]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/NVPTX/NVPTXTargetMachine.cpp
Update tcpdump to 4.9.0.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / NVPTX / NVPTXTargetMachine.cpp
1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Top-level implementation for the NVPTX target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "NVPTXTargetMachine.h"
15 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXAllocaHoisting.h"
18 #include "NVPTXLowerAggrCopies.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXTargetTransformInfo.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/CodeGen/AsmPrinter.h"
23 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/LegacyPassManager.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCInstrInfo.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSubtargetInfo.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41 #include "llvm/Target/TargetLowering.h"
42 #include "llvm/Target/TargetLoweringObjectFile.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include "llvm/Target/TargetRegisterInfo.h"
46 #include "llvm/Target/TargetSubtargetInfo.h"
47 #include "llvm/Transforms/Scalar.h"
48 #include "llvm/Transforms/Scalar/GVN.h"
49
50 using namespace llvm;
51
52 static cl::opt<bool> UseInferAddressSpaces(
53     "nvptx-use-infer-addrspace", cl::init(false), cl::Hidden,
54     cl::desc("Optimize address spaces using NVPTXInferAddressSpaces instead of "
55              "NVPTXFavorNonGenericAddrSpaces"));
56
57 namespace llvm {
58 void initializeNVVMIntrRangePass(PassRegistry&);
59 void initializeNVVMReflectPass(PassRegistry&);
60 void initializeGenericToNVVMPass(PassRegistry&);
61 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
62 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
63 void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
64 void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
65 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
66 void initializeNVPTXLowerKernelArgsPass(PassRegistry &);
67 void initializeNVPTXLowerAllocaPass(PassRegistry &);
68 }
69
70 extern "C" void LLVMInitializeNVPTXTarget() {
71   // Register the target.
72   RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
73   RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);
74
75   // FIXME: This pass is really intended to be invoked during IR optimization,
76   // but it's very NVPTX-specific.
77   PassRegistry &PR = *PassRegistry::getPassRegistry();
78   initializeNVVMReflectPass(PR);
79   initializeNVVMIntrRangePass(PR);
80   initializeGenericToNVVMPass(PR);
81   initializeNVPTXAllocaHoistingPass(PR);
82   initializeNVPTXAssignValidGlobalNamesPass(PR);
83   initializeNVPTXFavorNonGenericAddrSpacesPass(PR);
84   initializeNVPTXInferAddressSpacesPass(PR);
85   initializeNVPTXLowerKernelArgsPass(PR);
86   initializeNVPTXLowerAllocaPass(PR);
87   initializeNVPTXLowerAggrCopiesPass(PR);
88 }
89
90 static std::string computeDataLayout(bool is64Bit) {
91   std::string Ret = "e";
92
93   if (!is64Bit)
94     Ret += "-p:32:32";
95
96   Ret += "-i64:64-v16:16-v32:32-n16:32:64";
97
98   return Ret;
99 }
100
101 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
102                                        StringRef CPU, StringRef FS,
103                                        const TargetOptions &Options,
104                                        Optional<Reloc::Model> RM,
105                                        CodeModel::Model CM,
106                                        CodeGenOpt::Level OL, bool is64bit)
107     // The pic relocation model is used regardless of what the client has
108     // specified, as it is the only relocation model currently supported.
109     : LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options,
110                         Reloc::PIC_, CM, OL),
111       is64bit(is64bit),
112       TLOF(make_unique<NVPTXTargetObjectFile>()),
113       Subtarget(TT, CPU, FS, *this) {
114   if (TT.getOS() == Triple::NVCL)
115     drvInterface = NVPTX::NVCL;
116   else
117     drvInterface = NVPTX::CUDA;
118   initAsmInfo();
119 }
120
121 NVPTXTargetMachine::~NVPTXTargetMachine() {}
122
123 void NVPTXTargetMachine32::anchor() {}
124
125 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
126                                            StringRef CPU, StringRef FS,
127                                            const TargetOptions &Options,
128                                            Optional<Reloc::Model> RM,
129                                            CodeModel::Model CM,
130                                            CodeGenOpt::Level OL)
131     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
132
133 void NVPTXTargetMachine64::anchor() {}
134
135 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
136                                            StringRef CPU, StringRef FS,
137                                            const TargetOptions &Options,
138                                            Optional<Reloc::Model> RM,
139                                            CodeModel::Model CM,
140                                            CodeGenOpt::Level OL)
141     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
142
143 namespace {
144 class NVPTXPassConfig : public TargetPassConfig {
145 public:
146   NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
147       : TargetPassConfig(TM, PM) {}
148
149   NVPTXTargetMachine &getNVPTXTargetMachine() const {
150     return getTM<NVPTXTargetMachine>();
151   }
152
153   void addIRPasses() override;
154   bool addInstSelector() override;
155   void addPostRegAlloc() override;
156   void addMachineSSAOptimization() override;
157
158   FunctionPass *createTargetRegisterAllocator(bool) override;
159   void addFastRegAlloc(FunctionPass *RegAllocPass) override;
160   void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
161
162 private:
163   // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
164   // function is only called in opt mode.
165   void addEarlyCSEOrGVNPass();
166
167   // Add passes that propagate special memory spaces.
168   void addAddressSpaceInferencePasses();
169
170   // Add passes that perform straight-line scalar optimizations.
171   void addStraightLineScalarOptimizationPasses();
172 };
173 } // end anonymous namespace
174
175 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
176   return new NVPTXPassConfig(this, PM);
177 }
178
179 void NVPTXTargetMachine::addEarlyAsPossiblePasses(PassManagerBase &PM) {
180   PM.add(createNVVMReflectPass());
181   PM.add(createNVVMIntrRangePass(Subtarget.getSmVersion()));
182 }
183
184 TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() {
185   return TargetIRAnalysis([this](const Function &F) {
186     return TargetTransformInfo(NVPTXTTIImpl(this, F));
187   });
188 }
189
190 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
191   if (getOptLevel() == CodeGenOpt::Aggressive)
192     addPass(createGVNPass());
193   else
194     addPass(createEarlyCSEPass());
195 }
196
197 void NVPTXPassConfig::addAddressSpaceInferencePasses() {
198   // NVPTXLowerKernelArgs emits alloca for byval parameters which can often
199   // be eliminated by SROA.
200   addPass(createSROAPass());
201   addPass(createNVPTXLowerAllocaPass());
202   if (UseInferAddressSpaces) {
203     addPass(createNVPTXInferAddressSpacesPass());
204   } else {
205     addPass(createNVPTXFavorNonGenericAddrSpacesPass());
206     // FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave
207     // them unused. We could remove dead code in an ad-hoc manner, but that
208     // requires manual work and might be error-prone.
209     addPass(createDeadCodeEliminationPass());
210   }
211 }
212
213 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
214   addPass(createSeparateConstOffsetFromGEPPass());
215   addPass(createSpeculativeExecutionPass());
216   // ReassociateGEPs exposes more opportunites for SLSR. See
217   // the example in reassociate-geps-and-slsr.ll.
218   addPass(createStraightLineStrengthReducePass());
219   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
220   // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
221   // for some of our benchmarks.
222   addEarlyCSEOrGVNPass();
223   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
224   addPass(createNaryReassociatePass());
225   // NaryReassociate on GEPs creates redundant common expressions, so run
226   // EarlyCSE after it.
227   addPass(createEarlyCSEPass());
228 }
229
230 void NVPTXPassConfig::addIRPasses() {
231   // The following passes are known to not play well with virtual regs hanging
232   // around after register allocation (which in our case, is *all* registers).
233   // We explicitly disable them here.  We do, however, need some functionality
234   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
235   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
236   disablePass(&PrologEpilogCodeInserterID);
237   disablePass(&MachineCopyPropagationID);
238   disablePass(&TailDuplicateID);
239   disablePass(&StackMapLivenessID);
240   disablePass(&LiveDebugValuesID);
241   disablePass(&PostRASchedulerID);
242   disablePass(&FuncletLayoutID);
243   disablePass(&PatchableFunctionID);
244
245   // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
246   // it here does nothing.  But since we need it for correctness when lowering
247   // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
248   // call addEarlyAsPossiblePasses.
249   addPass(createNVVMReflectPass());
250
251   if (getOptLevel() != CodeGenOpt::None)
252     addPass(createNVPTXImageOptimizerPass());
253   addPass(createNVPTXAssignValidGlobalNamesPass());
254   addPass(createGenericToNVVMPass());
255
256   // NVPTXLowerKernelArgs is required for correctness and should be run right
257   // before the address space inference passes.
258   addPass(createNVPTXLowerKernelArgsPass(&getNVPTXTargetMachine()));
259   if (getOptLevel() != CodeGenOpt::None) {
260     addAddressSpaceInferencePasses();
261     addStraightLineScalarOptimizationPasses();
262   }
263
264   // === LSR and other generic IR passes ===
265   TargetPassConfig::addIRPasses();
266   // EarlyCSE is not always strong enough to clean up what LSR produces. For
267   // example, GVN can combine
268   //
269   //   %0 = add %a, %b
270   //   %1 = add %b, %a
271   //
272   // and
273   //
274   //   %0 = shl nsw %a, 2
275   //   %1 = shl %a, 2
276   //
277   // but EarlyCSE can do neither of them.
278   if (getOptLevel() != CodeGenOpt::None)
279     addEarlyCSEOrGVNPass();
280 }
281
282 bool NVPTXPassConfig::addInstSelector() {
283   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
284
285   addPass(createLowerAggrCopies());
286   addPass(createAllocaHoisting());
287   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
288
289   if (!ST.hasImageHandles())
290     addPass(createNVPTXReplaceImageHandlesPass());
291
292   return false;
293 }
294
295 void NVPTXPassConfig::addPostRegAlloc() {
296   addPass(createNVPTXPrologEpilogPass(), false);
297   if (getOptLevel() != CodeGenOpt::None) {
298     // NVPTXPrologEpilogPass calculates frame object offset and replace frame
299     // index with VRFrame register. NVPTXPeephole need to be run after that and
300     // will replace VRFrame with VRFrameLocal when possible.
301     addPass(createNVPTXPeephole());
302   }
303 }
304
305 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
306   return nullptr; // No reg alloc
307 }
308
309 void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
310   assert(!RegAllocPass && "NVPTX uses no regalloc!");
311   addPass(&PHIEliminationID);
312   addPass(&TwoAddressInstructionPassID);
313 }
314
315 void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
316   assert(!RegAllocPass && "NVPTX uses no regalloc!");
317
318   addPass(&ProcessImplicitDefsID);
319   addPass(&LiveVariablesID);
320   addPass(&MachineLoopInfoID);
321   addPass(&PHIEliminationID);
322
323   addPass(&TwoAddressInstructionPassID);
324   addPass(&RegisterCoalescerID);
325
326   // PreRA instruction scheduling.
327   if (addPass(&MachineSchedulerID))
328     printAndVerify("After Machine Scheduling");
329
330
331   addPass(&StackSlotColoringID);
332
333   // FIXME: Needs physical registers
334   //addPass(&PostRAMachineLICMID);
335
336   printAndVerify("After StackSlotColoring");
337 }
338
339 void NVPTXPassConfig::addMachineSSAOptimization() {
340   // Pre-ra tail duplication.
341   if (addPass(&EarlyTailDuplicateID))
342     printAndVerify("After Pre-RegAlloc TailDuplicate");
343
344   // Optimize PHIs before DCE: removing dead PHI cycles may make more
345   // instructions dead.
346   addPass(&OptimizePHIsID);
347
348   // This pass merges large allocas. StackSlotColoring is a different pass
349   // which merges spill slots.
350   addPass(&StackColoringID);
351
352   // If the target requests it, assign local variables to stack slots relative
353   // to one another and simplify frame index references where possible.
354   addPass(&LocalStackSlotAllocationID);
355
356   // With optimization, dead code should already be eliminated. However
357   // there is one known exception: lowered code for arguments that are only
358   // used by tail calls, where the tail calls reuse the incoming stack
359   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
360   addPass(&DeadMachineInstructionElimID);
361   printAndVerify("After codegen DCE pass");
362
363   // Allow targets to insert passes that improve instruction level parallelism,
364   // like if-conversion. Such passes will typically need dominator trees and
365   // loop info, just like LICM and CSE below.
366   if (addILPOpts())
367     printAndVerify("After ILP optimizations");
368
369   addPass(&MachineLICMID);
370   addPass(&MachineCSEID);
371
372   addPass(&MachineSinkingID);
373   printAndVerify("After Machine LICM, CSE and Sinking passes");
374
375   addPass(&PeepholeOptimizerID);
376   printAndVerify("After codegen peephole optimization pass");
377 }