]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / PowerPC / PPCISelDAGToDAG.cpp
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGISel.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/KnownBits.h"
54 #include "llvm/Support/MachineValueType.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <memory>
63 #include <new>
64 #include <tuple>
65 #include <utility>
66
67 using namespace llvm;
68
69 #define DEBUG_TYPE "ppc-codegen"
70
71 STATISTIC(NumSextSetcc,
72           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
73 STATISTIC(NumZextSetcc,
74           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
75 STATISTIC(SignExtensionsAdded,
76           "Number of sign extensions for compare inputs added.");
77 STATISTIC(ZeroExtensionsAdded,
78           "Number of zero extensions for compare inputs added.");
79 STATISTIC(NumLogicOpsOnComparison,
80           "Number of logical ops on i1 values calculated in GPR.");
81 STATISTIC(OmittedForNonExtendUses,
82           "Number of compares not eliminated as they have non-extending uses.");
83 STATISTIC(NumP9Setb,
84           "Number of compares lowered to setb.");
85
86 // FIXME: Remove this once the bug has been fixed!
87 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
88 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
89
90 static cl::opt<bool>
91     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
92                        cl::desc("use aggressive ppc isel for bit permutations"),
93                        cl::Hidden);
94 static cl::opt<bool> BPermRewriterNoMasking(
95     "ppc-bit-perm-rewriter-stress-rotates",
96     cl::desc("stress rotate selection in aggressive ppc isel for "
97              "bit permutations"),
98     cl::Hidden);
99
100 static cl::opt<bool> EnableBranchHint(
101   "ppc-use-branch-hint", cl::init(true),
102     cl::desc("Enable static hinting of branches on ppc"),
103     cl::Hidden);
104
105 static cl::opt<bool> EnableTLSOpt(
106   "ppc-tls-opt", cl::init(true),
107     cl::desc("Enable tls optimization peephole"),
108     cl::Hidden);
109
110 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
111   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
112   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
113
114 static cl::opt<ICmpInGPRType> CmpInGPR(
115   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
116   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
117   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
118              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
119              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
120              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
121              clEnumValN(ICGPR_NonExtIn, "nonextin",
122                         "Only comparisons where inputs don't need [sz]ext."),
123              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
124              clEnumValN(ICGPR_ZextI32, "zexti32",
125                         "Only i32 comparisons with zext result."),
126              clEnumValN(ICGPR_ZextI64, "zexti64",
127                         "Only i64 comparisons with zext result."),
128              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
129              clEnumValN(ICGPR_SextI32, "sexti32",
130                         "Only i32 comparisons with sext result."),
131              clEnumValN(ICGPR_SextI64, "sexti64",
132                         "Only i64 comparisons with sext result.")));
133 namespace {
134
135   //===--------------------------------------------------------------------===//
136   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
137   /// instructions for SelectionDAG operations.
138   ///
139   class PPCDAGToDAGISel : public SelectionDAGISel {
140     const PPCTargetMachine &TM;
141     const PPCSubtarget *PPCSubTarget;
142     const PPCTargetLowering *PPCLowering;
143     unsigned GlobalBaseReg;
144
145   public:
146     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
147         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
148
149     bool runOnMachineFunction(MachineFunction &MF) override {
150       // Make sure we re-emit a set of the global base reg if necessary
151       GlobalBaseReg = 0;
152       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
153       PPCLowering = PPCSubTarget->getTargetLowering();
154       SelectionDAGISel::runOnMachineFunction(MF);
155
156       if (!PPCSubTarget->isSVR4ABI())
157         InsertVRSaveCode(MF);
158
159       return true;
160     }
161
162     void PreprocessISelDAG() override;
163     void PostprocessISelDAG() override;
164
165     /// getI16Imm - Return a target constant with the specified value, of type
166     /// i16.
167     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
168       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
169     }
170
171     /// getI32Imm - Return a target constant with the specified value, of type
172     /// i32.
173     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
174       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
175     }
176
177     /// getI64Imm - Return a target constant with the specified value, of type
178     /// i64.
179     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
180       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
181     }
182
183     /// getSmallIPtrImm - Return a target constant of pointer type.
184     inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
185       return CurDAG->getTargetConstant(
186           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
187     }
188
189     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
190     /// rotate and mask opcode and mask operation.
191     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
192                                 unsigned &SH, unsigned &MB, unsigned &ME);
193
194     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
195     /// base register.  Return the virtual register that holds this value.
196     SDNode *getGlobalBaseReg();
197
198     void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
199
200     // Select - Convert the specified operand from a target-independent to a
201     // target-specific node if it hasn't already been changed.
202     void Select(SDNode *N) override;
203
204     bool tryBitfieldInsert(SDNode *N);
205     bool tryBitPermutation(SDNode *N);
206     bool tryIntCompareInGPR(SDNode *N);
207
208     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
209     // an X-Form load instruction with the offset being a relocation coming from
210     // the PPCISD::ADD_TLS.
211     bool tryTLSXFormLoad(LoadSDNode *N);
212     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
213     // an X-Form store instruction with the offset being a relocation coming from
214     // the PPCISD::ADD_TLS.
215     bool tryTLSXFormStore(StoreSDNode *N);
216     /// SelectCC - Select a comparison of the specified values with the
217     /// specified condition code, returning the CR# of the expression.
218     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
219                      const SDLoc &dl);
220
221     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
222     /// immediate field.  Note that the operand at this point is already the
223     /// result of a prior SelectAddressRegImm call.
224     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
225       if (N.getOpcode() == ISD::TargetConstant ||
226           N.getOpcode() == ISD::TargetGlobalAddress) {
227         Out = N;
228         return true;
229       }
230
231       return false;
232     }
233
234     /// SelectAddrIdx - Given the specified address, check to see if it can be
235     /// represented as an indexed [r+r] operation.
236     /// This is for xform instructions whose associated displacement form is D.
237     /// The last parameter \p 0 means associated D form has no requirment for 16
238     /// bit signed displacement.
239     /// Returns false if it can be represented by [r+imm], which are preferred.
240     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
241       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0);
242     }
243
244     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
245     /// represented as an indexed [r+r] operation.
246     /// This is for xform instructions whose associated displacement form is DS.
247     /// The last parameter \p 4 means associated DS form 16 bit signed
248     /// displacement must be a multiple of 4.
249     /// Returns false if it can be represented by [r+imm], which are preferred.
250     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
251       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4);
252     }
253
254     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
255     /// represented as an indexed [r+r] operation.
256     /// This is for xform instructions whose associated displacement form is DQ.
257     /// The last parameter \p 16 means associated DQ form 16 bit signed
258     /// displacement must be a multiple of 16.
259     /// Returns false if it can be represented by [r+imm], which are preferred.
260     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
261       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16);
262     }
263
264     /// SelectAddrIdxOnly - Given the specified address, force it to be
265     /// represented as an indexed [r+r] operation.
266     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
267       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
268     }
269     
270     /// SelectAddrImm - Returns true if the address N can be represented by
271     /// a base register plus a signed 16-bit displacement [r+imm].
272     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
273     /// displacement.
274     bool SelectAddrImm(SDValue N, SDValue &Disp,
275                        SDValue &Base) {
276       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
277     }
278
279     /// SelectAddrImmX4 - Returns true if the address N can be represented by
280     /// a base register plus a signed 16-bit displacement that is a multiple of
281     /// 4 (last parameter). Suitable for use by STD and friends.
282     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
283       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
284     }
285
286     /// SelectAddrImmX16 - Returns true if the address N can be represented by
287     /// a base register plus a signed 16-bit displacement that is a multiple of
288     /// 16(last parameter). Suitable for use by STXV and friends.
289     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
290       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
291     }
292
293     // Select an address into a single register.
294     bool SelectAddr(SDValue N, SDValue &Base) {
295       Base = N;
296       return true;
297     }
298
299     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
300     /// inline asm expressions.  It is always correct to compute the value into
301     /// a register.  The case of adding a (possibly relocatable) constant to a
302     /// register can be improved, but it is wrong to substitute Reg+Reg for
303     /// Reg in an asm, because the load or store opcode would have to change.
304     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
305                                       unsigned ConstraintID,
306                                       std::vector<SDValue> &OutOps) override {
307       switch(ConstraintID) {
308       default:
309         errs() << "ConstraintID: " << ConstraintID << "\n";
310         llvm_unreachable("Unexpected asm memory constraint");
311       case InlineAsm::Constraint_es:
312       case InlineAsm::Constraint_i:
313       case InlineAsm::Constraint_m:
314       case InlineAsm::Constraint_o:
315       case InlineAsm::Constraint_Q:
316       case InlineAsm::Constraint_Z:
317       case InlineAsm::Constraint_Zy:
318         // We need to make sure that this one operand does not end up in r0
319         // (because we might end up lowering this as 0(%op)).
320         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
321         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
322         SDLoc dl(Op);
323         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
324         SDValue NewOp =
325           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
326                                          dl, Op.getValueType(),
327                                          Op, RC), 0);
328
329         OutOps.push_back(NewOp);
330         return false;
331       }
332       return true;
333     }
334
335     void InsertVRSaveCode(MachineFunction &MF);
336
337     StringRef getPassName() const override {
338       return "PowerPC DAG->DAG Pattern Instruction Selection";
339     }
340
341 // Include the pieces autogenerated from the target description.
342 #include "PPCGenDAGISel.inc"
343
344 private:
345     bool trySETCC(SDNode *N);
346
347     void PeepholePPC64();
348     void PeepholePPC64ZExt();
349     void PeepholeCROps();
350
351     SDValue combineToCMPB(SDNode *N);
352     void foldBoolExts(SDValue &Res, SDNode *&N);
353
354     bool AllUsersSelectZero(SDNode *N);
355     void SwapAllSelectUsers(SDNode *N);
356
357     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
358     void transferMemOperands(SDNode *N, SDNode *Result);
359   };
360
361 } // end anonymous namespace
362
363 /// InsertVRSaveCode - Once the entire function has been instruction selected,
364 /// all virtual registers are created and all machine instructions are built,
365 /// check to see if we need to save/restore VRSAVE.  If so, do it.
366 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
367   // Check to see if this function uses vector registers, which means we have to
368   // save and restore the VRSAVE register and update it with the regs we use.
369   //
370   // In this case, there will be virtual registers of vector type created
371   // by the scheduler.  Detect them now.
372   bool HasVectorVReg = false;
373   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
374     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
375     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
376       HasVectorVReg = true;
377       break;
378     }
379   }
380   if (!HasVectorVReg) return;  // nothing to do.
381
382   // If we have a vector register, we want to emit code into the entry and exit
383   // blocks to save and restore the VRSAVE register.  We do this here (instead
384   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
385   //
386   // 1. This (trivially) reduces the load on the register allocator, by not
387   //    having to represent the live range of the VRSAVE register.
388   // 2. This (more significantly) allows us to create a temporary virtual
389   //    register to hold the saved VRSAVE value, allowing this temporary to be
390   //    register allocated, instead of forcing it to be spilled to the stack.
391
392   // Create two vregs - one to hold the VRSAVE register that is live-in to the
393   // function and one for the value after having bits or'd into it.
394   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
395   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
396
397   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
398   MachineBasicBlock &EntryBB = *Fn.begin();
399   DebugLoc dl;
400   // Emit the following code into the entry block:
401   // InVRSAVE = MFVRSAVE
402   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
403   // MTVRSAVE UpdatedVRSAVE
404   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
405   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
406   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
407           UpdatedVRSAVE).addReg(InVRSAVE);
408   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
409
410   // Find all return blocks, outputting a restore in each epilog.
411   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
412     if (BB->isReturnBlock()) {
413       IP = BB->end(); --IP;
414
415       // Skip over all terminator instructions, which are part of the return
416       // sequence.
417       MachineBasicBlock::iterator I2 = IP;
418       while (I2 != BB->begin() && (--I2)->isTerminator())
419         IP = I2;
420
421       // Emit: MTVRSAVE InVRSave
422       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
423     }
424   }
425 }
426
427 /// getGlobalBaseReg - Output the instructions required to put the
428 /// base address to use for accessing globals into a register.
429 ///
430 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
431   if (!GlobalBaseReg) {
432     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
433     // Insert the set of GlobalBaseReg into the first MBB of the function
434     MachineBasicBlock &FirstMBB = MF->front();
435     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
436     const Module *M = MF->getFunction().getParent();
437     DebugLoc dl;
438
439     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
440       if (PPCSubTarget->isTargetELF()) {
441         GlobalBaseReg = PPC::R30;
442         if (!PPCSubTarget->isSecurePlt() &&
443             M->getPICLevel() == PICLevel::SmallPIC) {
444           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
445           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
446           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
447         } else {
448           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
449           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
450           unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
451           BuildMI(FirstMBB, MBBI, dl,
452                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
453                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
454           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
455         }
456       } else {
457         GlobalBaseReg =
458           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
459         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
460         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
461       }
462     } else {
463       // We must ensure that this sequence is dominated by the prologue.
464       // FIXME: This is a bit of a big hammer since we don't get the benefits
465       // of shrink-wrapping whenever we emit this instruction. Considering
466       // this is used in any function where we emit a jump table, this may be
467       // a significant limitation. We should consider inserting this in the
468       // block where it is used and then commoning this sequence up if it
469       // appears in multiple places.
470       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
471       // MovePCtoLR8.
472       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
473       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
474       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
475       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
476     }
477   }
478   return CurDAG->getRegister(GlobalBaseReg,
479                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
480       .getNode();
481 }
482
483 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
484 /// operand. If so Imm will receive the 32-bit value.
485 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
486   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
487     Imm = cast<ConstantSDNode>(N)->getZExtValue();
488     return true;
489   }
490   return false;
491 }
492
493 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
494 /// operand.  If so Imm will receive the 64-bit value.
495 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
496   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
497     Imm = cast<ConstantSDNode>(N)->getZExtValue();
498     return true;
499   }
500   return false;
501 }
502
503 // isInt32Immediate - This method tests to see if a constant operand.
504 // If so Imm will receive the 32 bit value.
505 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
506   return isInt32Immediate(N.getNode(), Imm);
507 }
508
509 /// isInt64Immediate - This method tests to see if the value is a 64-bit
510 /// constant operand. If so Imm will receive the 64-bit value.
511 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
512   return isInt64Immediate(N.getNode(), Imm);
513 }
514
515 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
516                               const SDValue &DestMBB) {
517   assert(isa<BasicBlockSDNode>(DestMBB));
518
519   if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
520
521   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
522   const Instruction *BBTerm = BB->getTerminator();
523
524   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
525
526   const BasicBlock *TBB = BBTerm->getSuccessor(0);
527   const BasicBlock *FBB = BBTerm->getSuccessor(1);
528
529   auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB);
530   auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB);
531
532   // We only want to handle cases which are easy to predict at static time, e.g.
533   // C++ throw statement, that is very likely not taken, or calling never
534   // returned function, e.g. stdlib exit(). So we set Threshold to filter
535   // unwanted cases.
536   //
537   // Below is LLVM branch weight table, we only want to handle case 1, 2
538   //
539   // Case                  Taken:Nontaken  Example
540   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
541   // 2. Invoke-terminating 1:1048575
542   // 3. Coldblock          4:64            __builtin_expect
543   // 4. Loop Branch        124:4           For loop
544   // 5. PH/ZH/FPH          20:12
545   const uint32_t Threshold = 10000;
546
547   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
548     return PPC::BR_NO_HINT;
549
550   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName()
551                     << "::" << BB->getName() << "'\n"
552                     << " -> " << TBB->getName() << ": " << TProb << "\n"
553                     << " -> " << FBB->getName() << ": " << FProb << "\n");
554
555   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
556
557   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
558   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
559   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
560     std::swap(TProb, FProb);
561
562   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
563 }
564
565 // isOpcWithIntImmediate - This method tests to see if the node is a specific
566 // opcode and that it has a immediate integer right operand.
567 // If so Imm will receive the 32 bit value.
568 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
569   return N->getOpcode() == Opc
570          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
571 }
572
573 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
574   SDLoc dl(SN);
575   int FI = cast<FrameIndexSDNode>(N)->getIndex();
576   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
577   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
578   if (SN->hasOneUse())
579     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
580                          getSmallIPtrImm(Offset, dl));
581   else
582     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
583                                            getSmallIPtrImm(Offset, dl)));
584 }
585
586 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
587                                       bool isShiftMask, unsigned &SH,
588                                       unsigned &MB, unsigned &ME) {
589   // Don't even go down this path for i64, since different logic will be
590   // necessary for rldicl/rldicr/rldimi.
591   if (N->getValueType(0) != MVT::i32)
592     return false;
593
594   unsigned Shift  = 32;
595   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
596   unsigned Opcode = N->getOpcode();
597   if (N->getNumOperands() != 2 ||
598       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
599     return false;
600
601   if (Opcode == ISD::SHL) {
602     // apply shift left to mask if it comes first
603     if (isShiftMask) Mask = Mask << Shift;
604     // determine which bits are made indeterminant by shift
605     Indeterminant = ~(0xFFFFFFFFu << Shift);
606   } else if (Opcode == ISD::SRL) {
607     // apply shift right to mask if it comes first
608     if (isShiftMask) Mask = Mask >> Shift;
609     // determine which bits are made indeterminant by shift
610     Indeterminant = ~(0xFFFFFFFFu >> Shift);
611     // adjust for the left rotate
612     Shift = 32 - Shift;
613   } else if (Opcode == ISD::ROTL) {
614     Indeterminant = 0;
615   } else {
616     return false;
617   }
618
619   // if the mask doesn't intersect any Indeterminant bits
620   if (Mask && !(Mask & Indeterminant)) {
621     SH = Shift & 31;
622     // make sure the mask is still a mask (wrap arounds may not be)
623     return isRunOfOnes(Mask, MB, ME);
624   }
625   return false;
626 }
627
628 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
629   SDValue Base = ST->getBasePtr();
630   if (Base.getOpcode() != PPCISD::ADD_TLS)
631     return false;
632   SDValue Offset = ST->getOffset();
633   if (!Offset.isUndef())
634     return false;
635
636   SDLoc dl(ST);
637   EVT MemVT = ST->getMemoryVT();
638   EVT RegVT = ST->getValue().getValueType();
639
640   unsigned Opcode;
641   switch (MemVT.getSimpleVT().SimpleTy) {
642     default:
643       return false;
644     case MVT::i8: {
645       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
646       break;
647     }
648     case MVT::i16: {
649       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
650       break;
651     }
652     case MVT::i32: {
653       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
654       break;
655     }
656     case MVT::i64: {
657       Opcode = PPC::STDXTLS;
658       break;
659     }
660   }
661   SDValue Chain = ST->getChain();
662   SDVTList VTs = ST->getVTList();
663   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
664                    Chain};
665   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
666   transferMemOperands(ST, MN);
667   ReplaceNode(ST, MN);
668   return true;
669 }
670
671 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
672   SDValue Base = LD->getBasePtr();
673   if (Base.getOpcode() != PPCISD::ADD_TLS)
674     return false;
675   SDValue Offset = LD->getOffset();
676   if (!Offset.isUndef())
677     return false;
678
679   SDLoc dl(LD);
680   EVT MemVT = LD->getMemoryVT();
681   EVT RegVT = LD->getValueType(0);
682   unsigned Opcode;
683   switch (MemVT.getSimpleVT().SimpleTy) {
684     default:
685       return false;
686     case MVT::i8: {
687       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
688       break;
689     }
690     case MVT::i16: {
691       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
692       break;
693     }
694     case MVT::i32: {
695       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
696       break;
697     }
698     case MVT::i64: {
699       Opcode = PPC::LDXTLS;
700       break;
701     }
702   }
703   SDValue Chain = LD->getChain();
704   SDVTList VTs = LD->getVTList();
705   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
706   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
707   transferMemOperands(LD, MN);
708   ReplaceNode(LD, MN);
709   return true;
710 }
711
712 /// Turn an or of two masked values into the rotate left word immediate then
713 /// mask insert (rlwimi) instruction.
714 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
715   SDValue Op0 = N->getOperand(0);
716   SDValue Op1 = N->getOperand(1);
717   SDLoc dl(N);
718
719   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
720   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
721
722   unsigned TargetMask = LKnown.Zero.getZExtValue();
723   unsigned InsertMask = RKnown.Zero.getZExtValue();
724
725   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
726     unsigned Op0Opc = Op0.getOpcode();
727     unsigned Op1Opc = Op1.getOpcode();
728     unsigned Value, SH = 0;
729     TargetMask = ~TargetMask;
730     InsertMask = ~InsertMask;
731
732     // If the LHS has a foldable shift and the RHS does not, then swap it to the
733     // RHS so that we can fold the shift into the insert.
734     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
735       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
736           Op0.getOperand(0).getOpcode() == ISD::SRL) {
737         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
738             Op1.getOperand(0).getOpcode() != ISD::SRL) {
739           std::swap(Op0, Op1);
740           std::swap(Op0Opc, Op1Opc);
741           std::swap(TargetMask, InsertMask);
742         }
743       }
744     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
745       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
746           Op1.getOperand(0).getOpcode() != ISD::SRL) {
747         std::swap(Op0, Op1);
748         std::swap(Op0Opc, Op1Opc);
749         std::swap(TargetMask, InsertMask);
750       }
751     }
752
753     unsigned MB, ME;
754     if (isRunOfOnes(InsertMask, MB, ME)) {
755       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
756           isInt32Immediate(Op1.getOperand(1), Value)) {
757         Op1 = Op1.getOperand(0);
758         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
759       }
760       if (Op1Opc == ISD::AND) {
761        // The AND mask might not be a constant, and we need to make sure that
762        // if we're going to fold the masking with the insert, all bits not
763        // know to be zero in the mask are known to be one.
764         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
765         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
766
767         unsigned SHOpc = Op1.getOperand(0).getOpcode();
768         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
769             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
770           // Note that Value must be in range here (less than 32) because
771           // otherwise there would not be any bits set in InsertMask.
772           Op1 = Op1.getOperand(0).getOperand(0);
773           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
774         }
775       }
776
777       SH &= 31;
778       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
779                           getI32Imm(ME, dl) };
780       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
781       return true;
782     }
783   }
784   return false;
785 }
786
787 // Predict the number of instructions that would be generated by calling
788 // selectI64Imm(N).
789 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
790   // Assume no remaining bits.
791   unsigned Remainder = 0;
792   // Assume no shift required.
793   unsigned Shift = 0;
794
795   // If it can't be represented as a 32 bit value.
796   if (!isInt<32>(Imm)) {
797     Shift = countTrailingZeros<uint64_t>(Imm);
798     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
799
800     // If the shifted value fits 32 bits.
801     if (isInt<32>(ImmSh)) {
802       // Go with the shifted value.
803       Imm = ImmSh;
804     } else {
805       // Still stuck with a 64 bit value.
806       Remainder = Imm;
807       Shift = 32;
808       Imm >>= 32;
809     }
810   }
811
812   // Intermediate operand.
813   unsigned Result = 0;
814
815   // Handle first 32 bits.
816   unsigned Lo = Imm & 0xFFFF;
817
818   // Simple value.
819   if (isInt<16>(Imm)) {
820     // Just the Lo bits.
821     ++Result;
822   } else if (Lo) {
823     // Handle the Hi bits and Lo bits.
824     Result += 2;
825   } else {
826     // Just the Hi bits.
827     ++Result;
828   }
829
830   // If no shift, we're done.
831   if (!Shift) return Result;
832
833   // If Hi word == Lo word,
834   // we can use rldimi to insert the Lo word into Hi word.
835   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
836     ++Result;
837     return Result;
838   }
839
840   // Shift for next step if the upper 32-bits were not zero.
841   if (Imm)
842     ++Result;
843
844   // Add in the last bits as required.
845   if ((Remainder >> 16) & 0xFFFF)
846     ++Result;
847   if (Remainder & 0xFFFF)
848     ++Result;
849
850   return Result;
851 }
852
853 static uint64_t Rot64(uint64_t Imm, unsigned R) {
854   return (Imm << R) | (Imm >> (64 - R));
855 }
856
857 static unsigned selectI64ImmInstrCount(int64_t Imm) {
858   unsigned Count = selectI64ImmInstrCountDirect(Imm);
859
860   // If the instruction count is 1 or 2, we do not need further analysis
861   // since rotate + load constant requires at least 2 instructions.
862   if (Count <= 2)
863     return Count;
864
865   for (unsigned r = 1; r < 63; ++r) {
866     uint64_t RImm = Rot64(Imm, r);
867     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
868     Count = std::min(Count, RCount);
869
870     // See comments in selectI64Imm for an explanation of the logic below.
871     unsigned LS = findLastSet(RImm);
872     if (LS != r-1)
873       continue;
874
875     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
876     uint64_t RImmWithOnes = RImm | OnesMask;
877
878     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
879     Count = std::min(Count, RCount);
880   }
881
882   return Count;
883 }
884
885 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
886 // (above) needs to be kept in sync with this function.
887 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
888                                   int64_t Imm) {
889   // Assume no remaining bits.
890   unsigned Remainder = 0;
891   // Assume no shift required.
892   unsigned Shift = 0;
893
894   // If it can't be represented as a 32 bit value.
895   if (!isInt<32>(Imm)) {
896     Shift = countTrailingZeros<uint64_t>(Imm);
897     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
898
899     // If the shifted value fits 32 bits.
900     if (isInt<32>(ImmSh)) {
901       // Go with the shifted value.
902       Imm = ImmSh;
903     } else {
904       // Still stuck with a 64 bit value.
905       Remainder = Imm;
906       Shift = 32;
907       Imm >>= 32;
908     }
909   }
910
911   // Intermediate operand.
912   SDNode *Result;
913
914   // Handle first 32 bits.
915   unsigned Lo = Imm & 0xFFFF;
916   unsigned Hi = (Imm >> 16) & 0xFFFF;
917
918   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
919       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
920   };
921
922   // Simple value.
923   if (isInt<16>(Imm)) {
924     uint64_t SextImm = SignExtend64(Lo, 16);
925     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
926     // Just the Lo bits.
927     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
928   } else if (Lo) {
929     // Handle the Hi bits.
930     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
931     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
932     // And Lo bits.
933     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
934                                     SDValue(Result, 0), getI32Imm(Lo));
935   } else {
936     // Just the Hi bits.
937     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
938   }
939
940   // If no shift, we're done.
941   if (!Shift) return Result;
942
943   // If Hi word == Lo word,
944   // we can use rldimi to insert the Lo word into Hi word.
945   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
946     SDValue Ops[] =
947       { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)};
948     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
949   }
950
951   // Shift for next step if the upper 32-bits were not zero.
952   if (Imm) {
953     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
954                                     SDValue(Result, 0),
955                                     getI32Imm(Shift),
956                                     getI32Imm(63 - Shift));
957   }
958
959   // Add in the last bits as required.
960   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
961     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
962                                     SDValue(Result, 0), getI32Imm(Hi));
963   }
964   if ((Lo = Remainder & 0xFFFF)) {
965     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
966                                     SDValue(Result, 0), getI32Imm(Lo));
967   }
968
969   return Result;
970 }
971
972 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
973                             int64_t Imm) {
974   unsigned Count = selectI64ImmInstrCountDirect(Imm);
975
976   // If the instruction count is 1 or 2, we do not need further analysis
977   // since rotate + load constant requires at least 2 instructions.
978   if (Count <= 2)
979     return selectI64ImmDirect(CurDAG, dl, Imm);
980
981   unsigned RMin = 0;
982
983   int64_t MatImm;
984   unsigned MaskEnd;
985
986   for (unsigned r = 1; r < 63; ++r) {
987     uint64_t RImm = Rot64(Imm, r);
988     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
989     if (RCount < Count) {
990       Count = RCount;
991       RMin = r;
992       MatImm = RImm;
993       MaskEnd = 63;
994     }
995
996     // If the immediate to generate has many trailing zeros, it might be
997     // worthwhile to generate a rotated value with too many leading ones
998     // (because that's free with li/lis's sign-extension semantics), and then
999     // mask them off after rotation.
1000
1001     unsigned LS = findLastSet(RImm);
1002     // We're adding (63-LS) higher-order ones, and we expect to mask them off
1003     // after performing the inverse rotation by (64-r). So we need that:
1004     //   63-LS == 64-r => LS == r-1
1005     if (LS != r-1)
1006       continue;
1007
1008     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
1009     uint64_t RImmWithOnes = RImm | OnesMask;
1010
1011     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
1012     if (RCount < Count) {
1013       Count = RCount;
1014       RMin = r;
1015       MatImm = RImmWithOnes;
1016       MaskEnd = LS;
1017     }
1018   }
1019
1020   if (!RMin)
1021     return selectI64ImmDirect(CurDAG, dl, Imm);
1022
1023   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1024       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1025   };
1026
1027   SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0);
1028   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
1029                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
1030 }
1031
1032 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
1033   unsigned MaxTruncation = 0;
1034   // Cannot use range-based for loop here as we need the actual use (i.e. we
1035   // need the operand number corresponding to the use). A range-based for
1036   // will unbox the use and provide an SDNode*.
1037   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
1038        Use != UseEnd; ++Use) {
1039     unsigned Opc =
1040       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
1041     switch (Opc) {
1042     default: return 0;
1043     case ISD::TRUNCATE:
1044       if (Use->isMachineOpcode())
1045         return 0;
1046       MaxTruncation =
1047         std::max(MaxTruncation, Use->getValueType(0).getSizeInBits());
1048       continue;
1049     case ISD::STORE: {
1050       if (Use->isMachineOpcode())
1051         return 0;
1052       StoreSDNode *STN = cast<StoreSDNode>(*Use);
1053       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
1054       if (MemVTSize == 64 || Use.getOperandNo() != 0)
1055         return 0;
1056       MaxTruncation = std::max(MaxTruncation, MemVTSize);
1057       continue;
1058     }
1059     case PPC::STW8:
1060     case PPC::STWX8:
1061     case PPC::STWU8:
1062     case PPC::STWUX8:
1063       if (Use.getOperandNo() != 0)
1064         return 0;
1065       MaxTruncation = std::max(MaxTruncation, 32u);
1066       continue;
1067     case PPC::STH8:
1068     case PPC::STHX8:
1069     case PPC::STHU8:
1070     case PPC::STHUX8:
1071       if (Use.getOperandNo() != 0)
1072         return 0;
1073       MaxTruncation = std::max(MaxTruncation, 16u);
1074       continue;
1075     case PPC::STB8:
1076     case PPC::STBX8:
1077     case PPC::STBU8:
1078     case PPC::STBUX8:
1079       if (Use.getOperandNo() != 0)
1080         return 0;
1081       MaxTruncation = std::max(MaxTruncation, 8u);
1082       continue;
1083     }
1084   }
1085   return MaxTruncation;
1086 }
1087
1088 // Select a 64-bit constant.
1089 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1090   SDLoc dl(N);
1091
1092   // Get 64 bit value.
1093   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1094   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1095     uint64_t SextImm = SignExtend64(Imm, MinSize);
1096     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1097     if (isInt<16>(SextImm))
1098       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1099   }
1100   return selectI64Imm(CurDAG, dl, Imm);
1101 }
1102
1103 namespace {
1104
1105 class BitPermutationSelector {
1106   struct ValueBit {
1107     SDValue V;
1108
1109     // The bit number in the value, using a convention where bit 0 is the
1110     // lowest-order bit.
1111     unsigned Idx;
1112
1113     // ConstZero means a bit we need to mask off.
1114     // Variable is a bit comes from an input variable.
1115     // VariableKnownToBeZero is also a bit comes from an input variable,
1116     // but it is known to be already zero. So we do not need to mask them.
1117     enum Kind {
1118       ConstZero,
1119       Variable,
1120       VariableKnownToBeZero
1121     } K;
1122
1123     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1124       : V(V), Idx(I), K(K) {}
1125     ValueBit(Kind K = Variable)
1126       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
1127
1128     bool isZero() const {
1129       return K == ConstZero || K == VariableKnownToBeZero;
1130     }
1131
1132     bool hasValue() const {
1133       return K == Variable || K == VariableKnownToBeZero;
1134     }
1135
1136     SDValue getValue() const {
1137       assert(hasValue() && "Cannot get the value of a constant bit");
1138       return V;
1139     }
1140
1141     unsigned getValueBitIndex() const {
1142       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1143       return Idx;
1144     }
1145   };
1146
1147   // A bit group has the same underlying value and the same rotate factor.
1148   struct BitGroup {
1149     SDValue V;
1150     unsigned RLAmt;
1151     unsigned StartIdx, EndIdx;
1152
1153     // This rotation amount assumes that the lower 32 bits of the quantity are
1154     // replicated in the high 32 bits by the rotation operator (which is done
1155     // by rlwinm and friends in 64-bit mode).
1156     bool Repl32;
1157     // Did converting to Repl32 == true change the rotation factor? If it did,
1158     // it decreased it by 32.
1159     bool Repl32CR;
1160     // Was this group coalesced after setting Repl32 to true?
1161     bool Repl32Coalesced;
1162
1163     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1164       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1165         Repl32Coalesced(false) {
1166       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1167                         << " [" << S << ", " << E << "]\n");
1168     }
1169   };
1170
1171   // Information on each (Value, RLAmt) pair (like the number of groups
1172   // associated with each) used to choose the lowering method.
1173   struct ValueRotInfo {
1174     SDValue V;
1175     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1176     unsigned NumGroups = 0;
1177     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1178     bool Repl32 = false;
1179
1180     ValueRotInfo() = default;
1181
1182     // For sorting (in reverse order) by NumGroups, and then by
1183     // FirstGroupStartIdx.
1184     bool operator < (const ValueRotInfo &Other) const {
1185       // We need to sort so that the non-Repl32 come first because, when we're
1186       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1187       // masking operation.
1188       if (Repl32 < Other.Repl32)
1189         return true;
1190       else if (Repl32 > Other.Repl32)
1191         return false;
1192       else if (NumGroups > Other.NumGroups)
1193         return true;
1194       else if (NumGroups < Other.NumGroups)
1195         return false;
1196       else if (RLAmt == 0 && Other.RLAmt != 0)
1197         return true;
1198       else if (RLAmt != 0 && Other.RLAmt == 0)
1199         return false;
1200       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1201         return true;
1202       return false;
1203     }
1204   };
1205
1206   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1207   using ValueBitsMemoizer =
1208       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1209   ValueBitsMemoizer Memoizer;
1210
1211   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1212   // The bool is true if something interesting was deduced, otherwise if we're
1213   // providing only a generic representation of V (or something else likewise
1214   // uninteresting for instruction selection) through the SmallVector.
1215   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1216                                                             unsigned NumBits) {
1217     auto &ValueEntry = Memoizer[V];
1218     if (ValueEntry)
1219       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1220     ValueEntry.reset(new ValueBitsMemoizedValue());
1221     bool &Interesting = ValueEntry->first;
1222     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1223     Bits.resize(NumBits);
1224
1225     switch (V.getOpcode()) {
1226     default: break;
1227     case ISD::ROTL:
1228       if (isa<ConstantSDNode>(V.getOperand(1))) {
1229         unsigned RotAmt = V.getConstantOperandVal(1);
1230
1231         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1232
1233         for (unsigned i = 0; i < NumBits; ++i)
1234           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1235
1236         return std::make_pair(Interesting = true, &Bits);
1237       }
1238       break;
1239     case ISD::SHL:
1240       if (isa<ConstantSDNode>(V.getOperand(1))) {
1241         unsigned ShiftAmt = V.getConstantOperandVal(1);
1242
1243         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1244
1245         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1246           Bits[i] = LHSBits[i - ShiftAmt];
1247
1248         for (unsigned i = 0; i < ShiftAmt; ++i)
1249           Bits[i] = ValueBit(ValueBit::ConstZero);
1250
1251         return std::make_pair(Interesting = true, &Bits);
1252       }
1253       break;
1254     case ISD::SRL:
1255       if (isa<ConstantSDNode>(V.getOperand(1))) {
1256         unsigned ShiftAmt = V.getConstantOperandVal(1);
1257
1258         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1259
1260         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1261           Bits[i] = LHSBits[i + ShiftAmt];
1262
1263         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1264           Bits[i] = ValueBit(ValueBit::ConstZero);
1265
1266         return std::make_pair(Interesting = true, &Bits);
1267       }
1268       break;
1269     case ISD::AND:
1270       if (isa<ConstantSDNode>(V.getOperand(1))) {
1271         uint64_t Mask = V.getConstantOperandVal(1);
1272
1273         const SmallVector<ValueBit, 64> *LHSBits;
1274         // Mark this as interesting, only if the LHS was also interesting. This
1275         // prevents the overall procedure from matching a single immediate 'and'
1276         // (which is non-optimal because such an and might be folded with other
1277         // things if we don't select it here).
1278         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1279
1280         for (unsigned i = 0; i < NumBits; ++i)
1281           if (((Mask >> i) & 1) == 1)
1282             Bits[i] = (*LHSBits)[i];
1283           else {
1284             // AND instruction masks this bit. If the input is already zero,
1285             // we have nothing to do here. Otherwise, make the bit ConstZero.
1286             if ((*LHSBits)[i].isZero())
1287               Bits[i] = (*LHSBits)[i];
1288             else
1289               Bits[i] = ValueBit(ValueBit::ConstZero);
1290           }
1291
1292         return std::make_pair(Interesting, &Bits);
1293       }
1294       break;
1295     case ISD::OR: {
1296       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1297       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1298
1299       bool AllDisjoint = true;
1300       SDValue LastVal = SDValue();
1301       unsigned LastIdx = 0;
1302       for (unsigned i = 0; i < NumBits; ++i) {
1303         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1304           // If both inputs are known to be zero and one is ConstZero and
1305           // another is VariableKnownToBeZero, we can select whichever
1306           // we like. To minimize the number of bit groups, we select
1307           // VariableKnownToBeZero if this bit is the next bit of the same
1308           // input variable from the previous bit. Otherwise, we select
1309           // ConstZero.
1310           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1311               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1312             Bits[i] = LHSBits[i];
1313           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1314                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1315             Bits[i] = RHSBits[i];
1316           else
1317             Bits[i] = ValueBit(ValueBit::ConstZero);
1318         }
1319         else if (LHSBits[i].isZero())
1320           Bits[i] = RHSBits[i];
1321         else if (RHSBits[i].isZero())
1322           Bits[i] = LHSBits[i];
1323         else {
1324           AllDisjoint = false;
1325           break;
1326         }
1327         // We remember the value and bit index of this bit.
1328         if (Bits[i].hasValue()) {
1329           LastVal = Bits[i].getValue();
1330           LastIdx = Bits[i].getValueBitIndex();
1331         }
1332         else {
1333           if (LastVal) LastVal = SDValue();
1334           LastIdx = 0;
1335         }
1336       }
1337
1338       if (!AllDisjoint)
1339         break;
1340
1341       return std::make_pair(Interesting = true, &Bits);
1342     }
1343     case ISD::ZERO_EXTEND: {
1344       // We support only the case with zero extension from i32 to i64 so far.
1345       if (V.getValueType() != MVT::i64 ||
1346           V.getOperand(0).getValueType() != MVT::i32)
1347         break;
1348
1349       const SmallVector<ValueBit, 64> *LHSBits;
1350       const unsigned NumOperandBits = 32;
1351       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1352                                                     NumOperandBits);
1353
1354       for (unsigned i = 0; i < NumOperandBits; ++i)
1355         Bits[i] = (*LHSBits)[i];
1356
1357       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1358         Bits[i] = ValueBit(ValueBit::ConstZero);
1359
1360       return std::make_pair(Interesting, &Bits);
1361     }
1362     case ISD::TRUNCATE: {
1363       EVT FromType = V.getOperand(0).getValueType();
1364       EVT ToType = V.getValueType();
1365       // We support only the case with truncate from i64 to i32.
1366       if (FromType != MVT::i64 || ToType != MVT::i32)
1367         break;
1368       const unsigned NumAllBits = FromType.getSizeInBits();
1369       SmallVector<ValueBit, 64> *InBits;
1370       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1371                                                     NumAllBits);
1372       const unsigned NumValidBits = ToType.getSizeInBits();
1373
1374       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1375       // So, we cannot include this truncate.
1376       bool UseUpper32bit = false;
1377       for (unsigned i = 0; i < NumValidBits; ++i)
1378         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1379           UseUpper32bit = true;
1380           break;
1381         }
1382       if (UseUpper32bit)
1383         break;
1384
1385       for (unsigned i = 0; i < NumValidBits; ++i)
1386         Bits[i] = (*InBits)[i];
1387
1388       return std::make_pair(Interesting, &Bits);
1389     }
1390     case ISD::AssertZext: {
1391       // For AssertZext, we look through the operand and
1392       // mark the bits known to be zero.
1393       const SmallVector<ValueBit, 64> *LHSBits;
1394       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1395                                                     NumBits);
1396
1397       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1398       const unsigned NumValidBits = FromType.getSizeInBits();
1399       for (unsigned i = 0; i < NumValidBits; ++i)
1400         Bits[i] = (*LHSBits)[i];
1401
1402       // These bits are known to be zero.
1403       for (unsigned i = NumValidBits; i < NumBits; ++i)
1404         Bits[i] = ValueBit((*LHSBits)[i].getValue(),
1405                            (*LHSBits)[i].getValueBitIndex(),
1406                            ValueBit::VariableKnownToBeZero);
1407
1408       return std::make_pair(Interesting, &Bits);
1409     }
1410     case ISD::LOAD:
1411       LoadSDNode *LD = cast<LoadSDNode>(V);
1412       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1413         EVT VT = LD->getMemoryVT();
1414         const unsigned NumValidBits = VT.getSizeInBits();
1415
1416         for (unsigned i = 0; i < NumValidBits; ++i)
1417           Bits[i] = ValueBit(V, i);
1418
1419         // These bits are known to be zero.
1420         for (unsigned i = NumValidBits; i < NumBits; ++i)
1421           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1422
1423         // Zero-extending load itself cannot be optimized. So, it is not
1424         // interesting by itself though it gives useful information.
1425         return std::make_pair(Interesting = false, &Bits);
1426       }
1427       break;
1428     }
1429
1430     for (unsigned i = 0; i < NumBits; ++i)
1431       Bits[i] = ValueBit(V, i);
1432
1433     return std::make_pair(Interesting = false, &Bits);
1434   }
1435
1436   // For each value (except the constant ones), compute the left-rotate amount
1437   // to get it from its original to final position.
1438   void computeRotationAmounts() {
1439     NeedMask = false;
1440     RLAmt.resize(Bits.size());
1441     for (unsigned i = 0; i < Bits.size(); ++i)
1442       if (Bits[i].hasValue()) {
1443         unsigned VBI = Bits[i].getValueBitIndex();
1444         if (i >= VBI)
1445           RLAmt[i] = i - VBI;
1446         else
1447           RLAmt[i] = Bits.size() - (VBI - i);
1448       } else if (Bits[i].isZero()) {
1449         NeedMask = true;
1450         RLAmt[i] = UINT32_MAX;
1451       } else {
1452         llvm_unreachable("Unknown value bit type");
1453       }
1454   }
1455
1456   // Collect groups of consecutive bits with the same underlying value and
1457   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1458   // they break up groups.
1459   void collectBitGroups(bool LateMask) {
1460     BitGroups.clear();
1461
1462     unsigned LastRLAmt = RLAmt[0];
1463     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1464     unsigned LastGroupStartIdx = 0;
1465     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1466     for (unsigned i = 1; i < Bits.size(); ++i) {
1467       unsigned ThisRLAmt = RLAmt[i];
1468       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1469       if (LateMask && !ThisValue) {
1470         ThisValue = LastValue;
1471         ThisRLAmt = LastRLAmt;
1472         // If we're doing late masking, then the first bit group always starts
1473         // at zero (even if the first bits were zero).
1474         if (BitGroups.empty())
1475           LastGroupStartIdx = 0;
1476       }
1477
1478       // If this bit is known to be zero and the current group is a bit group
1479       // of zeros, we do not need to terminate the current bit group even the
1480       // Value or RLAmt does not match here. Instead, we terminate this group
1481       // when the first non-zero bit appears later.
1482       if (IsGroupOfZeros && Bits[i].isZero())
1483         continue;
1484
1485       // If this bit has the same underlying value and the same rotate factor as
1486       // the last one, then they're part of the same group.
1487       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1488         // We cannot continue the current group if this bits is not known to
1489         // be zero in a bit group of zeros.
1490         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1491           continue;
1492
1493       if (LastValue.getNode())
1494         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1495                                      i-1));
1496       LastRLAmt = ThisRLAmt;
1497       LastValue = ThisValue;
1498       LastGroupStartIdx = i;
1499       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1500     }
1501     if (LastValue.getNode())
1502       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1503                                    Bits.size()-1));
1504
1505     if (BitGroups.empty())
1506       return;
1507
1508     // We might be able to combine the first and last groups.
1509     if (BitGroups.size() > 1) {
1510       // If the first and last groups are the same, then remove the first group
1511       // in favor of the last group, making the ending index of the last group
1512       // equal to the ending index of the to-be-removed first group.
1513       if (BitGroups[0].StartIdx == 0 &&
1514           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1515           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1516           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1517         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1518         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1519         BitGroups.erase(BitGroups.begin());
1520       }
1521     }
1522   }
1523
1524   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1525   // associated with each. If the number of groups are same, we prefer a group
1526   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1527   // instruction. If there is a degeneracy, pick the one that occurs
1528   // first (in the final value).
1529   void collectValueRotInfo() {
1530     ValueRots.clear();
1531
1532     for (auto &BG : BitGroups) {
1533       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1534       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1535       VRI.V = BG.V;
1536       VRI.RLAmt = BG.RLAmt;
1537       VRI.Repl32 = BG.Repl32;
1538       VRI.NumGroups += 1;
1539       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1540     }
1541
1542     // Now that we've collected the various ValueRotInfo instances, we need to
1543     // sort them.
1544     ValueRotsVec.clear();
1545     for (auto &I : ValueRots) {
1546       ValueRotsVec.push_back(I.second);
1547     }
1548     llvm::sort(ValueRotsVec);
1549   }
1550
1551   // In 64-bit mode, rlwinm and friends have a rotation operator that
1552   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1553   // indices of these instructions can only be in the lower 32 bits, so they
1554   // can only represent some 64-bit bit groups. However, when they can be used,
1555   // the 32-bit replication can be used to represent, as a single bit group,
1556   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1557   // groups when possible. Returns true if any of the bit groups were
1558   // converted.
1559   void assignRepl32BitGroups() {
1560     // If we have bits like this:
1561     //
1562     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1563     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1564     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1565     //
1566     // But, making use of a 32-bit operation that replicates the low-order 32
1567     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1568     // of 8.
1569
1570     auto IsAllLow32 = [this](BitGroup & BG) {
1571       if (BG.StartIdx <= BG.EndIdx) {
1572         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1573           if (!Bits[i].hasValue())
1574             continue;
1575           if (Bits[i].getValueBitIndex() >= 32)
1576             return false;
1577         }
1578       } else {
1579         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1580           if (!Bits[i].hasValue())
1581             continue;
1582           if (Bits[i].getValueBitIndex() >= 32)
1583             return false;
1584         }
1585         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1586           if (!Bits[i].hasValue())
1587             continue;
1588           if (Bits[i].getValueBitIndex() >= 32)
1589             return false;
1590         }
1591       }
1592
1593       return true;
1594     };
1595
1596     for (auto &BG : BitGroups) {
1597       // If this bit group has RLAmt of 0 and will not be merged with
1598       // another bit group, we don't benefit from Repl32. We don't mark
1599       // such group to give more freedom for later instruction selection.
1600       if (BG.RLAmt == 0) {
1601         auto PotentiallyMerged = [this](BitGroup & BG) {
1602           for (auto &BG2 : BitGroups)
1603             if (&BG != &BG2 && BG.V == BG2.V &&
1604                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1605               return true;
1606           return false;
1607         };
1608         if (!PotentiallyMerged(BG))
1609           continue;
1610       }
1611       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1612         if (IsAllLow32(BG)) {
1613           if (BG.RLAmt >= 32) {
1614             BG.RLAmt -= 32;
1615             BG.Repl32CR = true;
1616           }
1617
1618           BG.Repl32 = true;
1619
1620           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1621                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1622                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1623         }
1624       }
1625     }
1626
1627     // Now walk through the bit groups, consolidating where possible.
1628     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1629       // We might want to remove this bit group by merging it with the previous
1630       // group (which might be the ending group).
1631       auto IP = (I == BitGroups.begin()) ?
1632                 std::prev(BitGroups.end()) : std::prev(I);
1633       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1634           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1635
1636         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1637                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1638                           << I->StartIdx << ", " << I->EndIdx
1639                           << "] with group with range [" << IP->StartIdx << ", "
1640                           << IP->EndIdx << "]\n");
1641
1642         IP->EndIdx = I->EndIdx;
1643         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1644         IP->Repl32Coalesced = true;
1645         I = BitGroups.erase(I);
1646         continue;
1647       } else {
1648         // There is a special case worth handling: If there is a single group
1649         // covering the entire upper 32 bits, and it can be merged with both
1650         // the next and previous groups (which might be the same group), then
1651         // do so. If it is the same group (so there will be only one group in
1652         // total), then we need to reverse the order of the range so that it
1653         // covers the entire 64 bits.
1654         if (I->StartIdx == 32 && I->EndIdx == 63) {
1655           assert(std::next(I) == BitGroups.end() &&
1656                  "bit group ends at index 63 but there is another?");
1657           auto IN = BitGroups.begin();
1658
1659           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1660               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1661               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1662               IsAllLow32(*I)) {
1663
1664             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1665                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1666                               << ", " << I->EndIdx
1667                               << "] with 32-bit replicated groups with ranges ["
1668                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1669                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1670
1671             if (IP == IN) {
1672               // There is only one other group; change it to cover the whole
1673               // range (backward, so that it can still be Repl32 but cover the
1674               // whole 64-bit range).
1675               IP->StartIdx = 31;
1676               IP->EndIdx = 30;
1677               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1678               IP->Repl32Coalesced = true;
1679               I = BitGroups.erase(I);
1680             } else {
1681               // There are two separate groups, one before this group and one
1682               // after us (at the beginning). We're going to remove this group,
1683               // but also the group at the very beginning.
1684               IP->EndIdx = IN->EndIdx;
1685               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1686               IP->Repl32Coalesced = true;
1687               I = BitGroups.erase(I);
1688               BitGroups.erase(BitGroups.begin());
1689             }
1690
1691             // This must be the last group in the vector (and we might have
1692             // just invalidated the iterator above), so break here.
1693             break;
1694           }
1695         }
1696       }
1697
1698       ++I;
1699     }
1700   }
1701
1702   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1703     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1704   }
1705
1706   uint64_t getZerosMask() {
1707     uint64_t Mask = 0;
1708     for (unsigned i = 0; i < Bits.size(); ++i) {
1709       if (Bits[i].hasValue())
1710         continue;
1711       Mask |= (UINT64_C(1) << i);
1712     }
1713
1714     return ~Mask;
1715   }
1716
1717   // This method extends an input value to 64 bit if input is 32-bit integer.
1718   // While selecting instructions in BitPermutationSelector in 64-bit mode,
1719   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1720   // In such case, we extend it to 64 bit to be consistent with other values.
1721   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1722     if (V.getValueSizeInBits() == 64)
1723       return V;
1724
1725     assert(V.getValueSizeInBits() == 32);
1726     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1727     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1728                                                    MVT::i64), 0);
1729     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1730                                                     MVT::i64, ImDef, V,
1731                                                     SubRegIdx), 0);
1732     return ExtVal;
1733   }
1734
1735   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
1736     if (V.getValueSizeInBits() == 32)
1737       return V;
1738
1739     assert(V.getValueSizeInBits() == 64);
1740     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1741     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
1742                                                     MVT::i32, V, SubRegIdx), 0);
1743     return SubVal;
1744   }
1745
1746   // Depending on the number of groups for a particular value, it might be
1747   // better to rotate, mask explicitly (using andi/andis), and then or the
1748   // result. Select this part of the result first.
1749   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1750     if (BPermRewriterNoMasking)
1751       return;
1752
1753     for (ValueRotInfo &VRI : ValueRotsVec) {
1754       unsigned Mask = 0;
1755       for (unsigned i = 0; i < Bits.size(); ++i) {
1756         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1757           continue;
1758         if (RLAmt[i] != VRI.RLAmt)
1759           continue;
1760         Mask |= (1u << i);
1761       }
1762
1763       // Compute the masks for andi/andis that would be necessary.
1764       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1765       assert((ANDIMask != 0 || ANDISMask != 0) &&
1766              "No set bits in mask for value bit groups");
1767       bool NeedsRotate = VRI.RLAmt != 0;
1768
1769       // We're trying to minimize the number of instructions. If we have one
1770       // group, using one of andi/andis can break even.  If we have three
1771       // groups, we can use both andi and andis and break even (to use both
1772       // andi and andis we also need to or the results together). We need four
1773       // groups if we also need to rotate. To use andi/andis we need to do more
1774       // than break even because rotate-and-mask instructions tend to be easier
1775       // to schedule.
1776
1777       // FIXME: We've biased here against using andi/andis, which is right for
1778       // POWER cores, but not optimal everywhere. For example, on the A2,
1779       // andi/andis have single-cycle latency whereas the rotate-and-mask
1780       // instructions take two cycles, and it would be better to bias toward
1781       // andi/andis in break-even cases.
1782
1783       unsigned NumAndInsts = (unsigned) NeedsRotate +
1784                              (unsigned) (ANDIMask != 0) +
1785                              (unsigned) (ANDISMask != 0) +
1786                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1787                              (unsigned) (bool) Res;
1788
1789       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
1790                         << " RL: " << VRI.RLAmt << ":"
1791                         << "\n\t\t\tisel using masking: " << NumAndInsts
1792                         << " using rotates: " << VRI.NumGroups << "\n");
1793
1794       if (NumAndInsts >= VRI.NumGroups)
1795         continue;
1796
1797       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1798
1799       if (InstCnt) *InstCnt += NumAndInsts;
1800
1801       SDValue VRot;
1802       if (VRI.RLAmt) {
1803         SDValue Ops[] =
1804           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
1805             getI32Imm(0, dl), getI32Imm(31, dl) };
1806         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1807                                               Ops), 0);
1808       } else {
1809         VRot = TruncateToInt32(VRI.V, dl);
1810       }
1811
1812       SDValue ANDIVal, ANDISVal;
1813       if (ANDIMask != 0)
1814         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1815                             VRot, getI32Imm(ANDIMask, dl)), 0);
1816       if (ANDISMask != 0)
1817         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1818                              VRot, getI32Imm(ANDISMask, dl)), 0);
1819
1820       SDValue TotalVal;
1821       if (!ANDIVal)
1822         TotalVal = ANDISVal;
1823       else if (!ANDISVal)
1824         TotalVal = ANDIVal;
1825       else
1826         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1827                              ANDIVal, ANDISVal), 0);
1828
1829       if (!Res)
1830         Res = TotalVal;
1831       else
1832         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1833                         Res, TotalVal), 0);
1834
1835       // Now, remove all groups with this underlying value and rotation
1836       // factor.
1837       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1838         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1839       });
1840     }
1841   }
1842
1843   // Instruction selection for the 32-bit case.
1844   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1845     SDLoc dl(N);
1846     SDValue Res;
1847
1848     if (InstCnt) *InstCnt = 0;
1849
1850     // Take care of cases that should use andi/andis first.
1851     SelectAndParts32(dl, Res, InstCnt);
1852
1853     // If we've not yet selected a 'starting' instruction, and we have no zeros
1854     // to fill in, select the (Value, RLAmt) with the highest priority (largest
1855     // number of groups), and start with this rotated value.
1856     if ((!NeedMask || LateMask) && !Res) {
1857       ValueRotInfo &VRI = ValueRotsVec[0];
1858       if (VRI.RLAmt) {
1859         if (InstCnt) *InstCnt += 1;
1860         SDValue Ops[] =
1861           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
1862             getI32Imm(0, dl), getI32Imm(31, dl) };
1863         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1864                       0);
1865       } else {
1866         Res = TruncateToInt32(VRI.V, dl);
1867       }
1868
1869       // Now, remove all groups with this underlying value and rotation factor.
1870       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1871         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1872       });
1873     }
1874
1875     if (InstCnt) *InstCnt += BitGroups.size();
1876
1877     // Insert the other groups (one at a time).
1878     for (auto &BG : BitGroups) {
1879       if (!Res) {
1880         SDValue Ops[] =
1881           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
1882             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1883             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1884         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1885       } else {
1886         SDValue Ops[] =
1887           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
1888               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1889             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1890         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1891       }
1892     }
1893
1894     if (LateMask) {
1895       unsigned Mask = (unsigned) getZerosMask();
1896
1897       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1898       assert((ANDIMask != 0 || ANDISMask != 0) &&
1899              "No set bits in zeros mask?");
1900
1901       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1902                                (unsigned) (ANDISMask != 0) +
1903                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1904
1905       SDValue ANDIVal, ANDISVal;
1906       if (ANDIMask != 0)
1907         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1908                             Res, getI32Imm(ANDIMask, dl)), 0);
1909       if (ANDISMask != 0)
1910         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1911                              Res, getI32Imm(ANDISMask, dl)), 0);
1912
1913       if (!ANDIVal)
1914         Res = ANDISVal;
1915       else if (!ANDISVal)
1916         Res = ANDIVal;
1917       else
1918         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1919                         ANDIVal, ANDISVal), 0);
1920     }
1921
1922     return Res.getNode();
1923   }
1924
1925   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1926                                 unsigned MaskStart, unsigned MaskEnd,
1927                                 bool IsIns) {
1928     // In the notation used by the instructions, 'start' and 'end' are reversed
1929     // because bits are counted from high to low order.
1930     unsigned InstMaskStart = 64 - MaskEnd - 1,
1931              InstMaskEnd   = 64 - MaskStart - 1;
1932
1933     if (Repl32)
1934       return 1;
1935
1936     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1937         InstMaskEnd == 63 - RLAmt)
1938       return 1;
1939
1940     return 2;
1941   }
1942
1943   // For 64-bit values, not all combinations of rotates and masks are
1944   // available. Produce one if it is available.
1945   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1946                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1947                           unsigned *InstCnt = nullptr) {
1948     // In the notation used by the instructions, 'start' and 'end' are reversed
1949     // because bits are counted from high to low order.
1950     unsigned InstMaskStart = 64 - MaskEnd - 1,
1951              InstMaskEnd   = 64 - MaskStart - 1;
1952
1953     if (InstCnt) *InstCnt += 1;
1954
1955     if (Repl32) {
1956       // This rotation amount assumes that the lower 32 bits of the quantity
1957       // are replicated in the high 32 bits by the rotation operator (which is
1958       // done by rlwinm and friends).
1959       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1960       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1961       SDValue Ops[] =
1962         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1963           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
1964       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1965                                             Ops), 0);
1966     }
1967
1968     if (InstMaskEnd == 63) {
1969       SDValue Ops[] =
1970         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1971           getI32Imm(InstMaskStart, dl) };
1972       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1973     }
1974
1975     if (InstMaskStart == 0) {
1976       SDValue Ops[] =
1977         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1978           getI32Imm(InstMaskEnd, dl) };
1979       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1980     }
1981
1982     if (InstMaskEnd == 63 - RLAmt) {
1983       SDValue Ops[] =
1984         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1985           getI32Imm(InstMaskStart, dl) };
1986       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1987     }
1988
1989     // We cannot do this with a single instruction, so we'll use two. The
1990     // problem is that we're not free to choose both a rotation amount and mask
1991     // start and end independently. We can choose an arbitrary mask start and
1992     // end, but then the rotation amount is fixed. Rotation, however, can be
1993     // inverted, and so by applying an "inverse" rotation first, we can get the
1994     // desired result.
1995     if (InstCnt) *InstCnt += 1;
1996
1997     // The rotation mask for the second instruction must be MaskStart.
1998     unsigned RLAmt2 = MaskStart;
1999     // The first instruction must rotate V so that the overall rotation amount
2000     // is RLAmt.
2001     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2002     if (RLAmt1)
2003       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2004     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2005   }
2006
2007   // For 64-bit values, not all combinations of rotates and masks are
2008   // available. Produce a rotate-mask-and-insert if one is available.
2009   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2010                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2011                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2012     // In the notation used by the instructions, 'start' and 'end' are reversed
2013     // because bits are counted from high to low order.
2014     unsigned InstMaskStart = 64 - MaskEnd - 1,
2015              InstMaskEnd   = 64 - MaskStart - 1;
2016
2017     if (InstCnt) *InstCnt += 1;
2018
2019     if (Repl32) {
2020       // This rotation amount assumes that the lower 32 bits of the quantity
2021       // are replicated in the high 32 bits by the rotation operator (which is
2022       // done by rlwinm and friends).
2023       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2024       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2025       SDValue Ops[] =
2026         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2027           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2028       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2029                                             Ops), 0);
2030     }
2031
2032     if (InstMaskEnd == 63 - RLAmt) {
2033       SDValue Ops[] =
2034         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2035           getI32Imm(InstMaskStart, dl) };
2036       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2037     }
2038
2039     // We cannot do this with a single instruction, so we'll use two. The
2040     // problem is that we're not free to choose both a rotation amount and mask
2041     // start and end independently. We can choose an arbitrary mask start and
2042     // end, but then the rotation amount is fixed. Rotation, however, can be
2043     // inverted, and so by applying an "inverse" rotation first, we can get the
2044     // desired result.
2045     if (InstCnt) *InstCnt += 1;
2046
2047     // The rotation mask for the second instruction must be MaskStart.
2048     unsigned RLAmt2 = MaskStart;
2049     // The first instruction must rotate V so that the overall rotation amount
2050     // is RLAmt.
2051     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2052     if (RLAmt1)
2053       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2054     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2055   }
2056
2057   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2058     if (BPermRewriterNoMasking)
2059       return;
2060
2061     // The idea here is the same as in the 32-bit version, but with additional
2062     // complications from the fact that Repl32 might be true. Because we
2063     // aggressively convert bit groups to Repl32 form (which, for small
2064     // rotation factors, involves no other change), and then coalesce, it might
2065     // be the case that a single 64-bit masking operation could handle both
2066     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2067     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2068     // completely capture the new combined bit group.
2069
2070     for (ValueRotInfo &VRI : ValueRotsVec) {
2071       uint64_t Mask = 0;
2072
2073       // We need to add to the mask all bits from the associated bit groups.
2074       // If Repl32 is false, we need to add bits from bit groups that have
2075       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2076       // group is trivially convertable if it overlaps only with the lower 32
2077       // bits, and the group has not been coalesced.
2078       auto MatchingBG = [VRI](const BitGroup &BG) {
2079         if (VRI.V != BG.V)
2080           return false;
2081
2082         unsigned EffRLAmt = BG.RLAmt;
2083         if (!VRI.Repl32 && BG.Repl32) {
2084           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2085               !BG.Repl32Coalesced) {
2086             if (BG.Repl32CR)
2087               EffRLAmt += 32;
2088           } else {
2089             return false;
2090           }
2091         } else if (VRI.Repl32 != BG.Repl32) {
2092           return false;
2093         }
2094
2095         return VRI.RLAmt == EffRLAmt;
2096       };
2097
2098       for (auto &BG : BitGroups) {
2099         if (!MatchingBG(BG))
2100           continue;
2101
2102         if (BG.StartIdx <= BG.EndIdx) {
2103           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2104             Mask |= (UINT64_C(1) << i);
2105         } else {
2106           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2107             Mask |= (UINT64_C(1) << i);
2108           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2109             Mask |= (UINT64_C(1) << i);
2110         }
2111       }
2112
2113       // We can use the 32-bit andi/andis technique if the mask does not
2114       // require any higher-order bits. This can save an instruction compared
2115       // to always using the general 64-bit technique.
2116       bool Use32BitInsts = isUInt<32>(Mask);
2117       // Compute the masks for andi/andis that would be necessary.
2118       unsigned ANDIMask = (Mask & UINT16_MAX),
2119                ANDISMask = (Mask >> 16) & UINT16_MAX;
2120
2121       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2122
2123       unsigned NumAndInsts = (unsigned) NeedsRotate +
2124                              (unsigned) (bool) Res;
2125       if (Use32BitInsts)
2126         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2127                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2128       else
2129         NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1;
2130
2131       unsigned NumRLInsts = 0;
2132       bool FirstBG = true;
2133       bool MoreBG = false;
2134       for (auto &BG : BitGroups) {
2135         if (!MatchingBG(BG)) {
2136           MoreBG = true;
2137           continue;
2138         }
2139         NumRLInsts +=
2140           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2141                                !FirstBG);
2142         FirstBG = false;
2143       }
2144
2145       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2146                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2147                         << "\n\t\t\tisel using masking: " << NumAndInsts
2148                         << " using rotates: " << NumRLInsts << "\n");
2149
2150       // When we'd use andi/andis, we bias toward using the rotates (andi only
2151       // has a record form, and is cracked on POWER cores). However, when using
2152       // general 64-bit constant formation, bias toward the constant form,
2153       // because that exposes more opportunities for CSE.
2154       if (NumAndInsts > NumRLInsts)
2155         continue;
2156       // When merging multiple bit groups, instruction or is used.
2157       // But when rotate is used, rldimi can inert the rotated value into any
2158       // register, so instruction or can be avoided.
2159       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2160         continue;
2161
2162       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2163
2164       if (InstCnt) *InstCnt += NumAndInsts;
2165
2166       SDValue VRot;
2167       // We actually need to generate a rotation if we have a non-zero rotation
2168       // factor or, in the Repl32 case, if we care about any of the
2169       // higher-order replicated bits. In the latter case, we generate a mask
2170       // backward so that it actually includes the entire 64 bits.
2171       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2172         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2173                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2174       else
2175         VRot = VRI.V;
2176
2177       SDValue TotalVal;
2178       if (Use32BitInsts) {
2179         assert((ANDIMask != 0 || ANDISMask != 0) &&
2180                "No set bits in mask when using 32-bit ands for 64-bit value");
2181
2182         SDValue ANDIVal, ANDISVal;
2183         if (ANDIMask != 0)
2184           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
2185                                                    ExtendToInt64(VRot, dl),
2186                                                    getI32Imm(ANDIMask, dl)),
2187                             0);
2188         if (ANDISMask != 0)
2189           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
2190                                                     ExtendToInt64(VRot, dl),
2191                                                     getI32Imm(ANDISMask, dl)),
2192                              0);
2193
2194         if (!ANDIVal)
2195           TotalVal = ANDISVal;
2196         else if (!ANDISVal)
2197           TotalVal = ANDIVal;
2198         else
2199           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2200                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2201       } else {
2202         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2203         TotalVal =
2204           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2205                                          ExtendToInt64(VRot, dl), TotalVal),
2206                   0);
2207      }
2208
2209       if (!Res)
2210         Res = TotalVal;
2211       else
2212         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2213                                              ExtendToInt64(Res, dl), TotalVal),
2214                       0);
2215
2216       // Now, remove all groups with this underlying value and rotation
2217       // factor.
2218       eraseMatchingBitGroups(MatchingBG);
2219     }
2220   }
2221
2222   // Instruction selection for the 64-bit case.
2223   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2224     SDLoc dl(N);
2225     SDValue Res;
2226
2227     if (InstCnt) *InstCnt = 0;
2228
2229     // Take care of cases that should use andi/andis first.
2230     SelectAndParts64(dl, Res, InstCnt);
2231
2232     // If we've not yet selected a 'starting' instruction, and we have no zeros
2233     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2234     // number of groups), and start with this rotated value.
2235     if ((!NeedMask || LateMask) && !Res) {
2236       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2237       // groups will come first, and so the VRI representing the largest number
2238       // of groups might not be first (it might be the first Repl32 groups).
2239       unsigned MaxGroupsIdx = 0;
2240       if (!ValueRotsVec[0].Repl32) {
2241         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2242           if (ValueRotsVec[i].Repl32) {
2243             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2244               MaxGroupsIdx = i;
2245             break;
2246           }
2247       }
2248
2249       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2250       bool NeedsRotate = false;
2251       if (VRI.RLAmt) {
2252         NeedsRotate = true;
2253       } else if (VRI.Repl32) {
2254         for (auto &BG : BitGroups) {
2255           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2256               BG.Repl32 != VRI.Repl32)
2257             continue;
2258
2259           // We don't need a rotate if the bit group is confined to the lower
2260           // 32 bits.
2261           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2262             continue;
2263
2264           NeedsRotate = true;
2265           break;
2266         }
2267       }
2268
2269       if (NeedsRotate)
2270         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2271                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2272                               InstCnt);
2273       else
2274         Res = VRI.V;
2275
2276       // Now, remove all groups with this underlying value and rotation factor.
2277       if (Res)
2278         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2279           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2280                  BG.Repl32 == VRI.Repl32;
2281         });
2282     }
2283
2284     // Because 64-bit rotates are more flexible than inserts, we might have a
2285     // preference regarding which one we do first (to save one instruction).
2286     if (!Res)
2287       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2288         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2289                                 false) <
2290             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2291                                 true)) {
2292           if (I != BitGroups.begin()) {
2293             BitGroup BG = *I;
2294             BitGroups.erase(I);
2295             BitGroups.insert(BitGroups.begin(), BG);
2296           }
2297
2298           break;
2299         }
2300       }
2301
2302     // Insert the other groups (one at a time).
2303     for (auto &BG : BitGroups) {
2304       if (!Res)
2305         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2306                               BG.EndIdx, InstCnt);
2307       else
2308         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2309                                  BG.StartIdx, BG.EndIdx, InstCnt);
2310     }
2311
2312     if (LateMask) {
2313       uint64_t Mask = getZerosMask();
2314
2315       // We can use the 32-bit andi/andis technique if the mask does not
2316       // require any higher-order bits. This can save an instruction compared
2317       // to always using the general 64-bit technique.
2318       bool Use32BitInsts = isUInt<32>(Mask);
2319       // Compute the masks for andi/andis that would be necessary.
2320       unsigned ANDIMask = (Mask & UINT16_MAX),
2321                ANDISMask = (Mask >> 16) & UINT16_MAX;
2322
2323       if (Use32BitInsts) {
2324         assert((ANDIMask != 0 || ANDISMask != 0) &&
2325                "No set bits in mask when using 32-bit ands for 64-bit value");
2326
2327         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2328                                  (unsigned) (ANDISMask != 0) +
2329                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2330
2331         SDValue ANDIVal, ANDISVal;
2332         if (ANDIMask != 0)
2333           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
2334                               ExtendToInt64(Res, dl), getI32Imm(ANDIMask, dl)), 0);
2335         if (ANDISMask != 0)
2336           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
2337                                ExtendToInt64(Res, dl), getI32Imm(ANDISMask, dl)), 0);
2338
2339         if (!ANDIVal)
2340           Res = ANDISVal;
2341         else if (!ANDISVal)
2342           Res = ANDIVal;
2343         else
2344           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2345                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2346       } else {
2347         if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1;
2348
2349         SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2350         Res =
2351           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2352                                          ExtendToInt64(Res, dl), MaskVal), 0);
2353       }
2354     }
2355
2356     return Res.getNode();
2357   }
2358
2359   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2360     // Fill in BitGroups.
2361     collectBitGroups(LateMask);
2362     if (BitGroups.empty())
2363       return nullptr;
2364
2365     // For 64-bit values, figure out when we can use 32-bit instructions.
2366     if (Bits.size() == 64)
2367       assignRepl32BitGroups();
2368
2369     // Fill in ValueRotsVec.
2370     collectValueRotInfo();
2371
2372     if (Bits.size() == 32) {
2373       return Select32(N, LateMask, InstCnt);
2374     } else {
2375       assert(Bits.size() == 64 && "Not 64 bits here?");
2376       return Select64(N, LateMask, InstCnt);
2377     }
2378
2379     return nullptr;
2380   }
2381
2382   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2383     BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
2384   }
2385
2386   SmallVector<ValueBit, 64> Bits;
2387
2388   bool NeedMask;
2389   SmallVector<unsigned, 64> RLAmt;
2390
2391   SmallVector<BitGroup, 16> BitGroups;
2392
2393   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2394   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2395
2396   SelectionDAG *CurDAG;
2397
2398 public:
2399   BitPermutationSelector(SelectionDAG *DAG)
2400     : CurDAG(DAG) {}
2401
2402   // Here we try to match complex bit permutations into a set of
2403   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2404   // known to produce optimal code for common cases (like i32 byte swapping).
2405   SDNode *Select(SDNode *N) {
2406     Memoizer.clear();
2407     auto Result =
2408         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2409     if (!Result.first)
2410       return nullptr;
2411     Bits = std::move(*Result.second);
2412
2413     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2414                          " selection for:    ");
2415     LLVM_DEBUG(N->dump(CurDAG));
2416
2417     // Fill it RLAmt and set NeedMask.
2418     computeRotationAmounts();
2419
2420     if (!NeedMask)
2421       return Select(N, false);
2422
2423     // We currently have two techniques for handling results with zeros: early
2424     // masking (the default) and late masking. Late masking is sometimes more
2425     // efficient, but because the structure of the bit groups is different, it
2426     // is hard to tell without generating both and comparing the results. With
2427     // late masking, we ignore zeros in the resulting value when inserting each
2428     // set of bit groups, and then mask in the zeros at the end. With early
2429     // masking, we only insert the non-zero parts of the result at every step.
2430
2431     unsigned InstCnt = 0, InstCntLateMask = 0;
2432     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2433     SDNode *RN = Select(N, false, &InstCnt);
2434     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2435
2436     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2437     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2438     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2439                       << " instructions\n");
2440
2441     if (InstCnt <= InstCntLateMask) {
2442       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2443       return RN;
2444     }
2445
2446     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2447     return RNLM;
2448   }
2449 };
2450
2451 class IntegerCompareEliminator {
2452   SelectionDAG *CurDAG;
2453   PPCDAGToDAGISel *S;
2454   // Conversion type for interpreting results of a 32-bit instruction as
2455   // a 64-bit value or vice versa.
2456   enum ExtOrTruncConversion { Ext, Trunc };
2457
2458   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2459   // in a GPR.
2460   // ZExtOrig - use the original condition code, zero-extend value
2461   // ZExtInvert - invert the condition code, zero-extend value
2462   // SExtOrig - use the original condition code, sign-extend value
2463   // SExtInvert - invert the condition code, sign-extend value
2464   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2465
2466   // Comparisons against zero to emit GPR code sequences for. Each of these
2467   // sequences may need to be emitted for two or more equivalent patterns.
2468   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2469   // matters as well as the extension type: sext (-1/0), zext (1/0).
2470   // GEZExt - (zext (LHS >= 0))
2471   // GESExt - (sext (LHS >= 0))
2472   // LEZExt - (zext (LHS <= 0))
2473   // LESExt - (sext (LHS <= 0))
2474   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2475
2476   SDNode *tryEXTEND(SDNode *N);
2477   SDNode *tryLogicOpOfCompares(SDNode *N);
2478   SDValue computeLogicOpInGPR(SDValue LogicOp);
2479   SDValue signExtendInputIfNeeded(SDValue Input);
2480   SDValue zeroExtendInputIfNeeded(SDValue Input);
2481   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2482   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2483                                         ZeroCompare CmpTy);
2484   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2485                               int64_t RHSValue, SDLoc dl);
2486  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2487                               int64_t RHSValue, SDLoc dl);
2488   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2489                               int64_t RHSValue, SDLoc dl);
2490   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2491                               int64_t RHSValue, SDLoc dl);
2492   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2493
2494 public:
2495   IntegerCompareEliminator(SelectionDAG *DAG,
2496                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2497     assert(CurDAG->getTargetLoweringInfo()
2498            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2499            "Only expecting to use this on 64 bit targets.");
2500   }
2501   SDNode *Select(SDNode *N) {
2502     if (CmpInGPR == ICGPR_None)
2503       return nullptr;
2504     switch (N->getOpcode()) {
2505     default: break;
2506     case ISD::ZERO_EXTEND:
2507       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2508           CmpInGPR == ICGPR_SextI64)
2509         return nullptr;
2510       LLVM_FALLTHROUGH;
2511     case ISD::SIGN_EXTEND:
2512       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2513           CmpInGPR == ICGPR_ZextI64)
2514         return nullptr;
2515       return tryEXTEND(N);
2516     case ISD::AND:
2517     case ISD::OR:
2518     case ISD::XOR:
2519       return tryLogicOpOfCompares(N);
2520     }
2521     return nullptr;
2522   }
2523 };
2524
2525 static bool isLogicOp(unsigned Opc) {
2526   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2527 }
2528 // The obvious case for wanting to keep the value in a GPR. Namely, the
2529 // result of the comparison is actually needed in a GPR.
2530 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2531   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2532           N->getOpcode() == ISD::SIGN_EXTEND) &&
2533          "Expecting a zero/sign extend node!");
2534   SDValue WideRes;
2535   // If we are zero-extending the result of a logical operation on i1
2536   // values, we can keep the values in GPRs.
2537   if (isLogicOp(N->getOperand(0).getOpcode()) &&
2538       N->getOperand(0).getValueType() == MVT::i1 &&
2539       N->getOpcode() == ISD::ZERO_EXTEND)
2540     WideRes = computeLogicOpInGPR(N->getOperand(0));
2541   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2542     return nullptr;
2543   else
2544     WideRes =
2545       getSETCCInGPR(N->getOperand(0),
2546                     N->getOpcode() == ISD::SIGN_EXTEND ?
2547                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2548
2549   if (!WideRes)
2550     return nullptr;
2551
2552   SDLoc dl(N);
2553   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2554   bool Output32Bit = N->getValueType(0) == MVT::i32;
2555
2556   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2557   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2558
2559   SDValue ConvOp = WideRes;
2560   if (Input32Bit != Output32Bit)
2561     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2562                            ExtOrTruncConversion::Trunc);
2563   return ConvOp.getNode();
2564 }
2565
2566 // Attempt to perform logical operations on the results of comparisons while
2567 // keeping the values in GPRs. Without doing so, these would end up being
2568 // lowered to CR-logical operations which suffer from significant latency and
2569 // low ILP.
2570 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2571   if (N->getValueType(0) != MVT::i1)
2572     return nullptr;
2573   assert(isLogicOp(N->getOpcode()) &&
2574          "Expected a logic operation on setcc results.");
2575   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2576   if (!LoweredLogical)
2577     return nullptr;
2578
2579   SDLoc dl(N);
2580   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2581   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2582   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2583   SDValue LHS = LoweredLogical.getOperand(0);
2584   SDValue RHS = LoweredLogical.getOperand(1);
2585   SDValue WideOp;
2586   SDValue OpToConvToRecForm;
2587
2588   // Look through any 32-bit to 64-bit implicit extend nodes to find the
2589   // opcode that is input to the XORI.
2590   if (IsBitwiseNegate &&
2591       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2592     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2593   else if (IsBitwiseNegate)
2594     // If the input to the XORI isn't an extension, that's what we're after.
2595     OpToConvToRecForm = LoweredLogical.getOperand(0);
2596   else
2597     // If this is not an XORI, it is a reg-reg logical op and we can convert
2598     // it to record-form.
2599     OpToConvToRecForm = LoweredLogical;
2600
2601   // Get the record-form version of the node we're looking to use to get the
2602   // CR result from.
2603   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2604   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2605
2606   // Convert the right node to record-form. This is either the logical we're
2607   // looking at or it is the input node to the negation (if we're looking at
2608   // a bitwise negation).
2609   if (NewOpc != -1 && IsBitwiseNegate) {
2610     // The input to the XORI has a record-form. Use it.
2611     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2612            "Expected a PPC::XORI8 only for bitwise negation.");
2613     // Emit the record-form instruction.
2614     std::vector<SDValue> Ops;
2615     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2616       Ops.push_back(OpToConvToRecForm.getOperand(i));
2617
2618     WideOp =
2619       SDValue(CurDAG->getMachineNode(NewOpc, dl,
2620                                      OpToConvToRecForm.getValueType(),
2621                                      MVT::Glue, Ops), 0);
2622   } else {
2623     assert((NewOpc != -1 || !IsBitwiseNegate) &&
2624            "No record form available for AND8/OR8/XOR8?");
2625     WideOp =
2626       SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl,
2627                                      MVT::i64, MVT::Glue, LHS, RHS), 0);
2628   }
2629
2630   // Select this node to a single bit from CR0 set by the record-form node
2631   // just created. For bitwise negation, use the EQ bit which is the equivalent
2632   // of negating the result (i.e. it is a bit set when the result of the
2633   // operation is zero).
2634   SDValue SRIdxVal =
2635     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2636   SDValue CRBit =
2637     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2638                                    MVT::i1, CR0Reg, SRIdxVal,
2639                                    WideOp.getValue(1)), 0);
2640   return CRBit.getNode();
2641 }
2642
2643 // Lower a logical operation on i1 values into a GPR sequence if possible.
2644 // The result can be kept in a GPR if requested.
2645 // Three types of inputs can be handled:
2646 // - SETCC
2647 // - TRUNCATE
2648 // - Logical operation (AND/OR/XOR)
2649 // There is also a special case that is handled (namely a complement operation
2650 // achieved with xor %a, -1).
2651 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2652   assert(isLogicOp(LogicOp.getOpcode()) &&
2653         "Can only handle logic operations here.");
2654   assert(LogicOp.getValueType() == MVT::i1 &&
2655          "Can only handle logic operations on i1 values here.");
2656   SDLoc dl(LogicOp);
2657   SDValue LHS, RHS;
2658
2659  // Special case: xor %a, -1
2660   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2661
2662   // Produces a GPR sequence for each operand of the binary logic operation.
2663   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2664   // the value in a GPR and for logic operations, it will recursively produce
2665   // a GPR sequence for the operation.
2666  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2667     unsigned OperandOpcode = Operand.getOpcode();
2668     if (OperandOpcode == ISD::SETCC)
2669       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2670     else if (OperandOpcode == ISD::TRUNCATE) {
2671       SDValue InputOp = Operand.getOperand(0);
2672      EVT InVT = InputOp.getValueType();
2673       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2674                                             PPC::RLDICL, dl, InVT, InputOp,
2675                                             S->getI64Imm(0, dl),
2676                                             S->getI64Imm(63, dl)), 0);
2677     } else if (isLogicOp(OperandOpcode))
2678       return computeLogicOpInGPR(Operand);
2679     return SDValue();
2680   };
2681   LHS = getLogicOperand(LogicOp.getOperand(0));
2682   RHS = getLogicOperand(LogicOp.getOperand(1));
2683
2684   // If a GPR sequence can't be produced for the LHS we can't proceed.
2685   // Not producing a GPR sequence for the RHS is only a problem if this isn't
2686   // a bitwise negation operation.
2687   if (!LHS || (!RHS && !IsBitwiseNegation))
2688     return SDValue();
2689
2690   NumLogicOpsOnComparison++;
2691
2692   // We will use the inputs as 64-bit values.
2693   if (LHS.getValueType() == MVT::i32)
2694     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2695   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2696     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2697
2698   unsigned NewOpc;
2699   switch (LogicOp.getOpcode()) {
2700   default: llvm_unreachable("Unknown logic operation.");
2701   case ISD::AND: NewOpc = PPC::AND8; break;
2702   case ISD::OR:  NewOpc = PPC::OR8;  break;
2703   case ISD::XOR: NewOpc = PPC::XOR8; break;
2704   }
2705
2706   if (IsBitwiseNegation) {
2707     RHS = S->getI64Imm(1, dl);
2708     NewOpc = PPC::XORI8;
2709   }
2710
2711   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2712
2713 }
2714
2715 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2716 /// Otherwise just reinterpret it as a 64-bit value.
2717 /// Useful when emitting comparison code for 32-bit values without using
2718 /// the compare instruction (which only considers the lower 32-bits).
2719 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2720   assert(Input.getValueType() == MVT::i32 &&
2721          "Can only sign-extend 32-bit values here.");
2722   unsigned Opc = Input.getOpcode();
2723
2724   // The value was sign extended and then truncated to 32-bits. No need to
2725   // sign extend it again.
2726   if (Opc == ISD::TRUNCATE &&
2727       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2728        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2729     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2730
2731   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2732   // The input is a sign-extending load. All ppc sign-extending loads
2733   // sign-extend to the full 64-bits.
2734   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
2735     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2736
2737   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2738   // We don't sign-extend constants.
2739   if (InputConst)
2740     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2741
2742   SDLoc dl(Input);
2743   SignExtensionsAdded++;
2744   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
2745                                         MVT::i64, Input), 0);
2746 }
2747
2748 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
2749 /// Otherwise just reinterpret it as a 64-bit value.
2750 /// Useful when emitting comparison code for 32-bit values without using
2751 /// the compare instruction (which only considers the lower 32-bits).
2752 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
2753   assert(Input.getValueType() == MVT::i32 &&
2754          "Can only zero-extend 32-bit values here.");
2755   unsigned Opc = Input.getOpcode();
2756
2757   // The only condition under which we can omit the actual extend instruction:
2758   // - The value is a positive constant
2759   // - The value comes from a load that isn't a sign-extending load
2760   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
2761   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
2762     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
2763      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
2764   if (IsTruncateOfZExt)
2765     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2766
2767   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2768   if (InputConst && InputConst->getSExtValue() >= 0)
2769     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2770
2771   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2772   // The input is a load that doesn't sign-extend (it will be zero-extended).
2773   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
2774     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2775
2776   // None of the above, need to zero-extend.
2777   SDLoc dl(Input);
2778   ZeroExtensionsAdded++;
2779   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
2780                                         S->getI64Imm(0, dl),
2781                                         S->getI64Imm(32, dl)), 0);
2782 }
2783
2784 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
2785 // course not actual zero/sign extensions that will generate machine code,
2786 // they're just a way to reinterpret a 32 bit value in a register as a
2787 // 64 bit value and vice-versa.
2788 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
2789                                                 ExtOrTruncConversion Conv) {
2790   SDLoc dl(NatWidthRes);
2791
2792   // For reinterpreting 32-bit values as 64 bit values, we generate
2793   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
2794   if (Conv == ExtOrTruncConversion::Ext) {
2795     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
2796     SDValue SubRegIdx =
2797       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2798     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
2799                                           ImDef, NatWidthRes, SubRegIdx), 0);
2800   }
2801
2802   assert(Conv == ExtOrTruncConversion::Trunc &&
2803          "Unknown convertion between 32 and 64 bit values.");
2804   // For reinterpreting 64-bit values as 32-bit values, we just need to
2805   // EXTRACT_SUBREG (i.e. extract the low word).
2806   SDValue SubRegIdx =
2807     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2808   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
2809                                         NatWidthRes, SubRegIdx), 0);
2810 }
2811
2812 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
2813 // Handle both zero-extensions and sign-extensions.
2814 SDValue
2815 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2816                                                          ZeroCompare CmpTy) {
2817   EVT InVT = LHS.getValueType();
2818   bool Is32Bit = InVT == MVT::i32;
2819   SDValue ToExtend;
2820
2821   // Produce the value that needs to be either zero or sign extended.
2822   switch (CmpTy) {
2823   case ZeroCompare::GEZExt:
2824   case ZeroCompare::GESExt:
2825     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
2826                                               dl, InVT, LHS, LHS), 0);
2827     break;
2828   case ZeroCompare::LEZExt:
2829   case ZeroCompare::LESExt: {
2830     if (Is32Bit) {
2831       // Upper 32 bits cannot be undefined for this sequence.
2832       LHS = signExtendInputIfNeeded(LHS);
2833       SDValue Neg =
2834         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2835       ToExtend =
2836         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2837                                        Neg, S->getI64Imm(1, dl),
2838                                        S->getI64Imm(63, dl)), 0);
2839     } else {
2840       SDValue Addi =
2841         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
2842                                        S->getI64Imm(~0ULL, dl)), 0);
2843       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2844                                                 Addi, LHS), 0);
2845     }
2846     break;
2847   }
2848   }
2849
2850   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
2851   if (!Is32Bit &&
2852       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
2853     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2854                                           ToExtend, S->getI64Imm(1, dl),
2855                                           S->getI64Imm(63, dl)), 0);
2856   if (!Is32Bit &&
2857       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
2858     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
2859                                           S->getI64Imm(63, dl)), 0);
2860
2861   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
2862   // For 32-bit sequences, the extensions differ between GE/LE cases.
2863   switch (CmpTy) {
2864   case ZeroCompare::GEZExt: {
2865     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
2866                            S->getI32Imm(31, dl) };
2867     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2868                                           ShiftOps), 0);
2869   }
2870   case ZeroCompare::GESExt:
2871     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
2872                                           S->getI32Imm(31, dl)), 0);
2873   case ZeroCompare::LEZExt:
2874     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
2875                                           S->getI32Imm(1, dl)), 0);
2876   case ZeroCompare::LESExt:
2877     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
2878                                           S->getI32Imm(-1, dl)), 0);
2879   }
2880
2881   // The above case covers all the enumerators so it can't have a default clause
2882   // to avoid compiler warnings.
2883   llvm_unreachable("Unknown zero-comparison type.");
2884 }
2885
2886 /// Produces a zero-extended result of comparing two 32-bit values according to
2887 /// the passed condition code.
2888 SDValue
2889 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
2890                                               ISD::CondCode CC,
2891                                               int64_t RHSValue, SDLoc dl) {
2892   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
2893       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
2894     return SDValue();
2895   bool IsRHSZero = RHSValue == 0;
2896   bool IsRHSOne = RHSValue == 1;
2897   bool IsRHSNegOne = RHSValue == -1LL;
2898   switch (CC) {
2899   default: return SDValue();
2900   case ISD::SETEQ: {
2901     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
2902     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
2903     SDValue Xor = IsRHSZero ? LHS :
2904       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2905     SDValue Clz =
2906       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2907     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2908       S->getI32Imm(31, dl) };
2909     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2910                                           ShiftOps), 0);
2911   }
2912   case ISD::SETNE: {
2913     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
2914     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
2915     SDValue Xor = IsRHSZero ? LHS :
2916       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2917     SDValue Clz =
2918       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2919     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2920       S->getI32Imm(31, dl) };
2921     SDValue Shift =
2922       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2923     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2924                                           S->getI32Imm(1, dl)), 0);
2925   }
2926   case ISD::SETGE: {
2927     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
2928     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
2929     if(IsRHSZero)
2930       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2931
2932     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2933     // by swapping inputs and falling through.
2934     std::swap(LHS, RHS);
2935     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2936     IsRHSZero = RHSConst && RHSConst->isNullValue();
2937     LLVM_FALLTHROUGH;
2938   }
2939   case ISD::SETLE: {
2940     if (CmpInGPR == ICGPR_NonExtIn)
2941       return SDValue();
2942     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
2943     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
2944     if(IsRHSZero) {
2945       if (CmpInGPR == ICGPR_NonExtIn)
2946         return SDValue();
2947       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2948     }
2949
2950     // The upper 32-bits of the register can't be undefined for this sequence.
2951     LHS = signExtendInputIfNeeded(LHS);
2952     RHS = signExtendInputIfNeeded(RHS);
2953     SDValue Sub =
2954       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
2955     SDValue Shift =
2956       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
2957                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
2958               0);
2959     return
2960       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
2961                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
2962   }
2963   case ISD::SETGT: {
2964     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
2965     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
2966     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
2967     // Handle SETLT -1 (which is equivalent to SETGE 0).
2968     if (IsRHSNegOne)
2969       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2970
2971     if (IsRHSZero) {
2972       if (CmpInGPR == ICGPR_NonExtIn)
2973         return SDValue();
2974       // The upper 32-bits of the register can't be undefined for this sequence.
2975       LHS = signExtendInputIfNeeded(LHS);
2976       RHS = signExtendInputIfNeeded(RHS);
2977       SDValue Neg =
2978         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2979       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2980                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
2981     }
2982     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
2983     // (%b < %a) by swapping inputs and falling through.
2984     std::swap(LHS, RHS);
2985     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2986     IsRHSZero = RHSConst && RHSConst->isNullValue();
2987     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
2988     LLVM_FALLTHROUGH;
2989   }
2990   case ISD::SETLT: {
2991     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
2992     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
2993     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
2994     // Handle SETLT 1 (which is equivalent to SETLE 0).
2995     if (IsRHSOne) {
2996       if (CmpInGPR == ICGPR_NonExtIn)
2997         return SDValue();
2998       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2999     }
3000
3001     if (IsRHSZero) {
3002       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3003                              S->getI32Imm(31, dl) };
3004       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3005                                             ShiftOps), 0);
3006     }
3007
3008     if (CmpInGPR == ICGPR_NonExtIn)
3009       return SDValue();
3010     // The upper 32-bits of the register can't be undefined for this sequence.
3011     LHS = signExtendInputIfNeeded(LHS);
3012     RHS = signExtendInputIfNeeded(RHS);
3013     SDValue SUBFNode =
3014       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3015     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3016                                     SUBFNode, S->getI64Imm(1, dl),
3017                                     S->getI64Imm(63, dl)), 0);
3018   }
3019   case ISD::SETUGE:
3020     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3021     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3022     std::swap(LHS, RHS);
3023     LLVM_FALLTHROUGH;
3024   case ISD::SETULE: {
3025     if (CmpInGPR == ICGPR_NonExtIn)
3026       return SDValue();
3027     // The upper 32-bits of the register can't be undefined for this sequence.
3028     LHS = zeroExtendInputIfNeeded(LHS);
3029     RHS = zeroExtendInputIfNeeded(RHS);
3030     SDValue Subtract =
3031       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3032     SDValue SrdiNode =
3033       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3034                                           Subtract, S->getI64Imm(1, dl),
3035                                           S->getI64Imm(63, dl)), 0);
3036     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3037                                             S->getI32Imm(1, dl)), 0);
3038   }
3039   case ISD::SETUGT:
3040     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3041     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3042     std::swap(LHS, RHS);
3043     LLVM_FALLTHROUGH;
3044   case ISD::SETULT: {
3045     if (CmpInGPR == ICGPR_NonExtIn)
3046       return SDValue();
3047     // The upper 32-bits of the register can't be undefined for this sequence.
3048     LHS = zeroExtendInputIfNeeded(LHS);
3049     RHS = zeroExtendInputIfNeeded(RHS);
3050     SDValue Subtract =
3051       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3052     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3053                                           Subtract, S->getI64Imm(1, dl),
3054                                           S->getI64Imm(63, dl)), 0);
3055   }
3056   }
3057 }
3058
3059 /// Produces a sign-extended result of comparing two 32-bit values according to
3060 /// the passed condition code.
3061 SDValue
3062 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3063                                               ISD::CondCode CC,
3064                                               int64_t RHSValue, SDLoc dl) {
3065   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3066       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3067     return SDValue();
3068   bool IsRHSZero = RHSValue == 0;
3069   bool IsRHSOne = RHSValue == 1;
3070   bool IsRHSNegOne = RHSValue == -1LL;
3071
3072   switch (CC) {
3073   default: return SDValue();
3074   case ISD::SETEQ: {
3075     // (sext (setcc %a, %b, seteq)) ->
3076     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3077     // (sext (setcc %a, 0, seteq)) ->
3078     //   (ashr (shl (ctlz %a), 58), 63)
3079     SDValue CountInput = IsRHSZero ? LHS :
3080       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3081     SDValue Cntlzw =
3082       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3083     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3084                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3085     SDValue Slwi =
3086       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3087     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3088   }
3089   case ISD::SETNE: {
3090     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3091     // flip the bit, finally take 2's complement.
3092     // (sext (setcc %a, %b, setne)) ->
3093     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3094     // Same as above, but the first xor is not needed.
3095     // (sext (setcc %a, 0, setne)) ->
3096     //   (neg (xor (lshr (ctlz %a), 5), 1))
3097     SDValue Xor = IsRHSZero ? LHS :
3098       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3099     SDValue Clz =
3100       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3101     SDValue ShiftOps[] =
3102       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3103     SDValue Shift =
3104       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3105     SDValue Xori =
3106       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3107                                      S->getI32Imm(1, dl)), 0);
3108     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3109   }
3110   case ISD::SETGE: {
3111     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3112     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3113     if (IsRHSZero)
3114       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3115
3116     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3117     // by swapping inputs and falling through.
3118     std::swap(LHS, RHS);
3119     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3120     IsRHSZero = RHSConst && RHSConst->isNullValue();
3121     LLVM_FALLTHROUGH;
3122   }
3123   case ISD::SETLE: {
3124     if (CmpInGPR == ICGPR_NonExtIn)
3125       return SDValue();
3126     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3127     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3128     if (IsRHSZero)
3129       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3130
3131     // The upper 32-bits of the register can't be undefined for this sequence.
3132     LHS = signExtendInputIfNeeded(LHS);
3133     RHS = signExtendInputIfNeeded(RHS);
3134     SDValue SUBFNode =
3135       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3136                                      LHS, RHS), 0);
3137     SDValue Srdi =
3138       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3139                                      SUBFNode, S->getI64Imm(1, dl),
3140                                      S->getI64Imm(63, dl)), 0);
3141     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3142                                           S->getI32Imm(-1, dl)), 0);
3143   }
3144   case ISD::SETGT: {
3145     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3146     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3147     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3148     if (IsRHSNegOne)
3149       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3150     if (IsRHSZero) {
3151       if (CmpInGPR == ICGPR_NonExtIn)
3152         return SDValue();
3153       // The upper 32-bits of the register can't be undefined for this sequence.
3154       LHS = signExtendInputIfNeeded(LHS);
3155       RHS = signExtendInputIfNeeded(RHS);
3156       SDValue Neg =
3157         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3158         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3159                                               S->getI64Imm(63, dl)), 0);
3160     }
3161     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3162     // (%b < %a) by swapping inputs and falling through.
3163     std::swap(LHS, RHS);
3164     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3165     IsRHSZero = RHSConst && RHSConst->isNullValue();
3166     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3167     LLVM_FALLTHROUGH;
3168   }
3169   case ISD::SETLT: {
3170     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3171     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3172     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3173     if (IsRHSOne) {
3174       if (CmpInGPR == ICGPR_NonExtIn)
3175         return SDValue();
3176       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3177     }
3178     if (IsRHSZero)
3179       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3180                                             S->getI32Imm(31, dl)), 0);
3181
3182     if (CmpInGPR == ICGPR_NonExtIn)
3183       return SDValue();
3184     // The upper 32-bits of the register can't be undefined for this sequence.
3185     LHS = signExtendInputIfNeeded(LHS);
3186     RHS = signExtendInputIfNeeded(RHS);
3187     SDValue SUBFNode =
3188       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3189     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3190                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3191   }
3192   case ISD::SETUGE:
3193     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3194     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3195     std::swap(LHS, RHS);
3196     LLVM_FALLTHROUGH;
3197   case ISD::SETULE: {
3198     if (CmpInGPR == ICGPR_NonExtIn)
3199       return SDValue();
3200     // The upper 32-bits of the register can't be undefined for this sequence.
3201     LHS = zeroExtendInputIfNeeded(LHS);
3202     RHS = zeroExtendInputIfNeeded(RHS);
3203     SDValue Subtract =
3204       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3205     SDValue Shift =
3206       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3207                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3208               0);
3209     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3210                                           S->getI32Imm(-1, dl)), 0);
3211   }
3212   case ISD::SETUGT:
3213     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3214     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3215     std::swap(LHS, RHS);
3216     LLVM_FALLTHROUGH;
3217   case ISD::SETULT: {
3218     if (CmpInGPR == ICGPR_NonExtIn)
3219       return SDValue();
3220     // The upper 32-bits of the register can't be undefined for this sequence.
3221     LHS = zeroExtendInputIfNeeded(LHS);
3222     RHS = zeroExtendInputIfNeeded(RHS);
3223     SDValue Subtract =
3224       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3225     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3226                                           Subtract, S->getI64Imm(63, dl)), 0);
3227   }
3228   }
3229 }
3230
3231 /// Produces a zero-extended result of comparing two 64-bit values according to
3232 /// the passed condition code.
3233 SDValue
3234 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3235                                               ISD::CondCode CC,
3236                                               int64_t RHSValue, SDLoc dl) {
3237   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3238       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3239     return SDValue();
3240   bool IsRHSZero = RHSValue == 0;
3241   bool IsRHSOne = RHSValue == 1;
3242   bool IsRHSNegOne = RHSValue == -1LL;
3243   switch (CC) {
3244   default: return SDValue();
3245   case ISD::SETEQ: {
3246     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3247     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3248     SDValue Xor = IsRHSZero ? LHS :
3249       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3250     SDValue Clz =
3251       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3252     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3253                                           S->getI64Imm(58, dl),
3254                                           S->getI64Imm(63, dl)), 0);
3255   }
3256   case ISD::SETNE: {
3257     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3258     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3259     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3260     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3261     SDValue Xor = IsRHSZero ? LHS :
3262       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3263     SDValue AC =
3264       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3265                                      Xor, S->getI32Imm(~0U, dl)), 0);
3266     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3267                                           Xor, AC.getValue(1)), 0);
3268   }
3269   case ISD::SETGE: {
3270     // {subc.reg, subc.CA} = (subcarry %a, %b)
3271     // (zext (setcc %a, %b, setge)) ->
3272     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3273     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3274     if (IsRHSZero)
3275       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3276     std::swap(LHS, RHS);
3277     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3278     IsRHSZero = RHSConst && RHSConst->isNullValue();
3279     LLVM_FALLTHROUGH;
3280   }
3281   case ISD::SETLE: {
3282     // {subc.reg, subc.CA} = (subcarry %b, %a)
3283     // (zext (setcc %a, %b, setge)) ->
3284     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3285     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3286     if (IsRHSZero)
3287       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3288     SDValue ShiftL =
3289       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3290                                      S->getI64Imm(1, dl),
3291                                      S->getI64Imm(63, dl)), 0);
3292     SDValue ShiftR =
3293       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3294                                      S->getI64Imm(63, dl)), 0);
3295     SDValue SubtractCarry =
3296       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3297                                      LHS, RHS), 1);
3298     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3299                                           ShiftR, ShiftL, SubtractCarry), 0);
3300   }
3301   case ISD::SETGT: {
3302     // {subc.reg, subc.CA} = (subcarry %b, %a)
3303     // (zext (setcc %a, %b, setgt)) ->
3304     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3305     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3306     if (IsRHSNegOne)
3307       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3308     if (IsRHSZero) {
3309       SDValue Addi =
3310         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3311                                        S->getI64Imm(~0ULL, dl)), 0);
3312       SDValue Nor =
3313         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3314       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3315                                             S->getI64Imm(1, dl),
3316                                             S->getI64Imm(63, dl)), 0);
3317     }
3318     std::swap(LHS, RHS);
3319     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3320     IsRHSZero = RHSConst && RHSConst->isNullValue();
3321     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3322     LLVM_FALLTHROUGH;
3323   }
3324   case ISD::SETLT: {
3325     // {subc.reg, subc.CA} = (subcarry %a, %b)
3326     // (zext (setcc %a, %b, setlt)) ->
3327     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3328     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3329     if (IsRHSOne)
3330       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3331     if (IsRHSZero)
3332       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3333                                             S->getI64Imm(1, dl),
3334                                             S->getI64Imm(63, dl)), 0);
3335     SDValue SRADINode =
3336       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3337                                      LHS, S->getI64Imm(63, dl)), 0);
3338     SDValue SRDINode =
3339       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3340                                      RHS, S->getI64Imm(1, dl),
3341                                      S->getI64Imm(63, dl)), 0);
3342     SDValue SUBFC8Carry =
3343       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3344                                      RHS, LHS), 1);
3345     SDValue ADDE8Node =
3346       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3347                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3348     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3349                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3350   }
3351   case ISD::SETUGE:
3352     // {subc.reg, subc.CA} = (subcarry %a, %b)
3353     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3354     std::swap(LHS, RHS);
3355     LLVM_FALLTHROUGH;
3356   case ISD::SETULE: {
3357     // {subc.reg, subc.CA} = (subcarry %b, %a)
3358     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3359     SDValue SUBFC8Carry =
3360       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3361                                      LHS, RHS), 1);
3362     SDValue SUBFE8Node =
3363       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3364                                      LHS, LHS, SUBFC8Carry), 0);
3365     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3366                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3367   }
3368   case ISD::SETUGT:
3369     // {subc.reg, subc.CA} = (subcarry %b, %a)
3370     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3371     std::swap(LHS, RHS);
3372     LLVM_FALLTHROUGH;
3373   case ISD::SETULT: {
3374     // {subc.reg, subc.CA} = (subcarry %a, %b)
3375     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3376     SDValue SubtractCarry =
3377       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3378                                      RHS, LHS), 1);
3379     SDValue ExtSub =
3380       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3381                                      LHS, LHS, SubtractCarry), 0);
3382     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3383                                           ExtSub), 0);
3384   }
3385   }
3386 }
3387
3388 /// Produces a sign-extended result of comparing two 64-bit values according to
3389 /// the passed condition code.
3390 SDValue
3391 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3392                                               ISD::CondCode CC,
3393                                               int64_t RHSValue, SDLoc dl) {
3394   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3395       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3396     return SDValue();
3397   bool IsRHSZero = RHSValue == 0;
3398   bool IsRHSOne = RHSValue == 1;
3399   bool IsRHSNegOne = RHSValue == -1LL;
3400   switch (CC) {
3401   default: return SDValue();
3402   case ISD::SETEQ: {
3403     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3404     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3405     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3406     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3407     SDValue AddInput = IsRHSZero ? LHS :
3408       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3409     SDValue Addic =
3410       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3411                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3412     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3413                                           Addic, Addic.getValue(1)), 0);
3414   }
3415   case ISD::SETNE: {
3416     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3417     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3418     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3419     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3420     SDValue Xor = IsRHSZero ? LHS :
3421       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3422     SDValue SC =
3423       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3424                                      Xor, S->getI32Imm(0, dl)), 0);
3425     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3426                                           SC, SC.getValue(1)), 0);
3427   }
3428   case ISD::SETGE: {
3429     // {subc.reg, subc.CA} = (subcarry %a, %b)
3430     // (zext (setcc %a, %b, setge)) ->
3431     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3432     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3433     if (IsRHSZero)
3434       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3435     std::swap(LHS, RHS);
3436     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3437     IsRHSZero = RHSConst && RHSConst->isNullValue();
3438     LLVM_FALLTHROUGH;
3439   }
3440   case ISD::SETLE: {
3441     // {subc.reg, subc.CA} = (subcarry %b, %a)
3442     // (zext (setcc %a, %b, setge)) ->
3443     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3444     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3445     if (IsRHSZero)
3446       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3447     SDValue ShiftR =
3448       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3449                                      S->getI64Imm(63, dl)), 0);
3450     SDValue ShiftL =
3451       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3452                                      S->getI64Imm(1, dl),
3453                                      S->getI64Imm(63, dl)), 0);
3454     SDValue SubtractCarry =
3455       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3456                                      LHS, RHS), 1);
3457     SDValue Adde =
3458       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3459                                      ShiftR, ShiftL, SubtractCarry), 0);
3460     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3461   }
3462   case ISD::SETGT: {
3463     // {subc.reg, subc.CA} = (subcarry %b, %a)
3464     // (zext (setcc %a, %b, setgt)) ->
3465     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3466     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3467     if (IsRHSNegOne)
3468       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3469     if (IsRHSZero) {
3470       SDValue Add =
3471         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3472                                        S->getI64Imm(-1, dl)), 0);
3473       SDValue Nor =
3474         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3475       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3476                                             S->getI64Imm(63, dl)), 0);
3477     }
3478     std::swap(LHS, RHS);
3479     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3480     IsRHSZero = RHSConst && RHSConst->isNullValue();
3481     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3482     LLVM_FALLTHROUGH;
3483   }
3484   case ISD::SETLT: {
3485     // {subc.reg, subc.CA} = (subcarry %a, %b)
3486     // (zext (setcc %a, %b, setlt)) ->
3487     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3488     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3489     if (IsRHSOne)
3490       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3491     if (IsRHSZero) {
3492       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3493                                             S->getI64Imm(63, dl)), 0);
3494     }
3495     SDValue SRADINode =
3496       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3497                                      LHS, S->getI64Imm(63, dl)), 0);
3498     SDValue SRDINode =
3499       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3500                                      RHS, S->getI64Imm(1, dl),
3501                                      S->getI64Imm(63, dl)), 0);
3502     SDValue SUBFC8Carry =
3503       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3504                                      RHS, LHS), 1);
3505     SDValue ADDE8Node =
3506       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3507                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3508     SDValue XORI8Node =
3509       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3510                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3511     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3512                                           XORI8Node), 0);
3513   }
3514   case ISD::SETUGE:
3515     // {subc.reg, subc.CA} = (subcarry %a, %b)
3516     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3517     std::swap(LHS, RHS);
3518     LLVM_FALLTHROUGH;
3519   case ISD::SETULE: {
3520     // {subc.reg, subc.CA} = (subcarry %b, %a)
3521     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3522     SDValue SubtractCarry =
3523       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3524                                      LHS, RHS), 1);
3525     SDValue ExtSub =
3526       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3527                                      LHS, SubtractCarry), 0);
3528     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3529                                           ExtSub, ExtSub), 0);
3530   }
3531   case ISD::SETUGT:
3532     // {subc.reg, subc.CA} = (subcarry %b, %a)
3533     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3534     std::swap(LHS, RHS);
3535     LLVM_FALLTHROUGH;
3536   case ISD::SETULT: {
3537     // {subc.reg, subc.CA} = (subcarry %a, %b)
3538     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3539     SDValue SubCarry =
3540       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3541                                      RHS, LHS), 1);
3542     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3543                                      LHS, LHS, SubCarry), 0);
3544   }
3545   }
3546 }
3547
3548 /// Do all uses of this SDValue need the result in a GPR?
3549 /// This is meant to be used on values that have type i1 since
3550 /// it is somewhat meaningless to ask if values of other types
3551 /// should be kept in GPR's.
3552 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3553   assert(Compare.getOpcode() == ISD::SETCC &&
3554          "An ISD::SETCC node required here.");
3555
3556   // For values that have a single use, the caller should obviously already have
3557   // checked if that use is an extending use. We check the other uses here.
3558   if (Compare.hasOneUse())
3559     return true;
3560   // We want the value in a GPR if it is being extended, used for a select, or
3561   // used in logical operations.
3562   for (auto CompareUse : Compare.getNode()->uses())
3563     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3564         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3565         CompareUse->getOpcode() != ISD::SELECT &&
3566         !isLogicOp(CompareUse->getOpcode())) {
3567       OmittedForNonExtendUses++;
3568       return false;
3569     }
3570   return true;
3571 }
3572
3573 /// Returns an equivalent of a SETCC node but with the result the same width as
3574 /// the inputs. This can also be used for SELECT_CC if either the true or false
3575 /// values is a power of two while the other is zero.
3576 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3577                                                 SetccInGPROpts ConvOpts) {
3578   assert((Compare.getOpcode() == ISD::SETCC ||
3579           Compare.getOpcode() == ISD::SELECT_CC) &&
3580          "An ISD::SETCC node required here.");
3581
3582   // Don't convert this comparison to a GPR sequence because there are uses
3583   // of the i1 result (i.e. uses that require the result in the CR).
3584   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3585     return SDValue();
3586
3587   SDValue LHS = Compare.getOperand(0);
3588   SDValue RHS = Compare.getOperand(1);
3589
3590   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3591   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3592   ISD::CondCode CC =
3593     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3594   EVT InputVT = LHS.getValueType();
3595   if (InputVT != MVT::i32 && InputVT != MVT::i64)
3596     return SDValue();
3597
3598   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3599       ConvOpts == SetccInGPROpts::SExtInvert)
3600     CC = ISD::getSetCCInverse(CC, true);
3601
3602   bool Inputs32Bit = InputVT == MVT::i32;
3603
3604   SDLoc dl(Compare);
3605   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3606   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3607   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3608     ConvOpts == SetccInGPROpts::SExtInvert;
3609
3610   if (IsSext && Inputs32Bit)
3611     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3612   else if (Inputs32Bit)
3613     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3614   else if (IsSext)
3615     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3616   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3617 }
3618
3619 } // end anonymous namespace
3620
3621 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3622   if (N->getValueType(0) != MVT::i32 &&
3623       N->getValueType(0) != MVT::i64)
3624     return false;
3625
3626   // This optimization will emit code that assumes 64-bit registers
3627   // so we don't want to run it in 32-bit mode. Also don't run it
3628   // on functions that are not to be optimized.
3629   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3630     return false;
3631
3632   switch (N->getOpcode()) {
3633   default: break;
3634   case ISD::ZERO_EXTEND:
3635   case ISD::SIGN_EXTEND:
3636   case ISD::AND:
3637   case ISD::OR:
3638   case ISD::XOR: {
3639     IntegerCompareEliminator ICmpElim(CurDAG, this);
3640     if (SDNode *New = ICmpElim.Select(N)) {
3641       ReplaceNode(N, New);
3642       return true;
3643     }
3644   }
3645   }
3646   return false;
3647 }
3648
3649 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3650   if (N->getValueType(0) != MVT::i32 &&
3651       N->getValueType(0) != MVT::i64)
3652     return false;
3653
3654   if (!UseBitPermRewriter)
3655     return false;
3656
3657   switch (N->getOpcode()) {
3658   default: break;
3659   case ISD::ROTL:
3660   case ISD::SHL:
3661   case ISD::SRL:
3662   case ISD::AND:
3663   case ISD::OR: {
3664     BitPermutationSelector BPS(CurDAG);
3665     if (SDNode *New = BPS.Select(N)) {
3666       ReplaceNode(N, New);
3667       return true;
3668     }
3669     return false;
3670   }
3671   }
3672
3673   return false;
3674 }
3675
3676 /// SelectCC - Select a comparison of the specified values with the specified
3677 /// condition code, returning the CR# of the expression.
3678 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3679                                   const SDLoc &dl) {
3680   // Always select the LHS.
3681   unsigned Opc;
3682
3683   if (LHS.getValueType() == MVT::i32) {
3684     unsigned Imm;
3685     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3686       if (isInt32Immediate(RHS, Imm)) {
3687         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3688         if (isUInt<16>(Imm))
3689           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3690                                                 getI32Imm(Imm & 0xFFFF, dl)),
3691                          0);
3692         // If this is a 16-bit signed immediate, fold it.
3693         if (isInt<16>((int)Imm))
3694           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3695                                                 getI32Imm(Imm & 0xFFFF, dl)),
3696                          0);
3697
3698         // For non-equality comparisons, the default code would materialize the
3699         // constant, then compare against it, like this:
3700         //   lis r2, 4660
3701         //   ori r2, r2, 22136
3702         //   cmpw cr0, r3, r2
3703         // Since we are just comparing for equality, we can emit this instead:
3704         //   xoris r0,r3,0x1234
3705         //   cmplwi cr0,r0,0x5678
3706         //   beq cr0,L6
3707         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3708                                            getI32Imm(Imm >> 16, dl)), 0);
3709         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
3710                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3711       }
3712       Opc = PPC::CMPLW;
3713     } else if (ISD::isUnsignedIntSetCC(CC)) {
3714       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
3715         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3716                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3717       Opc = PPC::CMPLW;
3718     } else {
3719       int16_t SImm;
3720       if (isIntS16Immediate(RHS, SImm))
3721         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3722                                               getI32Imm((int)SImm & 0xFFFF,
3723                                                         dl)),
3724                          0);
3725       Opc = PPC::CMPW;
3726     }
3727   } else if (LHS.getValueType() == MVT::i64) {
3728     uint64_t Imm;
3729     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3730       if (isInt64Immediate(RHS.getNode(), Imm)) {
3731         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3732         if (isUInt<16>(Imm))
3733           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3734                                                 getI32Imm(Imm & 0xFFFF, dl)),
3735                          0);
3736         // If this is a 16-bit signed immediate, fold it.
3737         if (isInt<16>(Imm))
3738           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3739                                                 getI32Imm(Imm & 0xFFFF, dl)),
3740                          0);
3741
3742         // For non-equality comparisons, the default code would materialize the
3743         // constant, then compare against it, like this:
3744         //   lis r2, 4660
3745         //   ori r2, r2, 22136
3746         //   cmpd cr0, r3, r2
3747         // Since we are just comparing for equality, we can emit this instead:
3748         //   xoris r0,r3,0x1234
3749         //   cmpldi cr0,r0,0x5678
3750         //   beq cr0,L6
3751         if (isUInt<32>(Imm)) {
3752           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
3753                                              getI64Imm(Imm >> 16, dl)), 0);
3754           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
3755                                                 getI64Imm(Imm & 0xFFFF, dl)),
3756                          0);
3757         }
3758       }
3759       Opc = PPC::CMPLD;
3760     } else if (ISD::isUnsignedIntSetCC(CC)) {
3761       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
3762         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3763                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
3764       Opc = PPC::CMPLD;
3765     } else {
3766       int16_t SImm;
3767       if (isIntS16Immediate(RHS, SImm))
3768         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3769                                               getI64Imm(SImm & 0xFFFF, dl)),
3770                          0);
3771       Opc = PPC::CMPD;
3772     }
3773   } else if (LHS.getValueType() == MVT::f32) {
3774     if (PPCSubTarget->hasSPE()) {
3775       switch (CC) {
3776         default:
3777         case ISD::SETEQ:
3778         case ISD::SETNE:
3779           Opc = PPC::EFSCMPEQ;
3780           break;
3781         case ISD::SETLT:
3782         case ISD::SETGE:
3783         case ISD::SETOLT:
3784         case ISD::SETOGE:
3785         case ISD::SETULT:
3786         case ISD::SETUGE:
3787           Opc = PPC::EFSCMPLT;
3788           break;
3789         case ISD::SETGT:
3790         case ISD::SETLE:
3791         case ISD::SETOGT:
3792         case ISD::SETOLE:
3793         case ISD::SETUGT:
3794         case ISD::SETULE:
3795           Opc = PPC::EFSCMPGT;
3796           break;
3797       }
3798     } else
3799       Opc = PPC::FCMPUS;
3800   } else if (LHS.getValueType() == MVT::f64) {
3801     if (PPCSubTarget->hasSPE()) {
3802       switch (CC) {
3803         default:
3804         case ISD::SETEQ:
3805         case ISD::SETNE:
3806           Opc = PPC::EFDCMPEQ;
3807           break;
3808         case ISD::SETLT:
3809         case ISD::SETGE:
3810         case ISD::SETOLT:
3811         case ISD::SETOGE:
3812         case ISD::SETULT:
3813         case ISD::SETUGE:
3814           Opc = PPC::EFDCMPLT;
3815           break;
3816         case ISD::SETGT:
3817         case ISD::SETLE:
3818         case ISD::SETOGT:
3819         case ISD::SETOLE:
3820         case ISD::SETUGT:
3821         case ISD::SETULE:
3822           Opc = PPC::EFDCMPGT;
3823           break;
3824       }
3825     } else
3826       Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
3827   } else {
3828     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
3829     assert(PPCSubTarget->hasVSX() && "__float128 requires VSX");
3830     Opc = PPC::XSCMPUQP;
3831   }
3832   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
3833 }
3834
3835 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
3836   switch (CC) {
3837   case ISD::SETUEQ:
3838   case ISD::SETONE:
3839   case ISD::SETOLE:
3840   case ISD::SETOGE:
3841     llvm_unreachable("Should be lowered by legalize!");
3842   default: llvm_unreachable("Unknown condition!");
3843   case ISD::SETOEQ:
3844   case ISD::SETEQ:  return PPC::PRED_EQ;
3845   case ISD::SETUNE:
3846   case ISD::SETNE:  return PPC::PRED_NE;
3847   case ISD::SETOLT:
3848   case ISD::SETLT:  return PPC::PRED_LT;
3849   case ISD::SETULE:
3850   case ISD::SETLE:  return PPC::PRED_LE;
3851   case ISD::SETOGT:
3852   case ISD::SETGT:  return PPC::PRED_GT;
3853   case ISD::SETUGE:
3854   case ISD::SETGE:  return PPC::PRED_GE;
3855   case ISD::SETO:   return PPC::PRED_NU;
3856   case ISD::SETUO:  return PPC::PRED_UN;
3857     // These two are invalid for floating point.  Assume we have int.
3858   case ISD::SETULT: return PPC::PRED_LT;
3859   case ISD::SETUGT: return PPC::PRED_GT;
3860   }
3861 }
3862
3863 /// getCRIdxForSetCC - Return the index of the condition register field
3864 /// associated with the SetCC condition, and whether or not the field is
3865 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
3866 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
3867   Invert = false;
3868   switch (CC) {
3869   default: llvm_unreachable("Unknown condition!");
3870   case ISD::SETOLT:
3871   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
3872   case ISD::SETOGT:
3873   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
3874   case ISD::SETOEQ:
3875   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
3876   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
3877   case ISD::SETUGE:
3878   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
3879   case ISD::SETULE:
3880   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
3881   case ISD::SETUNE:
3882   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
3883   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
3884   case ISD::SETUEQ:
3885   case ISD::SETOGE:
3886   case ISD::SETOLE:
3887   case ISD::SETONE:
3888     llvm_unreachable("Invalid branch code: should be expanded by legalize");
3889   // These are invalid for floating point.  Assume integer.
3890   case ISD::SETULT: return 0;
3891   case ISD::SETUGT: return 1;
3892   }
3893 }
3894
3895 // getVCmpInst: return the vector compare instruction for the specified
3896 // vector type and condition code. Since this is for altivec specific code,
3897 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
3898 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
3899                                 bool HasVSX, bool &Swap, bool &Negate) {
3900   Swap = false;
3901   Negate = false;
3902
3903   if (VecVT.isFloatingPoint()) {
3904     /* Handle some cases by swapping input operands.  */
3905     switch (CC) {
3906       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
3907       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3908       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
3909       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
3910       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3911       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
3912       default: break;
3913     }
3914     /* Handle some cases by negating the result.  */
3915     switch (CC) {
3916       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3917       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
3918       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
3919       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
3920       default: break;
3921     }
3922     /* We have instructions implementing the remaining cases.  */
3923     switch (CC) {
3924       case ISD::SETEQ:
3925       case ISD::SETOEQ:
3926         if (VecVT == MVT::v4f32)
3927           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
3928         else if (VecVT == MVT::v2f64)
3929           return PPC::XVCMPEQDP;
3930         break;
3931       case ISD::SETGT:
3932       case ISD::SETOGT:
3933         if (VecVT == MVT::v4f32)
3934           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
3935         else if (VecVT == MVT::v2f64)
3936           return PPC::XVCMPGTDP;
3937         break;
3938       case ISD::SETGE:
3939       case ISD::SETOGE:
3940         if (VecVT == MVT::v4f32)
3941           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
3942         else if (VecVT == MVT::v2f64)
3943           return PPC::XVCMPGEDP;
3944         break;
3945       default:
3946         break;
3947     }
3948     llvm_unreachable("Invalid floating-point vector compare condition");
3949   } else {
3950     /* Handle some cases by swapping input operands.  */
3951     switch (CC) {
3952       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
3953       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3954       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3955       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
3956       default: break;
3957     }
3958     /* Handle some cases by negating the result.  */
3959     switch (CC) {
3960       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3961       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
3962       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
3963       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
3964       default: break;
3965     }
3966     /* We have instructions implementing the remaining cases.  */
3967     switch (CC) {
3968       case ISD::SETEQ:
3969       case ISD::SETUEQ:
3970         if (VecVT == MVT::v16i8)
3971           return PPC::VCMPEQUB;
3972         else if (VecVT == MVT::v8i16)
3973           return PPC::VCMPEQUH;
3974         else if (VecVT == MVT::v4i32)
3975           return PPC::VCMPEQUW;
3976         else if (VecVT == MVT::v2i64)
3977           return PPC::VCMPEQUD;
3978         break;
3979       case ISD::SETGT:
3980         if (VecVT == MVT::v16i8)
3981           return PPC::VCMPGTSB;
3982         else if (VecVT == MVT::v8i16)
3983           return PPC::VCMPGTSH;
3984         else if (VecVT == MVT::v4i32)
3985           return PPC::VCMPGTSW;
3986         else if (VecVT == MVT::v2i64)
3987           return PPC::VCMPGTSD;
3988         break;
3989       case ISD::SETUGT:
3990         if (VecVT == MVT::v16i8)
3991           return PPC::VCMPGTUB;
3992         else if (VecVT == MVT::v8i16)
3993           return PPC::VCMPGTUH;
3994         else if (VecVT == MVT::v4i32)
3995           return PPC::VCMPGTUW;
3996         else if (VecVT == MVT::v2i64)
3997           return PPC::VCMPGTUD;
3998         break;
3999       default:
4000         break;
4001     }
4002     llvm_unreachable("Invalid integer vector compare condition");
4003   }
4004 }
4005
4006 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4007   SDLoc dl(N);
4008   unsigned Imm;
4009   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
4010   EVT PtrVT =
4011       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4012   bool isPPC64 = (PtrVT == MVT::i64);
4013
4014   if (!PPCSubTarget->useCRBits() &&
4015       isInt32Immediate(N->getOperand(1), Imm)) {
4016     // We can codegen setcc op, imm very efficiently compared to a brcond.
4017     // Check for those cases here.
4018     // setcc op, 0
4019     if (Imm == 0) {
4020       SDValue Op = N->getOperand(0);
4021       switch (CC) {
4022       default: break;
4023       case ISD::SETEQ: {
4024         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4025         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4026                           getI32Imm(31, dl) };
4027         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4028         return true;
4029       }
4030       case ISD::SETNE: {
4031         if (isPPC64) break;
4032         SDValue AD =
4033           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4034                                          Op, getI32Imm(~0U, dl)), 0);
4035         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4036         return true;
4037       }
4038       case ISD::SETLT: {
4039         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4040                           getI32Imm(31, dl) };
4041         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4042         return true;
4043       }
4044       case ISD::SETGT: {
4045         SDValue T =
4046           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4047         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4048         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4049                           getI32Imm(31, dl) };
4050         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4051         return true;
4052       }
4053       }
4054     } else if (Imm == ~0U) {        // setcc op, -1
4055       SDValue Op = N->getOperand(0);
4056       switch (CC) {
4057       default: break;
4058       case ISD::SETEQ:
4059         if (isPPC64) break;
4060         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4061                                             Op, getI32Imm(1, dl)), 0);
4062         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4063                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4064                                                             MVT::i32,
4065                                                             getI32Imm(0, dl)),
4066                                      0), Op.getValue(1));
4067         return true;
4068       case ISD::SETNE: {
4069         if (isPPC64) break;
4070         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4071         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4072                                             Op, getI32Imm(~0U, dl));
4073         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4074                              SDValue(AD, 1));
4075         return true;
4076       }
4077       case ISD::SETLT: {
4078         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4079                                                     getI32Imm(1, dl)), 0);
4080         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4081                                                     Op), 0);
4082         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4083                           getI32Imm(31, dl) };
4084         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4085         return true;
4086       }
4087       case ISD::SETGT: {
4088         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4089                           getI32Imm(31, dl) };
4090         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4091         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4092         return true;
4093       }
4094       }
4095     }
4096   }
4097
4098   SDValue LHS = N->getOperand(0);
4099   SDValue RHS = N->getOperand(1);
4100
4101   // Altivec Vector compare instructions do not set any CR register by default and
4102   // vector compare operations return the same type as the operands.
4103   if (LHS.getValueType().isVector()) {
4104     if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE())
4105       return false;
4106
4107     EVT VecVT = LHS.getValueType();
4108     bool Swap, Negate;
4109     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
4110                                         PPCSubTarget->hasVSX(), Swap, Negate);
4111     if (Swap)
4112       std::swap(LHS, RHS);
4113
4114     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4115     if (Negate) {
4116       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4117       CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4118                            ResVT, VCmp, VCmp);
4119       return true;
4120     }
4121
4122     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4123     return true;
4124   }
4125
4126   if (PPCSubTarget->useCRBits())
4127     return false;
4128
4129   bool Inv;
4130   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4131   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
4132   SDValue IntCR;
4133
4134   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4135   // The correct compare instruction is already set by SelectCC()
4136   if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4137     Idx = 1;
4138   }
4139
4140   // Force the ccreg into CR7.
4141   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4142
4143   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
4144   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4145                                InFlag).getValue(1);
4146
4147   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4148                                          CCReg), 0);
4149
4150   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4151                       getI32Imm(31, dl), getI32Imm(31, dl) };
4152   if (!Inv) {
4153     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4154     return true;
4155   }
4156
4157   // Get the specified bit.
4158   SDValue Tmp =
4159     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4160   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4161   return true;
4162 }
4163
4164 /// Does this node represent a load/store node whose address can be represented
4165 /// with a register plus an immediate that's a multiple of \p Val:
4166 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4167   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4168   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4169   SDValue AddrOp;
4170   if (LDN)
4171     AddrOp = LDN->getOperand(1);
4172   else if (STN)
4173     AddrOp = STN->getOperand(2);
4174
4175   // If the address points a frame object or a frame object with an offset,
4176   // we need to check the object alignment.
4177   short Imm = 0;
4178   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4179           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4180                                            AddrOp)) {
4181     // If op0 is a frame index that is under aligned, we can't do it either,
4182     // because it is translated to r31 or r1 + slot + offset. We won't know the
4183     // slot number until the stack frame is finalized.
4184     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4185     unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex());
4186     if ((SlotAlign % Val) != 0)
4187       return false;
4188
4189     // If we have an offset, we need further check on the offset.
4190     if (AddrOp.getOpcode() != ISD::ADD)
4191       return true;
4192   }
4193
4194   if (AddrOp.getOpcode() == ISD::ADD)
4195     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4196
4197   // If the address comes from the outside, the offset will be zero.
4198   return AddrOp.getOpcode() == ISD::CopyFromReg;
4199 }
4200
4201 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4202   // Transfer memoperands.
4203   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4204   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4205 }
4206
4207 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4208                          bool &NeedSwapOps, bool &IsUnCmp) {
4209
4210   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4211
4212   SDValue LHS = N->getOperand(0);
4213   SDValue RHS = N->getOperand(1);
4214   SDValue TrueRes = N->getOperand(2);
4215   SDValue FalseRes = N->getOperand(3);
4216   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4217   if (!TrueConst)
4218     return false;
4219
4220   assert((N->getSimpleValueType(0) == MVT::i64 ||
4221           N->getSimpleValueType(0) == MVT::i32) &&
4222          "Expecting either i64 or i32 here.");
4223
4224   // We are looking for any of:
4225   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4226   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4227   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4228   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4229   int64_t TrueResVal = TrueConst->getSExtValue();
4230   if ((TrueResVal < -1 || TrueResVal > 1) ||
4231       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4232       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4233       (TrueResVal == 0 &&
4234        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4235     return false;
4236
4237   bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC;
4238   SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0);
4239   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4240       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4241     return false;
4242
4243   // Without this setb optimization, the outer SELECT_CC will be manually
4244   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4245   // transforms pseudo instruction to isel instruction. When there are more than
4246   // one use for result like zext/sext, with current optimization we only see
4247   // isel is replaced by setb but can't see any significant gain. Since
4248   // setb has longer latency than original isel, we should avoid this. Another
4249   // point is that setb requires comparison always kept, it can break the
4250   // opportunity to get the comparison away if we have in future.
4251   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4252     return false;
4253
4254   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4255   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4256   ISD::CondCode InnerCC =
4257       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4258   // If the inner comparison is a select_cc, make sure the true/false values are
4259   // 1/-1 and canonicalize it if needed.
4260   if (InnerIsSel) {
4261     ConstantSDNode *SelCCTrueConst =
4262         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4263     ConstantSDNode *SelCCFalseConst =
4264         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4265     if (!SelCCTrueConst || !SelCCFalseConst)
4266       return false;
4267     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4268     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4269     // The values must be -1/1 (requiring a swap) or 1/-1.
4270     if (SelCCTVal == -1 && SelCCFVal == 1) {
4271       std::swap(InnerLHS, InnerRHS);
4272     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4273       return false;
4274   }
4275
4276   // Canonicalize unsigned case
4277   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4278     IsUnCmp = true;
4279     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4280   }
4281
4282   bool InnerSwapped = false;
4283   if (LHS == InnerRHS && RHS == InnerLHS)
4284     InnerSwapped = true;
4285   else if (LHS != InnerLHS || RHS != InnerRHS)
4286     return false;
4287
4288   switch (CC) {
4289   // (select_cc lhs, rhs,  0, \
4290   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4291   case ISD::SETEQ:
4292     if (!InnerIsSel)
4293       return false;
4294     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4295       return false;
4296     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4297     break;
4298
4299   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4300   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4301   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4302   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4303   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4304   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4305   case ISD::SETULT:
4306     if (!IsUnCmp && InnerCC != ISD::SETNE)
4307       return false;
4308     IsUnCmp = true;
4309     LLVM_FALLTHROUGH;
4310   case ISD::SETLT:
4311     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4312         (InnerCC == ISD::SETLT && InnerSwapped))
4313       NeedSwapOps = (TrueResVal == 1);
4314     else
4315       return false;
4316     break;
4317
4318   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4319   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4320   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4321   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4322   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4323   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4324   case ISD::SETUGT:
4325     if (!IsUnCmp && InnerCC != ISD::SETNE)
4326       return false;
4327     IsUnCmp = true;
4328     LLVM_FALLTHROUGH;
4329   case ISD::SETGT:
4330     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4331         (InnerCC == ISD::SETGT && InnerSwapped))
4332       NeedSwapOps = (TrueResVal == -1);
4333     else
4334       return false;
4335     break;
4336
4337   default:
4338     return false;
4339   }
4340
4341   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4342   LLVM_DEBUG(N->dump());
4343
4344   return true;
4345 }
4346
4347 // Select - Convert the specified operand from a target-independent to a
4348 // target-specific node if it hasn't already been changed.
4349 void PPCDAGToDAGISel::Select(SDNode *N) {
4350   SDLoc dl(N);
4351   if (N->isMachineOpcode()) {
4352     N->setNodeId(-1);
4353     return;   // Already selected.
4354   }
4355
4356   // In case any misguided DAG-level optimizations form an ADD with a
4357   // TargetConstant operand, crash here instead of miscompiling (by selecting
4358   // an r+r add instead of some kind of r+i add).
4359   if (N->getOpcode() == ISD::ADD &&
4360       N->getOperand(1).getOpcode() == ISD::TargetConstant)
4361     llvm_unreachable("Invalid ADD with TargetConstant operand");
4362
4363   // Try matching complex bit permutations before doing anything else.
4364   if (tryBitPermutation(N))
4365     return;
4366
4367   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
4368   if (tryIntCompareInGPR(N))
4369     return;
4370
4371   switch (N->getOpcode()) {
4372   default: break;
4373
4374   case ISD::Constant:
4375     if (N->getValueType(0) == MVT::i64) {
4376       ReplaceNode(N, selectI64Imm(CurDAG, N));
4377       return;
4378     }
4379     break;
4380
4381   case ISD::SETCC:
4382     if (trySETCC(N))
4383       return;
4384     break;
4385   // These nodes will be transformed into GETtlsADDR32 node, which
4386   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
4387   case PPCISD::ADDI_TLSLD_L_ADDR:
4388   case PPCISD::ADDI_TLSGD_L_ADDR: {
4389     const Module *Mod = MF->getFunction().getParent();
4390     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
4391         !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() ||
4392         Mod->getPICLevel() == PICLevel::SmallPIC)
4393       break;
4394     // Attach global base pointer on GETtlsADDR32 node in order to
4395     // generate secure plt code for TLS symbols.
4396     getGlobalBaseReg();
4397   } break;
4398   case PPCISD::CALL: {
4399     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
4400         !TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt() ||
4401         !PPCSubTarget->isTargetELF())
4402       break;
4403
4404     SDValue Op = N->getOperand(1);
4405
4406     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4407       if (GA->getTargetFlags() == PPCII::MO_PLT)
4408         getGlobalBaseReg();
4409     }
4410     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
4411       if (ES->getTargetFlags() == PPCII::MO_PLT)
4412         getGlobalBaseReg();
4413     }
4414   }
4415     break;
4416
4417   case PPCISD::GlobalBaseReg:
4418     ReplaceNode(N, getGlobalBaseReg());
4419     return;
4420
4421   case ISD::FrameIndex:
4422     selectFrameIndex(N, N);
4423     return;
4424
4425   case PPCISD::MFOCRF: {
4426     SDValue InFlag = N->getOperand(1);
4427     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
4428                                           N->getOperand(0), InFlag));
4429     return;
4430   }
4431
4432   case PPCISD::READ_TIME_BASE:
4433     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
4434                                           MVT::Other, N->getOperand(0)));
4435     return;
4436
4437   case PPCISD::SRA_ADDZE: {
4438     SDValue N0 = N->getOperand(0);
4439     SDValue ShiftAmt =
4440       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
4441                                   getConstantIntValue(), dl,
4442                                   N->getValueType(0));
4443     if (N->getValueType(0) == MVT::i64) {
4444       SDNode *Op =
4445         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
4446                                N0, ShiftAmt);
4447       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
4448                            SDValue(Op, 1));
4449       return;
4450     } else {
4451       assert(N->getValueType(0) == MVT::i32 &&
4452              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
4453       SDNode *Op =
4454         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
4455                                N0, ShiftAmt);
4456       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
4457                            SDValue(Op, 1));
4458       return;
4459     }
4460   }
4461
4462   case ISD::STORE: {
4463     // Change TLS initial-exec D-form stores to X-form stores.
4464     StoreSDNode *ST = cast<StoreSDNode>(N);
4465     if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() &&
4466         ST->getAddressingMode() != ISD::PRE_INC)
4467       if (tryTLSXFormStore(ST))
4468         return;
4469     break;
4470   }
4471   case ISD::LOAD: {
4472     // Handle preincrement loads.
4473     LoadSDNode *LD = cast<LoadSDNode>(N);
4474     EVT LoadedVT = LD->getMemoryVT();
4475
4476     // Normal loads are handled by code generated from the .td file.
4477     if (LD->getAddressingMode() != ISD::PRE_INC) {
4478       // Change TLS initial-exec D-form loads to X-form loads.
4479       if (EnableTLSOpt && PPCSubTarget->isELFv2ABI())
4480         if (tryTLSXFormLoad(LD))
4481           return;
4482       break;
4483     }
4484
4485     SDValue Offset = LD->getOffset();
4486     if (Offset.getOpcode() == ISD::TargetConstant ||
4487         Offset.getOpcode() == ISD::TargetGlobalAddress) {
4488
4489       unsigned Opcode;
4490       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4491       if (LD->getValueType(0) != MVT::i64) {
4492         // Handle PPC32 integer and normal FP loads.
4493         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4494         switch (LoadedVT.getSimpleVT().SimpleTy) {
4495           default: llvm_unreachable("Invalid PPC load type!");
4496           case MVT::f64: Opcode = PPC::LFDU; break;
4497           case MVT::f32: Opcode = PPC::LFSU; break;
4498           case MVT::i32: Opcode = PPC::LWZU; break;
4499           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
4500           case MVT::i1:
4501           case MVT::i8:  Opcode = PPC::LBZU; break;
4502         }
4503       } else {
4504         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4505         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4506         switch (LoadedVT.getSimpleVT().SimpleTy) {
4507           default: llvm_unreachable("Invalid PPC load type!");
4508           case MVT::i64: Opcode = PPC::LDU; break;
4509           case MVT::i32: Opcode = PPC::LWZU8; break;
4510           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
4511           case MVT::i1:
4512           case MVT::i8:  Opcode = PPC::LBZU8; break;
4513         }
4514       }
4515
4516       SDValue Chain = LD->getChain();
4517       SDValue Base = LD->getBasePtr();
4518       SDValue Ops[] = { Offset, Base, Chain };
4519       SDNode *MN = CurDAG->getMachineNode(
4520           Opcode, dl, LD->getValueType(0),
4521           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4522       transferMemOperands(N, MN);
4523       ReplaceNode(N, MN);
4524       return;
4525     } else {
4526       unsigned Opcode;
4527       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4528       if (LD->getValueType(0) != MVT::i64) {
4529         // Handle PPC32 integer and normal FP loads.
4530         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4531         switch (LoadedVT.getSimpleVT().SimpleTy) {
4532           default: llvm_unreachable("Invalid PPC load type!");
4533           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
4534           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
4535           case MVT::f64: Opcode = PPC::LFDUX; break;
4536           case MVT::f32: Opcode = PPC::LFSUX; break;
4537           case MVT::i32: Opcode = PPC::LWZUX; break;
4538           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
4539           case MVT::i1:
4540           case MVT::i8:  Opcode = PPC::LBZUX; break;
4541         }
4542       } else {
4543         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4544         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
4545                "Invalid sext update load");
4546         switch (LoadedVT.getSimpleVT().SimpleTy) {
4547           default: llvm_unreachable("Invalid PPC load type!");
4548           case MVT::i64: Opcode = PPC::LDUX; break;
4549           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
4550           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
4551           case MVT::i1:
4552           case MVT::i8:  Opcode = PPC::LBZUX8; break;
4553         }
4554       }
4555
4556       SDValue Chain = LD->getChain();
4557       SDValue Base = LD->getBasePtr();
4558       SDValue Ops[] = { Base, Offset, Chain };
4559       SDNode *MN = CurDAG->getMachineNode(
4560           Opcode, dl, LD->getValueType(0),
4561           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4562       transferMemOperands(N, MN);
4563       ReplaceNode(N, MN);
4564       return;
4565     }
4566   }
4567
4568   case ISD::AND: {
4569     unsigned Imm, Imm2, SH, MB, ME;
4570     uint64_t Imm64;
4571
4572     // If this is an and of a value rotated between 0 and 31 bits and then and'd
4573     // with a mask, emit rlwinm
4574     if (isInt32Immediate(N->getOperand(1), Imm) &&
4575         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
4576       SDValue Val = N->getOperand(0).getOperand(0);
4577       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4578                         getI32Imm(ME, dl) };
4579       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4580       return;
4581     }
4582     // If this is just a masked value where the input is not handled above, and
4583     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4584     if (isInt32Immediate(N->getOperand(1), Imm) &&
4585         isRunOfOnes(Imm, MB, ME) &&
4586         N->getOperand(0).getOpcode() != ISD::ROTL) {
4587       SDValue Val = N->getOperand(0);
4588       SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4589                         getI32Imm(ME, dl) };
4590       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4591       return;
4592     }
4593     // If this is a 64-bit zero-extension mask, emit rldicl.
4594     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
4595         isMask_64(Imm64)) {
4596       SDValue Val = N->getOperand(0);
4597       MB = 64 - countTrailingOnes(Imm64);
4598       SH = 0;
4599
4600       if (Val.getOpcode() == ISD::ANY_EXTEND) {
4601         auto Op0 = Val.getOperand(0);
4602         if ( Op0.getOpcode() == ISD::SRL &&
4603            isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4604
4605            auto ResultType = Val.getNode()->getValueType(0);
4606            auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
4607                                                ResultType);
4608            SDValue IDVal (ImDef, 0);
4609
4610            Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
4611                          ResultType, IDVal, Op0.getOperand(0),
4612                          getI32Imm(1, dl)), 0);
4613            SH = 64 - Imm;
4614         }
4615       }
4616
4617       // If the operand is a logical right shift, we can fold it into this
4618       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4619       // for n <= mb. The right shift is really a left rotate followed by a
4620       // mask, and this mask is a more-restrictive sub-mask of the mask implied
4621       // by the shift.
4622       if (Val.getOpcode() == ISD::SRL &&
4623           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4624         assert(Imm < 64 && "Illegal shift amount");
4625         Val = Val.getOperand(0);
4626         SH = 64 - Imm;
4627       }
4628
4629       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
4630       CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4631       return;
4632     }
4633     // If this is a negated 64-bit zero-extension mask,
4634     // i.e. the immediate is a sequence of ones from most significant side
4635     // and all zero for reminder, we should use rldicr.
4636     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
4637         isMask_64(~Imm64)) {
4638       SDValue Val = N->getOperand(0);
4639       MB = 63 - countTrailingOnes(~Imm64);
4640       SH = 0;
4641       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
4642       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
4643       return;
4644     }
4645
4646     // AND X, 0 -> 0, not "rlwinm 32".
4647     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
4648       ReplaceUses(SDValue(N, 0), N->getOperand(1));
4649       return;
4650     }
4651     // ISD::OR doesn't get all the bitfield insertion fun.
4652     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4653     // bitfield insert.
4654     if (isInt32Immediate(N->getOperand(1), Imm) &&
4655         N->getOperand(0).getOpcode() == ISD::OR &&
4656         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
4657       // The idea here is to check whether this is equivalent to:
4658       //   (c1 & m) | (x & ~m)
4659       // where m is a run-of-ones mask. The logic here is that, for each bit in
4660       // c1 and c2:
4661       //  - if both are 1, then the output will be 1.
4662       //  - if both are 0, then the output will be 0.
4663       //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4664       //    come from x.
4665       //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4666       //    be 0.
4667       //  If that last condition is never the case, then we can form m from the
4668       //  bits that are the same between c1 and c2.
4669       unsigned MB, ME;
4670       if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
4671         SDValue Ops[] = { N->getOperand(0).getOperand(0),
4672                             N->getOperand(0).getOperand(1),
4673                             getI32Imm(0, dl), getI32Imm(MB, dl),
4674                             getI32Imm(ME, dl) };
4675         ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4676         return;
4677       }
4678     }
4679
4680     // Other cases are autogenerated.
4681     break;
4682   }
4683   case ISD::OR: {
4684     if (N->getValueType(0) == MVT::i32)
4685       if (tryBitfieldInsert(N))
4686         return;
4687
4688     int16_t Imm;
4689     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4690         isIntS16Immediate(N->getOperand(1), Imm)) {
4691       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
4692
4693       // If this is equivalent to an add, then we can fold it with the
4694       // FrameIndex calculation.
4695       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
4696         selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4697         return;
4698       }
4699     }
4700
4701     // OR with a 32-bit immediate can be handled by ori + oris
4702     // without creating an immediate in a GPR.
4703     uint64_t Imm64 = 0;
4704     bool IsPPC64 = PPCSubTarget->isPPC64();
4705     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4706         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4707       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
4708       uint64_t ImmHi = Imm64 >> 16;
4709       uint64_t ImmLo = Imm64 & 0xFFFF;
4710       if (ImmHi != 0 && ImmLo != 0) {
4711         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
4712                                             N->getOperand(0),
4713                                             getI16Imm(ImmLo, dl));
4714         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4715         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
4716         return;
4717       }
4718     }
4719
4720     // Other cases are autogenerated.
4721     break;
4722   }
4723   case ISD::XOR: {
4724     // XOR with a 32-bit immediate can be handled by xori + xoris
4725     // without creating an immediate in a GPR.
4726     uint64_t Imm64 = 0;
4727     bool IsPPC64 = PPCSubTarget->isPPC64();
4728     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4729         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4730       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
4731       uint64_t ImmHi = Imm64 >> 16;
4732       uint64_t ImmLo = Imm64 & 0xFFFF;
4733       if (ImmHi != 0 && ImmLo != 0) {
4734         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
4735                                             N->getOperand(0),
4736                                             getI16Imm(ImmLo, dl));
4737         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4738         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
4739         return;
4740       }
4741     }
4742
4743     break;
4744   }
4745   case ISD::ADD: {
4746     int16_t Imm;
4747     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4748         isIntS16Immediate(N->getOperand(1), Imm)) {
4749       selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4750       return;
4751     }
4752
4753     break;
4754   }
4755   case ISD::SHL: {
4756     unsigned Imm, SH, MB, ME;
4757     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4758         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4759       SDValue Ops[] = { N->getOperand(0).getOperand(0),
4760                           getI32Imm(SH, dl), getI32Imm(MB, dl),
4761                           getI32Imm(ME, dl) };
4762       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4763       return;
4764     }
4765
4766     // Other cases are autogenerated.
4767     break;
4768   }
4769   case ISD::SRL: {
4770     unsigned Imm, SH, MB, ME;
4771     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4772         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4773       SDValue Ops[] = { N->getOperand(0).getOperand(0),
4774                           getI32Imm(SH, dl), getI32Imm(MB, dl),
4775                           getI32Imm(ME, dl) };
4776       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4777       return;
4778     }
4779
4780     // Other cases are autogenerated.
4781     break;
4782   }
4783   // FIXME: Remove this once the ANDI glue bug is fixed:
4784   case PPCISD::ANDIo_1_EQ_BIT:
4785   case PPCISD::ANDIo_1_GT_BIT: {
4786     if (!ANDIGlueBug)
4787       break;
4788
4789     EVT InVT = N->getOperand(0).getValueType();
4790     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
4791            "Invalid input type for ANDIo_1_EQ_BIT");
4792
4793     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
4794     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
4795                                         N->getOperand(0),
4796                                         CurDAG->getTargetConstant(1, dl, InVT)),
4797                  0);
4798     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
4799     SDValue SRIdxVal =
4800       CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
4801                                 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
4802
4803     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
4804                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
4805     return;
4806   }
4807   case ISD::SELECT_CC: {
4808     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4809     EVT PtrVT =
4810         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4811     bool isPPC64 = (PtrVT == MVT::i64);
4812
4813     // If this is a select of i1 operands, we'll pattern match it.
4814     if (PPCSubTarget->useCRBits() &&
4815         N->getOperand(0).getValueType() == MVT::i1)
4816       break;
4817
4818     if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) {
4819       bool NeedSwapOps = false;
4820       bool IsUnCmp = false;
4821       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
4822         SDValue LHS = N->getOperand(0);
4823         SDValue RHS = N->getOperand(1);
4824         if (NeedSwapOps)
4825           std::swap(LHS, RHS);
4826
4827         // Make use of SelectCC to generate the comparison to set CR bits, for
4828         // equality comparisons having one literal operand, SelectCC probably
4829         // doesn't need to materialize the whole literal and just use xoris to
4830         // check it first, it leads the following comparison result can't
4831         // exactly represent GT/LT relationship. So to avoid this we specify
4832         // SETGT/SETUGT here instead of SETEQ.
4833         SDValue GenCC =
4834             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
4835         CurDAG->SelectNodeTo(
4836             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
4837             N->getValueType(0), GenCC);
4838         NumP9Setb++;
4839         return;
4840       }
4841     }
4842
4843     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
4844     if (!isPPC64)
4845       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
4846         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
4847           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
4848             if (N1C->isNullValue() && N3C->isNullValue() &&
4849                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
4850                 // FIXME: Implement this optzn for PPC64.
4851                 N->getValueType(0) == MVT::i32) {
4852               SDNode *Tmp =
4853                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4854                                        N->getOperand(0), getI32Imm(~0U, dl));
4855               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
4856                                    N->getOperand(0), SDValue(Tmp, 1));
4857               return;
4858             }
4859
4860     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
4861
4862     if (N->getValueType(0) == MVT::i1) {
4863       // An i1 select is: (c & t) | (!c & f).
4864       bool Inv;
4865       unsigned Idx = getCRIdxForSetCC(CC, Inv);
4866
4867       unsigned SRI;
4868       switch (Idx) {
4869       default: llvm_unreachable("Invalid CC index");
4870       case 0: SRI = PPC::sub_lt; break;
4871       case 1: SRI = PPC::sub_gt; break;
4872       case 2: SRI = PPC::sub_eq; break;
4873       case 3: SRI = PPC::sub_un; break;
4874       }
4875
4876       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
4877
4878       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
4879                                               CCBit, CCBit), 0);
4880       SDValue C =    Inv ? NotCCBit : CCBit,
4881               NotC = Inv ? CCBit    : NotCCBit;
4882
4883       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
4884                                            C, N->getOperand(2)), 0);
4885       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
4886                                               NotC, N->getOperand(3)), 0);
4887
4888       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
4889       return;
4890     }
4891
4892     unsigned BROpc = getPredicateForSetCC(CC);
4893
4894     unsigned SelectCCOp;
4895     if (N->getValueType(0) == MVT::i32)
4896       SelectCCOp = PPC::SELECT_CC_I4;
4897     else if (N->getValueType(0) == MVT::i64)
4898       SelectCCOp = PPC::SELECT_CC_I8;
4899     else if (N->getValueType(0) == MVT::f32) {
4900       if (PPCSubTarget->hasP8Vector())
4901         SelectCCOp = PPC::SELECT_CC_VSSRC;
4902       else if (PPCSubTarget->hasSPE())
4903         SelectCCOp = PPC::SELECT_CC_SPE4;
4904       else
4905         SelectCCOp = PPC::SELECT_CC_F4;
4906     } else if (N->getValueType(0) == MVT::f64) {
4907       if (PPCSubTarget->hasVSX())
4908         SelectCCOp = PPC::SELECT_CC_VSFRC;
4909       else if (PPCSubTarget->hasSPE())
4910         SelectCCOp = PPC::SELECT_CC_SPE;
4911       else
4912         SelectCCOp = PPC::SELECT_CC_F8;
4913     } else if (N->getValueType(0) == MVT::f128)
4914       SelectCCOp = PPC::SELECT_CC_F16;
4915     else if (PPCSubTarget->hasSPE())
4916       SelectCCOp = PPC::SELECT_CC_SPE;
4917     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
4918       SelectCCOp = PPC::SELECT_CC_QFRC;
4919     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
4920       SelectCCOp = PPC::SELECT_CC_QSRC;
4921     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
4922       SelectCCOp = PPC::SELECT_CC_QBRC;
4923     else if (N->getValueType(0) == MVT::v2f64 ||
4924              N->getValueType(0) == MVT::v2i64)
4925       SelectCCOp = PPC::SELECT_CC_VSRC;
4926     else
4927       SelectCCOp = PPC::SELECT_CC_VRRC;
4928
4929     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
4930                         getI32Imm(BROpc, dl) };
4931     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
4932     return;
4933   }
4934   case ISD::VECTOR_SHUFFLE:
4935     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
4936                                   N->getValueType(0) == MVT::v2i64)) {
4937       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
4938
4939       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
4940               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
4941       unsigned DM[2];
4942
4943       for (int i = 0; i < 2; ++i)
4944         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
4945           DM[i] = 0;
4946         else
4947           DM[i] = 1;
4948
4949       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
4950           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4951           isa<LoadSDNode>(Op1.getOperand(0))) {
4952         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
4953         SDValue Base, Offset;
4954
4955         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
4956             (LD->getMemoryVT() == MVT::f64 ||
4957              LD->getMemoryVT() == MVT::i64) &&
4958             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
4959           SDValue Chain = LD->getChain();
4960           SDValue Ops[] = { Base, Offset, Chain };
4961           MachineMemOperand *MemOp = LD->getMemOperand();
4962           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
4963                                               N->getValueType(0), Ops);
4964           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
4965           return;
4966         }
4967       }
4968
4969       // For little endian, we must swap the input operands and adjust
4970       // the mask elements (reverse and invert them).
4971       if (PPCSubTarget->isLittleEndian()) {
4972         std::swap(Op1, Op2);
4973         unsigned tmp = DM[0];
4974         DM[0] = 1 - DM[1];
4975         DM[1] = 1 - tmp;
4976       }
4977
4978       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
4979                                               MVT::i32);
4980       SDValue Ops[] = { Op1, Op2, DMV };
4981       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
4982       return;
4983     }
4984
4985     break;
4986   case PPCISD::BDNZ:
4987   case PPCISD::BDZ: {
4988     bool IsPPC64 = PPCSubTarget->isPPC64();
4989     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
4990     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
4991                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
4992                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
4993                          MVT::Other, Ops);
4994     return;
4995   }
4996   case PPCISD::COND_BRANCH: {
4997     // Op #0 is the Chain.
4998     // Op #1 is the PPC::PRED_* number.
4999     // Op #2 is the CR#
5000     // Op #3 is the Dest MBB
5001     // Op #4 is the Flag.
5002     // Prevent PPC::PRED_* from being selected into LI.
5003     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5004     if (EnableBranchHint)
5005       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
5006
5007     SDValue Pred = getI32Imm(PCC, dl);
5008     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5009       N->getOperand(0), N->getOperand(4) };
5010     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5011     return;
5012   }
5013   case ISD::BR_CC: {
5014     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5015     unsigned PCC = getPredicateForSetCC(CC);
5016
5017     if (N->getOperand(2).getValueType() == MVT::i1) {
5018       unsigned Opc;
5019       bool Swap;
5020       switch (PCC) {
5021       default: llvm_unreachable("Unexpected Boolean-operand predicate");
5022       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
5023       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
5024       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
5025       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
5026       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
5027       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
5028       }
5029
5030       // A signed comparison of i1 values produces the opposite result to an
5031       // unsigned one if the condition code includes less-than or greater-than.
5032       // This is because 1 is the most negative signed i1 number and the most
5033       // positive unsigned i1 number. The CR-logical operations used for such
5034       // comparisons are non-commutative so for signed comparisons vs. unsigned
5035       // ones, the input operands just need to be swapped.
5036       if (ISD::isSignedIntSetCC(CC))
5037         Swap = !Swap;
5038
5039       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
5040                                              N->getOperand(Swap ? 3 : 2),
5041                                              N->getOperand(Swap ? 2 : 3)), 0);
5042       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
5043                            N->getOperand(0));
5044       return;
5045     }
5046
5047     if (EnableBranchHint)
5048       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
5049
5050     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
5051     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
5052                         N->getOperand(4), N->getOperand(0) };
5053     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5054     return;
5055   }
5056   case ISD::BRIND: {
5057     // FIXME: Should custom lower this.
5058     SDValue Chain = N->getOperand(0);
5059     SDValue Target = N->getOperand(1);
5060     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
5061     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
5062     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
5063                                            Chain), 0);
5064     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
5065     return;
5066   }
5067   case PPCISD::TOC_ENTRY: {
5068     assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
5069             "Only supported for 64-bit ABI and 32-bit SVR4");
5070     if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
5071       SDValue GA = N->getOperand(0);
5072       SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
5073                                           N->getOperand(1));
5074       transferMemOperands(N, MN);
5075       ReplaceNode(N, MN);
5076       return;
5077     }
5078
5079     // For medium and large code model, we generate two instructions as
5080     // described below.  Otherwise we allow SelectCodeCommon to handle this,
5081     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
5082     CodeModel::Model CModel = TM.getCodeModel();
5083     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
5084       break;
5085
5086     // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
5087     // If it must be toc-referenced according to PPCSubTarget, we generate:
5088     //   LDtocL(@sym, ADDIStocHA(%x2, @sym))
5089     // Otherwise we generate:
5090     //   ADDItocL(ADDIStocHA(%x2, @sym), @sym)
5091     SDValue GA = N->getOperand(0);
5092     SDValue TOCbase = N->getOperand(1);
5093     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
5094                                          TOCbase, GA);
5095     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
5096       // If it is access as got-indirect, we need an extra LD to load
5097       // the address.
5098       SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
5099                                           SDValue(Tmp, 0));
5100       transferMemOperands(N, MN);
5101       ReplaceNode(N, MN);
5102       return;
5103     }
5104
5105     // Build the address relative to the TOC-pointer..
5106     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
5107                                           SDValue(Tmp, 0), GA));
5108     return;
5109   }
5110   case PPCISD::PPC32_PICGOT:
5111     // Generate a PIC-safe GOT reference.
5112     assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
5113       "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
5114     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
5115                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
5116                          MVT::i32);
5117     return;
5118
5119   case PPCISD::VADD_SPLAT: {
5120     // This expands into one of three sequences, depending on whether
5121     // the first operand is odd or even, positive or negative.
5122     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
5123            isa<ConstantSDNode>(N->getOperand(1)) &&
5124            "Invalid operand on VADD_SPLAT!");
5125
5126     int Elt     = N->getConstantOperandVal(0);
5127     int EltSize = N->getConstantOperandVal(1);
5128     unsigned Opc1, Opc2, Opc3;
5129     EVT VT;
5130
5131     if (EltSize == 1) {
5132       Opc1 = PPC::VSPLTISB;
5133       Opc2 = PPC::VADDUBM;
5134       Opc3 = PPC::VSUBUBM;
5135       VT = MVT::v16i8;
5136     } else if (EltSize == 2) {
5137       Opc1 = PPC::VSPLTISH;
5138       Opc2 = PPC::VADDUHM;
5139       Opc3 = PPC::VSUBUHM;
5140       VT = MVT::v8i16;
5141     } else {
5142       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
5143       Opc1 = PPC::VSPLTISW;
5144       Opc2 = PPC::VADDUWM;
5145       Opc3 = PPC::VSUBUWM;
5146       VT = MVT::v4i32;
5147     }
5148
5149     if ((Elt & 1) == 0) {
5150       // Elt is even, in the range [-32,-18] + [16,30].
5151       //
5152       // Convert: VADD_SPLAT elt, size
5153       // Into:    tmp = VSPLTIS[BHW] elt
5154       //          VADDU[BHW]M tmp, tmp
5155       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
5156       SDValue EltVal = getI32Imm(Elt >> 1, dl);
5157       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5158       SDValue TmpVal = SDValue(Tmp, 0);
5159       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
5160       return;
5161     } else if (Elt > 0) {
5162       // Elt is odd and positive, in the range [17,31].
5163       //
5164       // Convert: VADD_SPLAT elt, size
5165       // Into:    tmp1 = VSPLTIS[BHW] elt-16
5166       //          tmp2 = VSPLTIS[BHW] -16
5167       //          VSUBU[BHW]M tmp1, tmp2
5168       SDValue EltVal = getI32Imm(Elt - 16, dl);
5169       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5170       EltVal = getI32Imm(-16, dl);
5171       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5172       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
5173                                             SDValue(Tmp2, 0)));
5174       return;
5175     } else {
5176       // Elt is odd and negative, in the range [-31,-17].
5177       //
5178       // Convert: VADD_SPLAT elt, size
5179       // Into:    tmp1 = VSPLTIS[BHW] elt+16
5180       //          tmp2 = VSPLTIS[BHW] -16
5181       //          VADDU[BHW]M tmp1, tmp2
5182       SDValue EltVal = getI32Imm(Elt + 16, dl);
5183       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5184       EltVal = getI32Imm(-16, dl);
5185       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5186       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
5187                                             SDValue(Tmp2, 0)));
5188       return;
5189     }
5190   }
5191   }
5192
5193   SelectCode(N);
5194 }
5195
5196 // If the target supports the cmpb instruction, do the idiom recognition here.
5197 // We don't do this as a DAG combine because we don't want to do it as nodes
5198 // are being combined (because we might miss part of the eventual idiom). We
5199 // don't want to do it during instruction selection because we want to reuse
5200 // the logic for lowering the masking operations already part of the
5201 // instruction selector.
5202 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
5203   SDLoc dl(N);
5204
5205   assert(N->getOpcode() == ISD::OR &&
5206          "Only OR nodes are supported for CMPB");
5207
5208   SDValue Res;
5209   if (!PPCSubTarget->hasCMPB())
5210     return Res;
5211
5212   if (N->getValueType(0) != MVT::i32 &&
5213       N->getValueType(0) != MVT::i64)
5214     return Res;
5215
5216   EVT VT = N->getValueType(0);
5217
5218   SDValue RHS, LHS;
5219   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
5220   uint64_t Mask = 0, Alt = 0;
5221
5222   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
5223                                uint64_t &Mask, uint64_t &Alt,
5224                                SDValue &LHS, SDValue &RHS) {
5225     if (O.getOpcode() != ISD::SELECT_CC)
5226       return false;
5227     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
5228
5229     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
5230         !isa<ConstantSDNode>(O.getOperand(3)))
5231       return false;
5232
5233     uint64_t PM = O.getConstantOperandVal(2);
5234     uint64_t PAlt = O.getConstantOperandVal(3);
5235     for (b = 0; b < 8; ++b) {
5236       uint64_t Mask = UINT64_C(0xFF) << (8*b);
5237       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
5238         break;
5239     }
5240
5241     if (b == 8)
5242       return false;
5243     Mask |= PM;
5244     Alt  |= PAlt;
5245
5246     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
5247         O.getConstantOperandVal(1) != 0) {
5248       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
5249       if (Op0.getOpcode() == ISD::TRUNCATE)
5250         Op0 = Op0.getOperand(0);
5251       if (Op1.getOpcode() == ISD::TRUNCATE)
5252         Op1 = Op1.getOperand(0);
5253
5254       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
5255           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
5256           isa<ConstantSDNode>(Op0.getOperand(1))) {
5257
5258         unsigned Bits = Op0.getValueSizeInBits();
5259         if (b != Bits/8-1)
5260           return false;
5261         if (Op0.getConstantOperandVal(1) != Bits-8)
5262           return false;
5263
5264         LHS = Op0.getOperand(0);
5265         RHS = Op1.getOperand(0);
5266         return true;
5267       }
5268
5269       // When we have small integers (i16 to be specific), the form present
5270       // post-legalization uses SETULT in the SELECT_CC for the
5271       // higher-order byte, depending on the fact that the
5272       // even-higher-order bytes are known to all be zero, for example:
5273       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
5274       // (so when the second byte is the same, because all higher-order
5275       // bits from bytes 3 and 4 are known to be zero, the result of the
5276       // xor can be at most 255)
5277       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
5278           isa<ConstantSDNode>(O.getOperand(1))) {
5279
5280         uint64_t ULim = O.getConstantOperandVal(1);
5281         if (ULim != (UINT64_C(1) << b*8))
5282           return false;
5283
5284         // Now we need to make sure that the upper bytes are known to be
5285         // zero.
5286         unsigned Bits = Op0.getValueSizeInBits();
5287         if (!CurDAG->MaskedValueIsZero(
5288                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
5289           return false;
5290
5291         LHS = Op0.getOperand(0);
5292         RHS = Op0.getOperand(1);
5293         return true;
5294       }
5295
5296       return false;
5297     }
5298
5299     if (CC != ISD::SETEQ)
5300       return false;
5301
5302     SDValue Op = O.getOperand(0);
5303     if (Op.getOpcode() == ISD::AND) {
5304       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5305         return false;
5306       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
5307         return false;
5308
5309       SDValue XOR = Op.getOperand(0);
5310       if (XOR.getOpcode() == ISD::TRUNCATE)
5311         XOR = XOR.getOperand(0);
5312       if (XOR.getOpcode() != ISD::XOR)
5313         return false;
5314
5315       LHS = XOR.getOperand(0);
5316       RHS = XOR.getOperand(1);
5317       return true;
5318     } else if (Op.getOpcode() == ISD::SRL) {
5319       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5320         return false;
5321       unsigned Bits = Op.getValueSizeInBits();
5322       if (b != Bits/8-1)
5323         return false;
5324       if (Op.getConstantOperandVal(1) != Bits-8)
5325         return false;
5326
5327       SDValue XOR = Op.getOperand(0);
5328       if (XOR.getOpcode() == ISD::TRUNCATE)
5329         XOR = XOR.getOperand(0);
5330       if (XOR.getOpcode() != ISD::XOR)
5331         return false;
5332
5333       LHS = XOR.getOperand(0);
5334       RHS = XOR.getOperand(1);
5335       return true;
5336     }
5337
5338     return false;
5339   };
5340
5341   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
5342   while (!Queue.empty()) {
5343     SDValue V = Queue.pop_back_val();
5344
5345     for (const SDValue &O : V.getNode()->ops()) {
5346       unsigned b = 0;
5347       uint64_t M = 0, A = 0;
5348       SDValue OLHS, ORHS;
5349       if (O.getOpcode() == ISD::OR) {
5350         Queue.push_back(O);
5351       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
5352         if (!LHS) {
5353           LHS = OLHS;
5354           RHS = ORHS;
5355           BytesFound[b] = true;
5356           Mask |= M;
5357           Alt  |= A;
5358         } else if ((LHS == ORHS && RHS == OLHS) ||
5359                    (RHS == ORHS && LHS == OLHS)) {
5360           BytesFound[b] = true;
5361           Mask |= M;
5362           Alt  |= A;
5363         } else {
5364           return Res;
5365         }
5366       } else {
5367         return Res;
5368       }
5369     }
5370   }
5371
5372   unsigned LastB = 0, BCnt = 0;
5373   for (unsigned i = 0; i < 8; ++i)
5374     if (BytesFound[LastB]) {
5375       ++BCnt;
5376       LastB = i;
5377     }
5378
5379   if (!LastB || BCnt < 2)
5380     return Res;
5381
5382   // Because we'll be zero-extending the output anyway if don't have a specific
5383   // value for each input byte (via the Mask), we can 'anyext' the inputs.
5384   if (LHS.getValueType() != VT) {
5385     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
5386     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
5387   }
5388
5389   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
5390
5391   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
5392   if (NonTrivialMask && !Alt) {
5393     // Res = Mask & CMPB
5394     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5395                           CurDAG->getConstant(Mask, dl, VT));
5396   } else if (Alt) {
5397     // Res = (CMPB & Mask) | (~CMPB & Alt)
5398     // Which, as suggested here:
5399     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
5400     // can be written as:
5401     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
5402     // useful because the (Alt ^ Mask) can be pre-computed.
5403     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5404                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
5405     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
5406                           CurDAG->getConstant(Alt, dl, VT));
5407   }
5408
5409   return Res;
5410 }
5411
5412 // When CR bit registers are enabled, an extension of an i1 variable to a i32
5413 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
5414 // involves constant materialization of a 0 or a 1 or both. If the result of
5415 // the extension is then operated upon by some operator that can be constant
5416 // folded with a constant 0 or 1, and that constant can be materialized using
5417 // only one instruction (like a zero or one), then we should fold in those
5418 // operations with the select.
5419 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
5420   if (!PPCSubTarget->useCRBits())
5421     return;
5422
5423   if (N->getOpcode() != ISD::ZERO_EXTEND &&
5424       N->getOpcode() != ISD::SIGN_EXTEND &&
5425       N->getOpcode() != ISD::ANY_EXTEND)
5426     return;
5427
5428   if (N->getOperand(0).getValueType() != MVT::i1)
5429     return;
5430
5431   if (!N->hasOneUse())
5432     return;
5433
5434   SDLoc dl(N);
5435   EVT VT = N->getValueType(0);
5436   SDValue Cond = N->getOperand(0);
5437   SDValue ConstTrue =
5438     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
5439   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
5440
5441   do {
5442     SDNode *User = *N->use_begin();
5443     if (User->getNumOperands() != 2)
5444       break;
5445
5446     auto TryFold = [this, N, User, dl](SDValue Val) {
5447       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
5448       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
5449       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
5450
5451       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
5452                                             User->getValueType(0),
5453                                             O0.getNode(), O1.getNode());
5454     };
5455
5456     // FIXME: When the semantics of the interaction between select and undef
5457     // are clearly defined, it may turn out to be unnecessary to break here.
5458     SDValue TrueRes = TryFold(ConstTrue);
5459     if (!TrueRes || TrueRes.isUndef())
5460       break;
5461     SDValue FalseRes = TryFold(ConstFalse);
5462     if (!FalseRes || FalseRes.isUndef())
5463       break;
5464
5465     // For us to materialize these using one instruction, we must be able to
5466     // represent them as signed 16-bit integers.
5467     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
5468              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
5469     if (!isInt<16>(True) || !isInt<16>(False))
5470       break;
5471
5472     // We can replace User with a new SELECT node, and try again to see if we
5473     // can fold the select with its user.
5474     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
5475     N = User;
5476     ConstTrue = TrueRes;
5477     ConstFalse = FalseRes;
5478   } while (N->hasOneUse());
5479 }
5480
5481 void PPCDAGToDAGISel::PreprocessISelDAG() {
5482   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
5483
5484   bool MadeChange = false;
5485   while (Position != CurDAG->allnodes_begin()) {
5486     SDNode *N = &*--Position;
5487     if (N->use_empty())
5488       continue;
5489
5490     SDValue Res;
5491     switch (N->getOpcode()) {
5492     default: break;
5493     case ISD::OR:
5494       Res = combineToCMPB(N);
5495       break;
5496     }
5497
5498     if (!Res)
5499       foldBoolExts(Res, N);
5500
5501     if (Res) {
5502       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
5503       LLVM_DEBUG(N->dump(CurDAG));
5504       LLVM_DEBUG(dbgs() << "\nNew: ");
5505       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
5506       LLVM_DEBUG(dbgs() << "\n");
5507
5508       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
5509       MadeChange = true;
5510     }
5511   }
5512
5513   if (MadeChange)
5514     CurDAG->RemoveDeadNodes();
5515 }
5516
5517 /// PostprocessISelDAG - Perform some late peephole optimizations
5518 /// on the DAG representation.
5519 void PPCDAGToDAGISel::PostprocessISelDAG() {
5520   // Skip peepholes at -O0.
5521   if (TM.getOptLevel() == CodeGenOpt::None)
5522     return;
5523
5524   PeepholePPC64();
5525   PeepholeCROps();
5526   PeepholePPC64ZExt();
5527 }
5528
5529 // Check if all users of this node will become isel where the second operand
5530 // is the constant zero. If this is so, and if we can negate the condition,
5531 // then we can flip the true and false operands. This will allow the zero to
5532 // be folded with the isel so that we don't need to materialize a register
5533 // containing zero.
5534 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
5535   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5536        UI != UE; ++UI) {
5537     SDNode *User = *UI;
5538     if (!User->isMachineOpcode())
5539       return false;
5540     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
5541         User->getMachineOpcode() != PPC::SELECT_I8)
5542       return false;
5543
5544     SDNode *Op2 = User->getOperand(2).getNode();
5545     if (!Op2->isMachineOpcode())
5546       return false;
5547
5548     if (Op2->getMachineOpcode() != PPC::LI &&
5549         Op2->getMachineOpcode() != PPC::LI8)
5550       return false;
5551
5552     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
5553     if (!C)
5554       return false;
5555
5556     if (!C->isNullValue())
5557       return false;
5558   }
5559
5560   return true;
5561 }
5562
5563 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
5564   SmallVector<SDNode *, 4> ToReplace;
5565   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5566        UI != UE; ++UI) {
5567     SDNode *User = *UI;
5568     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
5569             User->getMachineOpcode() == PPC::SELECT_I8) &&
5570            "Must have all select users");
5571     ToReplace.push_back(User);
5572   }
5573
5574   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
5575        UE = ToReplace.end(); UI != UE; ++UI) {
5576     SDNode *User = *UI;
5577     SDNode *ResNode =
5578       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
5579                              User->getValueType(0), User->getOperand(0),
5580                              User->getOperand(2),
5581                              User->getOperand(1));
5582
5583     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
5584     LLVM_DEBUG(User->dump(CurDAG));
5585     LLVM_DEBUG(dbgs() << "\nNew: ");
5586     LLVM_DEBUG(ResNode->dump(CurDAG));
5587     LLVM_DEBUG(dbgs() << "\n");
5588
5589     ReplaceUses(User, ResNode);
5590   }
5591 }
5592
5593 void PPCDAGToDAGISel::PeepholeCROps() {
5594   bool IsModified;
5595   do {
5596     IsModified = false;
5597     for (SDNode &Node : CurDAG->allnodes()) {
5598       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
5599       if (!MachineNode || MachineNode->use_empty())
5600         continue;
5601       SDNode *ResNode = MachineNode;
5602
5603       bool Op1Set   = false, Op1Unset = false,
5604            Op1Not   = false,
5605            Op2Set   = false, Op2Unset = false,
5606            Op2Not   = false;
5607
5608       unsigned Opcode = MachineNode->getMachineOpcode();
5609       switch (Opcode) {
5610       default: break;
5611       case PPC::CRAND:
5612       case PPC::CRNAND:
5613       case PPC::CROR:
5614       case PPC::CRXOR:
5615       case PPC::CRNOR:
5616       case PPC::CREQV:
5617       case PPC::CRANDC:
5618       case PPC::CRORC: {
5619         SDValue Op = MachineNode->getOperand(1);
5620         if (Op.isMachineOpcode()) {
5621           if (Op.getMachineOpcode() == PPC::CRSET)
5622             Op2Set = true;
5623           else if (Op.getMachineOpcode() == PPC::CRUNSET)
5624             Op2Unset = true;
5625           else if (Op.getMachineOpcode() == PPC::CRNOR &&
5626                    Op.getOperand(0) == Op.getOperand(1))
5627             Op2Not = true;
5628         }
5629         LLVM_FALLTHROUGH;
5630       }
5631       case PPC::BC:
5632       case PPC::BCn:
5633       case PPC::SELECT_I4:
5634       case PPC::SELECT_I8:
5635       case PPC::SELECT_F4:
5636       case PPC::SELECT_F8:
5637       case PPC::SELECT_QFRC:
5638       case PPC::SELECT_QSRC:
5639       case PPC::SELECT_QBRC:
5640       case PPC::SELECT_SPE:
5641       case PPC::SELECT_SPE4:
5642       case PPC::SELECT_VRRC:
5643       case PPC::SELECT_VSFRC:
5644       case PPC::SELECT_VSSRC:
5645       case PPC::SELECT_VSRC: {
5646         SDValue Op = MachineNode->getOperand(0);
5647         if (Op.isMachineOpcode()) {
5648           if (Op.getMachineOpcode() == PPC::CRSET)
5649             Op1Set = true;
5650           else if (Op.getMachineOpcode() == PPC::CRUNSET)
5651             Op1Unset = true;
5652           else if (Op.getMachineOpcode() == PPC::CRNOR &&
5653                    Op.getOperand(0) == Op.getOperand(1))
5654             Op1Not = true;
5655         }
5656         }
5657         break;
5658       }
5659
5660       bool SelectSwap = false;
5661       switch (Opcode) {
5662       default: break;
5663       case PPC::CRAND:
5664         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5665           // x & x = x
5666           ResNode = MachineNode->getOperand(0).getNode();
5667         else if (Op1Set)
5668           // 1 & y = y
5669           ResNode = MachineNode->getOperand(1).getNode();
5670         else if (Op2Set)
5671           // x & 1 = x
5672           ResNode = MachineNode->getOperand(0).getNode();
5673         else if (Op1Unset || Op2Unset)
5674           // x & 0 = 0 & y = 0
5675           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5676                                            MVT::i1);
5677         else if (Op1Not)
5678           // ~x & y = andc(y, x)
5679           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5680                                            MVT::i1, MachineNode->getOperand(1),
5681                                            MachineNode->getOperand(0).
5682                                              getOperand(0));
5683         else if (Op2Not)
5684           // x & ~y = andc(x, y)
5685           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5686                                            MVT::i1, MachineNode->getOperand(0),
5687                                            MachineNode->getOperand(1).
5688                                              getOperand(0));
5689         else if (AllUsersSelectZero(MachineNode)) {
5690           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
5691                                            MVT::i1, MachineNode->getOperand(0),
5692                                            MachineNode->getOperand(1));
5693           SelectSwap = true;
5694         }
5695         break;
5696       case PPC::CRNAND:
5697         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5698           // nand(x, x) -> nor(x, x)
5699           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5700                                            MVT::i1, MachineNode->getOperand(0),
5701                                            MachineNode->getOperand(0));
5702         else if (Op1Set)
5703           // nand(1, y) -> nor(y, y)
5704           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5705                                            MVT::i1, MachineNode->getOperand(1),
5706                                            MachineNode->getOperand(1));
5707         else if (Op2Set)
5708           // nand(x, 1) -> nor(x, x)
5709           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5710                                            MVT::i1, MachineNode->getOperand(0),
5711                                            MachineNode->getOperand(0));
5712         else if (Op1Unset || Op2Unset)
5713           // nand(x, 0) = nand(0, y) = 1
5714           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5715                                            MVT::i1);
5716         else if (Op1Not)
5717           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
5718           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5719                                            MVT::i1, MachineNode->getOperand(0).
5720                                                       getOperand(0),
5721                                            MachineNode->getOperand(1));
5722         else if (Op2Not)
5723           // nand(x, ~y) = ~x | y = orc(y, x)
5724           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5725                                            MVT::i1, MachineNode->getOperand(1).
5726                                                       getOperand(0),
5727                                            MachineNode->getOperand(0));
5728         else if (AllUsersSelectZero(MachineNode)) {
5729           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
5730                                            MVT::i1, MachineNode->getOperand(0),
5731                                            MachineNode->getOperand(1));
5732           SelectSwap = true;
5733         }
5734         break;
5735       case PPC::CROR:
5736         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5737           // x | x = x
5738           ResNode = MachineNode->getOperand(0).getNode();
5739         else if (Op1Set || Op2Set)
5740           // x | 1 = 1 | y = 1
5741           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5742                                            MVT::i1);
5743         else if (Op1Unset)
5744           // 0 | y = y
5745           ResNode = MachineNode->getOperand(1).getNode();
5746         else if (Op2Unset)
5747           // x | 0 = x
5748           ResNode = MachineNode->getOperand(0).getNode();
5749         else if (Op1Not)
5750           // ~x | y = orc(y, x)
5751           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5752                                            MVT::i1, MachineNode->getOperand(1),
5753                                            MachineNode->getOperand(0).
5754                                              getOperand(0));
5755         else if (Op2Not)
5756           // x | ~y = orc(x, y)
5757           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5758                                            MVT::i1, MachineNode->getOperand(0),
5759                                            MachineNode->getOperand(1).
5760                                              getOperand(0));
5761         else if (AllUsersSelectZero(MachineNode)) {
5762           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5763                                            MVT::i1, MachineNode->getOperand(0),
5764                                            MachineNode->getOperand(1));
5765           SelectSwap = true;
5766         }
5767         break;
5768       case PPC::CRXOR:
5769         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5770           // xor(x, x) = 0
5771           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5772                                            MVT::i1);
5773         else if (Op1Set)
5774           // xor(1, y) -> nor(y, y)
5775           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5776                                            MVT::i1, MachineNode->getOperand(1),
5777                                            MachineNode->getOperand(1));
5778         else if (Op2Set)
5779           // xor(x, 1) -> nor(x, x)
5780           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5781                                            MVT::i1, MachineNode->getOperand(0),
5782                                            MachineNode->getOperand(0));
5783         else if (Op1Unset)
5784           // xor(0, y) = y
5785           ResNode = MachineNode->getOperand(1).getNode();
5786         else if (Op2Unset)
5787           // xor(x, 0) = x
5788           ResNode = MachineNode->getOperand(0).getNode();
5789         else if (Op1Not)
5790           // xor(~x, y) = eqv(x, y)
5791           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5792                                            MVT::i1, MachineNode->getOperand(0).
5793                                                       getOperand(0),
5794                                            MachineNode->getOperand(1));
5795         else if (Op2Not)
5796           // xor(x, ~y) = eqv(x, y)
5797           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5798                                            MVT::i1, MachineNode->getOperand(0),
5799                                            MachineNode->getOperand(1).
5800                                              getOperand(0));
5801         else if (AllUsersSelectZero(MachineNode)) {
5802           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5803                                            MVT::i1, MachineNode->getOperand(0),
5804                                            MachineNode->getOperand(1));
5805           SelectSwap = true;
5806         }
5807         break;
5808       case PPC::CRNOR:
5809         if (Op1Set || Op2Set)
5810           // nor(1, y) -> 0
5811           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5812                                            MVT::i1);
5813         else if (Op1Unset)
5814           // nor(0, y) = ~y -> nor(y, y)
5815           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5816                                            MVT::i1, MachineNode->getOperand(1),
5817                                            MachineNode->getOperand(1));
5818         else if (Op2Unset)
5819           // nor(x, 0) = ~x
5820           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5821                                            MVT::i1, MachineNode->getOperand(0),
5822                                            MachineNode->getOperand(0));
5823         else if (Op1Not)
5824           // nor(~x, y) = andc(x, y)
5825           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5826                                            MVT::i1, MachineNode->getOperand(0).
5827                                                       getOperand(0),
5828                                            MachineNode->getOperand(1));
5829         else if (Op2Not)
5830           // nor(x, ~y) = andc(y, x)
5831           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5832                                            MVT::i1, MachineNode->getOperand(1).
5833                                                       getOperand(0),
5834                                            MachineNode->getOperand(0));
5835         else if (AllUsersSelectZero(MachineNode)) {
5836           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
5837                                            MVT::i1, MachineNode->getOperand(0),
5838                                            MachineNode->getOperand(1));
5839           SelectSwap = true;
5840         }
5841         break;
5842       case PPC::CREQV:
5843         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5844           // eqv(x, x) = 1
5845           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5846                                            MVT::i1);
5847         else if (Op1Set)
5848           // eqv(1, y) = y
5849           ResNode = MachineNode->getOperand(1).getNode();
5850         else if (Op2Set)
5851           // eqv(x, 1) = x
5852           ResNode = MachineNode->getOperand(0).getNode();
5853         else if (Op1Unset)
5854           // eqv(0, y) = ~y -> nor(y, y)
5855           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5856                                            MVT::i1, MachineNode->getOperand(1),
5857                                            MachineNode->getOperand(1));
5858         else if (Op2Unset)
5859           // eqv(x, 0) = ~x
5860           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5861                                            MVT::i1, MachineNode->getOperand(0),
5862                                            MachineNode->getOperand(0));
5863         else if (Op1Not)
5864           // eqv(~x, y) = xor(x, y)
5865           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5866                                            MVT::i1, MachineNode->getOperand(0).
5867                                                       getOperand(0),
5868                                            MachineNode->getOperand(1));
5869         else if (Op2Not)
5870           // eqv(x, ~y) = xor(x, y)
5871           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5872                                            MVT::i1, MachineNode->getOperand(0),
5873                                            MachineNode->getOperand(1).
5874                                              getOperand(0));
5875         else if (AllUsersSelectZero(MachineNode)) {
5876           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5877                                            MVT::i1, MachineNode->getOperand(0),
5878                                            MachineNode->getOperand(1));
5879           SelectSwap = true;
5880         }
5881         break;
5882       case PPC::CRANDC:
5883         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5884           // andc(x, x) = 0
5885           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5886                                            MVT::i1);
5887         else if (Op1Set)
5888           // andc(1, y) = ~y
5889           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5890                                            MVT::i1, MachineNode->getOperand(1),
5891                                            MachineNode->getOperand(1));
5892         else if (Op1Unset || Op2Set)
5893           // andc(0, y) = andc(x, 1) = 0
5894           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5895                                            MVT::i1);
5896         else if (Op2Unset)
5897           // andc(x, 0) = x
5898           ResNode = MachineNode->getOperand(0).getNode();
5899         else if (Op1Not)
5900           // andc(~x, y) = ~(x | y) = nor(x, y)
5901           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5902                                            MVT::i1, MachineNode->getOperand(0).
5903                                                       getOperand(0),
5904                                            MachineNode->getOperand(1));
5905         else if (Op2Not)
5906           // andc(x, ~y) = x & y
5907           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
5908                                            MVT::i1, MachineNode->getOperand(0),
5909                                            MachineNode->getOperand(1).
5910                                              getOperand(0));
5911         else if (AllUsersSelectZero(MachineNode)) {
5912           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5913                                            MVT::i1, MachineNode->getOperand(1),
5914                                            MachineNode->getOperand(0));
5915           SelectSwap = true;
5916         }
5917         break;
5918       case PPC::CRORC:
5919         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5920           // orc(x, x) = 1
5921           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5922                                            MVT::i1);
5923         else if (Op1Set || Op2Unset)
5924           // orc(1, y) = orc(x, 0) = 1
5925           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5926                                            MVT::i1);
5927         else if (Op2Set)
5928           // orc(x, 1) = x
5929           ResNode = MachineNode->getOperand(0).getNode();
5930         else if (Op1Unset)
5931           // orc(0, y) = ~y
5932           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5933                                            MVT::i1, MachineNode->getOperand(1),
5934                                            MachineNode->getOperand(1));
5935         else if (Op1Not)
5936           // orc(~x, y) = ~(x & y) = nand(x, y)
5937           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
5938                                            MVT::i1, MachineNode->getOperand(0).
5939                                                       getOperand(0),
5940                                            MachineNode->getOperand(1));
5941         else if (Op2Not)
5942           // orc(x, ~y) = x | y
5943           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
5944                                            MVT::i1, MachineNode->getOperand(0),
5945                                            MachineNode->getOperand(1).
5946                                              getOperand(0));
5947         else if (AllUsersSelectZero(MachineNode)) {
5948           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5949                                            MVT::i1, MachineNode->getOperand(1),
5950                                            MachineNode->getOperand(0));
5951           SelectSwap = true;
5952         }
5953         break;
5954       case PPC::SELECT_I4:
5955       case PPC::SELECT_I8:
5956       case PPC::SELECT_F4:
5957       case PPC::SELECT_F8:
5958       case PPC::SELECT_QFRC:
5959       case PPC::SELECT_QSRC:
5960       case PPC::SELECT_QBRC:
5961       case PPC::SELECT_SPE:
5962       case PPC::SELECT_SPE4:
5963       case PPC::SELECT_VRRC:
5964       case PPC::SELECT_VSFRC:
5965       case PPC::SELECT_VSSRC:
5966       case PPC::SELECT_VSRC:
5967         if (Op1Set)
5968           ResNode = MachineNode->getOperand(1).getNode();
5969         else if (Op1Unset)
5970           ResNode = MachineNode->getOperand(2).getNode();
5971         else if (Op1Not)
5972           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
5973                                            SDLoc(MachineNode),
5974                                            MachineNode->getValueType(0),
5975                                            MachineNode->getOperand(0).
5976                                              getOperand(0),
5977                                            MachineNode->getOperand(2),
5978                                            MachineNode->getOperand(1));
5979         break;
5980       case PPC::BC:
5981       case PPC::BCn:
5982         if (Op1Not)
5983           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
5984                                                                PPC::BC,
5985                                            SDLoc(MachineNode),
5986                                            MVT::Other,
5987                                            MachineNode->getOperand(0).
5988                                              getOperand(0),
5989                                            MachineNode->getOperand(1),
5990                                            MachineNode->getOperand(2));
5991         // FIXME: Handle Op1Set, Op1Unset here too.
5992         break;
5993       }
5994
5995       // If we're inverting this node because it is used only by selects that
5996       // we'd like to swap, then swap the selects before the node replacement.
5997       if (SelectSwap)
5998         SwapAllSelectUsers(MachineNode);
5999
6000       if (ResNode != MachineNode) {
6001         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6002         LLVM_DEBUG(MachineNode->dump(CurDAG));
6003         LLVM_DEBUG(dbgs() << "\nNew: ");
6004         LLVM_DEBUG(ResNode->dump(CurDAG));
6005         LLVM_DEBUG(dbgs() << "\n");
6006
6007         ReplaceUses(MachineNode, ResNode);
6008         IsModified = true;
6009       }
6010     }
6011     if (IsModified)
6012       CurDAG->RemoveDeadNodes();
6013   } while (IsModified);
6014 }
6015
6016 // Gather the set of 32-bit operations that are known to have their
6017 // higher-order 32 bits zero, where ToPromote contains all such operations.
6018 static bool PeepholePPC64ZExtGather(SDValue Op32,
6019                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
6020   if (!Op32.isMachineOpcode())
6021     return false;
6022
6023   // First, check for the "frontier" instructions (those that will clear the
6024   // higher-order 32 bits.
6025
6026   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
6027   // around. If it does not, then these instructions will clear the
6028   // higher-order bits.
6029   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
6030        Op32.getMachineOpcode() == PPC::RLWNM) &&
6031       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
6032     ToPromote.insert(Op32.getNode());
6033     return true;
6034   }
6035
6036   // SLW and SRW always clear the higher-order bits.
6037   if (Op32.getMachineOpcode() == PPC::SLW ||
6038       Op32.getMachineOpcode() == PPC::SRW) {
6039     ToPromote.insert(Op32.getNode());
6040     return true;
6041   }
6042
6043   // For LI and LIS, we need the immediate to be positive (so that it is not
6044   // sign extended).
6045   if (Op32.getMachineOpcode() == PPC::LI ||
6046       Op32.getMachineOpcode() == PPC::LIS) {
6047     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
6048       return false;
6049
6050     ToPromote.insert(Op32.getNode());
6051     return true;
6052   }
6053
6054   // LHBRX and LWBRX always clear the higher-order bits.
6055   if (Op32.getMachineOpcode() == PPC::LHBRX ||
6056       Op32.getMachineOpcode() == PPC::LWBRX) {
6057     ToPromote.insert(Op32.getNode());
6058     return true;
6059   }
6060
6061   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
6062   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
6063       Op32.getMachineOpcode() == PPC::CNTTZW) {
6064     ToPromote.insert(Op32.getNode());
6065     return true;
6066   }
6067
6068   // Next, check for those instructions we can look through.
6069
6070   // Assuming the mask does not wrap around, then the higher-order bits are
6071   // taken directly from the first operand.
6072   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
6073       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
6074     SmallPtrSet<SDNode *, 16> ToPromote1;
6075     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6076       return false;
6077
6078     ToPromote.insert(Op32.getNode());
6079     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6080     return true;
6081   }
6082
6083   // For OR, the higher-order bits are zero if that is true for both operands.
6084   // For SELECT_I4, the same is true (but the relevant operand numbers are
6085   // shifted by 1).
6086   if (Op32.getMachineOpcode() == PPC::OR ||
6087       Op32.getMachineOpcode() == PPC::SELECT_I4) {
6088     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
6089     SmallPtrSet<SDNode *, 16> ToPromote1;
6090     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
6091       return false;
6092     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
6093       return false;
6094
6095     ToPromote.insert(Op32.getNode());
6096     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6097     return true;
6098   }
6099
6100   // For ORI and ORIS, we need the higher-order bits of the first operand to be
6101   // zero, and also for the constant to be positive (so that it is not sign
6102   // extended).
6103   if (Op32.getMachineOpcode() == PPC::ORI ||
6104       Op32.getMachineOpcode() == PPC::ORIS) {
6105     SmallPtrSet<SDNode *, 16> ToPromote1;
6106     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6107       return false;
6108     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
6109       return false;
6110
6111     ToPromote.insert(Op32.getNode());
6112     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6113     return true;
6114   }
6115
6116   // The higher-order bits of AND are zero if that is true for at least one of
6117   // the operands.
6118   if (Op32.getMachineOpcode() == PPC::AND) {
6119     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
6120     bool Op0OK =
6121       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6122     bool Op1OK =
6123       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
6124     if (!Op0OK && !Op1OK)
6125       return false;
6126
6127     ToPromote.insert(Op32.getNode());
6128
6129     if (Op0OK)
6130       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6131
6132     if (Op1OK)
6133       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
6134
6135     return true;
6136   }
6137
6138   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
6139   // of the first operand, or if the second operand is positive (so that it is
6140   // not sign extended).
6141   if (Op32.getMachineOpcode() == PPC::ANDIo ||
6142       Op32.getMachineOpcode() == PPC::ANDISo) {
6143     SmallPtrSet<SDNode *, 16> ToPromote1;
6144     bool Op0OK =
6145       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6146     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
6147     if (!Op0OK && !Op1OK)
6148       return false;
6149
6150     ToPromote.insert(Op32.getNode());
6151
6152     if (Op0OK)
6153       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6154
6155     return true;
6156   }
6157
6158   return false;
6159 }
6160
6161 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
6162   if (!PPCSubTarget->isPPC64())
6163     return;
6164
6165   // When we zero-extend from i32 to i64, we use a pattern like this:
6166   // def : Pat<(i64 (zext i32:$in)),
6167   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
6168   //                   0, 32)>;
6169   // There are several 32-bit shift/rotate instructions, however, that will
6170   // clear the higher-order bits of their output, rendering the RLDICL
6171   // unnecessary. When that happens, we remove it here, and redefine the
6172   // relevant 32-bit operation to be a 64-bit operation.
6173
6174   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6175
6176   bool MadeChange = false;
6177   while (Position != CurDAG->allnodes_begin()) {
6178     SDNode *N = &*--Position;
6179     // Skip dead nodes and any non-machine opcodes.
6180     if (N->use_empty() || !N->isMachineOpcode())
6181       continue;
6182
6183     if (N->getMachineOpcode() != PPC::RLDICL)
6184       continue;
6185
6186     if (N->getConstantOperandVal(1) != 0 ||
6187         N->getConstantOperandVal(2) != 32)
6188       continue;
6189
6190     SDValue ISR = N->getOperand(0);
6191     if (!ISR.isMachineOpcode() ||
6192         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
6193       continue;
6194
6195     if (!ISR.hasOneUse())
6196       continue;
6197
6198     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
6199       continue;
6200
6201     SDValue IDef = ISR.getOperand(0);
6202     if (!IDef.isMachineOpcode() ||
6203         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
6204       continue;
6205
6206     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
6207     // can get rid of it.
6208
6209     SDValue Op32 = ISR->getOperand(1);
6210     if (!Op32.isMachineOpcode())
6211       continue;
6212
6213     // There are some 32-bit instructions that always clear the high-order 32
6214     // bits, there are also some instructions (like AND) that we can look
6215     // through.
6216     SmallPtrSet<SDNode *, 16> ToPromote;
6217     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
6218       continue;
6219
6220     // If the ToPromote set contains nodes that have uses outside of the set
6221     // (except for the original INSERT_SUBREG), then abort the transformation.
6222     bool OutsideUse = false;
6223     for (SDNode *PN : ToPromote) {
6224       for (SDNode *UN : PN->uses()) {
6225         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
6226           OutsideUse = true;
6227           break;
6228         }
6229       }
6230
6231       if (OutsideUse)
6232         break;
6233     }
6234     if (OutsideUse)
6235       continue;
6236
6237     MadeChange = true;
6238
6239     // We now know that this zero extension can be removed by promoting to
6240     // nodes in ToPromote to 64-bit operations, where for operations in the
6241     // frontier of the set, we need to insert INSERT_SUBREGs for their
6242     // operands.
6243     for (SDNode *PN : ToPromote) {
6244       unsigned NewOpcode;
6245       switch (PN->getMachineOpcode()) {
6246       default:
6247         llvm_unreachable("Don't know the 64-bit variant of this instruction");
6248       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
6249       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
6250       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
6251       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
6252       case PPC::LI:        NewOpcode = PPC::LI8; break;
6253       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
6254       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
6255       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
6256       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
6257       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
6258       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
6259       case PPC::OR:        NewOpcode = PPC::OR8; break;
6260       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
6261       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
6262       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
6263       case PPC::AND:       NewOpcode = PPC::AND8; break;
6264       case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
6265       case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
6266       }
6267
6268       // Note: During the replacement process, the nodes will be in an
6269       // inconsistent state (some instructions will have operands with values
6270       // of the wrong type). Once done, however, everything should be right
6271       // again.
6272
6273       SmallVector<SDValue, 4> Ops;
6274       for (const SDValue &V : PN->ops()) {
6275         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
6276             !isa<ConstantSDNode>(V)) {
6277           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
6278           SDNode *ReplOp =
6279             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
6280                                    ISR.getNode()->getVTList(), ReplOpOps);
6281           Ops.push_back(SDValue(ReplOp, 0));
6282         } else {
6283           Ops.push_back(V);
6284         }
6285       }
6286
6287       // Because all to-be-promoted nodes only have users that are other
6288       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
6289       // the i32 result value type with i64.
6290
6291       SmallVector<EVT, 2> NewVTs;
6292       SDVTList VTs = PN->getVTList();
6293       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
6294         if (VTs.VTs[i] == MVT::i32)
6295           NewVTs.push_back(MVT::i64);
6296         else
6297           NewVTs.push_back(VTs.VTs[i]);
6298
6299       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
6300       LLVM_DEBUG(PN->dump(CurDAG));
6301
6302       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
6303
6304       LLVM_DEBUG(dbgs() << "\nNew: ");
6305       LLVM_DEBUG(PN->dump(CurDAG));
6306       LLVM_DEBUG(dbgs() << "\n");
6307     }
6308
6309     // Now we replace the original zero extend and its associated INSERT_SUBREG
6310     // with the value feeding the INSERT_SUBREG (which has now been promoted to
6311     // return an i64).
6312
6313     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
6314     LLVM_DEBUG(N->dump(CurDAG));
6315     LLVM_DEBUG(dbgs() << "\nNew: ");
6316     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
6317     LLVM_DEBUG(dbgs() << "\n");
6318
6319     ReplaceUses(N, Op32.getNode());
6320   }
6321
6322   if (MadeChange)
6323     CurDAG->RemoveDeadNodes();
6324 }
6325
6326 void PPCDAGToDAGISel::PeepholePPC64() {
6327   // These optimizations are currently supported only for 64-bit SVR4.
6328   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
6329     return;
6330
6331   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6332
6333   while (Position != CurDAG->allnodes_begin()) {
6334     SDNode *N = &*--Position;
6335     // Skip dead nodes and any non-machine opcodes.
6336     if (N->use_empty() || !N->isMachineOpcode())
6337       continue;
6338
6339     unsigned FirstOp;
6340     unsigned StorageOpcode = N->getMachineOpcode();
6341     bool RequiresMod4Offset = false;
6342
6343     switch (StorageOpcode) {
6344     default: continue;
6345
6346     case PPC::LWA:
6347     case PPC::LD:
6348     case PPC::DFLOADf64:
6349     case PPC::DFLOADf32:
6350       RequiresMod4Offset = true;
6351       LLVM_FALLTHROUGH;
6352     case PPC::LBZ:
6353     case PPC::LBZ8:
6354     case PPC::LFD:
6355     case PPC::LFS:
6356     case PPC::LHA:
6357     case PPC::LHA8:
6358     case PPC::LHZ:
6359     case PPC::LHZ8:
6360     case PPC::LWZ:
6361     case PPC::LWZ8:
6362       FirstOp = 0;
6363       break;
6364
6365     case PPC::STD:
6366     case PPC::DFSTOREf64:
6367     case PPC::DFSTOREf32:
6368       RequiresMod4Offset = true;
6369       LLVM_FALLTHROUGH;
6370     case PPC::STB:
6371     case PPC::STB8:
6372     case PPC::STFD:
6373     case PPC::STFS:
6374     case PPC::STH:
6375     case PPC::STH8:
6376     case PPC::STW:
6377     case PPC::STW8:
6378       FirstOp = 1;
6379       break;
6380     }
6381
6382     // If this is a load or store with a zero offset, or within the alignment,
6383     // we may be able to fold an add-immediate into the memory operation.
6384     // The check against alignment is below, as it can't occur until we check
6385     // the arguments to N
6386     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
6387       continue;
6388
6389     SDValue Base = N->getOperand(FirstOp + 1);
6390     if (!Base.isMachineOpcode())
6391       continue;
6392
6393     unsigned Flags = 0;
6394     bool ReplaceFlags = true;
6395
6396     // When the feeding operation is an add-immediate of some sort,
6397     // determine whether we need to add relocation information to the
6398     // target flags on the immediate operand when we fold it into the
6399     // load instruction.
6400     //
6401     // For something like ADDItocL, the relocation information is
6402     // inferred from the opcode; when we process it in the AsmPrinter,
6403     // we add the necessary relocation there.  A load, though, can receive
6404     // relocation from various flavors of ADDIxxx, so we need to carry
6405     // the relocation information in the target flags.
6406     switch (Base.getMachineOpcode()) {
6407     default: continue;
6408
6409     case PPC::ADDI8:
6410     case PPC::ADDI:
6411       // In some cases (such as TLS) the relocation information
6412       // is already in place on the operand, so copying the operand
6413       // is sufficient.
6414       ReplaceFlags = false;
6415       // For these cases, the immediate may not be divisible by 4, in
6416       // which case the fold is illegal for DS-form instructions.  (The
6417       // other cases provide aligned addresses and are always safe.)
6418       if (RequiresMod4Offset &&
6419           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
6420            Base.getConstantOperandVal(1) % 4 != 0))
6421         continue;
6422       break;
6423     case PPC::ADDIdtprelL:
6424       Flags = PPCII::MO_DTPREL_LO;
6425       break;
6426     case PPC::ADDItlsldL:
6427       Flags = PPCII::MO_TLSLD_LO;
6428       break;
6429     case PPC::ADDItocL:
6430       Flags = PPCII::MO_TOC_LO;
6431       break;
6432     }
6433
6434     SDValue ImmOpnd = Base.getOperand(1);
6435
6436     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
6437     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
6438     // we might have needed different @ha relocation values for the offset
6439     // pointers).
6440     int MaxDisplacement = 7;
6441     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6442       const GlobalValue *GV = GA->getGlobal();
6443       MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
6444     }
6445
6446     bool UpdateHBase = false;
6447     SDValue HBase = Base.getOperand(0);
6448
6449     int Offset = N->getConstantOperandVal(FirstOp);
6450     if (ReplaceFlags) {
6451       if (Offset < 0 || Offset > MaxDisplacement) {
6452         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
6453         // one use, then we can do this for any offset, we just need to also
6454         // update the offset (i.e. the symbol addend) on the addis also.
6455         if (Base.getMachineOpcode() != PPC::ADDItocL)
6456           continue;
6457
6458         if (!HBase.isMachineOpcode() ||
6459             HBase.getMachineOpcode() != PPC::ADDIStocHA)
6460           continue;
6461
6462         if (!Base.hasOneUse() || !HBase.hasOneUse())
6463           continue;
6464
6465         SDValue HImmOpnd = HBase.getOperand(1);
6466         if (HImmOpnd != ImmOpnd)
6467           continue;
6468
6469         UpdateHBase = true;
6470       }
6471     } else {
6472       // If we're directly folding the addend from an addi instruction, then:
6473       //  1. In general, the offset on the memory access must be zero.
6474       //  2. If the addend is a constant, then it can be combined with a
6475       //     non-zero offset, but only if the result meets the encoding
6476       //     requirements.
6477       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
6478         Offset += C->getSExtValue();
6479
6480         if (RequiresMod4Offset && (Offset % 4) != 0)
6481           continue;
6482
6483         if (!isInt<16>(Offset))
6484           continue;
6485
6486         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
6487                                             ImmOpnd.getValueType());
6488       } else if (Offset != 0) {
6489         continue;
6490       }
6491     }
6492
6493     // We found an opportunity.  Reverse the operands from the add
6494     // immediate and substitute them into the load or store.  If
6495     // needed, update the target flags for the immediate operand to
6496     // reflect the necessary relocation information.
6497     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
6498     LLVM_DEBUG(Base->dump(CurDAG));
6499     LLVM_DEBUG(dbgs() << "\nN: ");
6500     LLVM_DEBUG(N->dump(CurDAG));
6501     LLVM_DEBUG(dbgs() << "\n");
6502
6503     // If the relocation information isn't already present on the
6504     // immediate operand, add it now.
6505     if (ReplaceFlags) {
6506       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6507         SDLoc dl(GA);
6508         const GlobalValue *GV = GA->getGlobal();
6509         // We can't perform this optimization for data whose alignment
6510         // is insufficient for the instruction encoding.
6511         if (GV->getAlignment() < 4 &&
6512             (RequiresMod4Offset || (Offset % 4) != 0)) {
6513           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
6514           continue;
6515         }
6516         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
6517       } else if (ConstantPoolSDNode *CP =
6518                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
6519         const Constant *C = CP->getConstVal();
6520         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
6521                                                 CP->getAlignment(),
6522                                                 Offset, Flags);
6523       }
6524     }
6525
6526     if (FirstOp == 1) // Store
6527       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
6528                                        Base.getOperand(0), N->getOperand(3));
6529     else // Load
6530       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
6531                                        N->getOperand(2));
6532
6533     if (UpdateHBase)
6534       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
6535                                        ImmOpnd);
6536
6537     // The add-immediate may now be dead, in which case remove it.
6538     if (Base.getNode()->use_empty())
6539       CurDAG->RemoveDeadNode(Base.getNode());
6540   }
6541 }
6542
6543 /// createPPCISelDag - This pass converts a legalized DAG into a
6544 /// PowerPC-specific DAG, ready for instruction scheduling.
6545 ///
6546 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
6547                                      CodeGenOpt::Level OptLevel) {
6548   return new PPCDAGToDAGISel(TM, OptLevel);
6549 }