]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp
Merge content currently under test from ^/vendor/NetBSD/tests/dist/@r312123
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / Mips / MipsSEISelDAGToDAG.cpp
1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsSEISelDAGToDAG.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "Mips.h"
17 #include "MipsAnalyzeImmediate.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsRegisterInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "mips-isel"
38
39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
40   Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
41   if (Subtarget->inMips16Mode())
42     return false;
43   return MipsDAGToDAGISel::runOnMachineFunction(MF);
44 }
45
46 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
47                                                MachineFunction &MF) {
48   MachineInstrBuilder MIB(MF, &MI);
49   unsigned Mask = MI.getOperand(1).getImm();
50   unsigned Flag =
51       IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
52
53   if (Mask & 1)
54     MIB.addReg(Mips::DSPPos, Flag);
55
56   if (Mask & 2)
57     MIB.addReg(Mips::DSPSCount, Flag);
58
59   if (Mask & 4)
60     MIB.addReg(Mips::DSPCarry, Flag);
61
62   if (Mask & 8)
63     MIB.addReg(Mips::DSPOutFlag, Flag);
64
65   if (Mask & 16)
66     MIB.addReg(Mips::DSPCCond, Flag);
67
68   if (Mask & 32)
69     MIB.addReg(Mips::DSPEFI, Flag);
70 }
71
72 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
73   switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
74   default:
75     llvm_unreachable("Could not map int to register");
76   case 0: return Mips::MSAIR;
77   case 1: return Mips::MSACSR;
78   case 2: return Mips::MSAAccess;
79   case 3: return Mips::MSASave;
80   case 4: return Mips::MSAModify;
81   case 5: return Mips::MSARequest;
82   case 6: return Mips::MSAMap;
83   case 7: return Mips::MSAUnmap;
84   }
85 }
86
87 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
88                                                 const MachineInstr& MI) {
89   unsigned DstReg = 0, ZeroReg = 0;
90
91   // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
92   if ((MI.getOpcode() == Mips::ADDiu) &&
93       (MI.getOperand(1).getReg() == Mips::ZERO) &&
94       (MI.getOperand(2).getImm() == 0)) {
95     DstReg = MI.getOperand(0).getReg();
96     ZeroReg = Mips::ZERO;
97   } else if ((MI.getOpcode() == Mips::DADDiu) &&
98              (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
99              (MI.getOperand(2).getImm() == 0)) {
100     DstReg = MI.getOperand(0).getReg();
101     ZeroReg = Mips::ZERO_64;
102   }
103
104   if (!DstReg)
105     return false;
106
107   // Replace uses with ZeroReg.
108   for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
109        E = MRI->use_end(); U != E;) {
110     MachineOperand &MO = *U;
111     unsigned OpNo = U.getOperandNo();
112     MachineInstr *MI = MO.getParent();
113     ++U;
114
115     // Do not replace if it is a phi's operand or is tied to def operand.
116     if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
117       continue;
118
119     // Also, we have to check that the register class of the operand
120     // contains the zero register.
121     if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
122       continue;
123
124     MO.setReg(ZeroReg);
125   }
126
127   return true;
128 }
129
130 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
131   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
132
133   if (!MipsFI->globalBaseRegSet())
134     return;
135
136   MachineBasicBlock &MBB = MF.front();
137   MachineBasicBlock::iterator I = MBB.begin();
138   MachineRegisterInfo &RegInfo = MF.getRegInfo();
139   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
140   DebugLoc DL;
141   unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
142   const TargetRegisterClass *RC;
143   const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
144   RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
145
146   V0 = RegInfo.createVirtualRegister(RC);
147   V1 = RegInfo.createVirtualRegister(RC);
148
149   if (ABI.IsN64()) {
150     MF.getRegInfo().addLiveIn(Mips::T9_64);
151     MBB.addLiveIn(Mips::T9_64);
152
153     // lui $v0, %hi(%neg(%gp_rel(fname)))
154     // daddu $v1, $v0, $t9
155     // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
156     const GlobalValue *FName = MF.getFunction();
157     BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
158       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
159     BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
160       .addReg(Mips::T9_64);
161     BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
162       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
163     return;
164   }
165
166   if (!MF.getTarget().isPositionIndependent()) {
167     // Set global register to __gnu_local_gp.
168     //
169     // lui   $v0, %hi(__gnu_local_gp)
170     // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
171     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
172       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
173     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
174       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
175     return;
176   }
177
178   MF.getRegInfo().addLiveIn(Mips::T9);
179   MBB.addLiveIn(Mips::T9);
180
181   if (ABI.IsN32()) {
182     // lui $v0, %hi(%neg(%gp_rel(fname)))
183     // addu $v1, $v0, $t9
184     // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
185     const GlobalValue *FName = MF.getFunction();
186     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
187       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
188     BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
189     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
190       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
191     return;
192   }
193
194   assert(ABI.IsO32());
195
196   // For O32 ABI, the following instruction sequence is emitted to initialize
197   // the global base register:
198   //
199   //  0. lui   $2, %hi(_gp_disp)
200   //  1. addiu $2, $2, %lo(_gp_disp)
201   //  2. addu  $globalbasereg, $2, $t9
202   //
203   // We emit only the last instruction here.
204   //
205   // GNU linker requires that the first two instructions appear at the beginning
206   // of a function and no instructions be inserted before or between them.
207   // The two instructions are emitted during lowering to MC layer in order to
208   // avoid any reordering.
209   //
210   // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
211   // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
212   // reads it.
213   MF.getRegInfo().addLiveIn(Mips::V0);
214   MBB.addLiveIn(Mips::V0);
215   BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
216     .addReg(Mips::V0).addReg(Mips::T9);
217 }
218
219 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
220   initGlobalBaseReg(MF);
221
222   MachineRegisterInfo *MRI = &MF.getRegInfo();
223
224   for (auto &MBB: MF) {
225     for (auto &MI: MBB) {
226       switch (MI.getOpcode()) {
227       case Mips::RDDSP:
228         addDSPCtrlRegOperands(false, MI, MF);
229         break;
230       case Mips::WRDSP:
231         addDSPCtrlRegOperands(true, MI, MF);
232         break;
233       default:
234         replaceUsesWithZeroReg(MRI, MI);
235       }
236     }
237   }
238 }
239
240 void MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
241                                         SDValue CmpLHS, const SDLoc &DL,
242                                         SDNode *Node) const {
243   unsigned Opc = InFlag.getOpcode(); (void)Opc;
244
245   assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
246           (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
247          "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
248
249   unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu;
250   if (Subtarget->isGP64bit()) {
251     SLTuOp = Mips::SLTu64;
252     ADDuOp = Mips::DADDu;
253   }
254
255   SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
256   SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
257   EVT VT = LHS.getValueType();
258
259   SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops);
260
261   if (Subtarget->isGP64bit()) {
262     // On 64-bit targets, sltu produces an i64 but our backend currently says
263     // that SLTu64 produces an i32. We need to fix this in the long run but for
264     // now, just make the DAG type-correct by asserting the upper bits are zero.
265     Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT,
266                                    CurDAG->getTargetConstant(0, DL, VT),
267                                    SDValue(Carry, 0),
268                                    CurDAG->getTargetConstant(Mips::sub_32, DL,
269                                                              VT));
270   }
271
272   // Generate a second addition only if we know that RHS is not a
273   // constant-zero node.
274   SDNode *AddCarry = Carry;
275   ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
276   if (!C || C->getZExtValue())
277     AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS);
278
279   CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, SDValue(AddCarry, 0));
280 }
281
282 /// Match frameindex
283 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
284                                               SDValue &Offset) const {
285   if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
286     EVT ValTy = Addr.getValueType();
287
288     Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
289     Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
290     return true;
291   }
292   return false;
293 }
294
295 /// Match frameindex+offset and frameindex|offset
296 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
297                                                     SDValue &Offset,
298                                                     unsigned OffsetBits) const {
299   if (CurDAG->isBaseWithConstantOffset(Addr)) {
300     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
301     if (isIntN(OffsetBits, CN->getSExtValue())) {
302       EVT ValTy = Addr.getValueType();
303
304       // If the first operand is a FI, get the TargetFI Node
305       if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
306                                   (Addr.getOperand(0)))
307         Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
308       else
309         Base = Addr.getOperand(0);
310
311       Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
312                                          ValTy);
313       return true;
314     }
315   }
316   return false;
317 }
318
319 /// ComplexPattern used on MipsInstrInfo
320 /// Used on Mips Load/Store instructions
321 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
322                                           SDValue &Offset) const {
323   // if Address is FI, get the TargetFrameIndex.
324   if (selectAddrFrameIndex(Addr, Base, Offset))
325     return true;
326
327   // on PIC code Load GA
328   if (Addr.getOpcode() == MipsISD::Wrapper) {
329     Base   = Addr.getOperand(0);
330     Offset = Addr.getOperand(1);
331     return true;
332   }
333
334   if (!TM.isPositionIndependent()) {
335     if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
336         Addr.getOpcode() == ISD::TargetGlobalAddress))
337       return false;
338   }
339
340   // Addresses of the form FI+const or FI|const
341   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
342     return true;
343
344   // Operand is a result from an ADD.
345   if (Addr.getOpcode() == ISD::ADD) {
346     // When loading from constant pools, load the lower address part in
347     // the instruction itself. Example, instead of:
348     //  lui $2, %hi($CPI1_0)
349     //  addiu $2, $2, %lo($CPI1_0)
350     //  lwc1 $f0, 0($2)
351     // Generate:
352     //  lui $2, %hi($CPI1_0)
353     //  lwc1 $f0, %lo($CPI1_0)($2)
354     if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
355         Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
356       SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
357       if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
358           isa<JumpTableSDNode>(Opnd0)) {
359         Base = Addr.getOperand(0);
360         Offset = Opnd0;
361         return true;
362       }
363     }
364   }
365
366   return false;
367 }
368
369 /// ComplexPattern used on MipsInstrInfo
370 /// Used on Mips Load/Store instructions
371 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
372                                            SDValue &Offset) const {
373   Base = Addr;
374   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
375   return true;
376 }
377
378 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
379                                        SDValue &Offset) const {
380   return selectAddrRegImm(Addr, Base, Offset) ||
381     selectAddrDefault(Addr, Base, Offset);
382 }
383
384 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
385                                            SDValue &Offset) const {
386   if (selectAddrFrameIndex(Addr, Base, Offset))
387     return true;
388
389   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
390     return true;
391
392   return false;
393 }
394
395 bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
396                                             SDValue &Offset) const {
397   if (selectAddrFrameIndex(Addr, Base, Offset))
398     return true;
399
400   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
401     return true;
402
403   return false;
404 }
405
406 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
407 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
408                                             SDValue &Offset) const {
409   if (selectAddrFrameIndex(Addr, Base, Offset))
410     return true;
411
412   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
413     return true;
414
415   return false;
416 }
417
418 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
419 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
420                                             SDValue &Offset) const {
421   if (selectAddrFrameIndex(Addr, Base, Offset))
422     return true;
423
424   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
425     return true;
426
427   return false;
428 }
429
430 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
431                                             SDValue &Offset) const {
432   if (selectAddrFrameIndex(Addr, Base, Offset))
433     return true;
434
435   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
436     return true;
437
438   return false;
439 }
440
441 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
442                                          SDValue &Offset) const {
443   return selectAddrRegImm11(Addr, Base, Offset) ||
444     selectAddrDefault(Addr, Base, Offset);
445 }
446
447 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
448                                          SDValue &Offset) const {
449   return selectAddrRegImm12(Addr, Base, Offset) ||
450     selectAddrDefault(Addr, Base, Offset);
451 }
452
453 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
454                                          SDValue &Offset) const {
455   return selectAddrRegImm16(Addr, Base, Offset) ||
456     selectAddrDefault(Addr, Base, Offset);
457 }
458
459 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
460                                              SDValue &Offset) const {
461   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
462     if (isa<FrameIndexSDNode>(Base))
463       return false;
464
465     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
466       unsigned CnstOff = CN->getZExtValue();
467       return (CnstOff == (CnstOff & 0x3c));
468     }
469
470     return false;
471   }
472
473   // For all other cases where "lw" would be selected, don't select "lw16"
474   // because it would result in additional instructions to prepare operands.
475   if (selectAddrRegImm(Addr, Base, Offset))
476     return false;
477
478   return selectAddrDefault(Addr, Base, Offset);
479 }
480
481 bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
482                                           SDValue &Offset) const {
483   if (selectAddrRegImm10(Addr, Base, Offset))
484     return true;
485
486   if (selectAddrDefault(Addr, Base, Offset))
487     return true;
488
489   return false;
490 }
491
492 // Select constant vector splats.
493 //
494 // Returns true and sets Imm if:
495 // * MSA is enabled
496 // * N is a ISD::BUILD_VECTOR representing a constant splat
497 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
498                                       unsigned MinSizeInBits) const {
499   if (!Subtarget->hasMSA())
500     return false;
501
502   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
503
504   if (!Node)
505     return false;
506
507   APInt SplatValue, SplatUndef;
508   unsigned SplatBitSize;
509   bool HasAnyUndefs;
510
511   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
512                              MinSizeInBits, !Subtarget->isLittle()))
513     return false;
514
515   Imm = SplatValue;
516
517   return true;
518 }
519
520 // Select constant vector splats.
521 //
522 // In addition to the requirements of selectVSplat(), this function returns
523 // true and sets Imm if:
524 // * The splat value is the same width as the elements of the vector
525 // * The splat value fits in an integer with the specified signed-ness and
526 //   width.
527 //
528 // This function looks through ISD::BITCAST nodes.
529 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
530 //       sometimes a shuffle in big-endian mode.
531 //
532 // It's worth noting that this function is not used as part of the selection
533 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
534 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
535 // MipsSEDAGToDAGISel::selectNode.
536 bool MipsSEDAGToDAGISel::
537 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
538                    unsigned ImmBitSize) const {
539   APInt ImmValue;
540   EVT EltTy = N->getValueType(0).getVectorElementType();
541
542   if (N->getOpcode() == ISD::BITCAST)
543     N = N->getOperand(0);
544
545   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
546       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
547
548     if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
549         (!Signed && ImmValue.isIntN(ImmBitSize))) {
550       Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
551       return true;
552     }
553   }
554
555   return false;
556 }
557
558 // Select constant vector splats.
559 bool MipsSEDAGToDAGISel::
560 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
561   return selectVSplatCommon(N, Imm, false, 1);
562 }
563
564 bool MipsSEDAGToDAGISel::
565 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
566   return selectVSplatCommon(N, Imm, false, 2);
567 }
568
569 bool MipsSEDAGToDAGISel::
570 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
571   return selectVSplatCommon(N, Imm, false, 3);
572 }
573
574 // Select constant vector splats.
575 bool MipsSEDAGToDAGISel::
576 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
577   return selectVSplatCommon(N, Imm, false, 4);
578 }
579
580 // Select constant vector splats.
581 bool MipsSEDAGToDAGISel::
582 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
583   return selectVSplatCommon(N, Imm, false, 5);
584 }
585
586 // Select constant vector splats.
587 bool MipsSEDAGToDAGISel::
588 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
589   return selectVSplatCommon(N, Imm, false, 6);
590 }
591
592 // Select constant vector splats.
593 bool MipsSEDAGToDAGISel::
594 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
595   return selectVSplatCommon(N, Imm, false, 8);
596 }
597
598 // Select constant vector splats.
599 bool MipsSEDAGToDAGISel::
600 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
601   return selectVSplatCommon(N, Imm, true, 5);
602 }
603
604 // Select constant vector splats whose value is a power of 2.
605 //
606 // In addition to the requirements of selectVSplat(), this function returns
607 // true and sets Imm if:
608 // * The splat value is the same width as the elements of the vector
609 // * The splat value is a power of two.
610 //
611 // This function looks through ISD::BITCAST nodes.
612 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
613 //       sometimes a shuffle in big-endian mode.
614 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
615   APInt ImmValue;
616   EVT EltTy = N->getValueType(0).getVectorElementType();
617
618   if (N->getOpcode() == ISD::BITCAST)
619     N = N->getOperand(0);
620
621   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
622       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
623     int32_t Log2 = ImmValue.exactLogBase2();
624
625     if (Log2 != -1) {
626       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
627       return true;
628     }
629   }
630
631   return false;
632 }
633
634 // Select constant vector splats whose value only has a consecutive sequence
635 // of left-most bits set (e.g. 0b11...1100...00).
636 //
637 // In addition to the requirements of selectVSplat(), this function returns
638 // true and sets Imm if:
639 // * The splat value is the same width as the elements of the vector
640 // * The splat value is a consecutive sequence of left-most bits.
641 //
642 // This function looks through ISD::BITCAST nodes.
643 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
644 //       sometimes a shuffle in big-endian mode.
645 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
646   APInt ImmValue;
647   EVT EltTy = N->getValueType(0).getVectorElementType();
648
649   if (N->getOpcode() == ISD::BITCAST)
650     N = N->getOperand(0);
651
652   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
653       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
654     // Extract the run of set bits starting with bit zero from the bitwise
655     // inverse of ImmValue, and test that the inverse of this is the same
656     // as the original value.
657     if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
658
659       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
660                                       EltTy);
661       return true;
662     }
663   }
664
665   return false;
666 }
667
668 // Select constant vector splats whose value only has a consecutive sequence
669 // of right-most bits set (e.g. 0b00...0011...11).
670 //
671 // In addition to the requirements of selectVSplat(), this function returns
672 // true and sets Imm if:
673 // * The splat value is the same width as the elements of the vector
674 // * The splat value is a consecutive sequence of right-most bits.
675 //
676 // This function looks through ISD::BITCAST nodes.
677 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
678 //       sometimes a shuffle in big-endian mode.
679 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
680   APInt ImmValue;
681   EVT EltTy = N->getValueType(0).getVectorElementType();
682
683   if (N->getOpcode() == ISD::BITCAST)
684     N = N->getOperand(0);
685
686   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
687       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
688     // Extract the run of set bits starting with bit zero, and test that the
689     // result is the same as the original value
690     if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
691       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
692                                       EltTy);
693       return true;
694     }
695   }
696
697   return false;
698 }
699
700 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
701                                                  SDValue &Imm) const {
702   APInt ImmValue;
703   EVT EltTy = N->getValueType(0).getVectorElementType();
704
705   if (N->getOpcode() == ISD::BITCAST)
706     N = N->getOperand(0);
707
708   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
709       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
710     int32_t Log2 = (~ImmValue).exactLogBase2();
711
712     if (Log2 != -1) {
713       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
714       return true;
715     }
716   }
717
718   return false;
719 }
720
721 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
722   unsigned Opcode = Node->getOpcode();
723   SDLoc DL(Node);
724
725   ///
726   // Instruction Selection not handled by the auto-generated
727   // tablegen selection should be handled here.
728   ///
729   switch(Opcode) {
730   default: break;
731
732   case ISD::SUBE: {
733     SDValue InFlag = Node->getOperand(2);
734     unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu;
735     selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node);
736     return true;
737   }
738
739   case ISD::ADDE: {
740     if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
741       break;
742     SDValue InFlag = Node->getOperand(2);
743     unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu;
744     selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node);
745     return true;
746   }
747
748   case ISD::ConstantFP: {
749     ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
750     if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
751       if (Subtarget->isGP64bit()) {
752         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
753                                               Mips::ZERO_64, MVT::i64);
754         ReplaceNode(Node,
755                     CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
756       } else if (Subtarget->isFP64bit()) {
757         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
758                                               Mips::ZERO, MVT::i32);
759         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
760                                                  MVT::f64, Zero, Zero));
761       } else {
762         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
763                                               Mips::ZERO, MVT::i32);
764         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
765                                                  MVT::f64, Zero, Zero));
766       }
767       return true;
768     }
769     break;
770   }
771
772   case ISD::Constant: {
773     const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
774     unsigned Size = CN->getValueSizeInBits(0);
775
776     if (Size == 32)
777       break;
778
779     MipsAnalyzeImmediate AnalyzeImm;
780     int64_t Imm = CN->getSExtValue();
781
782     const MipsAnalyzeImmediate::InstSeq &Seq =
783       AnalyzeImm.Analyze(Imm, Size, false);
784
785     MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
786     SDLoc DL(CN);
787     SDNode *RegOpnd;
788     SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
789                                                 DL, MVT::i64);
790
791     // The first instruction can be a LUi which is different from other
792     // instructions (ADDiu, ORI and SLL) in that it does not have a register
793     // operand.
794     if (Inst->Opc == Mips::LUi64)
795       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
796     else
797       RegOpnd =
798         CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
799                                CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
800                                ImmOpnd);
801
802     // The remaining instructions in the sequence are handled here.
803     for (++Inst; Inst != Seq.end(); ++Inst) {
804       ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
805                                           MVT::i64);
806       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
807                                        SDValue(RegOpnd, 0), ImmOpnd);
808     }
809
810     ReplaceNode(Node, RegOpnd);
811     return true;
812   }
813
814   case ISD::INTRINSIC_W_CHAIN: {
815     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
816     default:
817       break;
818
819     case Intrinsic::mips_cfcmsa: {
820       SDValue ChainIn = Node->getOperand(0);
821       SDValue RegIdx = Node->getOperand(2);
822       SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
823                                            getMSACtrlReg(RegIdx), MVT::i32);
824       ReplaceNode(Node, Reg.getNode());
825       return true;
826     }
827     }
828     break;
829   }
830
831   case ISD::INTRINSIC_WO_CHAIN: {
832     switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
833     default:
834       break;
835
836     case Intrinsic::mips_move_v:
837       // Like an assignment but will always produce a move.v even if
838       // unnecessary.
839       ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
840                                                Node->getValueType(0),
841                                                Node->getOperand(1)));
842       return true;
843     }
844     break;
845   }
846
847   case ISD::INTRINSIC_VOID: {
848     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
849     default:
850       break;
851
852     case Intrinsic::mips_ctcmsa: {
853       SDValue ChainIn = Node->getOperand(0);
854       SDValue RegIdx  = Node->getOperand(2);
855       SDValue Value   = Node->getOperand(3);
856       SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
857                                               getMSACtrlReg(RegIdx), Value);
858       ReplaceNode(Node, ChainOut.getNode());
859       return true;
860     }
861     }
862     break;
863   }
864
865   case MipsISD::ThreadPointer: {
866     EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
867     unsigned RdhwrOpc, DestReg;
868
869     if (PtrVT == MVT::i32) {
870       RdhwrOpc = Mips::RDHWR;
871       DestReg = Mips::V1;
872     } else {
873       RdhwrOpc = Mips::RDHWR64;
874       DestReg = Mips::V1_64;
875     }
876
877     SDNode *Rdhwr =
878       CurDAG->getMachineNode(RdhwrOpc, DL,
879                              Node->getValueType(0),
880                              CurDAG->getRegister(Mips::HWR29, MVT::i32));
881     SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
882                                          SDValue(Rdhwr, 0));
883     SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
884     ReplaceNode(Node, ResNode.getNode());
885     return true;
886   }
887
888   case ISD::BUILD_VECTOR: {
889     // Select appropriate ldi.[bhwd] instructions for constant splats of
890     // 128-bit when MSA is enabled. Fixup any register class mismatches that
891     // occur as a result.
892     //
893     // This allows the compiler to use a wider range of immediates than would
894     // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
895     // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
896     // 0x01010101 } without using a constant pool. This would be sub-optimal
897     // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
898     // same set/ of registers. Similarly, ldi.h isn't capable of producing {
899     // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
900
901     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
902     APInt SplatValue, SplatUndef;
903     unsigned SplatBitSize;
904     bool HasAnyUndefs;
905     unsigned LdiOp;
906     EVT ResVecTy = BVN->getValueType(0);
907     EVT ViaVecTy;
908
909     if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
910       return false;
911
912     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
913                               HasAnyUndefs, 8,
914                               !Subtarget->isLittle()))
915       return false;
916
917     switch (SplatBitSize) {
918     default:
919       return false;
920     case 8:
921       LdiOp = Mips::LDI_B;
922       ViaVecTy = MVT::v16i8;
923       break;
924     case 16:
925       LdiOp = Mips::LDI_H;
926       ViaVecTy = MVT::v8i16;
927       break;
928     case 32:
929       LdiOp = Mips::LDI_W;
930       ViaVecTy = MVT::v4i32;
931       break;
932     case 64:
933       LdiOp = Mips::LDI_D;
934       ViaVecTy = MVT::v2i64;
935       break;
936     }
937
938     if (!SplatValue.isSignedIntN(10))
939       return false;
940
941     SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
942                                             ViaVecTy.getVectorElementType());
943
944     SDNode *Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
945
946     if (ResVecTy != ViaVecTy) {
947       // If LdiOp is writing to a different register class to ResVecTy, then
948       // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
949       // since the source and destination register sets contain the same
950       // registers.
951       const TargetLowering *TLI = getTargetLowering();
952       MVT ResVecTySimple = ResVecTy.getSimpleVT();
953       const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
954       Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
955                                    ResVecTy, SDValue(Res, 0),
956                                    CurDAG->getTargetConstant(RC->getID(), DL,
957                                                              MVT::i32));
958     }
959
960     ReplaceNode(Node, Res);
961     return true;
962   }
963
964   }
965
966   return false;
967 }
968
969 bool MipsSEDAGToDAGISel::
970 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
971                              std::vector<SDValue> &OutOps) {
972   SDValue Base, Offset;
973
974   switch(ConstraintID) {
975   default:
976     llvm_unreachable("Unexpected asm memory constraint");
977   // All memory constraints can at least accept raw pointers.
978   case InlineAsm::Constraint_i:
979     OutOps.push_back(Op);
980     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
981     return false;
982   case InlineAsm::Constraint_m:
983     if (selectAddrRegImm16(Op, Base, Offset)) {
984       OutOps.push_back(Base);
985       OutOps.push_back(Offset);
986       return false;
987     }
988     OutOps.push_back(Op);
989     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
990     return false;
991   case InlineAsm::Constraint_R:
992     // The 'R' constraint is supposed to be much more complicated than this.
993     // However, it's becoming less useful due to architectural changes and
994     // ought to be replaced by other constraints such as 'ZC'.
995     // For now, support 9-bit signed offsets which is supportable by all
996     // subtargets for all instructions.
997     if (selectAddrRegImm9(Op, Base, Offset)) {
998       OutOps.push_back(Base);
999       OutOps.push_back(Offset);
1000       return false;
1001     }
1002     OutOps.push_back(Op);
1003     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1004     return false;
1005   case InlineAsm::Constraint_ZC:
1006     // ZC matches whatever the pref, ll, and sc instructions can handle for the
1007     // given subtarget.
1008     if (Subtarget->inMicroMipsMode()) {
1009       // On microMIPS, they can handle 12-bit offsets.
1010       if (selectAddrRegImm12(Op, Base, Offset)) {
1011         OutOps.push_back(Base);
1012         OutOps.push_back(Offset);
1013         return false;
1014       }
1015     } else if (Subtarget->hasMips32r6()) {
1016       // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1017       if (selectAddrRegImm9(Op, Base, Offset)) {
1018         OutOps.push_back(Base);
1019         OutOps.push_back(Offset);
1020         return false;
1021       }
1022     } else if (selectAddrRegImm16(Op, Base, Offset)) {
1023       // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1024       OutOps.push_back(Base);
1025       OutOps.push_back(Offset);
1026       return false;
1027     }
1028     // In all cases, 0-bit offsets are acceptable.
1029     OutOps.push_back(Op);
1030     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1031     return false;
1032   }
1033   return true;
1034 }
1035
1036 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1037                                         CodeGenOpt::Level OptLevel) {
1038   return new MipsSEDAGToDAGISel(TM, OptLevel);
1039 }