Filler::searchForward(MachineBasicBlock &MBB, Iter Slot) const {
729   // Can handle only calls.
730   if (DisableForwardSearch || !Slot->isCall())
731     return false;
732
733   RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo());
734   NoMemInstr NM;
735   Iter Filler;
736
737   RegDU.setCallerSaved(*Slot);
738
739   if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Slot, Filler))
740     return false;
741
742   MBB.splice(std::next(Slot), &MBB, Filler);
743   MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
744   ++UsefulSlots;
745   return true;
746 }
747
748 bool Filler::searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const {
749   if (DisableSuccBBSearch)
750     return false;
751
752   MachineBasicBlock *SuccBB = selectSuccBB(MBB);
753
754   if (!SuccBB)
755     return false;
756
757   RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo());
758   bool HasMultipleSuccs = false;
759   BB2BrMap BrMap;
760   std::unique_ptr<InspectMemInstr> IM;
761   Iter Filler;
762   auto *Fn = MBB.getParent();
763
764   // Iterate over SuccBB's predecessor list.
765   for (MachineBasicBlock::pred_iterator PI = SuccBB->pred_begin(),
766        PE = SuccBB->pred_end(); PI != PE; ++PI)
767     if (!examinePred(**PI, *SuccBB, RegDU, HasMultipleSuccs, BrMap))
768       return false;
769
770   // Do not allow moving instructions which have unallocatable register operands
771   // across basic block boundaries.
772   RegDU.setUnallocatableRegs(*Fn);
773
774   // Only allow moving loads from stack or constants if any of the SuccBB's
775   // predecessors have multiple successors.
776   if (HasMultipleSuccs) {
777     IM.reset(new LoadFromStackOrConst());
778   } else {
779     const MachineFrameInfo *MFI = Fn->getFrameInfo();
780     IM.reset(new MemDefsUses(Fn->getDataLayout(), MFI));
781   }
782
783   if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Slot,
784                    Filler))
785     return false;
786
787   insertDelayFiller(Filler, BrMap);
788   addLiveInRegs(Filler, *SuccBB);
789   Filler->eraseFromParent();
790
791   return true;
792 }
793
794 MachineBasicBlock *Filler::selectSuccBB(MachineBasicBlock &B) const {
795   if (B.succ_empty())
796     return nullptr;
797
798   // Select the successor with the larget edge weight.
799   auto &Prob = getAnalysis<MachineBranchProbabilityInfo>();
800   MachineBasicBlock *S = *std::max_element(
801       B.succ_begin(), B.succ_end(),
802       [&](const MachineBasicBlock *Dst0, const MachineBasicBlock *Dst1) {
803         return Prob.getEdgeProbability(&B, Dst0) <
804                Prob.getEdgeProbability(&B, Dst1);
805       });
806   return S->isEHPad() ? nullptr : S;
807 }
808
809 std::pair<MipsInstrInfo::BranchType, MachineInstr *>
810 Filler::getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const {
811   const MipsInstrInfo *TII =
812       MBB.getParent()->getSubtarget<MipsSubtarget>().getInstrInfo();
813   MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr;
814   SmallVector<MachineInstr*, 2> BranchInstrs;
815   SmallVector<MachineOperand, 2> Cond;
816
817   MipsInstrInfo::BranchType R =
818       TII->analyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs);
819
820   if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch))
821     return std::make_pair(R, nullptr);
822
823   if (R != MipsInstrInfo::BT_CondUncond) {
824     if (!hasUnoccupiedSlot(BranchInstrs[0]))
825       return std::make_pair(MipsInstrInfo::BT_None, nullptr);
826
827     assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst)));
828
829     return std::make_pair(R, BranchInstrs[0]);
830   }
831
832   assert((TrueBB == &Dst) || (FalseBB == &Dst));
833
834   // Examine the conditional branch. See if its slot is occupied.
835   if (hasUnoccupiedSlot(BranchInstrs[0]))
836     return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]);
837
838   // If that fails, try the unconditional branch.
839   if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst))
840     return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]);
841
842   return std::make_pair(MipsInstrInfo::BT_None, nullptr);
843 }
844
845 bool Filler::examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
846                          RegDefsUses &RegDU, bool &HasMultipleSuccs,
847                          BB2BrMap &BrMap) const {
848   std::pair<MipsInstrInfo::BranchType, MachineInstr *> P =
849     getBranch(Pred, Succ);
850
851   // Return if either getBranch wasn't able to analyze the branches or there
852   // were no branches with unoccupied slots.
853   if (P.first == MipsInstrInfo::BT_None)
854     return false;
855
856   if ((P.first != MipsInstrInfo::BT_Uncond) &&
857       (P.first != MipsInstrInfo::BT_NoBranch)) {
858     HasMultipleSuccs = true;
859     RegDU.addLiveOut(Pred, Succ);
860   }
861
862   BrMap[&Pred] = P.second;
863   return true;
864 }
865
866 bool Filler::delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
867                             InspectMemInstr &IM) const {
868   assert(!Candidate.isKill() &&
869          "KILL instructions should have been eliminated at this point.");
870
871   bool HasHazard = Candidate.isImplicitDef();
872
873   HasHazard |= IM.hasHazard(Candidate);
874   HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands());
875
876   return HasHazard;
877 }
878
879 bool Filler::terminateSearch(const MachineInstr &Candidate) const {
880   return (Candidate.isTerminator() || Candidate.isCall() ||
881           Candidate.isPosition() || Candidate.isInlineAsm() ||
882           Candidate.hasUnmodeledSideEffects());
883 }