]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / NVPTX / NVPTXTargetMachine.cpp
1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Top-level implementation for the NVPTX target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "NVPTXTargetMachine.h"
15 #include "NVPTX.h"
16 #include "NVPTXAllocaHoisting.h"
17 #include "NVPTXLowerAggrCopies.h"
18 #include "NVPTXTargetObjectFile.h"
19 #include "NVPTXTargetTransformInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/IR/LegacyPassManager.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/TargetRegistry.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include "llvm/Transforms/Scalar/GVN.h"
34 #include "llvm/Transforms/Vectorize.h"
35 #include <cassert>
36 #include <string>
37
38 using namespace llvm;
39
40 // LSV is still relatively new; this switch lets us turn it off in case we
41 // encounter (or suspect) a bug.
42 static cl::opt<bool>
43     DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
44                                cl::desc("Disable load/store vectorizer"),
45                                cl::init(false), cl::Hidden);
46
47 // TODO: Remove this flag when we are confident with no regressions.
48 static cl::opt<bool> DisableRequireStructuredCFG(
49     "disable-nvptx-require-structured-cfg",
50     cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
51              "structured CFG. The requirement should be disabled only when "
52              "unexpected regressions happen."),
53     cl::init(false), cl::Hidden);
54
55 static cl::opt<bool> UseShortPointersOpt(
56     "nvptx-short-ptr",
57     cl::desc(
58         "Use 32-bit pointers for accessing const/local/shared address spaces."),
59     cl::init(false), cl::Hidden);
60
61 namespace llvm {
62
63 void initializeNVVMIntrRangePass(PassRegistry&);
64 void initializeNVVMReflectPass(PassRegistry&);
65 void initializeGenericToNVVMPass(PassRegistry&);
66 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
67 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
68 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
69 void initializeNVPTXLowerArgsPass(PassRegistry &);
70 void initializeNVPTXLowerAllocaPass(PassRegistry &);
71 void initializeNVPTXProxyRegErasurePass(PassRegistry &);
72
73 } // end namespace llvm
74
75 extern "C" void LLVMInitializeNVPTXTarget() {
76   // Register the target.
77   RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
78   RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());
79
80   // FIXME: This pass is really intended to be invoked during IR optimization,
81   // but it's very NVPTX-specific.
82   PassRegistry &PR = *PassRegistry::getPassRegistry();
83   initializeNVVMReflectPass(PR);
84   initializeNVVMIntrRangePass(PR);
85   initializeGenericToNVVMPass(PR);
86   initializeNVPTXAllocaHoistingPass(PR);
87   initializeNVPTXAssignValidGlobalNamesPass(PR);
88   initializeNVPTXLowerArgsPass(PR);
89   initializeNVPTXLowerAllocaPass(PR);
90   initializeNVPTXLowerAggrCopiesPass(PR);
91   initializeNVPTXProxyRegErasurePass(PR);
92 }
93
94 static std::string computeDataLayout(bool is64Bit, bool UseShortPointers) {
95   std::string Ret = "e";
96
97   if (!is64Bit)
98     Ret += "-p:32:32";
99   else if (UseShortPointers)
100     Ret += "-p3:32:32-p4:32:32-p5:32:32";
101
102   Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
103
104   return Ret;
105 }
106
107 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
108                                        StringRef CPU, StringRef FS,
109                                        const TargetOptions &Options,
110                                        Optional<Reloc::Model> RM,
111                                        Optional<CodeModel::Model> CM,
112                                        CodeGenOpt::Level OL, bool is64bit)
113     // The pic relocation model is used regardless of what the client has
114     // specified, as it is the only relocation model currently supported.
115     : LLVMTargetMachine(T, computeDataLayout(is64bit, UseShortPointersOpt), TT,
116                         CPU, FS, Options, Reloc::PIC_,
117                         getEffectiveCodeModel(CM, CodeModel::Small), OL),
118       is64bit(is64bit), UseShortPointers(UseShortPointersOpt),
119       TLOF(llvm::make_unique<NVPTXTargetObjectFile>()),
120       Subtarget(TT, CPU, FS, *this) {
121   if (TT.getOS() == Triple::NVCL)
122     drvInterface = NVPTX::NVCL;
123   else
124     drvInterface = NVPTX::CUDA;
125   if (!DisableRequireStructuredCFG)
126     setRequiresStructuredCFG(true);
127   initAsmInfo();
128 }
129
130 NVPTXTargetMachine::~NVPTXTargetMachine() = default;
131
132 void NVPTXTargetMachine32::anchor() {}
133
134 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
135                                            StringRef CPU, StringRef FS,
136                                            const TargetOptions &Options,
137                                            Optional<Reloc::Model> RM,
138                                            Optional<CodeModel::Model> CM,
139                                            CodeGenOpt::Level OL, bool JIT)
140     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
141
142 void NVPTXTargetMachine64::anchor() {}
143
144 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
145                                            StringRef CPU, StringRef FS,
146                                            const TargetOptions &Options,
147                                            Optional<Reloc::Model> RM,
148                                            Optional<CodeModel::Model> CM,
149                                            CodeGenOpt::Level OL, bool JIT)
150     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
151
152 namespace {
153
154 class NVPTXPassConfig : public TargetPassConfig {
155 public:
156   NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
157       : TargetPassConfig(TM, PM) {}
158
159   NVPTXTargetMachine &getNVPTXTargetMachine() const {
160     return getTM<NVPTXTargetMachine>();
161   }
162
163   void addIRPasses() override;
164   bool addInstSelector() override;
165   void addPreRegAlloc() override;
166   void addPostRegAlloc() override;
167   void addMachineSSAOptimization() override;
168
169   FunctionPass *createTargetRegisterAllocator(bool) override;
170   void addFastRegAlloc(FunctionPass *RegAllocPass) override;
171   void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
172
173 private:
174   // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
175   // function is only called in opt mode.
176   void addEarlyCSEOrGVNPass();
177
178   // Add passes that propagate special memory spaces.
179   void addAddressSpaceInferencePasses();
180
181   // Add passes that perform straight-line scalar optimizations.
182   void addStraightLineScalarOptimizationPasses();
183 };
184
185 } // end anonymous namespace
186
187 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
188   return new NVPTXPassConfig(*this, PM);
189 }
190
191 void NVPTXTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
192   Builder.addExtension(
193     PassManagerBuilder::EP_EarlyAsPossible,
194     [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
195       PM.add(createNVVMReflectPass(Subtarget.getSmVersion()));
196       PM.add(createNVVMIntrRangePass(Subtarget.getSmVersion()));
197     });
198 }
199
200 TargetTransformInfo
201 NVPTXTargetMachine::getTargetTransformInfo(const Function &F) {
202   return TargetTransformInfo(NVPTXTTIImpl(this, F));
203 }
204
205 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
206   if (getOptLevel() == CodeGenOpt::Aggressive)
207     addPass(createGVNPass());
208   else
209     addPass(createEarlyCSEPass());
210 }
211
212 void NVPTXPassConfig::addAddressSpaceInferencePasses() {
213   // NVPTXLowerArgs emits alloca for byval parameters which can often
214   // be eliminated by SROA.
215   addPass(createSROAPass());
216   addPass(createNVPTXLowerAllocaPass());
217   addPass(createInferAddressSpacesPass());
218 }
219
220 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
221   addPass(createSeparateConstOffsetFromGEPPass());
222   addPass(createSpeculativeExecutionPass());
223   // ReassociateGEPs exposes more opportunites for SLSR. See
224   // the example in reassociate-geps-and-slsr.ll.
225   addPass(createStraightLineStrengthReducePass());
226   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
227   // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
228   // for some of our benchmarks.
229   addEarlyCSEOrGVNPass();
230   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
231   addPass(createNaryReassociatePass());
232   // NaryReassociate on GEPs creates redundant common expressions, so run
233   // EarlyCSE after it.
234   addPass(createEarlyCSEPass());
235 }
236
237 void NVPTXPassConfig::addIRPasses() {
238   // The following passes are known to not play well with virtual regs hanging
239   // around after register allocation (which in our case, is *all* registers).
240   // We explicitly disable them here.  We do, however, need some functionality
241   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
242   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
243   disablePass(&PrologEpilogCodeInserterID);
244   disablePass(&MachineCopyPropagationID);
245   disablePass(&TailDuplicateID);
246   disablePass(&StackMapLivenessID);
247   disablePass(&LiveDebugValuesID);
248   disablePass(&PostRAMachineSinkingID);
249   disablePass(&PostRASchedulerID);
250   disablePass(&FuncletLayoutID);
251   disablePass(&PatchableFunctionID);
252   disablePass(&ShrinkWrapID);
253
254   // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
255   // it here does nothing.  But since we need it for correctness when lowering
256   // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
257   // call addEarlyAsPossiblePasses.
258   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
259   addPass(createNVVMReflectPass(ST.getSmVersion()));
260
261   if (getOptLevel() != CodeGenOpt::None)
262     addPass(createNVPTXImageOptimizerPass());
263   addPass(createNVPTXAssignValidGlobalNamesPass());
264   addPass(createGenericToNVVMPass());
265
266   // NVPTXLowerArgs is required for correctness and should be run right
267   // before the address space inference passes.
268   addPass(createNVPTXLowerArgsPass(&getNVPTXTargetMachine()));
269   if (getOptLevel() != CodeGenOpt::None) {
270     addAddressSpaceInferencePasses();
271     if (!DisableLoadStoreVectorizer)
272       addPass(createLoadStoreVectorizerPass());
273     addStraightLineScalarOptimizationPasses();
274   }
275
276   // === LSR and other generic IR passes ===
277   TargetPassConfig::addIRPasses();
278   // EarlyCSE is not always strong enough to clean up what LSR produces. For
279   // example, GVN can combine
280   //
281   //   %0 = add %a, %b
282   //   %1 = add %b, %a
283   //
284   // and
285   //
286   //   %0 = shl nsw %a, 2
287   //   %1 = shl %a, 2
288   //
289   // but EarlyCSE can do neither of them.
290   if (getOptLevel() != CodeGenOpt::None)
291     addEarlyCSEOrGVNPass();
292 }
293
294 bool NVPTXPassConfig::addInstSelector() {
295   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
296
297   addPass(createLowerAggrCopies());
298   addPass(createAllocaHoisting());
299   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
300
301   if (!ST.hasImageHandles())
302     addPass(createNVPTXReplaceImageHandlesPass());
303
304   return false;
305 }
306
307 void NVPTXPassConfig::addPreRegAlloc() {
308   // Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
309   addPass(createNVPTXProxyRegErasurePass());
310 }
311
312 void NVPTXPassConfig::addPostRegAlloc() {
313   addPass(createNVPTXPrologEpilogPass(), false);
314   if (getOptLevel() != CodeGenOpt::None) {
315     // NVPTXPrologEpilogPass calculates frame object offset and replace frame
316     // index with VRFrame register. NVPTXPeephole need to be run after that and
317     // will replace VRFrame with VRFrameLocal when possible.
318     addPass(createNVPTXPeephole());
319   }
320 }
321
322 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
323   return nullptr; // No reg alloc
324 }
325
326 void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
327   assert(!RegAllocPass && "NVPTX uses no regalloc!");
328   addPass(&PHIEliminationID);
329   addPass(&TwoAddressInstructionPassID);
330 }
331
332 void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
333   assert(!RegAllocPass && "NVPTX uses no regalloc!");
334
335   addPass(&ProcessImplicitDefsID);
336   addPass(&LiveVariablesID);
337   addPass(&MachineLoopInfoID);
338   addPass(&PHIEliminationID);
339
340   addPass(&TwoAddressInstructionPassID);
341   addPass(&RegisterCoalescerID);
342
343   // PreRA instruction scheduling.
344   if (addPass(&MachineSchedulerID))
345     printAndVerify("After Machine Scheduling");
346
347
348   addPass(&StackSlotColoringID);
349
350   // FIXME: Needs physical registers
351   //addPass(&MachineLICMID);
352
353   printAndVerify("After StackSlotColoring");
354 }
355
356 void NVPTXPassConfig::addMachineSSAOptimization() {
357   // Pre-ra tail duplication.
358   if (addPass(&EarlyTailDuplicateID))
359     printAndVerify("After Pre-RegAlloc TailDuplicate");
360
361   // Optimize PHIs before DCE: removing dead PHI cycles may make more
362   // instructions dead.
363   addPass(&OptimizePHIsID);
364
365   // This pass merges large allocas. StackSlotColoring is a different pass
366   // which merges spill slots.
367   addPass(&StackColoringID);
368
369   // If the target requests it, assign local variables to stack slots relative
370   // to one another and simplify frame index references where possible.
371   addPass(&LocalStackSlotAllocationID);
372
373   // With optimization, dead code should already be eliminated. However
374   // there is one known exception: lowered code for arguments that are only
375   // used by tail calls, where the tail calls reuse the incoming stack
376   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
377   addPass(&DeadMachineInstructionElimID);
378   printAndVerify("After codegen DCE pass");
379
380   // Allow targets to insert passes that improve instruction level parallelism,
381   // like if-conversion. Such passes will typically need dominator trees and
382   // loop info, just like LICM and CSE below.
383   if (addILPOpts())
384     printAndVerify("After ILP optimizations");
385
386   addPass(&EarlyMachineLICMID);
387   addPass(&MachineCSEID);
388
389   addPass(&MachineSinkingID);
390   printAndVerify("After Machine LICM, CSE and Sinking passes");
391
392   addPass(&PeepholeOptimizerID);
393   printAndVerify("After codegen peephole optimization pass");
394 }