]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
Merge ^/head r311132 through r311305.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / PowerPC / PPCISelLowering.cpp
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCCCState.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCPerfectShuffle.h"
20 #include "PPCTargetMachine.h"
21 #include "PPCTargetObjectFile.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAG.h"
34 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/Format.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include <list>
47
48 using namespace llvm;
49
50 #define DEBUG_TYPE "ppc-lowering"
51
52 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
53 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
54
55 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
56 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
57
58 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
59 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
60
61 static cl::opt<bool> DisableSCO("disable-ppc-sco",
62 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
63
64 STATISTIC(NumTailCalls, "Number of tail calls");
65 STATISTIC(NumSiblingCalls, "Number of sibling calls");
66
67 // FIXME: Remove this once the bug has been fixed!
68 extern cl::opt<bool> ANDIGlueBug;
69
70 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
71                                      const PPCSubtarget &STI)
72     : TargetLowering(TM), Subtarget(STI) {
73   // Use _setjmp/_longjmp instead of setjmp/longjmp.
74   setUseUnderscoreSetJmp(true);
75   setUseUnderscoreLongJmp(true);
76
77   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
78   // arguments are at least 4/8 bytes aligned.
79   bool isPPC64 = Subtarget.isPPC64();
80   setMinStackArgumentAlignment(isPPC64 ? 8:4);
81
82   // Set up the register classes.
83   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
84   if (!useSoftFloat()) {
85     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
86     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
87   }
88
89   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
90   for (MVT VT : MVT::integer_valuetypes()) {
91     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
92     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
93   }
94
95   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
96
97   // PowerPC has pre-inc load and store's.
98   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
99   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
100   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
101   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
102   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
103   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
104   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
105   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
106   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
107   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
108   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
109   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
110   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
111   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
112
113   if (Subtarget.useCRBits()) {
114     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
115
116     if (isPPC64 || Subtarget.hasFPCVT()) {
117       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
118       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
119                          isPPC64 ? MVT::i64 : MVT::i32);
120       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
121       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
122                         isPPC64 ? MVT::i64 : MVT::i32);
123     } else {
124       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
125       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
126     }
127
128     // PowerPC does not support direct load / store of condition registers
129     setOperationAction(ISD::LOAD, MVT::i1, Custom);
130     setOperationAction(ISD::STORE, MVT::i1, Custom);
131
132     // FIXME: Remove this once the ANDI glue bug is fixed:
133     if (ANDIGlueBug)
134       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
135
136     for (MVT VT : MVT::integer_valuetypes()) {
137       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
138       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
139       setTruncStoreAction(VT, MVT::i1, Expand);
140     }
141
142     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
143   }
144
145   // This is used in the ppcf128->int sequence.  Note it has different semantics
146   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
147   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
148
149   // We do not currently implement these libm ops for PowerPC.
150   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
151   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
152   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
153   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
154   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
155   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
156
157   // PowerPC has no SREM/UREM instructions
158   setOperationAction(ISD::SREM, MVT::i32, Expand);
159   setOperationAction(ISD::UREM, MVT::i32, Expand);
160   setOperationAction(ISD::SREM, MVT::i64, Expand);
161   setOperationAction(ISD::UREM, MVT::i64, Expand);
162
163   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
164   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
165   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
166   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
167   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
168   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
169   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
170   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
171   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
172
173   // We don't support sin/cos/sqrt/fmod/pow
174   setOperationAction(ISD::FSIN , MVT::f64, Expand);
175   setOperationAction(ISD::FCOS , MVT::f64, Expand);
176   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
177   setOperationAction(ISD::FREM , MVT::f64, Expand);
178   setOperationAction(ISD::FPOW , MVT::f64, Expand);
179   setOperationAction(ISD::FMA  , MVT::f64, Legal);
180   setOperationAction(ISD::FSIN , MVT::f32, Expand);
181   setOperationAction(ISD::FCOS , MVT::f32, Expand);
182   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
183   setOperationAction(ISD::FREM , MVT::f32, Expand);
184   setOperationAction(ISD::FPOW , MVT::f32, Expand);
185   setOperationAction(ISD::FMA  , MVT::f32, Legal);
186
187   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
188
189   // If we're enabling GP optimizations, use hardware square root
190   if (!Subtarget.hasFSQRT() &&
191       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
192         Subtarget.hasFRE()))
193     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
194
195   if (!Subtarget.hasFSQRT() &&
196       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
197         Subtarget.hasFRES()))
198     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
199
200   if (Subtarget.hasFCPSGN()) {
201     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
202     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
203   } else {
204     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
205     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
206   }
207
208   if (Subtarget.hasFPRND()) {
209     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
210     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
211     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
212     setOperationAction(ISD::FROUND, MVT::f64, Legal);
213
214     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
215     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
216     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
217     setOperationAction(ISD::FROUND, MVT::f32, Legal);
218   }
219
220   // PowerPC does not have BSWAP
221   // CTPOP or CTTZ were introduced in P8/P9 respectivelly
222   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
223   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
224   if (Subtarget.isISA3_0()) {
225     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
226     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
227   } else {
228     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
229     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
230   }
231
232   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
233     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
234     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
235   } else {
236     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
237     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
238   }
239
240   // PowerPC does not have ROTR
241   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
242   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
243
244   if (!Subtarget.useCRBits()) {
245     // PowerPC does not have Select
246     setOperationAction(ISD::SELECT, MVT::i32, Expand);
247     setOperationAction(ISD::SELECT, MVT::i64, Expand);
248     setOperationAction(ISD::SELECT, MVT::f32, Expand);
249     setOperationAction(ISD::SELECT, MVT::f64, Expand);
250   }
251
252   // PowerPC wants to turn select_cc of FP into fsel when possible.
253   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
254   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
255
256   // PowerPC wants to optimize integer setcc a bit
257   if (!Subtarget.useCRBits())
258     setOperationAction(ISD::SETCC, MVT::i32, Custom);
259
260   // PowerPC does not have BRCOND which requires SetCC
261   if (!Subtarget.useCRBits())
262     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
263
264   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
265
266   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
267   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
268
269   // PowerPC does not have [U|S]INT_TO_FP
270   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
271   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
272
273   if (Subtarget.hasDirectMove() && isPPC64) {
274     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
275     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
276     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
277     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
278   } else {
279     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
280     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
281     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
282     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
283   }
284
285   // We cannot sextinreg(i1).  Expand to shifts.
286   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
287
288   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
289   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
290   // support continuation, user-level threading, and etc.. As a result, no
291   // other SjLj exception interfaces are implemented and please don't build
292   // your own exception handling based on them.
293   // LLVM/Clang supports zero-cost DWARF exception handling.
294   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
295   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
296
297   // We want to legalize GlobalAddress and ConstantPool nodes into the
298   // appropriate instructions to materialize the address.
299   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
300   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
301   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
302   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
303   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
304   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
305   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
306   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
307   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
308   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
309
310   // TRAP is legal.
311   setOperationAction(ISD::TRAP, MVT::Other, Legal);
312
313   // TRAMPOLINE is custom lowered.
314   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
315   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
316
317   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
318   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
319
320   if (Subtarget.isSVR4ABI()) {
321     if (isPPC64) {
322       // VAARG always uses double-word chunks, so promote anything smaller.
323       setOperationAction(ISD::VAARG, MVT::i1, Promote);
324       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
325       setOperationAction(ISD::VAARG, MVT::i8, Promote);
326       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
327       setOperationAction(ISD::VAARG, MVT::i16, Promote);
328       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
329       setOperationAction(ISD::VAARG, MVT::i32, Promote);
330       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
331       setOperationAction(ISD::VAARG, MVT::Other, Expand);
332     } else {
333       // VAARG is custom lowered with the 32-bit SVR4 ABI.
334       setOperationAction(ISD::VAARG, MVT::Other, Custom);
335       setOperationAction(ISD::VAARG, MVT::i64, Custom);
336     }
337   } else
338     setOperationAction(ISD::VAARG, MVT::Other, Expand);
339
340   if (Subtarget.isSVR4ABI() && !isPPC64)
341     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
342     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
343   else
344     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
345
346   // Use the default implementation.
347   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
348   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
349   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
350   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
351   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
352   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
353   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
354   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
355   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
356
357   // We want to custom lower some of our intrinsics.
358   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
359
360   // To handle counter-based loop conditions.
361   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
362
363   // Comparisons that require checking two conditions.
364   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
365   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
366   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
367   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
368   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
369   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
370   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
371   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
372   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
373   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
374   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
375   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
376
377   if (Subtarget.has64BitSupport()) {
378     // They also have instructions for converting between i64 and fp.
379     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
380     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
381     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
382     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
383     // This is just the low 32 bits of a (signed) fp->i64 conversion.
384     // We cannot do this with Promote because i64 is not a legal type.
385     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
386
387     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
388       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
389   } else {
390     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
391     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
392   }
393
394   // With the instructions enabled under FPCVT, we can do everything.
395   if (Subtarget.hasFPCVT()) {
396     if (Subtarget.has64BitSupport()) {
397       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
398       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
399       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
400       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
401     }
402
403     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
404     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
405     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
406     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
407   }
408
409   if (Subtarget.use64BitRegs()) {
410     // 64-bit PowerPC implementations can support i64 types directly
411     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
412     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
413     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
414     // 64-bit PowerPC wants to expand i128 shifts itself.
415     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
416     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
417     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
418   } else {
419     // 32-bit PowerPC wants to expand i64 shifts itself.
420     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
421     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
422     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
423   }
424
425   if (Subtarget.hasAltivec()) {
426     // First set operation action for all vector types to expand. Then we
427     // will selectively turn on ones that can be effectively codegen'd.
428     for (MVT VT : MVT::vector_valuetypes()) {
429       // add/sub are legal for all supported vector VT's.
430       setOperationAction(ISD::ADD, VT, Legal);
431       setOperationAction(ISD::SUB, VT, Legal);
432
433       // Vector instructions introduced in P8
434       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
435         setOperationAction(ISD::CTPOP, VT, Legal);
436         setOperationAction(ISD::CTLZ, VT, Legal);
437       }
438       else {
439         setOperationAction(ISD::CTPOP, VT, Expand);
440         setOperationAction(ISD::CTLZ, VT, Expand);
441       }
442
443       // Vector instructions introduced in P9
444       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
445         setOperationAction(ISD::CTTZ, VT, Legal);
446       else
447         setOperationAction(ISD::CTTZ, VT, Expand);
448
449       // We promote all shuffles to v16i8.
450       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
451       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
452
453       // We promote all non-typed operations to v4i32.
454       setOperationAction(ISD::AND   , VT, Promote);
455       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
456       setOperationAction(ISD::OR    , VT, Promote);
457       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
458       setOperationAction(ISD::XOR   , VT, Promote);
459       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
460       setOperationAction(ISD::LOAD  , VT, Promote);
461       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
462       setOperationAction(ISD::SELECT, VT, Promote);
463       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
464       setOperationAction(ISD::SELECT_CC, VT, Promote);
465       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
466       setOperationAction(ISD::STORE, VT, Promote);
467       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
468
469       // No other operations are legal.
470       setOperationAction(ISD::MUL , VT, Expand);
471       setOperationAction(ISD::SDIV, VT, Expand);
472       setOperationAction(ISD::SREM, VT, Expand);
473       setOperationAction(ISD::UDIV, VT, Expand);
474       setOperationAction(ISD::UREM, VT, Expand);
475       setOperationAction(ISD::FDIV, VT, Expand);
476       setOperationAction(ISD::FREM, VT, Expand);
477       setOperationAction(ISD::FNEG, VT, Expand);
478       setOperationAction(ISD::FSQRT, VT, Expand);
479       setOperationAction(ISD::FLOG, VT, Expand);
480       setOperationAction(ISD::FLOG10, VT, Expand);
481       setOperationAction(ISD::FLOG2, VT, Expand);
482       setOperationAction(ISD::FEXP, VT, Expand);
483       setOperationAction(ISD::FEXP2, VT, Expand);
484       setOperationAction(ISD::FSIN, VT, Expand);
485       setOperationAction(ISD::FCOS, VT, Expand);
486       setOperationAction(ISD::FABS, VT, Expand);
487       setOperationAction(ISD::FPOWI, VT, Expand);
488       setOperationAction(ISD::FFLOOR, VT, Expand);
489       setOperationAction(ISD::FCEIL,  VT, Expand);
490       setOperationAction(ISD::FTRUNC, VT, Expand);
491       setOperationAction(ISD::FRINT,  VT, Expand);
492       setOperationAction(ISD::FNEARBYINT, VT, Expand);
493       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
494       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
495       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
496       setOperationAction(ISD::MULHU, VT, Expand);
497       setOperationAction(ISD::MULHS, VT, Expand);
498       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
499       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
500       setOperationAction(ISD::UDIVREM, VT, Expand);
501       setOperationAction(ISD::SDIVREM, VT, Expand);
502       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
503       setOperationAction(ISD::FPOW, VT, Expand);
504       setOperationAction(ISD::BSWAP, VT, Expand);
505       setOperationAction(ISD::VSELECT, VT, Expand);
506       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
507       setOperationAction(ISD::ROTL, VT, Expand);
508       setOperationAction(ISD::ROTR, VT, Expand);
509
510       for (MVT InnerVT : MVT::vector_valuetypes()) {
511         setTruncStoreAction(VT, InnerVT, Expand);
512         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
513         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
514         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
515       }
516     }
517
518     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
519     // with merges, splats, etc.
520     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
521
522     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
523     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
524     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
525     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
526     setOperationAction(ISD::SELECT, MVT::v4i32,
527                        Subtarget.useCRBits() ? Legal : Expand);
528     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
529     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
530     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
531     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
532     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
533     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
534     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
536     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
537
538     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
539     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
540     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
541     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
542
543     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
544     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
545
546     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
547       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
548       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
549     }
550
551     if (Subtarget.hasP8Altivec())
552       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
553     else
554       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
555
556     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
557     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
558
559     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
560     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
561
562     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
563     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
564     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
565     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
566
567     // Altivec does not contain unordered floating-point compare instructions
568     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
569     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
570     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
571     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
572
573     if (Subtarget.hasVSX()) {
574       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
575       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
576       if (Subtarget.hasP8Vector()) {
577         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
578         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
579       }
580       if (Subtarget.hasDirectMove() && isPPC64) {
581         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
582         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
583         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
584         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
585         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
586         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
587         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
588         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
589       }
590       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
591
592       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
593       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
594       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
595       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
596       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
597
598       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
599
600       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
601       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
602
603       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
604       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
605
606       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
607       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
608       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
609       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
610       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
611
612       // Share the Altivec comparison restrictions.
613       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
614       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
615       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
616       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
617
618       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
619       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
620
621       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
622
623       if (Subtarget.hasP8Vector())
624         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
625
626       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
627
628       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
629       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
630       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
631
632       if (Subtarget.hasP8Altivec()) {
633         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
634         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
635         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
636
637         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
638       }
639       else {
640         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
641         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
642         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
643
644         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
645
646         // VSX v2i64 only supports non-arithmetic operations.
647         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
648         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
649       }
650
651       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
652       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
653       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
654       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
655
656       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
657
658       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
659       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
660       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
661       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
662
663       // Vector operation legalization checks the result type of
664       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
665       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
666       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
667       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
668       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
669
670       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
671       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
672       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
673       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
674
675       if (Subtarget.hasDirectMove())
676         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
677       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
678
679       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
680     }
681
682     if (Subtarget.hasP8Altivec()) {
683       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
684       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
685     }
686
687     if (Subtarget.hasP9Vector()) {
688       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
689       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
690     }
691   }
692
693   if (Subtarget.hasQPX()) {
694     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
695     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
696     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
697     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
698
699     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
700     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
701
702     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
703     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
704
705     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
706     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
707
708     if (!Subtarget.useCRBits())
709       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
710     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
711
712     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
713     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
714     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
715     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
716     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
717     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
718     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
719
720     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
721     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
722
723     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
724     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
725     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
726
727     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
728     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
729     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
730     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
731     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
732     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
733     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
734     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
735     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
736     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
737     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
738
739     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
740     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
741
742     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
743     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
744
745     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
746
747     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
748     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
749     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
750     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
751
752     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
753     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
754
755     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
756     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
757
758     if (!Subtarget.useCRBits())
759       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
760     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
761
762     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
763     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
764     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
765     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
766     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
767     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
768     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
769
770     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
771     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
772
773     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
774     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
775     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
776     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
777     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
778     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
779     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
780     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
781     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
782     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
783     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
784
785     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
786     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
787
788     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
789     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
790
791     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
792
793     setOperationAction(ISD::AND , MVT::v4i1, Legal);
794     setOperationAction(ISD::OR , MVT::v4i1, Legal);
795     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
796
797     if (!Subtarget.useCRBits())
798       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
799     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
800
801     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
802     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
803
804     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
805     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
806     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
807     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
808     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
809     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
810     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
811
812     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
813     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
814
815     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
816
817     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
818     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
819     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
820     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
821
822     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
823     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
824     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
825     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
826
827     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
828     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
829
830     // These need to set FE_INEXACT, and so cannot be vectorized here.
831     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
832     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
833
834     if (TM.Options.UnsafeFPMath) {
835       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
836       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
837
838       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
839       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
840     } else {
841       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
842       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
843
844       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
845       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
846     }
847   }
848
849   if (Subtarget.has64BitSupport())
850     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
851
852   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
853
854   if (!isPPC64) {
855     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
856     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
857   }
858
859   setBooleanContents(ZeroOrOneBooleanContent);
860
861   if (Subtarget.hasAltivec()) {
862     // Altivec instructions set fields to all zeros or all ones.
863     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
864   }
865
866   if (!isPPC64) {
867     // These libcalls are not available in 32-bit.
868     setLibcallName(RTLIB::SHL_I128, nullptr);
869     setLibcallName(RTLIB::SRL_I128, nullptr);
870     setLibcallName(RTLIB::SRA_I128, nullptr);
871   }
872
873   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
874
875   // We have target-specific dag combine patterns for the following nodes:
876   setTargetDAGCombine(ISD::SINT_TO_FP);
877   setTargetDAGCombine(ISD::BUILD_VECTOR);
878   if (Subtarget.hasFPCVT())
879     setTargetDAGCombine(ISD::UINT_TO_FP);
880   setTargetDAGCombine(ISD::LOAD);
881   setTargetDAGCombine(ISD::STORE);
882   setTargetDAGCombine(ISD::BR_CC);
883   if (Subtarget.useCRBits())
884     setTargetDAGCombine(ISD::BRCOND);
885   setTargetDAGCombine(ISD::BSWAP);
886   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
887   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
888   setTargetDAGCombine(ISD::INTRINSIC_VOID);
889
890   setTargetDAGCombine(ISD::SIGN_EXTEND);
891   setTargetDAGCombine(ISD::ZERO_EXTEND);
892   setTargetDAGCombine(ISD::ANY_EXTEND);
893
894   if (Subtarget.useCRBits()) {
895     setTargetDAGCombine(ISD::TRUNCATE);
896     setTargetDAGCombine(ISD::SETCC);
897     setTargetDAGCombine(ISD::SELECT_CC);
898   }
899
900   // Use reciprocal estimates.
901   if (TM.Options.UnsafeFPMath) {
902     setTargetDAGCombine(ISD::FDIV);
903     setTargetDAGCombine(ISD::FSQRT);
904   }
905
906   // Darwin long double math library functions have $LDBL128 appended.
907   if (Subtarget.isDarwin()) {
908     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
909     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
910     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
911     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
912     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
913     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
914     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
915     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
916     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
917     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
918   }
919
920   // With 32 condition bits, we don't need to sink (and duplicate) compares
921   // aggressively in CodeGenPrep.
922   if (Subtarget.useCRBits()) {
923     setHasMultipleConditionRegisters();
924     setJumpIsExpensive();
925   }
926
927   setMinFunctionAlignment(2);
928   if (Subtarget.isDarwin())
929     setPrefFunctionAlignment(4);
930
931   switch (Subtarget.getDarwinDirective()) {
932   default: break;
933   case PPC::DIR_970:
934   case PPC::DIR_A2:
935   case PPC::DIR_E500mc:
936   case PPC::DIR_E5500:
937   case PPC::DIR_PWR4:
938   case PPC::DIR_PWR5:
939   case PPC::DIR_PWR5X:
940   case PPC::DIR_PWR6:
941   case PPC::DIR_PWR6X:
942   case PPC::DIR_PWR7:
943   case PPC::DIR_PWR8:
944   case PPC::DIR_PWR9:
945     setPrefFunctionAlignment(4);
946     setPrefLoopAlignment(4);
947     break;
948   }
949
950   if (Subtarget.enableMachineScheduler())
951     setSchedulingPreference(Sched::Source);
952   else
953     setSchedulingPreference(Sched::Hybrid);
954
955   computeRegisterProperties(STI.getRegisterInfo());
956
957   // The Freescale cores do better with aggressive inlining of memcpy and
958   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
959   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
960       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
961     MaxStoresPerMemset = 32;
962     MaxStoresPerMemsetOptSize = 16;
963     MaxStoresPerMemcpy = 32;
964     MaxStoresPerMemcpyOptSize = 8;
965     MaxStoresPerMemmove = 32;
966     MaxStoresPerMemmoveOptSize = 8;
967   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
968     // The A2 also benefits from (very) aggressive inlining of memcpy and
969     // friends. The overhead of a the function call, even when warm, can be
970     // over one hundred cycles.
971     MaxStoresPerMemset = 128;
972     MaxStoresPerMemcpy = 128;
973     MaxStoresPerMemmove = 128;
974   }
975 }
976
977 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
978 /// the desired ByVal argument alignment.
979 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
980                              unsigned MaxMaxAlign) {
981   if (MaxAlign == MaxMaxAlign)
982     return;
983   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
984     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
985       MaxAlign = 32;
986     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
987       MaxAlign = 16;
988   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
989     unsigned EltAlign = 0;
990     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
991     if (EltAlign > MaxAlign)
992       MaxAlign = EltAlign;
993   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
994     for (auto *EltTy : STy->elements()) {
995       unsigned EltAlign = 0;
996       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
997       if (EltAlign > MaxAlign)
998         MaxAlign = EltAlign;
999       if (MaxAlign == MaxMaxAlign)
1000         break;
1001     }
1002   }
1003 }
1004
1005 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1006 /// function arguments in the caller parameter area.
1007 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1008                                                   const DataLayout &DL) const {
1009   // Darwin passes everything on 4 byte boundary.
1010   if (Subtarget.isDarwin())
1011     return 4;
1012
1013   // 16byte and wider vectors are passed on 16byte boundary.
1014   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1015   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1016   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1017     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1018   return Align;
1019 }
1020
1021 bool PPCTargetLowering::useSoftFloat() const {
1022   return Subtarget.useSoftFloat();
1023 }
1024
1025 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1026   switch ((PPCISD::NodeType)Opcode) {
1027   case PPCISD::FIRST_NUMBER:    break;
1028   case PPCISD::FSEL:            return "PPCISD::FSEL";
1029   case PPCISD::FCFID:           return "PPCISD::FCFID";
1030   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1031   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1032   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1033   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1034   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1035   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1036   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1037   case PPCISD::FRE:             return "PPCISD::FRE";
1038   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1039   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1040   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1041   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1042   case PPCISD::VPERM:           return "PPCISD::VPERM";
1043   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1044   case PPCISD::XXINSERT:        return "PPCISD::XXINSERT";
1045   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1046   case PPCISD::CMPB:            return "PPCISD::CMPB";
1047   case PPCISD::Hi:              return "PPCISD::Hi";
1048   case PPCISD::Lo:              return "PPCISD::Lo";
1049   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1050   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1051   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1052   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1053   case PPCISD::SRL:             return "PPCISD::SRL";
1054   case PPCISD::SRA:             return "PPCISD::SRA";
1055   case PPCISD::SHL:             return "PPCISD::SHL";
1056   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1057   case PPCISD::CALL:            return "PPCISD::CALL";
1058   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1059   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1060   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1061   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1062   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1063   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1064   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1065   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1066   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1067   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1068   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1069   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1070   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1071   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1072   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1073   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1074   case PPCISD::VCMP:            return "PPCISD::VCMP";
1075   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1076   case PPCISD::LBRX:            return "PPCISD::LBRX";
1077   case PPCISD::STBRX:           return "PPCISD::STBRX";
1078   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1079   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1080   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1081   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1082   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1083   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1084   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1085   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1086   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1087   case PPCISD::BDZ:             return "PPCISD::BDZ";
1088   case PPCISD::MFFS:            return "PPCISD::MFFS";
1089   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1090   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1091   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1092   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1093   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1094   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1095   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1096   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1097   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1098   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1099   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1100   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1101   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1102   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1103   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1104   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1105   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1106   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1107   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1108   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1109   case PPCISD::SC:              return "PPCISD::SC";
1110   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1111   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1112   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1113   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1114   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1115   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1116   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1117   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1118   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1119   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1120   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1121   }
1122   return nullptr;
1123 }
1124
1125 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1126                                           EVT VT) const {
1127   if (!VT.isVector())
1128     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1129
1130   if (Subtarget.hasQPX())
1131     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1132
1133   return VT.changeVectorElementTypeToInteger();
1134 }
1135
1136 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1137   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1138   return true;
1139 }
1140
1141 //===----------------------------------------------------------------------===//
1142 // Node matching predicates, for use by the tblgen matching code.
1143 //===----------------------------------------------------------------------===//
1144
1145 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1146 static bool isFloatingPointZero(SDValue Op) {
1147   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1148     return CFP->getValueAPF().isZero();
1149   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1150     // Maybe this has already been legalized into the constant pool?
1151     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1152       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1153         return CFP->getValueAPF().isZero();
1154   }
1155   return false;
1156 }
1157
1158 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1159 /// true if Op is undef or if it matches the specified value.
1160 static bool isConstantOrUndef(int Op, int Val) {
1161   return Op < 0 || Op == Val;
1162 }
1163
1164 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1165 /// VPKUHUM instruction.
1166 /// The ShuffleKind distinguishes between big-endian operations with
1167 /// two different inputs (0), either-endian operations with two identical
1168 /// inputs (1), and little-endian operations with two different inputs (2).
1169 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1170 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1171                                SelectionDAG &DAG) {
1172   bool IsLE = DAG.getDataLayout().isLittleEndian();
1173   if (ShuffleKind == 0) {
1174     if (IsLE)
1175       return false;
1176     for (unsigned i = 0; i != 16; ++i)
1177       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1178         return false;
1179   } else if (ShuffleKind == 2) {
1180     if (!IsLE)
1181       return false;
1182     for (unsigned i = 0; i != 16; ++i)
1183       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1184         return false;
1185   } else if (ShuffleKind == 1) {
1186     unsigned j = IsLE ? 0 : 1;
1187     for (unsigned i = 0; i != 8; ++i)
1188       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1189           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1190         return false;
1191   }
1192   return true;
1193 }
1194
1195 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1196 /// VPKUWUM instruction.
1197 /// The ShuffleKind distinguishes between big-endian operations with
1198 /// two different inputs (0), either-endian operations with two identical
1199 /// inputs (1), and little-endian operations with two different inputs (2).
1200 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1201 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1202                                SelectionDAG &DAG) {
1203   bool IsLE = DAG.getDataLayout().isLittleEndian();
1204   if (ShuffleKind == 0) {
1205     if (IsLE)
1206       return false;
1207     for (unsigned i = 0; i != 16; i += 2)
1208       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1209           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1210         return false;
1211   } else if (ShuffleKind == 2) {
1212     if (!IsLE)
1213       return false;
1214     for (unsigned i = 0; i != 16; i += 2)
1215       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1216           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1217         return false;
1218   } else if (ShuffleKind == 1) {
1219     unsigned j = IsLE ? 0 : 2;
1220     for (unsigned i = 0; i != 8; i += 2)
1221       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1222           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1223           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1224           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1225         return false;
1226   }
1227   return true;
1228 }
1229
1230 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1231 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1232 /// current subtarget.
1233 ///
1234 /// The ShuffleKind distinguishes between big-endian operations with
1235 /// two different inputs (0), either-endian operations with two identical
1236 /// inputs (1), and little-endian operations with two different inputs (2).
1237 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1238 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1239                                SelectionDAG &DAG) {
1240   const PPCSubtarget& Subtarget =
1241     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1242   if (!Subtarget.hasP8Vector())
1243     return false;
1244
1245   bool IsLE = DAG.getDataLayout().isLittleEndian();
1246   if (ShuffleKind == 0) {
1247     if (IsLE)
1248       return false;
1249     for (unsigned i = 0; i != 16; i += 4)
1250       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1251           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1252           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1253           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1254         return false;
1255   } else if (ShuffleKind == 2) {
1256     if (!IsLE)
1257       return false;
1258     for (unsigned i = 0; i != 16; i += 4)
1259       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1260           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1261           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1262           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1263         return false;
1264   } else if (ShuffleKind == 1) {
1265     unsigned j = IsLE ? 0 : 4;
1266     for (unsigned i = 0; i != 8; i += 4)
1267       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1268           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1269           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1270           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1271           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1272           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1273           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1274           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1275         return false;
1276   }
1277   return true;
1278 }
1279
1280 /// isVMerge - Common function, used to match vmrg* shuffles.
1281 ///
1282 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1283                      unsigned LHSStart, unsigned RHSStart) {
1284   if (N->getValueType(0) != MVT::v16i8)
1285     return false;
1286   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1287          "Unsupported merge size!");
1288
1289   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1290     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1291       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1292                              LHSStart+j+i*UnitSize) ||
1293           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1294                              RHSStart+j+i*UnitSize))
1295         return false;
1296     }
1297   return true;
1298 }
1299
1300 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1301 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1302 /// The ShuffleKind distinguishes between big-endian merges with two
1303 /// different inputs (0), either-endian merges with two identical inputs (1),
1304 /// and little-endian merges with two different inputs (2).  For the latter,
1305 /// the input operands are swapped (see PPCInstrAltivec.td).
1306 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1307                              unsigned ShuffleKind, SelectionDAG &DAG) {
1308   if (DAG.getDataLayout().isLittleEndian()) {
1309     if (ShuffleKind == 1) // unary
1310       return isVMerge(N, UnitSize, 0, 0);
1311     else if (ShuffleKind == 2) // swapped
1312       return isVMerge(N, UnitSize, 0, 16);
1313     else
1314       return false;
1315   } else {
1316     if (ShuffleKind == 1) // unary
1317       return isVMerge(N, UnitSize, 8, 8);
1318     else if (ShuffleKind == 0) // normal
1319       return isVMerge(N, UnitSize, 8, 24);
1320     else
1321       return false;
1322   }
1323 }
1324
1325 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1326 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1327 /// The ShuffleKind distinguishes between big-endian merges with two
1328 /// different inputs (0), either-endian merges with two identical inputs (1),
1329 /// and little-endian merges with two different inputs (2).  For the latter,
1330 /// the input operands are swapped (see PPCInstrAltivec.td).
1331 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1332                              unsigned ShuffleKind, SelectionDAG &DAG) {
1333   if (DAG.getDataLayout().isLittleEndian()) {
1334     if (ShuffleKind == 1) // unary
1335       return isVMerge(N, UnitSize, 8, 8);
1336     else if (ShuffleKind == 2) // swapped
1337       return isVMerge(N, UnitSize, 8, 24);
1338     else
1339       return false;
1340   } else {
1341     if (ShuffleKind == 1) // unary
1342       return isVMerge(N, UnitSize, 0, 0);
1343     else if (ShuffleKind == 0) // normal
1344       return isVMerge(N, UnitSize, 0, 16);
1345     else
1346       return false;
1347   }
1348 }
1349
1350 /**
1351  * \brief Common function used to match vmrgew and vmrgow shuffles
1352  *
1353  * The indexOffset determines whether to look for even or odd words in
1354  * the shuffle mask. This is based on the of the endianness of the target
1355  * machine.
1356  *   - Little Endian:
1357  *     - Use offset of 0 to check for odd elements
1358  *     - Use offset of 4 to check for even elements
1359  *   - Big Endian:
1360  *     - Use offset of 0 to check for even elements
1361  *     - Use offset of 4 to check for odd elements
1362  * A detailed description of the vector element ordering for little endian and
1363  * big endian can be found at
1364  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1365  * Targeting your applications - what little endian and big endian IBM XL C/C++
1366  * compiler differences mean to you
1367  *
1368  * The mask to the shuffle vector instruction specifies the indices of the
1369  * elements from the two input vectors to place in the result. The elements are
1370  * numbered in array-access order, starting with the first vector. These vectors
1371  * are always of type v16i8, thus each vector will contain 16 elements of size
1372  * 8. More info on the shuffle vector can be found in the
1373  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1374  * Language Reference.
1375  *
1376  * The RHSStartValue indicates whether the same input vectors are used (unary)
1377  * or two different input vectors are used, based on the following:
1378  *   - If the instruction uses the same vector for both inputs, the range of the
1379  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1380  *     be 0.
1381  *   - If the instruction has two different vectors then the range of the
1382  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1383  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1384  *     to 31 specify elements in the second vector).
1385  *
1386  * \param[in] N The shuffle vector SD Node to analyze
1387  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1388  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1389  * vector to the shuffle_vector instruction
1390  * \return true iff this shuffle vector represents an even or odd word merge
1391  */
1392 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1393                      unsigned RHSStartValue) {
1394   if (N->getValueType(0) != MVT::v16i8)
1395     return false;
1396
1397   for (unsigned i = 0; i < 2; ++i)
1398     for (unsigned j = 0; j < 4; ++j)
1399       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1400                              i*RHSStartValue+j+IndexOffset) ||
1401           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1402                              i*RHSStartValue+j+IndexOffset+8))
1403         return false;
1404   return true;
1405 }
1406
1407 /**
1408  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1409  * vmrgow instructions.
1410  *
1411  * \param[in] N The shuffle vector SD Node to analyze
1412  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1413  * \param[in] ShuffleKind Identify the type of merge:
1414  *   - 0 = big-endian merge with two different inputs;
1415  *   - 1 = either-endian merge with two identical inputs;
1416  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1417  *     little-endian merges).
1418  * \param[in] DAG The current SelectionDAG
1419  * \return true iff this shuffle mask
1420  */
1421 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1422                               unsigned ShuffleKind, SelectionDAG &DAG) {
1423   if (DAG.getDataLayout().isLittleEndian()) {
1424     unsigned indexOffset = CheckEven ? 4 : 0;
1425     if (ShuffleKind == 1) // Unary
1426       return isVMerge(N, indexOffset, 0);
1427     else if (ShuffleKind == 2) // swapped
1428       return isVMerge(N, indexOffset, 16);
1429     else
1430       return false;
1431   }
1432   else {
1433     unsigned indexOffset = CheckEven ? 0 : 4;
1434     if (ShuffleKind == 1) // Unary
1435       return isVMerge(N, indexOffset, 0);
1436     else if (ShuffleKind == 0) // Normal
1437       return isVMerge(N, indexOffset, 16);
1438     else
1439       return false;
1440   }
1441   return false;
1442 }
1443
1444 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1445 /// amount, otherwise return -1.
1446 /// The ShuffleKind distinguishes between big-endian operations with two
1447 /// different inputs (0), either-endian operations with two identical inputs
1448 /// (1), and little-endian operations with two different inputs (2).  For the
1449 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1450 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1451                              SelectionDAG &DAG) {
1452   if (N->getValueType(0) != MVT::v16i8)
1453     return -1;
1454
1455   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1456
1457   // Find the first non-undef value in the shuffle mask.
1458   unsigned i;
1459   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1460     /*search*/;
1461
1462   if (i == 16) return -1;  // all undef.
1463
1464   // Otherwise, check to see if the rest of the elements are consecutively
1465   // numbered from this value.
1466   unsigned ShiftAmt = SVOp->getMaskElt(i);
1467   if (ShiftAmt < i) return -1;
1468
1469   ShiftAmt -= i;
1470   bool isLE = DAG.getDataLayout().isLittleEndian();
1471
1472   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1473     // Check the rest of the elements to see if they are consecutive.
1474     for (++i; i != 16; ++i)
1475       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1476         return -1;
1477   } else if (ShuffleKind == 1) {
1478     // Check the rest of the elements to see if they are consecutive.
1479     for (++i; i != 16; ++i)
1480       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1481         return -1;
1482   } else
1483     return -1;
1484
1485   if (isLE)
1486     ShiftAmt = 16 - ShiftAmt;
1487
1488   return ShiftAmt;
1489 }
1490
1491 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1492 /// specifies a splat of a single element that is suitable for input to
1493 /// VSPLTB/VSPLTH/VSPLTW.
1494 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1495   assert(N->getValueType(0) == MVT::v16i8 &&
1496          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1497
1498   // The consecutive indices need to specify an element, not part of two
1499   // different elements.  So abandon ship early if this isn't the case.
1500   if (N->getMaskElt(0) % EltSize != 0)
1501     return false;
1502
1503   // This is a splat operation if each element of the permute is the same, and
1504   // if the value doesn't reference the second vector.
1505   unsigned ElementBase = N->getMaskElt(0);
1506
1507   // FIXME: Handle UNDEF elements too!
1508   if (ElementBase >= 16)
1509     return false;
1510
1511   // Check that the indices are consecutive, in the case of a multi-byte element
1512   // splatted with a v16i8 mask.
1513   for (unsigned i = 1; i != EltSize; ++i)
1514     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1515       return false;
1516
1517   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1518     if (N->getMaskElt(i) < 0) continue;
1519     for (unsigned j = 0; j != EltSize; ++j)
1520       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1521         return false;
1522   }
1523   return true;
1524 }
1525
1526 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1527                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1528
1529   // Check that the mask is shuffling words
1530   for (unsigned i = 0; i < 4; ++i) {
1531     unsigned B0 = N->getMaskElt(i*4);
1532     unsigned B1 = N->getMaskElt(i*4+1);
1533     unsigned B2 = N->getMaskElt(i*4+2);
1534     unsigned B3 = N->getMaskElt(i*4+3);
1535     if (B0 % 4)
1536       return false;
1537     if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1)
1538       return false;
1539   }
1540
1541   // Now we look at mask elements 0,4,8,12
1542   unsigned M0 = N->getMaskElt(0) / 4;
1543   unsigned M1 = N->getMaskElt(4) / 4;
1544   unsigned M2 = N->getMaskElt(8) / 4;
1545   unsigned M3 = N->getMaskElt(12) / 4;
1546   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1547   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1548
1549   // Below, let H and L be arbitrary elements of the shuffle mask
1550   // where H is in the range [4,7] and L is in the range [0,3].
1551   // H, 1, 2, 3 or L, 5, 6, 7
1552   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1553       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1554     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1555     InsertAtByte = IsLE ? 12 : 0;
1556     Swap = M0 < 4;
1557     return true;
1558   }
1559   // 0, H, 2, 3 or 4, L, 6, 7
1560   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1561       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1562     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1563     InsertAtByte = IsLE ? 8 : 4;
1564     Swap = M1 < 4;
1565     return true;
1566   }
1567   // 0, 1, H, 3 or 4, 5, L, 7
1568   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1569       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1570     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1571     InsertAtByte = IsLE ? 4 : 8;
1572     Swap = M2 < 4;
1573     return true;
1574   }
1575   // 0, 1, 2, H or 4, 5, 6, L
1576   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1577       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1578     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1579     InsertAtByte = IsLE ? 0 : 12;
1580     Swap = M3 < 4;
1581     return true;
1582   }
1583
1584   // If both vector operands for the shuffle are the same vector, the mask will
1585   // contain only elements from the first one and the second one will be undef.
1586   if (N->getOperand(1).isUndef()) {
1587     ShiftElts = 0;
1588     Swap = true;
1589     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1590     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1591       InsertAtByte = IsLE ? 12 : 0;
1592       return true;
1593     }
1594     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1595       InsertAtByte = IsLE ? 8 : 4;
1596       return true;
1597     }
1598     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1599       InsertAtByte = IsLE ? 4 : 8;
1600       return true;
1601     }
1602     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1603       InsertAtByte = IsLE ? 0 : 12;
1604       return true;
1605     }
1606   }
1607
1608   return false;
1609 }
1610
1611 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1612 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1613 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1614                                 SelectionDAG &DAG) {
1615   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1616   assert(isSplatShuffleMask(SVOp, EltSize));
1617   if (DAG.getDataLayout().isLittleEndian())
1618     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1619   else
1620     return SVOp->getMaskElt(0) / EltSize;
1621 }
1622
1623 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1624 /// by using a vspltis[bhw] instruction of the specified element size, return
1625 /// the constant being splatted.  The ByteSize field indicates the number of
1626 /// bytes of each element [124] -> [bhw].
1627 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1628   SDValue OpVal(nullptr, 0);
1629
1630   // If ByteSize of the splat is bigger than the element size of the
1631   // build_vector, then we have a case where we are checking for a splat where
1632   // multiple elements of the buildvector are folded together into a single
1633   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1634   unsigned EltSize = 16/N->getNumOperands();
1635   if (EltSize < ByteSize) {
1636     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1637     SDValue UniquedVals[4];
1638     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1639
1640     // See if all of the elements in the buildvector agree across.
1641     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1642       if (N->getOperand(i).isUndef()) continue;
1643       // If the element isn't a constant, bail fully out.
1644       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1645
1646
1647       if (!UniquedVals[i&(Multiple-1)].getNode())
1648         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1649       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1650         return SDValue();  // no match.
1651     }
1652
1653     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1654     // either constant or undef values that are identical for each chunk.  See
1655     // if these chunks can form into a larger vspltis*.
1656
1657     // Check to see if all of the leading entries are either 0 or -1.  If
1658     // neither, then this won't fit into the immediate field.
1659     bool LeadingZero = true;
1660     bool LeadingOnes = true;
1661     for (unsigned i = 0; i != Multiple-1; ++i) {
1662       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1663
1664       LeadingZero &= isNullConstant(UniquedVals[i]);
1665       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1666     }
1667     // Finally, check the least significant entry.
1668     if (LeadingZero) {
1669       if (!UniquedVals[Multiple-1].getNode())
1670         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1671       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1672       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1673         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1674     }
1675     if (LeadingOnes) {
1676       if (!UniquedVals[Multiple-1].getNode())
1677         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1678       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1679       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1680         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1681     }
1682
1683     return SDValue();
1684   }
1685
1686   // Check to see if this buildvec has a single non-undef value in its elements.
1687   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1688     if (N->getOperand(i).isUndef()) continue;
1689     if (!OpVal.getNode())
1690       OpVal = N->getOperand(i);
1691     else if (OpVal != N->getOperand(i))
1692       return SDValue();
1693   }
1694
1695   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1696
1697   unsigned ValSizeInBytes = EltSize;
1698   uint64_t Value = 0;
1699   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1700     Value = CN->getZExtValue();
1701   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1702     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1703     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1704   }
1705
1706   // If the splat value is larger than the element value, then we can never do
1707   // this splat.  The only case that we could fit the replicated bits into our
1708   // immediate field for would be zero, and we prefer to use vxor for it.
1709   if (ValSizeInBytes < ByteSize) return SDValue();
1710
1711   // If the element value is larger than the splat value, check if it consists
1712   // of a repeated bit pattern of size ByteSize.
1713   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1714     return SDValue();
1715
1716   // Properly sign extend the value.
1717   int MaskVal = SignExtend32(Value, ByteSize * 8);
1718
1719   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1720   if (MaskVal == 0) return SDValue();
1721
1722   // Finally, if this value fits in a 5 bit sext field, return it
1723   if (SignExtend32<5>(MaskVal) == MaskVal)
1724     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1725   return SDValue();
1726 }
1727
1728 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1729 /// amount, otherwise return -1.
1730 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1731   EVT VT = N->getValueType(0);
1732   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1733     return -1;
1734
1735   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1736
1737   // Find the first non-undef value in the shuffle mask.
1738   unsigned i;
1739   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1740     /*search*/;
1741
1742   if (i == 4) return -1;  // all undef.
1743
1744   // Otherwise, check to see if the rest of the elements are consecutively
1745   // numbered from this value.
1746   unsigned ShiftAmt = SVOp->getMaskElt(i);
1747   if (ShiftAmt < i) return -1;
1748   ShiftAmt -= i;
1749
1750   // Check the rest of the elements to see if they are consecutive.
1751   for (++i; i != 4; ++i)
1752     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1753       return -1;
1754
1755   return ShiftAmt;
1756 }
1757
1758 //===----------------------------------------------------------------------===//
1759 //  Addressing Mode Selection
1760 //===----------------------------------------------------------------------===//
1761
1762 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1763 /// or 64-bit immediate, and if the value can be accurately represented as a
1764 /// sign extension from a 16-bit value.  If so, this returns true and the
1765 /// immediate.
1766 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1767   if (!isa<ConstantSDNode>(N))
1768     return false;
1769
1770   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1771   if (N->getValueType(0) == MVT::i32)
1772     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1773   else
1774     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1775 }
1776 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1777   return isIntS16Immediate(Op.getNode(), Imm);
1778 }
1779
1780 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1781 /// can be represented as an indexed [r+r] operation.  Returns false if it
1782 /// can be more efficiently represented with [r+imm].
1783 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1784                                             SDValue &Index,
1785                                             SelectionDAG &DAG) const {
1786   short imm = 0;
1787   if (N.getOpcode() == ISD::ADD) {
1788     if (isIntS16Immediate(N.getOperand(1), imm))
1789       return false;    // r+i
1790     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1791       return false;    // r+i
1792
1793     Base = N.getOperand(0);
1794     Index = N.getOperand(1);
1795     return true;
1796   } else if (N.getOpcode() == ISD::OR) {
1797     if (isIntS16Immediate(N.getOperand(1), imm))
1798       return false;    // r+i can fold it if we can.
1799
1800     // If this is an or of disjoint bitfields, we can codegen this as an add
1801     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1802     // disjoint.
1803     APInt LHSKnownZero, LHSKnownOne;
1804     APInt RHSKnownZero, RHSKnownOne;
1805     DAG.computeKnownBits(N.getOperand(0),
1806                          LHSKnownZero, LHSKnownOne);
1807
1808     if (LHSKnownZero.getBoolValue()) {
1809       DAG.computeKnownBits(N.getOperand(1),
1810                            RHSKnownZero, RHSKnownOne);
1811       // If all of the bits are known zero on the LHS or RHS, the add won't
1812       // carry.
1813       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1814         Base = N.getOperand(0);
1815         Index = N.getOperand(1);
1816         return true;
1817       }
1818     }
1819   }
1820
1821   return false;
1822 }
1823
1824 // If we happen to be doing an i64 load or store into a stack slot that has
1825 // less than a 4-byte alignment, then the frame-index elimination may need to
1826 // use an indexed load or store instruction (because the offset may not be a
1827 // multiple of 4). The extra register needed to hold the offset comes from the
1828 // register scavenger, and it is possible that the scavenger will need to use
1829 // an emergency spill slot. As a result, we need to make sure that a spill slot
1830 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1831 // stack slot.
1832 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1833   // FIXME: This does not handle the LWA case.
1834   if (VT != MVT::i64)
1835     return;
1836
1837   // NOTE: We'll exclude negative FIs here, which come from argument
1838   // lowering, because there are no known test cases triggering this problem
1839   // using packed structures (or similar). We can remove this exclusion if
1840   // we find such a test case. The reason why this is so test-case driven is
1841   // because this entire 'fixup' is only to prevent crashes (from the
1842   // register scavenger) on not-really-valid inputs. For example, if we have:
1843   //   %a = alloca i1
1844   //   %b = bitcast i1* %a to i64*
1845   //   store i64* a, i64 b
1846   // then the store should really be marked as 'align 1', but is not. If it
1847   // were marked as 'align 1' then the indexed form would have been
1848   // instruction-selected initially, and the problem this 'fixup' is preventing
1849   // won't happen regardless.
1850   if (FrameIdx < 0)
1851     return;
1852
1853   MachineFunction &MF = DAG.getMachineFunction();
1854   MachineFrameInfo &MFI = MF.getFrameInfo();
1855
1856   unsigned Align = MFI.getObjectAlignment(FrameIdx);
1857   if (Align >= 4)
1858     return;
1859
1860   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1861   FuncInfo->setHasNonRISpills();
1862 }
1863
1864 /// Returns true if the address N can be represented by a base register plus
1865 /// a signed 16-bit displacement [r+imm], and if it is not better
1866 /// represented as reg+reg.  If Aligned is true, only accept displacements
1867 /// suitable for STD and friends, i.e. multiples of 4.
1868 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1869                                             SDValue &Base,
1870                                             SelectionDAG &DAG,
1871                                             bool Aligned) const {
1872   // FIXME dl should come from parent load or store, not from address
1873   SDLoc dl(N);
1874   // If this can be more profitably realized as r+r, fail.
1875   if (SelectAddressRegReg(N, Disp, Base, DAG))
1876     return false;
1877
1878   if (N.getOpcode() == ISD::ADD) {
1879     short imm = 0;
1880     if (isIntS16Immediate(N.getOperand(1), imm) &&
1881         (!Aligned || (imm & 3) == 0)) {
1882       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1883       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1884         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1885         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1886       } else {
1887         Base = N.getOperand(0);
1888       }
1889       return true; // [r+i]
1890     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1891       // Match LOAD (ADD (X, Lo(G))).
1892       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1893              && "Cannot handle constant offsets yet!");
1894       Disp = N.getOperand(1).getOperand(0);  // The global address.
1895       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1896              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1897              Disp.getOpcode() == ISD::TargetConstantPool ||
1898              Disp.getOpcode() == ISD::TargetJumpTable);
1899       Base = N.getOperand(0);
1900       return true;  // [&g+r]
1901     }
1902   } else if (N.getOpcode() == ISD::OR) {
1903     short imm = 0;
1904     if (isIntS16Immediate(N.getOperand(1), imm) &&
1905         (!Aligned || (imm & 3) == 0)) {
1906       // If this is an or of disjoint bitfields, we can codegen this as an add
1907       // (for better address arithmetic) if the LHS and RHS of the OR are
1908       // provably disjoint.
1909       APInt LHSKnownZero, LHSKnownOne;
1910       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1911
1912       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1913         // If all of the bits are known zero on the LHS or RHS, the add won't
1914         // carry.
1915         if (FrameIndexSDNode *FI =
1916               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1917           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1918           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1919         } else {
1920           Base = N.getOperand(0);
1921         }
1922         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1923         return true;
1924       }
1925     }
1926   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1927     // Loading from a constant address.
1928
1929     // If this address fits entirely in a 16-bit sext immediate field, codegen
1930     // this as "d, 0"
1931     short Imm;
1932     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1933       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1934       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1935                              CN->getValueType(0));
1936       return true;
1937     }
1938
1939     // Handle 32-bit sext immediates with LIS + addr mode.
1940     if ((CN->getValueType(0) == MVT::i32 ||
1941          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1942         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1943       int Addr = (int)CN->getZExtValue();
1944
1945       // Otherwise, break this down into an LIS + disp.
1946       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1947
1948       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1949                                    MVT::i32);
1950       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1951       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1952       return true;
1953     }
1954   }
1955
1956   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1957   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1958     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1959     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1960   } else
1961     Base = N;
1962   return true;      // [r+0]
1963 }
1964
1965 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1966 /// represented as an indexed [r+r] operation.
1967 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1968                                                 SDValue &Index,
1969                                                 SelectionDAG &DAG) const {
1970   // Check to see if we can easily represent this as an [r+r] address.  This
1971   // will fail if it thinks that the address is more profitably represented as
1972   // reg+imm, e.g. where imm = 0.
1973   if (SelectAddressRegReg(N, Base, Index, DAG))
1974     return true;
1975
1976   // If the operand is an addition, always emit this as [r+r], since this is
1977   // better (for code size, and execution, as the memop does the add for free)
1978   // than emitting an explicit add.
1979   if (N.getOpcode() == ISD::ADD) {
1980     Base = N.getOperand(0);
1981     Index = N.getOperand(1);
1982     return true;
1983   }
1984
1985   // Otherwise, do it the hard way, using R0 as the base register.
1986   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1987                          N.getValueType());
1988   Index = N;
1989   return true;
1990 }
1991
1992 /// getPreIndexedAddressParts - returns true by value, base pointer and
1993 /// offset pointer and addressing mode by reference if the node's address
1994 /// can be legally represented as pre-indexed load / store address.
1995 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1996                                                   SDValue &Offset,
1997                                                   ISD::MemIndexedMode &AM,
1998                                                   SelectionDAG &DAG) const {
1999   if (DisablePPCPreinc) return false;
2000
2001   bool isLoad = true;
2002   SDValue Ptr;
2003   EVT VT;
2004   unsigned Alignment;
2005   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2006     Ptr = LD->getBasePtr();
2007     VT = LD->getMemoryVT();
2008     Alignment = LD->getAlignment();
2009   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2010     Ptr = ST->getBasePtr();
2011     VT  = ST->getMemoryVT();
2012     Alignment = ST->getAlignment();
2013     isLoad = false;
2014   } else
2015     return false;
2016
2017   // PowerPC doesn't have preinc load/store instructions for vectors (except
2018   // for QPX, which does have preinc r+r forms).
2019   if (VT.isVector()) {
2020     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2021       return false;
2022     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2023       AM = ISD::PRE_INC;
2024       return true;
2025     }
2026   }
2027
2028   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2029
2030     // Common code will reject creating a pre-inc form if the base pointer
2031     // is a frame index, or if N is a store and the base pointer is either
2032     // the same as or a predecessor of the value being stored.  Check for
2033     // those situations here, and try with swapped Base/Offset instead.
2034     bool Swap = false;
2035
2036     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2037       Swap = true;
2038     else if (!isLoad) {
2039       SDValue Val = cast<StoreSDNode>(N)->getValue();
2040       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2041         Swap = true;
2042     }
2043
2044     if (Swap)
2045       std::swap(Base, Offset);
2046
2047     AM = ISD::PRE_INC;
2048     return true;
2049   }
2050
2051   // LDU/STU can only handle immediates that are a multiple of 4.
2052   if (VT != MVT::i64) {
2053     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
2054       return false;
2055   } else {
2056     // LDU/STU need an address with at least 4-byte alignment.
2057     if (Alignment < 4)
2058       return false;
2059
2060     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
2061       return false;
2062   }
2063
2064   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2065     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2066     // sext i32 to i64 when addr mode is r+i.
2067     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2068         LD->getExtensionType() == ISD::SEXTLOAD &&
2069         isa<ConstantSDNode>(Offset))
2070       return false;
2071   }
2072
2073   AM = ISD::PRE_INC;
2074   return true;
2075 }
2076
2077 //===----------------------------------------------------------------------===//
2078 //  LowerOperation implementation
2079 //===----------------------------------------------------------------------===//
2080
2081 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2082 /// and LoOpFlags to the target MO flags.
2083 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2084                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2085                                const GlobalValue *GV = nullptr) {
2086   HiOpFlags = PPCII::MO_HA;
2087   LoOpFlags = PPCII::MO_LO;
2088
2089   // Don't use the pic base if not in PIC relocation model.
2090   if (IsPIC) {
2091     HiOpFlags |= PPCII::MO_PIC_FLAG;
2092     LoOpFlags |= PPCII::MO_PIC_FLAG;
2093   }
2094
2095   // If this is a reference to a global value that requires a non-lazy-ptr, make
2096   // sure that instruction lowering adds it.
2097   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2098     HiOpFlags |= PPCII::MO_NLP_FLAG;
2099     LoOpFlags |= PPCII::MO_NLP_FLAG;
2100
2101     if (GV->hasHiddenVisibility()) {
2102       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2103       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2104     }
2105   }
2106 }
2107
2108 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2109                              SelectionDAG &DAG) {
2110   SDLoc DL(HiPart);
2111   EVT PtrVT = HiPart.getValueType();
2112   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2113
2114   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2115   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2116
2117   // With PIC, the first instruction is actually "GR+hi(&G)".
2118   if (isPIC)
2119     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2120                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2121
2122   // Generate non-pic code that has direct accesses to the constant pool.
2123   // The address of the global is just (hi(&g)+lo(&g)).
2124   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2125 }
2126
2127 static void setUsesTOCBasePtr(MachineFunction &MF) {
2128   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2129   FuncInfo->setUsesTOCBasePtr();
2130 }
2131
2132 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2133   setUsesTOCBasePtr(DAG.getMachineFunction());
2134 }
2135
2136 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2137                            SDValue GA) {
2138   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2139   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2140                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2141
2142   SDValue Ops[] = { GA, Reg };
2143   return DAG.getMemIntrinsicNode(
2144       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2145       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2146       false, 0);
2147 }
2148
2149 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2150                                              SelectionDAG &DAG) const {
2151   EVT PtrVT = Op.getValueType();
2152   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2153   const Constant *C = CP->getConstVal();
2154
2155   // 64-bit SVR4 ABI code is always position-independent.
2156   // The actual address of the GlobalValue is stored in the TOC.
2157   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2158     setUsesTOCBasePtr(DAG);
2159     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2160     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2161   }
2162
2163   unsigned MOHiFlag, MOLoFlag;
2164   bool IsPIC = isPositionIndependent();
2165   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2166
2167   if (IsPIC && Subtarget.isSVR4ABI()) {
2168     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2169                                            PPCII::MO_PIC_FLAG);
2170     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2171   }
2172
2173   SDValue CPIHi =
2174     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2175   SDValue CPILo =
2176     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2177   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2178 }
2179
2180 // For 64-bit PowerPC, prefer the more compact relative encodings.
2181 // This trades 32 bits per jump table entry for one or two instructions
2182 // on the jump site.
2183 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2184   if (isJumpTableRelative())
2185     return MachineJumpTableInfo::EK_LabelDifference32;
2186
2187   return TargetLowering::getJumpTableEncoding();
2188 }
2189
2190 bool PPCTargetLowering::isJumpTableRelative() const {
2191   if (Subtarget.isPPC64())
2192     return true;
2193   return TargetLowering::isJumpTableRelative();
2194 }
2195
2196 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2197                                                     SelectionDAG &DAG) const {
2198   if (!Subtarget.isPPC64())
2199     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2200
2201   switch (getTargetMachine().getCodeModel()) {
2202   case CodeModel::Default:
2203   case CodeModel::Small:
2204   case CodeModel::Medium:
2205     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2206   default:
2207     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2208                        getPointerTy(DAG.getDataLayout()));
2209   }
2210 }
2211
2212 const MCExpr *
2213 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2214                                                 unsigned JTI,
2215                                                 MCContext &Ctx) const {
2216   if (!Subtarget.isPPC64())
2217     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2218
2219   switch (getTargetMachine().getCodeModel()) {
2220   case CodeModel::Default:
2221   case CodeModel::Small:
2222   case CodeModel::Medium:
2223     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2224   default:
2225     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2226   }
2227 }
2228
2229 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2230   EVT PtrVT = Op.getValueType();
2231   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2232
2233   // 64-bit SVR4 ABI code is always position-independent.
2234   // The actual address of the GlobalValue is stored in the TOC.
2235   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2236     setUsesTOCBasePtr(DAG);
2237     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2238     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2239   }
2240
2241   unsigned MOHiFlag, MOLoFlag;
2242   bool IsPIC = isPositionIndependent();
2243   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2244
2245   if (IsPIC && Subtarget.isSVR4ABI()) {
2246     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2247                                         PPCII::MO_PIC_FLAG);
2248     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2249   }
2250
2251   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2252   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2253   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2254 }
2255
2256 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2257                                              SelectionDAG &DAG) const {
2258   EVT PtrVT = Op.getValueType();
2259   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2260   const BlockAddress *BA = BASDN->getBlockAddress();
2261
2262   // 64-bit SVR4 ABI code is always position-independent.
2263   // The actual BlockAddress is stored in the TOC.
2264   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2265     setUsesTOCBasePtr(DAG);
2266     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2267     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2268   }
2269
2270   unsigned MOHiFlag, MOLoFlag;
2271   bool IsPIC = isPositionIndependent();
2272   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2273   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2274   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2275   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2276 }
2277
2278 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2279                                               SelectionDAG &DAG) const {
2280
2281   // FIXME: TLS addresses currently use medium model code sequences,
2282   // which is the most useful form.  Eventually support for small and
2283   // large models could be added if users need it, at the cost of
2284   // additional complexity.
2285   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2286   if (DAG.getTarget().Options.EmulatedTLS)
2287     return LowerToTLSEmulatedModel(GA, DAG);
2288
2289   SDLoc dl(GA);
2290   const GlobalValue *GV = GA->getGlobal();
2291   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2292   bool is64bit = Subtarget.isPPC64();
2293   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2294   PICLevel::Level picLevel = M->getPICLevel();
2295
2296   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2297
2298   if (Model == TLSModel::LocalExec) {
2299     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2300                                                PPCII::MO_TPREL_HA);
2301     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2302                                                PPCII::MO_TPREL_LO);
2303     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2304                                      is64bit ? MVT::i64 : MVT::i32);
2305     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2306     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2307   }
2308
2309   if (Model == TLSModel::InitialExec) {
2310     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2311     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2312                                                 PPCII::MO_TLS);
2313     SDValue GOTPtr;
2314     if (is64bit) {
2315       setUsesTOCBasePtr(DAG);
2316       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2317       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2318                            PtrVT, GOTReg, TGA);
2319     } else
2320       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2321     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2322                                    PtrVT, TGA, GOTPtr);
2323     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2324   }
2325
2326   if (Model == TLSModel::GeneralDynamic) {
2327     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2328     SDValue GOTPtr;
2329     if (is64bit) {
2330       setUsesTOCBasePtr(DAG);
2331       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2332       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2333                                    GOTReg, TGA);
2334     } else {
2335       if (picLevel == PICLevel::SmallPIC)
2336         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2337       else
2338         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2339     }
2340     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2341                        GOTPtr, TGA, TGA);
2342   }
2343
2344   if (Model == TLSModel::LocalDynamic) {
2345     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2346     SDValue GOTPtr;
2347     if (is64bit) {
2348       setUsesTOCBasePtr(DAG);
2349       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2350       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2351                            GOTReg, TGA);
2352     } else {
2353       if (picLevel == PICLevel::SmallPIC)
2354         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2355       else
2356         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2357     }
2358     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2359                                   PtrVT, GOTPtr, TGA, TGA);
2360     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2361                                       PtrVT, TLSAddr, TGA);
2362     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2363   }
2364
2365   llvm_unreachable("Unknown TLS model!");
2366 }
2367
2368 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2369                                               SelectionDAG &DAG) const {
2370   EVT PtrVT = Op.getValueType();
2371   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2372   SDLoc DL(GSDN);
2373   const GlobalValue *GV = GSDN->getGlobal();
2374
2375   // 64-bit SVR4 ABI code is always position-independent.
2376   // The actual address of the GlobalValue is stored in the TOC.
2377   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2378     setUsesTOCBasePtr(DAG);
2379     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2380     return getTOCEntry(DAG, DL, true, GA);
2381   }
2382
2383   unsigned MOHiFlag, MOLoFlag;
2384   bool IsPIC = isPositionIndependent();
2385   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2386
2387   if (IsPIC && Subtarget.isSVR4ABI()) {
2388     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2389                                             GSDN->getOffset(),
2390                                             PPCII::MO_PIC_FLAG);
2391     return getTOCEntry(DAG, DL, false, GA);
2392   }
2393
2394   SDValue GAHi =
2395     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2396   SDValue GALo =
2397     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2398
2399   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2400
2401   // If the global reference is actually to a non-lazy-pointer, we have to do an
2402   // extra load to get the address of the global.
2403   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2404     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2405   return Ptr;
2406 }
2407
2408 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2409   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2410   SDLoc dl(Op);
2411
2412   if (Op.getValueType() == MVT::v2i64) {
2413     // When the operands themselves are v2i64 values, we need to do something
2414     // special because VSX has no underlying comparison operations for these.
2415     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2416       // Equality can be handled by casting to the legal type for Altivec
2417       // comparisons, everything else needs to be expanded.
2418       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2419         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2420                  DAG.getSetCC(dl, MVT::v4i32,
2421                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2422                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2423                    CC));
2424       }
2425
2426       return SDValue();
2427     }
2428
2429     // We handle most of these in the usual way.
2430     return Op;
2431   }
2432
2433   // If we're comparing for equality to zero, expose the fact that this is
2434   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2435   // fold the new nodes.
2436   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2437     return V;
2438
2439   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2440     // Leave comparisons against 0 and -1 alone for now, since they're usually
2441     // optimized.  FIXME: revisit this when we can custom lower all setcc
2442     // optimizations.
2443     if (C->isAllOnesValue() || C->isNullValue())
2444       return SDValue();
2445   }
2446
2447   // If we have an integer seteq/setne, turn it into a compare against zero
2448   // by xor'ing the rhs with the lhs, which is faster than setting a
2449   // condition register, reading it back out, and masking the correct bit.  The
2450   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2451   // the result to other bit-twiddling opportunities.
2452   EVT LHSVT = Op.getOperand(0).getValueType();
2453   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2454     EVT VT = Op.getValueType();
2455     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2456                                 Op.getOperand(1));
2457     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2458   }
2459   return SDValue();
2460 }
2461
2462 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2463   SDNode *Node = Op.getNode();
2464   EVT VT = Node->getValueType(0);
2465   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2466   SDValue InChain = Node->getOperand(0);
2467   SDValue VAListPtr = Node->getOperand(1);
2468   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2469   SDLoc dl(Node);
2470
2471   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2472
2473   // gpr_index
2474   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2475                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2476   InChain = GprIndex.getValue(1);
2477
2478   if (VT == MVT::i64) {
2479     // Check if GprIndex is even
2480     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2481                                  DAG.getConstant(1, dl, MVT::i32));
2482     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2483                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2484     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2485                                           DAG.getConstant(1, dl, MVT::i32));
2486     // Align GprIndex to be even if it isn't
2487     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2488                            GprIndex);
2489   }
2490
2491   // fpr index is 1 byte after gpr
2492   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2493                                DAG.getConstant(1, dl, MVT::i32));
2494
2495   // fpr
2496   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2497                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2498   InChain = FprIndex.getValue(1);
2499
2500   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2501                                        DAG.getConstant(8, dl, MVT::i32));
2502
2503   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2504                                         DAG.getConstant(4, dl, MVT::i32));
2505
2506   // areas
2507   SDValue OverflowArea =
2508       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2509   InChain = OverflowArea.getValue(1);
2510
2511   SDValue RegSaveArea =
2512       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2513   InChain = RegSaveArea.getValue(1);
2514
2515   // select overflow_area if index > 8
2516   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2517                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2518
2519   // adjustment constant gpr_index * 4/8
2520   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2521                                     VT.isInteger() ? GprIndex : FprIndex,
2522                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2523                                                     MVT::i32));
2524
2525   // OurReg = RegSaveArea + RegConstant
2526   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2527                                RegConstant);
2528
2529   // Floating types are 32 bytes into RegSaveArea
2530   if (VT.isFloatingPoint())
2531     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2532                          DAG.getConstant(32, dl, MVT::i32));
2533
2534   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2535   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2536                                    VT.isInteger() ? GprIndex : FprIndex,
2537                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2538                                                    MVT::i32));
2539
2540   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2541                               VT.isInteger() ? VAListPtr : FprPtr,
2542                               MachinePointerInfo(SV), MVT::i8);
2543
2544   // determine if we should load from reg_save_area or overflow_area
2545   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2546
2547   // increase overflow_area by 4/8 if gpr/fpr > 8
2548   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2549                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2550                                           dl, MVT::i32));
2551
2552   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2553                              OverflowAreaPlusN);
2554
2555   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2556                               MachinePointerInfo(), MVT::i32);
2557
2558   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2559 }
2560
2561 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2562   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2563
2564   // We have to copy the entire va_list struct:
2565   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2566   return DAG.getMemcpy(Op.getOperand(0), Op,
2567                        Op.getOperand(1), Op.getOperand(2),
2568                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2569                        false, MachinePointerInfo(), MachinePointerInfo());
2570 }
2571
2572 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2573                                                   SelectionDAG &DAG) const {
2574   return Op.getOperand(0);
2575 }
2576
2577 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2578                                                 SelectionDAG &DAG) const {
2579   SDValue Chain = Op.getOperand(0);
2580   SDValue Trmp = Op.getOperand(1); // trampoline
2581   SDValue FPtr = Op.getOperand(2); // nested function
2582   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2583   SDLoc dl(Op);
2584
2585   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2586   bool isPPC64 = (PtrVT == MVT::i64);
2587   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2588
2589   TargetLowering::ArgListTy Args;
2590   TargetLowering::ArgListEntry Entry;
2591
2592   Entry.Ty = IntPtrTy;
2593   Entry.Node = Trmp; Args.push_back(Entry);
2594
2595   // TrampSize == (isPPC64 ? 48 : 40);
2596   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2597                                isPPC64 ? MVT::i64 : MVT::i32);
2598   Args.push_back(Entry);
2599
2600   Entry.Node = FPtr; Args.push_back(Entry);
2601   Entry.Node = Nest; Args.push_back(Entry);
2602
2603   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2604   TargetLowering::CallLoweringInfo CLI(DAG);
2605   CLI.setDebugLoc(dl).setChain(Chain)
2606     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2607                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2608                std::move(Args));
2609
2610   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2611   return CallResult.second;
2612 }
2613
2614 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2615   MachineFunction &MF = DAG.getMachineFunction();
2616   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2617   EVT PtrVT = getPointerTy(MF.getDataLayout());
2618
2619   SDLoc dl(Op);
2620
2621   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2622     // vastart just stores the address of the VarArgsFrameIndex slot into the
2623     // memory location argument.
2624     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2625     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2626     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2627                         MachinePointerInfo(SV));
2628   }
2629
2630   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2631   // We suppose the given va_list is already allocated.
2632   //
2633   // typedef struct {
2634   //  char gpr;     /* index into the array of 8 GPRs
2635   //                 * stored in the register save area
2636   //                 * gpr=0 corresponds to r3,
2637   //                 * gpr=1 to r4, etc.
2638   //                 */
2639   //  char fpr;     /* index into the array of 8 FPRs
2640   //                 * stored in the register save area
2641   //                 * fpr=0 corresponds to f1,
2642   //                 * fpr=1 to f2, etc.
2643   //                 */
2644   //  char *overflow_arg_area;
2645   //                /* location on stack that holds
2646   //                 * the next overflow argument
2647   //                 */
2648   //  char *reg_save_area;
2649   //               /* where r3:r10 and f1:f8 (if saved)
2650   //                * are stored
2651   //                */
2652   // } va_list[1];
2653
2654   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2655   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2656   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2657                                             PtrVT);
2658   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2659                                  PtrVT);
2660
2661   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2662   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2663
2664   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2665   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2666
2667   uint64_t FPROffset = 1;
2668   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2669
2670   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2671
2672   // Store first byte : number of int regs
2673   SDValue firstStore =
2674       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
2675                         MachinePointerInfo(SV), MVT::i8);
2676   uint64_t nextOffset = FPROffset;
2677   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2678                                   ConstFPROffset);
2679
2680   // Store second byte : number of float regs
2681   SDValue secondStore =
2682       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2683                         MachinePointerInfo(SV, nextOffset), MVT::i8);
2684   nextOffset += StackOffset;
2685   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2686
2687   // Store second word : arguments given on stack
2688   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2689                                     MachinePointerInfo(SV, nextOffset));
2690   nextOffset += FrameOffset;
2691   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2692
2693   // Store third word : arguments given in registers
2694   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2695                       MachinePointerInfo(SV, nextOffset));
2696 }
2697
2698 #include "PPCGenCallingConv.inc"
2699
2700 // Function whose sole purpose is to kill compiler warnings
2701 // stemming from unused functions included from PPCGenCallingConv.inc.
2702 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2703   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2704 }
2705
2706 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2707                                       CCValAssign::LocInfo &LocInfo,
2708                                       ISD::ArgFlagsTy &ArgFlags,
2709                                       CCState &State) {
2710   return true;
2711 }
2712
2713 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2714                                              MVT &LocVT,
2715                                              CCValAssign::LocInfo &LocInfo,
2716                                              ISD::ArgFlagsTy &ArgFlags,
2717                                              CCState &State) {
2718   static const MCPhysReg ArgRegs[] = {
2719     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2720     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2721   };
2722   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2723
2724   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2725
2726   // Skip one register if the first unallocated register has an even register
2727   // number and there are still argument registers available which have not been
2728   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2729   // need to skip a register if RegNum is odd.
2730   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2731     State.AllocateReg(ArgRegs[RegNum]);
2732   }
2733
2734   // Always return false here, as this function only makes sure that the first
2735   // unallocated register has an odd register number and does not actually
2736   // allocate a register for the current argument.
2737   return false;
2738 }
2739
2740 bool 
2741 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
2742                                                   MVT &LocVT,
2743                                                   CCValAssign::LocInfo &LocInfo,
2744                                                   ISD::ArgFlagsTy &ArgFlags,
2745                                                   CCState &State) {
2746   static const MCPhysReg ArgRegs[] = {
2747     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2748     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2749   };
2750   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2751
2752   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2753   int RegsLeft = NumArgRegs - RegNum;
2754
2755   // Skip if there is not enough registers left for long double type (4 gpr regs 
2756   // in soft float mode) and put long double argument on the stack.
2757   if (RegNum != NumArgRegs && RegsLeft < 4) {
2758     for (int i = 0; i < RegsLeft; i++) {
2759       State.AllocateReg(ArgRegs[RegNum + i]);
2760     }
2761   }
2762
2763   return false;
2764 }
2765
2766 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2767                                                MVT &LocVT,
2768                                                CCValAssign::LocInfo &LocInfo,
2769                                                ISD::ArgFlagsTy &ArgFlags,
2770                                                CCState &State) {
2771   static const MCPhysReg ArgRegs[] = {
2772     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2773     PPC::F8
2774   };
2775
2776   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2777
2778   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2779
2780   // If there is only one Floating-point register left we need to put both f64
2781   // values of a split ppc_fp128 value on the stack.
2782   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2783     State.AllocateReg(ArgRegs[RegNum]);
2784   }
2785
2786   // Always return false here, as this function only makes sure that the two f64
2787   // values a ppc_fp128 value is split into are both passed in registers or both
2788   // passed on the stack and does not actually allocate a register for the
2789   // current argument.
2790   return false;
2791 }
2792
2793 /// FPR - The set of FP registers that should be allocated for arguments,
2794 /// on Darwin.
2795 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2796                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2797                                 PPC::F11, PPC::F12, PPC::F13};
2798
2799 /// QFPR - The set of QPX registers that should be allocated for arguments.
2800 static const MCPhysReg QFPR[] = {
2801     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2802     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2803
2804 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2805 /// the stack.
2806 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2807                                        unsigned PtrByteSize) {
2808   unsigned ArgSize = ArgVT.getStoreSize();
2809   if (Flags.isByVal())
2810     ArgSize = Flags.getByValSize();
2811
2812   // Round up to multiples of the pointer size, except for array members,
2813   // which are always packed.
2814   if (!Flags.isInConsecutiveRegs())
2815     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2816
2817   return ArgSize;
2818 }
2819
2820 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2821 /// on the stack.
2822 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2823                                             ISD::ArgFlagsTy Flags,
2824                                             unsigned PtrByteSize) {
2825   unsigned Align = PtrByteSize;
2826
2827   // Altivec parameters are padded to a 16 byte boundary.
2828   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2829       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2830       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2831       ArgVT == MVT::v1i128)
2832     Align = 16;
2833   // QPX vector types stored in double-precision are padded to a 32 byte
2834   // boundary.
2835   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2836     Align = 32;
2837
2838   // ByVal parameters are aligned as requested.
2839   if (Flags.isByVal()) {
2840     unsigned BVAlign = Flags.getByValAlign();
2841     if (BVAlign > PtrByteSize) {
2842       if (BVAlign % PtrByteSize != 0)
2843           llvm_unreachable(
2844             "ByVal alignment is not a multiple of the pointer size");
2845
2846       Align = BVAlign;
2847     }
2848   }
2849
2850   // Array members are always packed to their original alignment.
2851   if (Flags.isInConsecutiveRegs()) {
2852     // If the array member was split into multiple registers, the first
2853     // needs to be aligned to the size of the full type.  (Except for
2854     // ppcf128, which is only aligned as its f64 components.)
2855     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2856       Align = OrigVT.getStoreSize();
2857     else
2858       Align = ArgVT.getStoreSize();
2859   }
2860
2861   return Align;
2862 }
2863
2864 /// CalculateStackSlotUsed - Return whether this argument will use its
2865 /// stack slot (instead of being passed in registers).  ArgOffset,
2866 /// AvailableFPRs, and AvailableVRs must hold the current argument
2867 /// position, and will be updated to account for this argument.
2868 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2869                                    ISD::ArgFlagsTy Flags,
2870                                    unsigned PtrByteSize,
2871                                    unsigned LinkageSize,
2872                                    unsigned ParamAreaSize,
2873                                    unsigned &ArgOffset,
2874                                    unsigned &AvailableFPRs,
2875                                    unsigned &AvailableVRs, bool HasQPX) {
2876   bool UseMemory = false;
2877
2878   // Respect alignment of argument on the stack.
2879   unsigned Align =
2880     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2881   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2882   // If there's no space left in the argument save area, we must
2883   // use memory (this check also catches zero-sized arguments).
2884   if (ArgOffset >= LinkageSize + ParamAreaSize)
2885     UseMemory = true;
2886
2887   // Allocate argument on the stack.
2888   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2889   if (Flags.isInConsecutiveRegsLast())
2890     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2891   // If we overran the argument save area, we must use memory
2892   // (this check catches arguments passed partially in memory)
2893   if (ArgOffset > LinkageSize + ParamAreaSize)
2894     UseMemory = true;
2895
2896   // However, if the argument is actually passed in an FPR or a VR,
2897   // we don't use memory after all.
2898   if (!Flags.isByVal()) {
2899     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2900         // QPX registers overlap with the scalar FP registers.
2901         (HasQPX && (ArgVT == MVT::v4f32 ||
2902                     ArgVT == MVT::v4f64 ||
2903                     ArgVT == MVT::v4i1)))
2904       if (AvailableFPRs > 0) {
2905         --AvailableFPRs;
2906         return false;
2907       }
2908     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2909         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2910         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2911         ArgVT == MVT::v1i128)
2912       if (AvailableVRs > 0) {
2913         --AvailableVRs;
2914         return false;
2915       }
2916   }
2917
2918   return UseMemory;
2919 }
2920
2921 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2922 /// ensure minimum alignment required for target.
2923 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2924                                      unsigned NumBytes) {
2925   unsigned TargetAlign = Lowering->getStackAlignment();
2926   unsigned AlignMask = TargetAlign - 1;
2927   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2928   return NumBytes;
2929 }
2930
2931 SDValue PPCTargetLowering::LowerFormalArguments(
2932     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2933     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2934     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2935   if (Subtarget.isSVR4ABI()) {
2936     if (Subtarget.isPPC64())
2937       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2938                                          dl, DAG, InVals);
2939     else
2940       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2941                                          dl, DAG, InVals);
2942   } else {
2943     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2944                                        dl, DAG, InVals);
2945   }
2946 }
2947
2948 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
2949     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2950     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2951     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2952
2953   // 32-bit SVR4 ABI Stack Frame Layout:
2954   //              +-----------------------------------+
2955   //        +-->  |            Back chain             |
2956   //        |     +-----------------------------------+
2957   //        |     | Floating-point register save area |
2958   //        |     +-----------------------------------+
2959   //        |     |    General register save area     |
2960   //        |     +-----------------------------------+
2961   //        |     |          CR save word             |
2962   //        |     +-----------------------------------+
2963   //        |     |         VRSAVE save word          |
2964   //        |     +-----------------------------------+
2965   //        |     |         Alignment padding         |
2966   //        |     +-----------------------------------+
2967   //        |     |     Vector register save area     |
2968   //        |     +-----------------------------------+
2969   //        |     |       Local variable space        |
2970   //        |     +-----------------------------------+
2971   //        |     |        Parameter list area        |
2972   //        |     +-----------------------------------+
2973   //        |     |           LR save word            |
2974   //        |     +-----------------------------------+
2975   // SP-->  +---  |            Back chain             |
2976   //              +-----------------------------------+
2977   //
2978   // Specifications:
2979   //   System V Application Binary Interface PowerPC Processor Supplement
2980   //   AltiVec Technology Programming Interface Manual
2981
2982   MachineFunction &MF = DAG.getMachineFunction();
2983   MachineFrameInfo &MFI = MF.getFrameInfo();
2984   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2985
2986   EVT PtrVT = getPointerTy(MF.getDataLayout());
2987   // Potential tail calls could cause overwriting of argument stack slots.
2988   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2989                        (CallConv == CallingConv::Fast));
2990   unsigned PtrByteSize = 4;
2991
2992   // Assign locations to all of the incoming arguments.
2993   SmallVector<CCValAssign, 16> ArgLocs;
2994   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2995                  *DAG.getContext());
2996
2997   // Reserve space for the linkage area on the stack.
2998   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2999   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3000   if (useSoftFloat())
3001     CCInfo.PreAnalyzeFormalArguments(Ins);
3002
3003   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3004   CCInfo.clearWasPPCF128();
3005
3006   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3007     CCValAssign &VA = ArgLocs[i];
3008
3009     // Arguments stored in registers.
3010     if (VA.isRegLoc()) {
3011       const TargetRegisterClass *RC;
3012       EVT ValVT = VA.getValVT();
3013
3014       switch (ValVT.getSimpleVT().SimpleTy) {
3015         default:
3016           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3017         case MVT::i1:
3018         case MVT::i32:
3019           RC = &PPC::GPRCRegClass;
3020           break;
3021         case MVT::f32:
3022           if (Subtarget.hasP8Vector())
3023             RC = &PPC::VSSRCRegClass;
3024           else
3025             RC = &PPC::F4RCRegClass;
3026           break;
3027         case MVT::f64:
3028           if (Subtarget.hasVSX())
3029             RC = &PPC::VSFRCRegClass;
3030           else
3031             RC = &PPC::F8RCRegClass;
3032           break;
3033         case MVT::v16i8:
3034         case MVT::v8i16:
3035         case MVT::v4i32:
3036           RC = &PPC::VRRCRegClass;
3037           break;
3038         case MVT::v4f32:
3039           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3040           break;
3041         case MVT::v2f64:
3042         case MVT::v2i64:
3043           RC = &PPC::VRRCRegClass;
3044           break;
3045         case MVT::v4f64:
3046           RC = &PPC::QFRCRegClass;
3047           break;
3048         case MVT::v4i1:
3049           RC = &PPC::QBRCRegClass;
3050           break;
3051       }
3052
3053       // Transform the arguments stored in physical registers into virtual ones.
3054       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3055       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3056                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3057
3058       if (ValVT == MVT::i1)
3059         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3060
3061       InVals.push_back(ArgValue);
3062     } else {
3063       // Argument stored in memory.
3064       assert(VA.isMemLoc());
3065
3066       unsigned ArgSize = VA.getLocVT().getStoreSize();
3067       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3068                                      isImmutable);
3069
3070       // Create load nodes to retrieve arguments from the stack.
3071       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3072       InVals.push_back(
3073           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3074     }
3075   }
3076
3077   // Assign locations to all of the incoming aggregate by value arguments.
3078   // Aggregates passed by value are stored in the local variable space of the
3079   // caller's stack frame, right above the parameter list area.
3080   SmallVector<CCValAssign, 16> ByValArgLocs;
3081   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3082                       ByValArgLocs, *DAG.getContext());
3083
3084   // Reserve stack space for the allocations in CCInfo.
3085   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3086
3087   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3088
3089   // Area that is at least reserved in the caller of this function.
3090   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3091   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3092
3093   // Set the size that is at least reserved in caller of this function.  Tail
3094   // call optimized function's reserved stack space needs to be aligned so that
3095   // taking the difference between two stack areas will result in an aligned
3096   // stack.
3097   MinReservedArea =
3098       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3099   FuncInfo->setMinReservedArea(MinReservedArea);
3100
3101   SmallVector<SDValue, 8> MemOps;
3102
3103   // If the function takes variable number of arguments, make a frame index for
3104   // the start of the first vararg value... for expansion of llvm.va_start.
3105   if (isVarArg) {
3106     static const MCPhysReg GPArgRegs[] = {
3107       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3108       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3109     };
3110     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3111
3112     static const MCPhysReg FPArgRegs[] = {
3113       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3114       PPC::F8
3115     };
3116     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3117
3118     if (useSoftFloat())
3119        NumFPArgRegs = 0;
3120
3121     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3122     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3123
3124     // Make room for NumGPArgRegs and NumFPArgRegs.
3125     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3126                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3127
3128     FuncInfo->setVarArgsStackOffset(
3129       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3130                             CCInfo.getNextStackOffset(), true));
3131
3132     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3133     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3134
3135     // The fixed integer arguments of a variadic function are stored to the
3136     // VarArgsFrameIndex on the stack so that they may be loaded by
3137     // dereferencing the result of va_next.
3138     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3139       // Get an existing live-in vreg, or add a new one.
3140       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3141       if (!VReg)
3142         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3143
3144       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3145       SDValue Store =
3146           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3147       MemOps.push_back(Store);
3148       // Increment the address by four for the next argument to store
3149       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3150       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3151     }
3152
3153     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3154     // is set.
3155     // The double arguments are stored to the VarArgsFrameIndex
3156     // on the stack.
3157     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3158       // Get an existing live-in vreg, or add a new one.
3159       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3160       if (!VReg)
3161         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3162
3163       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3164       SDValue Store =
3165           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3166       MemOps.push_back(Store);
3167       // Increment the address by eight for the next argument to store
3168       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3169                                          PtrVT);
3170       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3171     }
3172   }
3173
3174   if (!MemOps.empty())
3175     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3176
3177   return Chain;
3178 }
3179
3180 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3181 // value to MVT::i64 and then truncate to the correct register size.
3182 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3183                                              EVT ObjectVT, SelectionDAG &DAG,
3184                                              SDValue ArgVal,
3185                                              const SDLoc &dl) const {
3186   if (Flags.isSExt())
3187     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3188                          DAG.getValueType(ObjectVT));
3189   else if (Flags.isZExt())
3190     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3191                          DAG.getValueType(ObjectVT));
3192
3193   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3194 }
3195
3196 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3197     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3198     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3199     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3200   // TODO: add description of PPC stack frame format, or at least some docs.
3201   //
3202   bool isELFv2ABI = Subtarget.isELFv2ABI();
3203   bool isLittleEndian = Subtarget.isLittleEndian();
3204   MachineFunction &MF = DAG.getMachineFunction();
3205   MachineFrameInfo &MFI = MF.getFrameInfo();
3206   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3207
3208   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3209          "fastcc not supported on varargs functions");
3210
3211   EVT PtrVT = getPointerTy(MF.getDataLayout());
3212   // Potential tail calls could cause overwriting of argument stack slots.
3213   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3214                        (CallConv == CallingConv::Fast));
3215   unsigned PtrByteSize = 8;
3216   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3217
3218   static const MCPhysReg GPR[] = {
3219     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3220     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3221   };
3222   static const MCPhysReg VR[] = {
3223     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3224     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3225   };
3226
3227   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3228   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3229   const unsigned Num_VR_Regs  = array_lengthof(VR);
3230   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3231
3232   // Do a first pass over the arguments to determine whether the ABI
3233   // guarantees that our caller has allocated the parameter save area
3234   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3235   // in the ELFv2 ABI, it is true if this is a vararg function or if
3236   // any parameter is located in a stack slot.
3237
3238   bool HasParameterArea = !isELFv2ABI || isVarArg;
3239   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3240   unsigned NumBytes = LinkageSize;
3241   unsigned AvailableFPRs = Num_FPR_Regs;
3242   unsigned AvailableVRs = Num_VR_Regs;
3243   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3244     if (Ins[i].Flags.isNest())
3245       continue;
3246
3247     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3248                                PtrByteSize, LinkageSize, ParamAreaSize,
3249                                NumBytes, AvailableFPRs, AvailableVRs,
3250                                Subtarget.hasQPX()))
3251       HasParameterArea = true;
3252   }
3253
3254   // Add DAG nodes to load the arguments or copy them out of registers.  On
3255   // entry to a function on PPC, the arguments start after the linkage area,
3256   // although the first ones are often in registers.
3257
3258   unsigned ArgOffset = LinkageSize;
3259   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3260   unsigned &QFPR_idx = FPR_idx;
3261   SmallVector<SDValue, 8> MemOps;
3262   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3263   unsigned CurArgIdx = 0;
3264   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3265     SDValue ArgVal;
3266     bool needsLoad = false;
3267     EVT ObjectVT = Ins[ArgNo].VT;
3268     EVT OrigVT = Ins[ArgNo].ArgVT;
3269     unsigned ObjSize = ObjectVT.getStoreSize();
3270     unsigned ArgSize = ObjSize;
3271     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3272     if (Ins[ArgNo].isOrigArg()) {
3273       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3274       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3275     }
3276     // We re-align the argument offset for each argument, except when using the
3277     // fast calling convention, when we need to make sure we do that only when
3278     // we'll actually use a stack slot.
3279     unsigned CurArgOffset, Align;
3280     auto ComputeArgOffset = [&]() {
3281       /* Respect alignment of argument on the stack.  */
3282       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3283       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3284       CurArgOffset = ArgOffset;
3285     };
3286
3287     if (CallConv != CallingConv::Fast) {
3288       ComputeArgOffset();
3289
3290       /* Compute GPR index associated with argument offset.  */
3291       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3292       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3293     }
3294
3295     // FIXME the codegen can be much improved in some cases.
3296     // We do not have to keep everything in memory.
3297     if (Flags.isByVal()) {
3298       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3299
3300       if (CallConv == CallingConv::Fast)
3301         ComputeArgOffset();
3302
3303       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3304       ObjSize = Flags.getByValSize();
3305       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3306       // Empty aggregate parameters do not take up registers.  Examples:
3307       //   struct { } a;
3308       //   union  { } b;
3309       //   int c[0];
3310       // etc.  However, we have to provide a place-holder in InVals, so
3311       // pretend we have an 8-byte item at the current address for that
3312       // purpose.
3313       if (!ObjSize) {
3314         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3315         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3316         InVals.push_back(FIN);
3317         continue;
3318       }
3319
3320       // Create a stack object covering all stack doublewords occupied
3321       // by the argument.  If the argument is (fully or partially) on
3322       // the stack, or if the argument is fully in registers but the
3323       // caller has allocated the parameter save anyway, we can refer
3324       // directly to the caller's stack frame.  Otherwise, create a
3325       // local copy in our own frame.
3326       int FI;
3327       if (HasParameterArea ||
3328           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3329         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3330       else
3331         FI = MFI.CreateStackObject(ArgSize, Align, false);
3332       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3333
3334       // Handle aggregates smaller than 8 bytes.
3335       if (ObjSize < PtrByteSize) {
3336         // The value of the object is its address, which differs from the
3337         // address of the enclosing doubleword on big-endian systems.
3338         SDValue Arg = FIN;
3339         if (!isLittleEndian) {
3340           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3341           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3342         }
3343         InVals.push_back(Arg);
3344
3345         if (GPR_idx != Num_GPR_Regs) {
3346           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3347           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3348           SDValue Store;
3349
3350           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3351             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3352                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3353             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3354                                       MachinePointerInfo(&*FuncArg), ObjType);
3355           } else {
3356             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3357             // store the whole register as-is to the parameter save area
3358             // slot.
3359             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3360                                  MachinePointerInfo(&*FuncArg));
3361           }
3362
3363           MemOps.push_back(Store);
3364         }
3365         // Whether we copied from a register or not, advance the offset
3366         // into the parameter save area by a full doubleword.
3367         ArgOffset += PtrByteSize;
3368         continue;
3369       }
3370
3371       // The value of the object is its address, which is the address of
3372       // its first stack doubleword.
3373       InVals.push_back(FIN);
3374
3375       // Store whatever pieces of the object are in registers to memory.
3376       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3377         if (GPR_idx == Num_GPR_Regs)
3378           break;
3379
3380         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3381         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3382         SDValue Addr = FIN;
3383         if (j) {
3384           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3385           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3386         }
3387         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3388                                      MachinePointerInfo(&*FuncArg, j));
3389         MemOps.push_back(Store);
3390         ++GPR_idx;
3391       }
3392       ArgOffset += ArgSize;
3393       continue;
3394     }
3395
3396     switch (ObjectVT.getSimpleVT().SimpleTy) {
3397     default: llvm_unreachable("Unhandled argument type!");
3398     case MVT::i1:
3399     case MVT::i32:
3400     case MVT::i64:
3401       if (Flags.isNest()) {
3402         // The 'nest' parameter, if any, is passed in R11.
3403         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3404         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3405
3406         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3407           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3408
3409         break;
3410       }
3411
3412       // These can be scalar arguments or elements of an integer array type
3413       // passed directly.  Clang may use those instead of "byval" aggregate
3414       // types to avoid forcing arguments to memory unnecessarily.
3415       if (GPR_idx != Num_GPR_Regs) {
3416         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3417         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3418
3419         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3420           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3421           // value to MVT::i64 and then truncate to the correct register size.
3422           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3423       } else {
3424         if (CallConv == CallingConv::Fast)
3425           ComputeArgOffset();
3426
3427         needsLoad = true;
3428         ArgSize = PtrByteSize;
3429       }
3430       if (CallConv != CallingConv::Fast || needsLoad)
3431         ArgOffset += 8;
3432       break;
3433
3434     case MVT::f32:
3435     case MVT::f64:
3436       // These can be scalar arguments or elements of a float array type
3437       // passed directly.  The latter are used to implement ELFv2 homogenous
3438       // float aggregates.
3439       if (FPR_idx != Num_FPR_Regs) {
3440         unsigned VReg;
3441
3442         if (ObjectVT == MVT::f32)
3443           VReg = MF.addLiveIn(FPR[FPR_idx],
3444                               Subtarget.hasP8Vector()
3445                                   ? &PPC::VSSRCRegClass
3446                                   : &PPC::F4RCRegClass);
3447         else
3448           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3449                                                 ? &PPC::VSFRCRegClass
3450                                                 : &PPC::F8RCRegClass);
3451
3452         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3453         ++FPR_idx;
3454       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3455         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3456         // once we support fp <-> gpr moves.
3457
3458         // This can only ever happen in the presence of f32 array types,
3459         // since otherwise we never run out of FPRs before running out
3460         // of GPRs.
3461         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3462         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3463
3464         if (ObjectVT == MVT::f32) {
3465           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3466             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3467                                  DAG.getConstant(32, dl, MVT::i32));
3468           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3469         }
3470
3471         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3472       } else {
3473         if (CallConv == CallingConv::Fast)
3474           ComputeArgOffset();
3475
3476         needsLoad = true;
3477       }
3478
3479       // When passing an array of floats, the array occupies consecutive
3480       // space in the argument area; only round up to the next doubleword
3481       // at the end of the array.  Otherwise, each float takes 8 bytes.
3482       if (CallConv != CallingConv::Fast || needsLoad) {
3483         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3484         ArgOffset += ArgSize;
3485         if (Flags.isInConsecutiveRegsLast())
3486           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3487       }
3488       break;
3489     case MVT::v4f32:
3490     case MVT::v4i32:
3491     case MVT::v8i16:
3492     case MVT::v16i8:
3493     case MVT::v2f64:
3494     case MVT::v2i64:
3495     case MVT::v1i128:
3496       if (!Subtarget.hasQPX()) {
3497       // These can be scalar arguments or elements of a vector array type
3498       // passed directly.  The latter are used to implement ELFv2 homogenous
3499       // vector aggregates.
3500       if (VR_idx != Num_VR_Regs) {
3501         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3502         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3503         ++VR_idx;
3504       } else {
3505         if (CallConv == CallingConv::Fast)
3506           ComputeArgOffset();
3507
3508         needsLoad = true;
3509       }
3510       if (CallConv != CallingConv::Fast || needsLoad)
3511         ArgOffset += 16;
3512       break;
3513       } // not QPX
3514
3515       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3516              "Invalid QPX parameter type");
3517       /* fall through */
3518
3519     case MVT::v4f64:
3520     case MVT::v4i1:
3521       // QPX vectors are treated like their scalar floating-point subregisters
3522       // (except that they're larger).
3523       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3524       if (QFPR_idx != Num_QFPR_Regs) {
3525         const TargetRegisterClass *RC;
3526         switch (ObjectVT.getSimpleVT().SimpleTy) {
3527         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3528         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3529         default:         RC = &PPC::QBRCRegClass; break;
3530         }
3531
3532         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3533         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3534         ++QFPR_idx;
3535       } else {
3536         if (CallConv == CallingConv::Fast)
3537           ComputeArgOffset();
3538         needsLoad = true;
3539       }
3540       if (CallConv != CallingConv::Fast || needsLoad)
3541         ArgOffset += Sz;
3542       break;
3543     }
3544
3545     // We need to load the argument to a virtual register if we determined
3546     // above that we ran out of physical registers of the appropriate type.
3547     if (needsLoad) {
3548       if (ObjSize < ArgSize && !isLittleEndian)
3549         CurArgOffset += ArgSize - ObjSize;
3550       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3551       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3552       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3553     }
3554
3555     InVals.push_back(ArgVal);
3556   }
3557
3558   // Area that is at least reserved in the caller of this function.
3559   unsigned MinReservedArea;
3560   if (HasParameterArea)
3561     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3562   else
3563     MinReservedArea = LinkageSize;
3564
3565   // Set the size that is at least reserved in caller of this function.  Tail
3566   // call optimized functions' reserved stack space needs to be aligned so that
3567   // taking the difference between two stack areas will result in an aligned
3568   // stack.
3569   MinReservedArea =
3570       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3571   FuncInfo->setMinReservedArea(MinReservedArea);
3572
3573   // If the function takes variable number of arguments, make a frame index for
3574   // the start of the first vararg value... for expansion of llvm.va_start.
3575   if (isVarArg) {
3576     int Depth = ArgOffset;
3577
3578     FuncInfo->setVarArgsFrameIndex(
3579       MFI.CreateFixedObject(PtrByteSize, Depth, true));
3580     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3581
3582     // If this function is vararg, store any remaining integer argument regs
3583     // to their spots on the stack so that they may be loaded by dereferencing
3584     // the result of va_next.
3585     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3586          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3587       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3588       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3589       SDValue Store =
3590           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3591       MemOps.push_back(Store);
3592       // Increment the address by four for the next argument to store
3593       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3594       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3595     }
3596   }
3597
3598   if (!MemOps.empty())
3599     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3600
3601   return Chain;
3602 }
3603
3604 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3605     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3606     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3607     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3608   // TODO: add description of PPC stack frame format, or at least some docs.
3609   //
3610   MachineFunction &MF = DAG.getMachineFunction();
3611   MachineFrameInfo &MFI = MF.getFrameInfo();
3612   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3613
3614   EVT PtrVT = getPointerTy(MF.getDataLayout());
3615   bool isPPC64 = PtrVT == MVT::i64;
3616   // Potential tail calls could cause overwriting of argument stack slots.
3617   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3618                        (CallConv == CallingConv::Fast));
3619   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3620   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3621   unsigned ArgOffset = LinkageSize;
3622   // Area that is at least reserved in caller of this function.
3623   unsigned MinReservedArea = ArgOffset;
3624
3625   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3626     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3627     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3628   };
3629   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3630     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3631     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3632   };
3633   static const MCPhysReg VR[] = {
3634     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3635     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3636   };
3637
3638   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3639   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3640   const unsigned Num_VR_Regs  = array_lengthof( VR);
3641
3642   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3643
3644   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3645
3646   // In 32-bit non-varargs functions, the stack space for vectors is after the
3647   // stack space for non-vectors.  We do not use this space unless we have
3648   // too many vectors to fit in registers, something that only occurs in
3649   // constructed examples:), but we have to walk the arglist to figure
3650   // that out...for the pathological case, compute VecArgOffset as the
3651   // start of the vector parameter area.  Computing VecArgOffset is the
3652   // entire point of the following loop.
3653   unsigned VecArgOffset = ArgOffset;
3654   if (!isVarArg && !isPPC64) {
3655     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3656          ++ArgNo) {
3657       EVT ObjectVT = Ins[ArgNo].VT;
3658       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3659
3660       if (Flags.isByVal()) {
3661         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3662         unsigned ObjSize = Flags.getByValSize();
3663         unsigned ArgSize =
3664                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3665         VecArgOffset += ArgSize;
3666         continue;
3667       }
3668
3669       switch(ObjectVT.getSimpleVT().SimpleTy) {
3670       default: llvm_unreachable("Unhandled argument type!");
3671       case MVT::i1:
3672       case MVT::i32:
3673       case MVT::f32:
3674         VecArgOffset += 4;
3675         break;
3676       case MVT::i64:  // PPC64
3677       case MVT::f64:
3678         // FIXME: We are guaranteed to be !isPPC64 at this point.
3679         // Does MVT::i64 apply?
3680         VecArgOffset += 8;
3681         break;
3682       case MVT::v4f32:
3683       case MVT::v4i32:
3684       case MVT::v8i16:
3685       case MVT::v16i8:
3686         // Nothing to do, we're only looking at Nonvector args here.
3687         break;
3688       }
3689     }
3690   }
3691   // We've found where the vector parameter area in memory is.  Skip the
3692   // first 12 parameters; these don't use that memory.
3693   VecArgOffset = ((VecArgOffset+15)/16)*16;
3694   VecArgOffset += 12*16;
3695
3696   // Add DAG nodes to load the arguments or copy them out of registers.  On
3697   // entry to a function on PPC, the arguments start after the linkage area,
3698   // although the first ones are often in registers.
3699
3700   SmallVector<SDValue, 8> MemOps;
3701   unsigned nAltivecParamsAtEnd = 0;
3702   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3703   unsigned CurArgIdx = 0;
3704   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3705     SDValue ArgVal;
3706     bool needsLoad = false;
3707     EVT ObjectVT = Ins[ArgNo].VT;
3708     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3709     unsigned ArgSize = ObjSize;
3710     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3711     if (Ins[ArgNo].isOrigArg()) {
3712       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3713       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3714     }
3715     unsigned CurArgOffset = ArgOffset;
3716
3717     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3718     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3719         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3720       if (isVarArg || isPPC64) {
3721         MinReservedArea = ((MinReservedArea+15)/16)*16;
3722         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3723                                                   Flags,
3724                                                   PtrByteSize);
3725       } else  nAltivecParamsAtEnd++;
3726     } else
3727       // Calculate min reserved area.
3728       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3729                                                 Flags,
3730                                                 PtrByteSize);
3731
3732     // FIXME the codegen can be much improved in some cases.
3733     // We do not have to keep everything in memory.
3734     if (Flags.isByVal()) {
3735       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3736
3737       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3738       ObjSize = Flags.getByValSize();
3739       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3740       // Objects of size 1 and 2 are right justified, everything else is
3741       // left justified.  This means the memory address is adjusted forwards.
3742       if (ObjSize==1 || ObjSize==2) {
3743         CurArgOffset = CurArgOffset + (4 - ObjSize);
3744       }
3745       // The value of the object is its address.
3746       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
3747       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3748       InVals.push_back(FIN);
3749       if (ObjSize==1 || ObjSize==2) {
3750         if (GPR_idx != Num_GPR_Regs) {
3751           unsigned VReg;
3752           if (isPPC64)
3753             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3754           else
3755             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3756           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3757           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3758           SDValue Store =
3759               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3760                                 MachinePointerInfo(&*FuncArg), ObjType);
3761           MemOps.push_back(Store);
3762           ++GPR_idx;
3763         }
3764
3765         ArgOffset += PtrByteSize;
3766
3767         continue;
3768       }
3769       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3770         // Store whatever pieces of the object are in registers
3771         // to memory.  ArgOffset will be the address of the beginning
3772         // of the object.
3773         if (GPR_idx != Num_GPR_Regs) {
3774           unsigned VReg;
3775           if (isPPC64)
3776             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3777           else
3778             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3779           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3780           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3781           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3782           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3783                                        MachinePointerInfo(&*FuncArg, j));
3784           MemOps.push_back(Store);
3785           ++GPR_idx;
3786           ArgOffset += PtrByteSize;
3787         } else {
3788           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3789           break;
3790         }
3791       }
3792       continue;
3793     }
3794
3795     switch (ObjectVT.getSimpleVT().SimpleTy) {
3796     default: llvm_unreachable("Unhandled argument type!");
3797     case MVT::i1:
3798     case MVT::i32:
3799       if (!isPPC64) {
3800         if (GPR_idx != Num_GPR_Regs) {
3801           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3802           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3803
3804           if (ObjectVT == MVT::i1)
3805             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3806
3807           ++GPR_idx;
3808         } else {
3809           needsLoad = true;
3810           ArgSize = PtrByteSize;
3811         }
3812         // All int arguments reserve stack space in the Darwin ABI.
3813         ArgOffset += PtrByteSize;
3814         break;
3815       }
3816       LLVM_FALLTHROUGH;
3817     case MVT::i64:  // PPC64
3818       if (GPR_idx != Num_GPR_Regs) {
3819         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3820         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3821
3822         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3823           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3824           // value to MVT::i64 and then truncate to the correct register size.
3825           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3826
3827         ++GPR_idx;
3828       } else {
3829         needsLoad = true;
3830         ArgSize = PtrByteSize;
3831       }
3832       // All int arguments reserve stack space in the Darwin ABI.
3833       ArgOffset += 8;
3834       break;
3835
3836     case MVT::f32:
3837     case MVT::f64:
3838       // Every 4 bytes of argument space consumes one of the GPRs available for
3839       // argument passing.
3840       if (GPR_idx != Num_GPR_Regs) {
3841         ++GPR_idx;
3842         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3843           ++GPR_idx;
3844       }
3845       if (FPR_idx != Num_FPR_Regs) {
3846         unsigned VReg;
3847
3848         if (ObjectVT == MVT::f32)
3849           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3850         else
3851           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3852
3853         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3854         ++FPR_idx;
3855       } else {
3856         needsLoad = true;
3857       }
3858
3859       // All FP arguments reserve stack space in the Darwin ABI.
3860       ArgOffset += isPPC64 ? 8 : ObjSize;
3861       break;
3862     case MVT::v4f32:
3863     case MVT::v4i32:
3864     case MVT::v8i16:
3865     case MVT::v16i8:
3866       // Note that vector arguments in registers don't reserve stack space,
3867       // except in varargs functions.
3868       if (VR_idx != Num_VR_Regs) {
3869         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3870         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3871         if (isVarArg) {
3872           while ((ArgOffset % 16) != 0) {
3873             ArgOffset += PtrByteSize;
3874             if (GPR_idx != Num_GPR_Regs)
3875               GPR_idx++;
3876           }
3877           ArgOffset += 16;
3878           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3879         }
3880         ++VR_idx;
3881       } else {
3882         if (!isVarArg && !isPPC64) {
3883           // Vectors go after all the nonvectors.
3884           CurArgOffset = VecArgOffset;
3885           VecArgOffset += 16;
3886         } else {
3887           // Vectors are aligned.
3888           ArgOffset = ((ArgOffset+15)/16)*16;
3889           CurArgOffset = ArgOffset;
3890           ArgOffset += 16;
3891         }
3892         needsLoad = true;
3893       }
3894       break;
3895     }
3896
3897     // We need to load the argument to a virtual register if we determined above
3898     // that we ran out of physical registers of the appropriate type.
3899     if (needsLoad) {
3900       int FI = MFI.CreateFixedObject(ObjSize,
3901                                      CurArgOffset + (ArgSize - ObjSize),
3902                                      isImmutable);
3903       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3904       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3905     }
3906
3907     InVals.push_back(ArgVal);
3908   }
3909
3910   // Allow for Altivec parameters at the end, if needed.
3911   if (nAltivecParamsAtEnd) {
3912     MinReservedArea = ((MinReservedArea+15)/16)*16;
3913     MinReservedArea += 16*nAltivecParamsAtEnd;
3914   }
3915
3916   // Area that is at least reserved in the caller of this function.
3917   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3918
3919   // Set the size that is at least reserved in caller of this function.  Tail
3920   // call optimized functions' reserved stack space needs to be aligned so that
3921   // taking the difference between two stack areas will result in an aligned
3922   // stack.
3923   MinReservedArea =
3924       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3925   FuncInfo->setMinReservedArea(MinReservedArea);
3926
3927   // If the function takes variable number of arguments, make a frame index for
3928   // the start of the first vararg value... for expansion of llvm.va_start.
3929   if (isVarArg) {
3930     int Depth = ArgOffset;
3931
3932     FuncInfo->setVarArgsFrameIndex(
3933       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3934                             Depth, true));
3935     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3936
3937     // If this function is vararg, store any remaining integer argument regs
3938     // to their spots on the stack so that they may be loaded by dereferencing
3939     // the result of va_next.
3940     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3941       unsigned VReg;
3942
3943       if (isPPC64)
3944         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3945       else
3946         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3947
3948       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3949       SDValue Store =
3950           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3951       MemOps.push_back(Store);
3952       // Increment the address by four for the next argument to store
3953       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3954       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3955     }
3956   }
3957
3958   if (!MemOps.empty())
3959     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3960
3961   return Chain;
3962 }
3963
3964 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3965 /// adjusted to accommodate the arguments for the tailcall.
3966 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3967                                    unsigned ParamSize) {
3968
3969   if (!isTailCall) return 0;
3970
3971   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3972   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3973   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3974   // Remember only if the new adjustement is bigger.
3975   if (SPDiff < FI->getTailCallSPDelta())
3976     FI->setTailCallSPDelta(SPDiff);
3977
3978   return SPDiff;
3979 }
3980
3981 static bool isFunctionGlobalAddress(SDValue Callee);
3982
3983 static bool
3984 resideInSameModule(SDValue Callee, Reloc::Model RelMod) {
3985   // If !G, Callee can be an external symbol.
3986   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
3987   if (!G) return false;
3988
3989   const GlobalValue *GV = G->getGlobal();
3990
3991   if (GV->isDeclaration()) return false;
3992
3993   switch(GV->getLinkage()) {
3994   default: llvm_unreachable("unknow linkage type");
3995   case GlobalValue::AvailableExternallyLinkage:
3996   case GlobalValue::ExternalWeakLinkage:
3997     return false;
3998
3999   // Callee with weak linkage is allowed if it has hidden or protected
4000   // visibility
4001   case GlobalValue::LinkOnceAnyLinkage:
4002   case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions
4003   case GlobalValue::WeakAnyLinkage:
4004   case GlobalValue::WeakODRLinkage:     // e.g. c++ template instantiation
4005     if (GV->hasDefaultVisibility())
4006       return false;
4007
4008   case GlobalValue::ExternalLinkage:
4009   case GlobalValue::InternalLinkage:
4010   case GlobalValue::PrivateLinkage:
4011     break;
4012   }
4013
4014   // With '-fPIC', calling default visiblity function need insert 'nop' after
4015   // function call, no matter that function resides in same module or not, so
4016   // we treat it as in different module.
4017   if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility())
4018     return false;
4019
4020   return true;
4021 }
4022
4023 static bool
4024 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4025                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4026   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4027
4028   const unsigned PtrByteSize = 8;
4029   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4030
4031   static const MCPhysReg GPR[] = {
4032     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4033     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4034   };
4035   static const MCPhysReg VR[] = {
4036     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4037     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4038   };
4039
4040   const unsigned NumGPRs = array_lengthof(GPR);
4041   const unsigned NumFPRs = 13;
4042   const unsigned NumVRs = array_lengthof(VR);
4043   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4044
4045   unsigned NumBytes = LinkageSize;
4046   unsigned AvailableFPRs = NumFPRs;
4047   unsigned AvailableVRs = NumVRs;
4048
4049   for (const ISD::OutputArg& Param : Outs) {
4050     if (Param.Flags.isNest()) continue;
4051
4052     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4053                                PtrByteSize, LinkageSize, ParamAreaSize,
4054                                NumBytes, AvailableFPRs, AvailableVRs,
4055                                Subtarget.hasQPX()))
4056       return true;
4057   }
4058   return false;
4059 }
4060
4061 static bool
4062 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) {
4063   if (CS->arg_size() != CallerFn->getArgumentList().size())
4064     return false;
4065
4066   ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin();
4067   ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end();
4068   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4069
4070   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4071     const Value* CalleeArg = *CalleeArgIter;
4072     const Value* CallerArg = &(*CallerArgIter);
4073     if (CalleeArg == CallerArg)
4074       continue;
4075
4076     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4077     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4078     //      }
4079     // 1st argument of callee is undef and has the same type as caller.
4080     if (CalleeArg->getType() == CallerArg->getType() &&
4081         isa<UndefValue>(CalleeArg))
4082       continue;
4083
4084     return false;
4085   }
4086
4087   return true;
4088 }
4089
4090 bool
4091 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4092                                     SDValue Callee,
4093                                     CallingConv::ID CalleeCC,
4094                                     ImmutableCallSite *CS,
4095                                     bool isVarArg,
4096                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4097                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4098                                     SelectionDAG& DAG) const {
4099   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4100
4101   if (DisableSCO && !TailCallOpt) return false;
4102
4103   // Variadic argument functions are not supported.
4104   if (isVarArg) return false;
4105
4106   MachineFunction &MF = DAG.getMachineFunction();
4107   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4108
4109   // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
4110   // the same calling convention
4111   if (CallerCC != CalleeCC) return false;
4112
4113   // SCO support C calling convention
4114   if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
4115     return false;
4116
4117   // Caller contains any byval parameter is not supported.
4118   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4119     return false;
4120
4121   // Callee contains any byval parameter is not supported, too.
4122   // Note: This is a quick work around, because in some cases, e.g.
4123   // caller's stack size > callee's stack size, we are still able to apply
4124   // sibling call optimization. See: https://reviews.llvm.org/D23441#513574
4125   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4126     return false;
4127
4128   // No TCO/SCO on indirect call because Caller have to restore its TOC
4129   if (!isFunctionGlobalAddress(Callee) &&
4130       !isa<ExternalSymbolSDNode>(Callee))
4131     return false;
4132
4133   // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI
4134   // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another
4135   // module.
4136   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4137   if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel()))
4138     return false;
4139
4140   // TCO allows altering callee ABI, so we don't have to check further.
4141   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4142     return true;
4143
4144   if (DisableSCO) return false;
4145
4146   // If callee use the same argument list that caller is using, then we can
4147   // apply SCO on this case. If it is not, then we need to check if callee needs
4148   // stack for passing arguments.
4149   if (!hasSameArgumentList(MF.getFunction(), CS) &&
4150       needStackSlotPassParameters(Subtarget, Outs)) {
4151     return false;
4152   }
4153
4154   return true;
4155 }
4156
4157 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4158 /// for tail call optimization. Targets which want to do tail call
4159 /// optimization should implement this function.
4160 bool
4161 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4162                                                      CallingConv::ID CalleeCC,
4163                                                      bool isVarArg,
4164                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4165                                                      SelectionDAG& DAG) const {
4166   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4167     return false;
4168
4169   // Variable argument functions are not supported.
4170   if (isVarArg)
4171     return false;
4172
4173   MachineFunction &MF = DAG.getMachineFunction();
4174   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4175   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4176     // Functions containing by val parameters are not supported.
4177     for (unsigned i = 0; i != Ins.size(); i++) {
4178        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4179        if (Flags.isByVal()) return false;
4180     }
4181
4182     // Non-PIC/GOT tail calls are supported.
4183     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4184       return true;
4185
4186     // At the moment we can only do local tail calls (in same module, hidden
4187     // or protected) if we are generating PIC.
4188     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4189       return G->getGlobal()->hasHiddenVisibility()
4190           || G->getGlobal()->hasProtectedVisibility();
4191   }
4192
4193   return false;
4194 }
4195
4196 /// isCallCompatibleAddress - Return the immediate to use if the specified
4197 /// 32-bit value is representable in the immediate field of a BxA instruction.
4198 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4199   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4200   if (!C) return nullptr;
4201
4202   int Addr = C->getZExtValue();
4203   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4204       SignExtend32<26>(Addr) != Addr)
4205     return nullptr;  // Top 6 bits have to be sext of immediate.
4206
4207   return DAG
4208       .getConstant(
4209           (int)C->getZExtValue() >> 2, SDLoc(Op),
4210           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4211       .getNode();
4212 }
4213
4214 namespace {
4215
4216 struct TailCallArgumentInfo {
4217   SDValue Arg;
4218   SDValue FrameIdxOp;
4219   int       FrameIdx;
4220
4221   TailCallArgumentInfo() : FrameIdx(0) {}
4222 };
4223 }
4224
4225 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4226 static void StoreTailCallArgumentsToStackSlot(
4227     SelectionDAG &DAG, SDValue Chain,
4228     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4229     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4230   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4231     SDValue Arg = TailCallArgs[i].Arg;
4232     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4233     int FI = TailCallArgs[i].FrameIdx;
4234     // Store relative to framepointer.
4235     MemOpChains.push_back(DAG.getStore(
4236         Chain, dl, Arg, FIN,
4237         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4238   }
4239 }
4240
4241 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4242 /// the appropriate stack slot for the tail call optimized function call.
4243 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4244                                              SDValue OldRetAddr, SDValue OldFP,
4245                                              int SPDiff, const SDLoc &dl) {
4246   if (SPDiff) {
4247     // Calculate the new stack slot for the return address.
4248     MachineFunction &MF = DAG.getMachineFunction();
4249     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4250     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4251     bool isPPC64 = Subtarget.isPPC64();
4252     int SlotSize = isPPC64 ? 8 : 4;
4253     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4254     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4255                                                          NewRetAddrLoc, true);
4256     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4257     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4258     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4259                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4260
4261     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4262     // slot as the FP is never overwritten.
4263     if (Subtarget.isDarwinABI()) {
4264       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4265       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4266                                                          true);
4267       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4268       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4269                            MachinePointerInfo::getFixedStack(
4270                                DAG.getMachineFunction(), NewFPIdx));
4271     }
4272   }
4273   return Chain;
4274 }
4275
4276 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4277 /// the position of the argument.
4278 static void
4279 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4280                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4281                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4282   int Offset = ArgOffset + SPDiff;
4283   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4284   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4285   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4286   SDValue FIN = DAG.getFrameIndex(FI, VT);
4287   TailCallArgumentInfo Info;
4288   Info.Arg = Arg;
4289   Info.FrameIdxOp = FIN;
4290   Info.FrameIdx = FI;
4291   TailCallArguments.push_back(Info);
4292 }
4293
4294 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4295 /// stack slot. Returns the chain as result and the loaded frame pointers in
4296 /// LROpOut/FPOpout. Used when tail calling.
4297 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4298     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4299     SDValue &FPOpOut, const SDLoc &dl) const {
4300   if (SPDiff) {
4301     // Load the LR and FP stack slot for later adjusting.
4302     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4303     LROpOut = getReturnAddrFrameIndex(DAG);
4304     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4305     Chain = SDValue(LROpOut.getNode(), 1);
4306
4307     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4308     // slot as the FP is never overwritten.
4309     if (Subtarget.isDarwinABI()) {
4310       FPOpOut = getFramePointerFrameIndex(DAG);
4311       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4312       Chain = SDValue(FPOpOut.getNode(), 1);
4313     }
4314   }
4315   return Chain;
4316 }
4317
4318 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4319 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4320 /// specified by the specific parameter attribute. The copy will be passed as
4321 /// a byval function parameter.
4322 /// Sometimes what we are copying is the end of a larger object, the part that
4323 /// does not fit in registers.
4324 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4325                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4326                                          SelectionDAG &DAG, const SDLoc &dl) {
4327   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4328   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4329                        false, false, false, MachinePointerInfo(),
4330                        MachinePointerInfo());
4331 }
4332
4333 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4334 /// tail calls.
4335 static void LowerMemOpCallTo(
4336     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4337     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4338     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4339     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4340   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4341   if (!isTailCall) {
4342     if (isVector) {
4343       SDValue StackPtr;
4344       if (isPPC64)
4345         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4346       else
4347         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4348       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4349                            DAG.getConstant(ArgOffset, dl, PtrVT));
4350     }
4351     MemOpChains.push_back(
4352         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4353     // Calculate and remember argument location.
4354   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4355                                   TailCallArguments);
4356 }
4357
4358 static void
4359 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4360                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4361                 SDValue FPOp,
4362                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4363   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4364   // might overwrite each other in case of tail call optimization.
4365   SmallVector<SDValue, 8> MemOpChains2;
4366   // Do not flag preceding copytoreg stuff together with the following stuff.
4367   InFlag = SDValue();
4368   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4369                                     MemOpChains2, dl);
4370   if (!MemOpChains2.empty())
4371     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4372
4373   // Store the return address to the appropriate stack slot.
4374   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4375
4376   // Emit callseq_end just before tailcall node.
4377   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4378                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4379   InFlag = Chain.getValue(1);
4380 }
4381
4382 // Is this global address that of a function that can be called by name? (as
4383 // opposed to something that must hold a descriptor for an indirect call).
4384 static bool isFunctionGlobalAddress(SDValue Callee) {
4385   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4386     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4387         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4388       return false;
4389
4390     return G->getGlobal()->getValueType()->isFunctionTy();
4391   }
4392
4393   return false;
4394 }
4395
4396 static unsigned
4397 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4398             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4399             bool isPatchPoint, bool hasNest,
4400             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4401             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4402             ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4403
4404   bool isPPC64 = Subtarget.isPPC64();
4405   bool isSVR4ABI = Subtarget.isSVR4ABI();
4406   bool isELFv2ABI = Subtarget.isELFv2ABI();
4407
4408   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4409   NodeTys.push_back(MVT::Other);   // Returns a chain
4410   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4411
4412   unsigned CallOpc = PPCISD::CALL;
4413
4414   bool needIndirectCall = true;
4415   if (!isSVR4ABI || !isPPC64)
4416     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4417       // If this is an absolute destination address, use the munged value.
4418       Callee = SDValue(Dest, 0);
4419       needIndirectCall = false;
4420     }
4421
4422   // PC-relative references to external symbols should go through $stub, unless
4423   // we're building with the leopard linker or later, which automatically
4424   // synthesizes these stubs.
4425   const TargetMachine &TM = DAG.getTarget();
4426   const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
4427   const GlobalValue *GV = nullptr;
4428   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4429     GV = G->getGlobal();
4430   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4431   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4432
4433   if (isFunctionGlobalAddress(Callee)) {
4434     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4435     // A call to a TLS address is actually an indirect call to a
4436     // thread-specific pointer.
4437     unsigned OpFlags = 0;
4438     if (UsePlt)
4439       OpFlags = PPCII::MO_PLT;
4440
4441     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4442     // every direct call is) turn it into a TargetGlobalAddress /
4443     // TargetExternalSymbol node so that legalize doesn't hack it.
4444     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4445                                         Callee.getValueType(), 0, OpFlags);
4446     needIndirectCall = false;
4447   }
4448
4449   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4450     unsigned char OpFlags = 0;
4451
4452     if (UsePlt)
4453       OpFlags = PPCII::MO_PLT;
4454
4455     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4456                                          OpFlags);
4457     needIndirectCall = false;
4458   }
4459
4460   if (isPatchPoint) {
4461     // We'll form an invalid direct call when lowering a patchpoint; the full
4462     // sequence for an indirect call is complicated, and many of the
4463     // instructions introduced might have side effects (and, thus, can't be
4464     // removed later). The call itself will be removed as soon as the
4465     // argument/return lowering is complete, so the fact that it has the wrong
4466     // kind of operands should not really matter.
4467     needIndirectCall = false;
4468   }
4469
4470   if (needIndirectCall) {
4471     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4472     // to do the call, we can't use PPCISD::CALL.
4473     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4474
4475     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4476       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4477       // entry point, but to the function descriptor (the function entry point
4478       // address is part of the function descriptor though).
4479       // The function descriptor is a three doubleword structure with the
4480       // following fields: function entry point, TOC base address and
4481       // environment pointer.
4482       // Thus for a call through a function pointer, the following actions need
4483       // to be performed:
4484       //   1. Save the TOC of the caller in the TOC save area of its stack
4485       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4486       //   2. Load the address of the function entry point from the function
4487       //      descriptor.
4488       //   3. Load the TOC of the callee from the function descriptor into r2.
4489       //   4. Load the environment pointer from the function descriptor into
4490       //      r11.
4491       //   5. Branch to the function entry point address.
4492       //   6. On return of the callee, the TOC of the caller needs to be
4493       //      restored (this is done in FinishCall()).
4494       //
4495       // The loads are scheduled at the beginning of the call sequence, and the
4496       // register copies are flagged together to ensure that no other
4497       // operations can be scheduled in between. E.g. without flagging the
4498       // copies together, a TOC access in the caller could be scheduled between
4499       // the assignment of the callee TOC and the branch to the callee, which
4500       // results in the TOC access going through the TOC of the callee instead
4501       // of going through the TOC of the caller, which leads to incorrect code.
4502
4503       // Load the address of the function entry point from the function
4504       // descriptor.
4505       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4506       if (LDChain.getValueType() == MVT::Glue)
4507         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4508
4509       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4510                           ? (MachineMemOperand::MODereferenceable |
4511                              MachineMemOperand::MOInvariant)
4512                           : MachineMemOperand::MONone;
4513
4514       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4515       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4516                                         /* Alignment = */ 8, MMOFlags);
4517
4518       // Load environment pointer into r11.
4519       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4520       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4521       SDValue LoadEnvPtr =
4522           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4523                       /* Alignment = */ 8, MMOFlags);
4524
4525       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4526       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4527       SDValue TOCPtr =
4528           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4529                       /* Alignment = */ 8, MMOFlags);
4530
4531       setUsesTOCBasePtr(DAG);
4532       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4533                                         InFlag);
4534       Chain = TOCVal.getValue(0);
4535       InFlag = TOCVal.getValue(1);
4536
4537       // If the function call has an explicit 'nest' parameter, it takes the
4538       // place of the environment pointer.
4539       if (!hasNest) {
4540         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4541                                           InFlag);
4542
4543         Chain = EnvVal.getValue(0);
4544         InFlag = EnvVal.getValue(1);
4545       }
4546
4547       MTCTROps[0] = Chain;
4548       MTCTROps[1] = LoadFuncPtr;
4549       MTCTROps[2] = InFlag;
4550     }
4551
4552     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4553                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4554     InFlag = Chain.getValue(1);
4555
4556     NodeTys.clear();
4557     NodeTys.push_back(MVT::Other);
4558     NodeTys.push_back(MVT::Glue);
4559     Ops.push_back(Chain);
4560     CallOpc = PPCISD::BCTRL;
4561     Callee.setNode(nullptr);
4562     // Add use of X11 (holding environment pointer)
4563     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4564       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4565     // Add CTR register as callee so a bctr can be emitted later.
4566     if (isTailCall)
4567       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4568   }
4569
4570   // If this is a direct call, pass the chain and the callee.
4571   if (Callee.getNode()) {
4572     Ops.push_back(Chain);
4573     Ops.push_back(Callee);
4574   }
4575   // If this is a tail call add stack pointer delta.
4576   if (isTailCall)
4577     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4578
4579   // Add argument registers to the end of the list so that they are known live
4580   // into the call.
4581   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4582     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4583                                   RegsToPass[i].second.getValueType()));
4584
4585   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4586   // into the call.
4587   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4588     setUsesTOCBasePtr(DAG);
4589     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4590   }
4591
4592   return CallOpc;
4593 }
4594
4595 static
4596 bool isLocalCall(const SDValue &Callee)
4597 {
4598   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4599     return G->getGlobal()->isStrongDefinitionForLinker();
4600   return false;
4601 }
4602
4603 SDValue PPCTargetLowering::LowerCallResult(
4604     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4605     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4606     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4607
4608   SmallVector<CCValAssign, 16> RVLocs;
4609   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4610                     *DAG.getContext());
4611   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4612
4613   // Copy all of the result registers out of their specified physreg.
4614   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4615     CCValAssign &VA = RVLocs[i];
4616     assert(VA.isRegLoc() && "Can only return in registers!");
4617
4618     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4619                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4620     Chain = Val.getValue(1);
4621     InFlag = Val.getValue(2);
4622
4623     switch (VA.getLocInfo()) {
4624     default: llvm_unreachable("Unknown loc info!");
4625     case CCValAssign::Full: break;
4626     case CCValAssign::AExt:
4627       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4628       break;
4629     case CCValAssign::ZExt:
4630       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4631                         DAG.getValueType(VA.getValVT()));
4632       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4633       break;
4634     case CCValAssign::SExt:
4635       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4636                         DAG.getValueType(VA.getValVT()));
4637       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4638       break;
4639     }
4640
4641     InVals.push_back(Val);
4642   }
4643
4644   return Chain;
4645 }
4646
4647 SDValue PPCTargetLowering::FinishCall(
4648     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4649     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
4650     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4651     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4652     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4653     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const {
4654
4655   std::vector<EVT> NodeTys;
4656   SmallVector<SDValue, 8> Ops;
4657   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4658                                  SPDiff, isTailCall, isPatchPoint, hasNest,
4659                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4660
4661   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4662   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4663     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4664
4665   // When performing tail call optimization the callee pops its arguments off
4666   // the stack. Account for this here so these bytes can be pushed back on in
4667   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4668   int BytesCalleePops =
4669     (CallConv == CallingConv::Fast &&
4670      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4671
4672   // Add a register mask operand representing the call-preserved registers.
4673   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4674   const uint32_t *Mask =
4675       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4676   assert(Mask && "Missing call preserved mask for calling convention");
4677   Ops.push_back(DAG.getRegisterMask(Mask));
4678
4679   if (InFlag.getNode())
4680     Ops.push_back(InFlag);
4681
4682   // Emit tail call.
4683   if (isTailCall) {
4684     assert(((Callee.getOpcode() == ISD::Register &&
4685              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4686             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4687             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4688             isa<ConstantSDNode>(Callee)) &&
4689     "Expecting an global address, external symbol, absolute value or register");
4690
4691     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
4692     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4693   }
4694
4695   // Add a NOP immediately after the branch instruction when using the 64-bit
4696   // SVR4 ABI. At link time, if caller and callee are in a different module and
4697   // thus have a different TOC, the call will be replaced with a call to a stub
4698   // function which saves the current TOC, loads the TOC of the callee and
4699   // branches to the callee. The NOP will be replaced with a load instruction
4700   // which restores the TOC of the caller from the TOC save slot of the current
4701   // stack frame. If caller and callee belong to the same module (and have the
4702   // same TOC), the NOP will remain unchanged.
4703
4704   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4705       !isPatchPoint) {
4706     if (CallOpc == PPCISD::BCTRL) {
4707       // This is a call through a function pointer.
4708       // Restore the caller TOC from the save area into R2.
4709       // See PrepareCall() for more information about calls through function
4710       // pointers in the 64-bit SVR4 ABI.
4711       // We are using a target-specific load with r2 hard coded, because the
4712       // result of a target-independent load would never go directly into r2,
4713       // since r2 is a reserved register (which prevents the register allocator
4714       // from allocating it), resulting in an additional register being
4715       // allocated and an unnecessary move instruction being generated.
4716       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4717
4718       EVT PtrVT = getPointerTy(DAG.getDataLayout());
4719       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4720       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4721       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4722       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4723
4724       // The address needs to go after the chain input but before the flag (or
4725       // any other variadic arguments).
4726       Ops.insert(std::next(Ops.begin()), AddTOC);
4727     } else if ((CallOpc == PPCISD::CALL) &&
4728                (!isLocalCall(Callee) ||
4729                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4730       // Otherwise insert NOP for non-local calls.
4731       CallOpc = PPCISD::CALL_NOP;
4732   }
4733
4734   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4735   InFlag = Chain.getValue(1);
4736
4737   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4738                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4739                              InFlag, dl);
4740   if (!Ins.empty())
4741     InFlag = Chain.getValue(1);
4742
4743   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4744                          Ins, dl, DAG, InVals);
4745 }
4746
4747 SDValue
4748 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4749                              SmallVectorImpl<SDValue> &InVals) const {
4750   SelectionDAG &DAG                     = CLI.DAG;
4751   SDLoc &dl                             = CLI.DL;
4752   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4753   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4754   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4755   SDValue Chain                         = CLI.Chain;
4756   SDValue Callee                        = CLI.Callee;
4757   bool &isTailCall                      = CLI.IsTailCall;
4758   CallingConv::ID CallConv              = CLI.CallConv;
4759   bool isVarArg                         = CLI.IsVarArg;
4760   bool isPatchPoint                     = CLI.IsPatchPoint;
4761   ImmutableCallSite *CS                 = CLI.CS;
4762
4763   if (isTailCall) {
4764     if (Subtarget.useLongCalls() && !(CS && CS->isMustTailCall()))
4765       isTailCall = false;
4766     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
4767       isTailCall =
4768         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
4769                                                  isVarArg, Outs, Ins, DAG);
4770     else
4771       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4772                                                      Ins, DAG);
4773     if (isTailCall) {
4774       ++NumTailCalls;
4775       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4776         ++NumSiblingCalls;
4777
4778       assert(isa<GlobalAddressSDNode>(Callee) &&
4779              "Callee should be an llvm::Function object.");
4780       DEBUG(
4781         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
4782         const unsigned Width = 80 - strlen("TCO caller: ")
4783                                   - strlen(", callee linkage: 0, 0");
4784         dbgs() << "TCO caller: "
4785                << left_justify(DAG.getMachineFunction().getName(), Width)
4786                << ", callee linkage: "
4787                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
4788       );
4789     }
4790   }
4791
4792   if (!isTailCall && CS && CS->isMustTailCall())
4793     report_fatal_error("failed to perform tail call elimination on a call "
4794                        "site marked musttail");
4795
4796   // When long calls (i.e. indirect calls) are always used, calls are always
4797   // made via function pointer. If we have a function name, first translate it
4798   // into a pointer.
4799   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
4800       !isTailCall)
4801     Callee = LowerGlobalAddress(Callee, DAG);
4802
4803   if (Subtarget.isSVR4ABI()) {
4804     if (Subtarget.isPPC64())
4805       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4806                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
4807                               dl, DAG, InVals, CS);
4808     else
4809       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4810                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
4811                               dl, DAG, InVals, CS);
4812   }
4813
4814   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4815                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
4816                           dl, DAG, InVals, CS);
4817 }
4818
4819 SDValue PPCTargetLowering::LowerCall_32SVR4(
4820     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
4821     bool isTailCall, bool isPatchPoint,
4822     const SmallVectorImpl<ISD::OutputArg> &Outs,
4823     const SmallVectorImpl<SDValue> &OutVals,
4824     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4825     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
4826     ImmutableCallSite *CS) const {
4827   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4828   // of the 32-bit SVR4 ABI stack frame layout.
4829
4830   assert((CallConv == CallingConv::C ||
4831           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4832
4833   unsigned PtrByteSize = 4;
4834
4835   MachineFunction &MF = DAG.getMachineFunction();
4836
4837   // Mark this function as potentially containing a function that contains a
4838   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4839   // and restoring the callers stack pointer in this functions epilog. This is
4840   // done because by tail calling the called function might overwrite the value
4841   // in this function's (MF) stack pointer stack slot 0(SP).
4842   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4843       CallConv == CallingConv::Fast)
4844     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4845
4846   // Count how many bytes are to be pushed on the stack, including the linkage
4847   // area, parameter list area and the part of the local variable space which
4848   // contains copies of aggregates which are passed by value.
4849
4850   // Assign locations to all of the outgoing arguments.
4851   SmallVector<CCValAssign, 16> ArgLocs;
4852   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
4853
4854   // Reserve space for the linkage area on the stack.
4855   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4856                        PtrByteSize);
4857   if (useSoftFloat())
4858     CCInfo.PreAnalyzeCallOperands(Outs);
4859
4860   if (isVarArg) {
4861     // Handle fixed and variable vector arguments differently.
4862     // Fixed vector arguments go into registers as long as registers are
4863     // available. Variable vector arguments always go into memory.
4864     unsigned NumArgs = Outs.size();
4865
4866     for (unsigned i = 0; i != NumArgs; ++i) {
4867       MVT ArgVT = Outs[i].VT;
4868       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4869       bool Result;
4870
4871       if (Outs[i].IsFixed) {
4872         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4873                                CCInfo);
4874       } else {
4875         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4876                                       ArgFlags, CCInfo);
4877       }
4878
4879       if (Result) {
4880 #ifndef NDEBUG
4881         errs() << "Call operand #" << i << " has unhandled type "
4882              << EVT(ArgVT).getEVTString() << "\n";
4883 #endif
4884         llvm_unreachable(nullptr);
4885       }
4886     }
4887   } else {
4888     // All arguments are treated the same.
4889     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4890   }
4891   CCInfo.clearWasPPCF128();
4892
4893   // Assign locations to all of the outgoing aggregate by value arguments.
4894   SmallVector<CCValAssign, 16> ByValArgLocs;
4895   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
4896
4897   // Reserve stack space for the allocations in CCInfo.
4898   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4899
4900   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4901
4902   // Size of the linkage area, parameter list area and the part of the local
4903   // space variable where copies of aggregates which are passed by value are
4904   // stored.
4905   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4906
4907   // Calculate by how many bytes the stack has to be adjusted in case of tail
4908   // call optimization.
4909   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4910
4911   // Adjust the stack pointer for the new arguments...
4912   // These operations are automatically eliminated by the prolog/epilog pass
4913   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4914                                dl);
4915   SDValue CallSeqStart = Chain;
4916
4917   // Load the return address and frame pointer so it can be moved somewhere else
4918   // later.
4919   SDValue LROp, FPOp;
4920   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
4921
4922   // Set up a copy of the stack pointer for use loading and storing any
4923   // arguments that may not fit in the registers available for argument
4924   // passing.
4925   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4926
4927   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4928   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4929   SmallVector<SDValue, 8> MemOpChains;
4930
4931   bool seenFloatArg = false;
4932   // Walk the register/memloc assignments, inserting copies/loads.
4933   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4934        i != e;
4935        ++i) {
4936     CCValAssign &VA = ArgLocs[i];
4937     SDValue Arg = OutVals[i];
4938     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4939
4940     if (Flags.isByVal()) {
4941       // Argument is an aggregate which is passed by value, thus we need to
4942       // create a copy of it in the local variable space of the current stack
4943       // frame (which is the stack frame of the caller) and pass the address of
4944       // this copy to the callee.
4945       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4946       CCValAssign &ByValVA = ByValArgLocs[j++];
4947       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4948
4949       // Memory reserved in the local variable space of the callers stack frame.
4950       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4951
4952       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4953       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4954                            StackPtr, PtrOff);
4955
4956       // Create a copy of the argument in the local area of the current
4957       // stack frame.
4958       SDValue MemcpyCall =
4959         CreateCopyOfByValArgument(Arg, PtrOff,
4960                                   CallSeqStart.getNode()->getOperand(0),
4961                                   Flags, DAG, dl);
4962
4963       // This must go outside the CALLSEQ_START..END.
4964       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4965                            CallSeqStart.getNode()->getOperand(1),
4966                            SDLoc(MemcpyCall));
4967       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4968                              NewCallSeqStart.getNode());
4969       Chain = CallSeqStart = NewCallSeqStart;
4970
4971       // Pass the address of the aggregate copy on the stack either in a
4972       // physical register or in the parameter list area of the current stack
4973       // frame to the callee.
4974       Arg = PtrOff;
4975     }
4976
4977     if (VA.isRegLoc()) {
4978       if (Arg.getValueType() == MVT::i1)
4979         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4980
4981       seenFloatArg |= VA.getLocVT().isFloatingPoint();
4982       // Put argument in a physical register.
4983       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4984     } else {
4985       // Put argument in the parameter list area of the current stack frame.
4986       assert(VA.isMemLoc());
4987       unsigned LocMemOffset = VA.getLocMemOffset();
4988
4989       if (!isTailCall) {
4990         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4991         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4992                              StackPtr, PtrOff);
4993
4994         MemOpChains.push_back(
4995             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4996       } else {
4997         // Calculate and remember argument location.
4998         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4999                                  TailCallArguments);
5000       }
5001     }
5002   }
5003
5004   if (!MemOpChains.empty())
5005     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5006
5007   // Build a sequence of copy-to-reg nodes chained together with token chain
5008   // and flag operands which copy the outgoing args into the appropriate regs.
5009   SDValue InFlag;
5010   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5011     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5012                              RegsToPass[i].second, InFlag);
5013     InFlag = Chain.getValue(1);
5014   }
5015
5016   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5017   // registers.
5018   if (isVarArg) {
5019     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5020     SDValue Ops[] = { Chain, InFlag };
5021
5022     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5023                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5024
5025     InFlag = Chain.getValue(1);
5026   }
5027
5028   if (isTailCall)
5029     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5030                     TailCallArguments);
5031
5032   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5033                     /* unused except on PPC64 ELFv1 */ false, DAG,
5034                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5035                     NumBytes, Ins, InVals, CS);
5036 }
5037
5038 // Copy an argument into memory, being careful to do this outside the
5039 // call sequence for the call to which the argument belongs.
5040 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5041     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5042     SelectionDAG &DAG, const SDLoc &dl) const {
5043   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5044                         CallSeqStart.getNode()->getOperand(0),
5045                         Flags, DAG, dl);
5046   // The MEMCPY must go outside the CALLSEQ_START..END.
5047   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
5048                              CallSeqStart.getNode()->getOperand(1),
5049                              SDLoc(MemcpyCall));
5050   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5051                          NewCallSeqStart.getNode());
5052   return NewCallSeqStart;
5053 }
5054
5055 SDValue PPCTargetLowering::LowerCall_64SVR4(
5056     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5057     bool isTailCall, bool isPatchPoint,
5058     const SmallVectorImpl<ISD::OutputArg> &Outs,
5059     const SmallVectorImpl<SDValue> &OutVals,
5060     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5061     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5062     ImmutableCallSite *CS) const {
5063
5064   bool isELFv2ABI = Subtarget.isELFv2ABI();
5065   bool isLittleEndian = Subtarget.isLittleEndian();
5066   unsigned NumOps = Outs.size();
5067   bool hasNest = false;
5068   bool IsSibCall = false;
5069
5070   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5071   unsigned PtrByteSize = 8;
5072
5073   MachineFunction &MF = DAG.getMachineFunction();
5074
5075   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5076     IsSibCall = true;
5077
5078   // Mark this function as potentially containing a function that contains a
5079   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5080   // and restoring the callers stack pointer in this functions epilog. This is
5081   // done because by tail calling the called function might overwrite the value
5082   // in this function's (MF) stack pointer stack slot 0(SP).
5083   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5084       CallConv == CallingConv::Fast)
5085     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5086
5087   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5088          "fastcc not supported on varargs functions");
5089
5090   // Count how many bytes are to be pushed on the stack, including the linkage
5091   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5092   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5093   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5094   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5095   unsigned NumBytes = LinkageSize;
5096   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5097   unsigned &QFPR_idx = FPR_idx;
5098
5099   static const MCPhysReg GPR[] = {
5100     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5101     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5102   };
5103   static const MCPhysReg VR[] = {
5104     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5105     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5106   };
5107
5108   const unsigned NumGPRs = array_lengthof(GPR);
5109   const unsigned NumFPRs = 13;
5110   const unsigned NumVRs  = array_lengthof(VR);
5111   const unsigned NumQFPRs = NumFPRs;
5112
5113   // When using the fast calling convention, we don't provide backing for
5114   // arguments that will be in registers.
5115   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5116
5117   // Add up all the space actually used.
5118   for (unsigned i = 0; i != NumOps; ++i) {
5119     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5120     EVT ArgVT = Outs[i].VT;
5121     EVT OrigVT = Outs[i].ArgVT;
5122
5123     if (Flags.isNest())
5124       continue;
5125
5126     if (CallConv == CallingConv::Fast) {
5127       if (Flags.isByVal())
5128         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5129       else
5130         switch (ArgVT.getSimpleVT().SimpleTy) {
5131         default: llvm_unreachable("Unexpected ValueType for argument!");
5132         case MVT::i1:
5133         case MVT::i32:
5134         case MVT::i64:
5135           if (++NumGPRsUsed <= NumGPRs)
5136             continue;
5137           break;
5138         case MVT::v4i32:
5139         case MVT::v8i16:
5140         case MVT::v16i8:
5141         case MVT::v2f64:
5142         case MVT::v2i64:
5143         case MVT::v1i128:
5144           if (++NumVRsUsed <= NumVRs)
5145             continue;
5146           break;
5147         case MVT::v4f32:
5148           // When using QPX, this is handled like a FP register, otherwise, it
5149           // is an Altivec register.
5150           if (Subtarget.hasQPX()) {
5151             if (++NumFPRsUsed <= NumFPRs)
5152               continue;
5153           } else {
5154             if (++NumVRsUsed <= NumVRs)
5155               continue;
5156           }
5157           break;
5158         case MVT::f32:
5159         case MVT::f64:
5160         case MVT::v4f64: // QPX
5161         case MVT::v4i1:  // QPX
5162           if (++NumFPRsUsed <= NumFPRs)
5163             continue;
5164           break;
5165         }
5166     }
5167
5168     /* Respect alignment of argument on the stack.  */
5169     unsigned Align =
5170       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5171     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5172
5173     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5174     if (Flags.isInConsecutiveRegsLast())
5175       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5176   }
5177
5178   unsigned NumBytesActuallyUsed = NumBytes;
5179
5180   // The prolog code of the callee may store up to 8 GPR argument registers to
5181   // the stack, allowing va_start to index over them in memory if its varargs.
5182   // Because we cannot tell if this is needed on the caller side, we have to
5183   // conservatively assume that it is needed.  As such, make sure we have at
5184   // least enough stack space for the caller to store the 8 GPRs.
5185   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
5186   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5187
5188   // Tail call needs the stack to be aligned.
5189   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5190       CallConv == CallingConv::Fast)
5191     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5192
5193   int SPDiff = 0;
5194
5195   // Calculate by how many bytes the stack has to be adjusted in case of tail
5196   // call optimization.
5197   if (!IsSibCall)
5198     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5199
5200   // To protect arguments on the stack from being clobbered in a tail call,
5201   // force all the loads to happen before doing any other lowering.
5202   if (isTailCall)
5203     Chain = DAG.getStackArgumentTokenFactor(Chain);
5204
5205   // Adjust the stack pointer for the new arguments...
5206   // These operations are automatically eliminated by the prolog/epilog pass
5207   if (!IsSibCall)
5208     Chain = DAG.getCALLSEQ_START(Chain,
5209                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
5210   SDValue CallSeqStart = Chain;
5211
5212   // Load the return address and frame pointer so it can be move somewhere else
5213   // later.
5214   SDValue LROp, FPOp;
5215   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5216
5217   // Set up a copy of the stack pointer for use loading and storing any
5218   // arguments that may not fit in the registers available for argument
5219   // passing.
5220   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5221
5222   // Figure out which arguments are going to go in registers, and which in
5223   // memory.  Also, if this is a vararg function, floating point operations
5224   // must be stored to our stack, and loaded into integer regs as well, if
5225   // any integer regs are available for argument passing.
5226   unsigned ArgOffset = LinkageSize;
5227
5228   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5229   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5230
5231   SmallVector<SDValue, 8> MemOpChains;
5232   for (unsigned i = 0; i != NumOps; ++i) {
5233     SDValue Arg = OutVals[i];
5234     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5235     EVT ArgVT = Outs[i].VT;
5236     EVT OrigVT = Outs[i].ArgVT;
5237
5238     // PtrOff will be used to store the current argument to the stack if a
5239     // register cannot be found for it.
5240     SDValue PtrOff;
5241
5242     // We re-align the argument offset for each argument, except when using the
5243     // fast calling convention, when we need to make sure we do that only when
5244     // we'll actually use a stack slot.
5245     auto ComputePtrOff = [&]() {
5246       /* Respect alignment of argument on the stack.  */
5247       unsigned Align =
5248         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5249       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5250
5251       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5252
5253       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5254     };
5255
5256     if (CallConv != CallingConv::Fast) {
5257       ComputePtrOff();
5258
5259       /* Compute GPR index associated with argument offset.  */
5260       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5261       GPR_idx = std::min(GPR_idx, NumGPRs);
5262     }
5263
5264     // Promote integers to 64-bit values.
5265     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5266       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5267       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5268       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5269     }
5270
5271     // FIXME memcpy is used way more than necessary.  Correctness first.
5272     // Note: "by value" is code for passing a structure by value, not
5273     // basic types.
5274     if (Flags.isByVal()) {
5275       // Note: Size includes alignment padding, so
5276       //   struct x { short a; char b; }
5277       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5278       // These are the proper values we need for right-justifying the
5279       // aggregate in a parameter register.
5280       unsigned Size = Flags.getByValSize();
5281
5282       // An empty aggregate parameter takes up no storage and no
5283       // registers.
5284       if (Size == 0)
5285         continue;
5286
5287       if (CallConv == CallingConv::Fast)
5288         ComputePtrOff();
5289
5290       // All aggregates smaller than 8 bytes must be passed right-justified.
5291       if (Size==1 || Size==2 || Size==4) {
5292         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5293         if (GPR_idx != NumGPRs) {
5294           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5295                                         MachinePointerInfo(), VT);
5296           MemOpChains.push_back(Load.getValue(1));
5297           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5298
5299           ArgOffset += PtrByteSize;
5300           continue;
5301         }
5302       }
5303
5304       if (GPR_idx == NumGPRs && Size < 8) {
5305         SDValue AddPtr = PtrOff;
5306         if (!isLittleEndian) {
5307           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5308                                           PtrOff.getValueType());
5309           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5310         }
5311         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5312                                                           CallSeqStart,
5313                                                           Flags, DAG, dl);
5314         ArgOffset += PtrByteSize;
5315         continue;
5316       }
5317       // Copy entire object into memory.  There are cases where gcc-generated
5318       // code assumes it is there, even if it could be put entirely into
5319       // registers.  (This is not what the doc says.)
5320
5321       // FIXME: The above statement is likely due to a misunderstanding of the
5322       // documents.  All arguments must be copied into the parameter area BY
5323       // THE CALLEE in the event that the callee takes the address of any
5324       // formal argument.  That has not yet been implemented.  However, it is
5325       // reasonable to use the stack area as a staging area for the register
5326       // load.
5327
5328       // Skip this for small aggregates, as we will use the same slot for a
5329       // right-justified copy, below.
5330       if (Size >= 8)
5331         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5332                                                           CallSeqStart,
5333                                                           Flags, DAG, dl);
5334
5335       // When a register is available, pass a small aggregate right-justified.
5336       if (Size < 8 && GPR_idx != NumGPRs) {
5337         // The easiest way to get this right-justified in a register
5338         // is to copy the structure into the rightmost portion of a
5339         // local variable slot, then load the whole slot into the
5340         // register.
5341         // FIXME: The memcpy seems to produce pretty awful code for
5342         // small aggregates, particularly for packed ones.
5343         // FIXME: It would be preferable to use the slot in the
5344         // parameter save area instead of a new local variable.
5345         SDValue AddPtr = PtrOff;
5346         if (!isLittleEndian) {
5347           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5348           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5349         }
5350         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5351                                                           CallSeqStart,
5352                                                           Flags, DAG, dl);
5353
5354         // Load the slot into the register.
5355         SDValue Load =
5356             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5357         MemOpChains.push_back(Load.getValue(1));
5358         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5359
5360         // Done with this argument.
5361         ArgOffset += PtrByteSize;
5362         continue;
5363       }
5364
5365       // For aggregates larger than PtrByteSize, copy the pieces of the
5366       // object that fit into registers from the parameter save area.
5367       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5368         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5369         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5370         if (GPR_idx != NumGPRs) {
5371           SDValue Load =
5372               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5373           MemOpChains.push_back(Load.getValue(1));
5374           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5375           ArgOffset += PtrByteSize;
5376         } else {
5377           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5378           break;
5379         }
5380       }
5381       continue;
5382     }
5383
5384     switch (Arg.getSimpleValueType().SimpleTy) {
5385     default: llvm_unreachable("Unexpected ValueType for argument!");
5386     case MVT::i1:
5387     case MVT::i32:
5388     case MVT::i64:
5389       if (Flags.isNest()) {
5390         // The 'nest' parameter, if any, is passed in R11.
5391         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5392         hasNest = true;
5393         break;
5394       }
5395
5396       // These can be scalar arguments or elements of an integer array type
5397       // passed directly.  Clang may use those instead of "byval" aggregate
5398       // types to avoid forcing arguments to memory unnecessarily.
5399       if (GPR_idx != NumGPRs) {
5400         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5401       } else {
5402         if (CallConv == CallingConv::Fast)
5403           ComputePtrOff();
5404
5405         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5406                          true, isTailCall, false, MemOpChains,
5407                          TailCallArguments, dl);
5408         if (CallConv == CallingConv::Fast)
5409           ArgOffset += PtrByteSize;
5410       }
5411       if (CallConv != CallingConv::Fast)
5412         ArgOffset += PtrByteSize;
5413       break;
5414     case MVT::f32:
5415     case MVT::f64: {
5416       // These can be scalar arguments or elements of a float array type
5417       // passed directly.  The latter are used to implement ELFv2 homogenous
5418       // float aggregates.
5419
5420       // Named arguments go into FPRs first, and once they overflow, the
5421       // remaining arguments go into GPRs and then the parameter save area.
5422       // Unnamed arguments for vararg functions always go to GPRs and
5423       // then the parameter save area.  For now, put all arguments to vararg
5424       // routines always in both locations (FPR *and* GPR or stack slot).
5425       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5426       bool NeededLoad = false;
5427
5428       // First load the argument into the next available FPR.
5429       if (FPR_idx != NumFPRs)
5430         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5431
5432       // Next, load the argument into GPR or stack slot if needed.
5433       if (!NeedGPROrStack)
5434         ;
5435       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5436         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5437         // once we support fp <-> gpr moves.
5438
5439         // In the non-vararg case, this can only ever happen in the
5440         // presence of f32 array types, since otherwise we never run
5441         // out of FPRs before running out of GPRs.
5442         SDValue ArgVal;
5443
5444         // Double values are always passed in a single GPR.
5445         if (Arg.getValueType() != MVT::f32) {
5446           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5447
5448         // Non-array float values are extended and passed in a GPR.
5449         } else if (!Flags.isInConsecutiveRegs()) {
5450           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5451           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5452
5453         // If we have an array of floats, we collect every odd element
5454         // together with its predecessor into one GPR.
5455         } else if (ArgOffset % PtrByteSize != 0) {
5456           SDValue Lo, Hi;
5457           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5458           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5459           if (!isLittleEndian)
5460             std::swap(Lo, Hi);
5461           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5462
5463         // The final element, if even, goes into the first half of a GPR.
5464         } else if (Flags.isInConsecutiveRegsLast()) {
5465           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5466           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5467           if (!isLittleEndian)
5468             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5469                                  DAG.getConstant(32, dl, MVT::i32));
5470
5471         // Non-final even elements are skipped; they will be handled
5472         // together the with subsequent argument on the next go-around.
5473         } else
5474           ArgVal = SDValue();
5475
5476         if (ArgVal.getNode())
5477           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5478       } else {
5479         if (CallConv == CallingConv::Fast)
5480           ComputePtrOff();
5481
5482         // Single-precision floating-point values are mapped to the
5483         // second (rightmost) word of the stack doubleword.
5484         if (Arg.getValueType() == MVT::f32 &&
5485             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5486           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5487           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5488         }
5489
5490         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5491                          true, isTailCall, false, MemOpChains,
5492                          TailCallArguments, dl);
5493
5494         NeededLoad = true;
5495       }
5496       // When passing an array of floats, the array occupies consecutive
5497       // space in the argument area; only round up to the next doubleword
5498       // at the end of the array.  Otherwise, each float takes 8 bytes.
5499       if (CallConv != CallingConv::Fast || NeededLoad) {
5500         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5501                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5502         if (Flags.isInConsecutiveRegsLast())
5503           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5504       }
5505       break;
5506     }
5507     case MVT::v4f32:
5508     case MVT::v4i32:
5509     case MVT::v8i16:
5510     case MVT::v16i8:
5511     case MVT::v2f64:
5512     case MVT::v2i64:
5513     case MVT::v1i128:
5514       if (!Subtarget.hasQPX()) {
5515       // These can be scalar arguments or elements of a vector array type
5516       // passed directly.  The latter are used to implement ELFv2 homogenous
5517       // vector aggregates.
5518
5519       // For a varargs call, named arguments go into VRs or on the stack as
5520       // usual; unnamed arguments always go to the stack or the corresponding
5521       // GPRs when within range.  For now, we always put the value in both
5522       // locations (or even all three).
5523       if (isVarArg) {
5524         // We could elide this store in the case where the object fits
5525         // entirely in R registers.  Maybe later.
5526         SDValue Store =
5527             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5528         MemOpChains.push_back(Store);
5529         if (VR_idx != NumVRs) {
5530           SDValue Load =
5531               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
5532           MemOpChains.push_back(Load.getValue(1));
5533           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5534         }
5535         ArgOffset += 16;
5536         for (unsigned i=0; i<16; i+=PtrByteSize) {
5537           if (GPR_idx == NumGPRs)
5538             break;
5539           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5540                                    DAG.getConstant(i, dl, PtrVT));
5541           SDValue Load =
5542               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5543           MemOpChains.push_back(Load.getValue(1));
5544           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5545         }
5546         break;
5547       }
5548
5549       // Non-varargs Altivec params go into VRs or on the stack.
5550       if (VR_idx != NumVRs) {
5551         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5552       } else {
5553         if (CallConv == CallingConv::Fast)
5554           ComputePtrOff();
5555
5556         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5557                          true, isTailCall, true, MemOpChains,
5558                          TailCallArguments, dl);
5559         if (CallConv == CallingConv::Fast)
5560           ArgOffset += 16;
5561       }
5562
5563       if (CallConv != CallingConv::Fast)
5564         ArgOffset += 16;
5565       break;
5566       } // not QPX
5567
5568       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5569              "Invalid QPX parameter type");
5570
5571       /* fall through */
5572     case MVT::v4f64:
5573     case MVT::v4i1: {
5574       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5575       if (isVarArg) {
5576         // We could elide this store in the case where the object fits
5577         // entirely in R registers.  Maybe later.
5578         SDValue Store =
5579             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5580         MemOpChains.push_back(Store);
5581         if (QFPR_idx != NumQFPRs) {
5582           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
5583                                      PtrOff, MachinePointerInfo());
5584           MemOpChains.push_back(Load.getValue(1));
5585           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5586         }
5587         ArgOffset += (IsF32 ? 16 : 32);
5588         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5589           if (GPR_idx == NumGPRs)
5590             break;
5591           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5592                                    DAG.getConstant(i, dl, PtrVT));
5593           SDValue Load =
5594               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5595           MemOpChains.push_back(Load.getValue(1));
5596           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5597         }
5598         break;
5599       }
5600
5601       // Non-varargs QPX params go into registers or on the stack.
5602       if (QFPR_idx != NumQFPRs) {
5603         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5604       } else {
5605         if (CallConv == CallingConv::Fast)
5606           ComputePtrOff();
5607
5608         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5609                          true, isTailCall, true, MemOpChains,
5610                          TailCallArguments, dl);
5611         if (CallConv == CallingConv::Fast)
5612           ArgOffset += (IsF32 ? 16 : 32);
5613       }
5614
5615       if (CallConv != CallingConv::Fast)
5616         ArgOffset += (IsF32 ? 16 : 32);
5617       break;
5618       }
5619     }
5620   }
5621
5622   assert(NumBytesActuallyUsed == ArgOffset);
5623   (void)NumBytesActuallyUsed;
5624
5625   if (!MemOpChains.empty())
5626     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5627
5628   // Check if this is an indirect call (MTCTR/BCTRL).
5629   // See PrepareCall() for more information about calls through function
5630   // pointers in the 64-bit SVR4 ABI.
5631   if (!isTailCall && !isPatchPoint &&
5632       !isFunctionGlobalAddress(Callee) &&
5633       !isa<ExternalSymbolSDNode>(Callee)) {
5634     // Load r2 into a virtual register and store it to the TOC save area.
5635     setUsesTOCBasePtr(DAG);
5636     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5637     // TOC save area offset.
5638     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5639     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5640     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5641     Chain = DAG.getStore(
5642         Val.getValue(1), dl, Val, AddPtr,
5643         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
5644     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5645     // This does not mean the MTCTR instruction must use R12; it's easier
5646     // to model this as an extra parameter, so do that.
5647     if (isELFv2ABI && !isPatchPoint)
5648       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5649   }
5650
5651   // Build a sequence of copy-to-reg nodes chained together with token chain
5652   // and flag operands which copy the outgoing args into the appropriate regs.
5653   SDValue InFlag;
5654   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5655     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5656                              RegsToPass[i].second, InFlag);
5657     InFlag = Chain.getValue(1);
5658   }
5659
5660   if (isTailCall && !IsSibCall)
5661     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5662                     TailCallArguments);
5663
5664   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
5665                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5666                     SPDiff, NumBytes, Ins, InVals, CS);
5667 }
5668
5669 SDValue PPCTargetLowering::LowerCall_Darwin(
5670     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5671     bool isTailCall, bool isPatchPoint,
5672     const SmallVectorImpl<ISD::OutputArg> &Outs,
5673     const SmallVectorImpl<SDValue> &OutVals,
5674     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5675     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5676     ImmutableCallSite *CS) const {
5677
5678   unsigned NumOps = Outs.size();
5679
5680   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5681   bool isPPC64 = PtrVT == MVT::i64;
5682   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5683
5684   MachineFunction &MF = DAG.getMachineFunction();
5685
5686   // Mark this function as potentially containing a function that contains a
5687   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5688   // and restoring the callers stack pointer in this functions epilog. This is
5689   // done because by tail calling the called function might overwrite the value
5690   // in this function's (MF) stack pointer stack slot 0(SP).
5691   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5692       CallConv == CallingConv::Fast)
5693     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5694
5695   // Count how many bytes are to be pushed on the stack, including the linkage
5696   // area, and parameter passing area.  We start with 24/48 bytes, which is
5697   // prereserved space for [SP][CR][LR][3 x unused].
5698   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5699   unsigned NumBytes = LinkageSize;
5700
5701   // Add up all the space actually used.
5702   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5703   // they all go in registers, but we must reserve stack space for them for
5704   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5705   // assigned stack space in order, with padding so Altivec parameters are
5706   // 16-byte aligned.
5707   unsigned nAltivecParamsAtEnd = 0;
5708   for (unsigned i = 0; i != NumOps; ++i) {
5709     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5710     EVT ArgVT = Outs[i].VT;
5711     // Varargs Altivec parameters are padded to a 16 byte boundary.
5712     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5713         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5714         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5715       if (!isVarArg && !isPPC64) {
5716         // Non-varargs Altivec parameters go after all the non-Altivec
5717         // parameters; handle those later so we know how much padding we need.
5718         nAltivecParamsAtEnd++;
5719         continue;
5720       }
5721       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5722       NumBytes = ((NumBytes+15)/16)*16;
5723     }
5724     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5725   }
5726
5727   // Allow for Altivec parameters at the end, if needed.
5728   if (nAltivecParamsAtEnd) {
5729     NumBytes = ((NumBytes+15)/16)*16;
5730     NumBytes += 16*nAltivecParamsAtEnd;
5731   }
5732
5733   // The prolog code of the callee may store up to 8 GPR argument registers to
5734   // the stack, allowing va_start to index over them in memory if its varargs.
5735   // Because we cannot tell if this is needed on the caller side, we have to
5736   // conservatively assume that it is needed.  As such, make sure we have at
5737   // least enough stack space for the caller to store the 8 GPRs.
5738   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5739
5740   // Tail call needs the stack to be aligned.
5741   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5742       CallConv == CallingConv::Fast)
5743     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5744
5745   // Calculate by how many bytes the stack has to be adjusted in case of tail
5746   // call optimization.
5747   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5748
5749   // To protect arguments on the stack from being clobbered in a tail call,
5750   // force all the loads to happen before doing any other lowering.
5751   if (isTailCall)
5752     Chain = DAG.getStackArgumentTokenFactor(Chain);
5753
5754   // Adjust the stack pointer for the new arguments...
5755   // These operations are automatically eliminated by the prolog/epilog pass
5756   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5757                                dl);
5758   SDValue CallSeqStart = Chain;
5759
5760   // Load the return address and frame pointer so it can be move somewhere else
5761   // later.
5762   SDValue LROp, FPOp;
5763   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5764
5765   // Set up a copy of the stack pointer for use loading and storing any
5766   // arguments that may not fit in the registers available for argument
5767   // passing.
5768   SDValue StackPtr;
5769   if (isPPC64)
5770     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5771   else
5772     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5773
5774   // Figure out which arguments are going to go in registers, and which in
5775   // memory.  Also, if this is a vararg function, floating point operations
5776   // must be stored to our stack, and loaded into integer regs as well, if
5777   // any integer regs are available for argument passing.
5778   unsigned ArgOffset = LinkageSize;
5779   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5780
5781   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5782     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5783     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5784   };
5785   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5786     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5787     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5788   };
5789   static const MCPhysReg VR[] = {
5790     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5791     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5792   };
5793   const unsigned NumGPRs = array_lengthof(GPR_32);
5794   const unsigned NumFPRs = 13;
5795   const unsigned NumVRs  = array_lengthof(VR);
5796
5797   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5798
5799   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5800   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5801
5802   SmallVector<SDValue, 8> MemOpChains;
5803   for (unsigned i = 0; i != NumOps; ++i) {
5804     SDValue Arg = OutVals[i];
5805     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5806
5807     // PtrOff will be used to store the current argument to the stack if a
5808     // register cannot be found for it.
5809     SDValue PtrOff;
5810
5811     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5812
5813     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5814
5815     // On PPC64, promote integers to 64-bit values.
5816     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5817       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5818       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5819       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5820     }
5821
5822     // FIXME memcpy is used way more than necessary.  Correctness first.
5823     // Note: "by value" is code for passing a structure by value, not
5824     // basic types.
5825     if (Flags.isByVal()) {
5826       unsigned Size = Flags.getByValSize();
5827       // Very small objects are passed right-justified.  Everything else is
5828       // passed left-justified.
5829       if (Size==1 || Size==2) {
5830         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5831         if (GPR_idx != NumGPRs) {
5832           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5833                                         MachinePointerInfo(), VT);
5834           MemOpChains.push_back(Load.getValue(1));
5835           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5836
5837           ArgOffset += PtrByteSize;
5838         } else {
5839           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5840                                           PtrOff.getValueType());
5841           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5842           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5843                                                             CallSeqStart,
5844                                                             Flags, DAG, dl);
5845           ArgOffset += PtrByteSize;
5846         }
5847         continue;
5848       }
5849       // Copy entire object into memory.  There are cases where gcc-generated
5850       // code assumes it is there, even if it could be put entirely into
5851       // registers.  (This is not what the doc says.)
5852       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5853                                                         CallSeqStart,
5854                                                         Flags, DAG, dl);
5855
5856       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5857       // copy the pieces of the object that fit into registers from the
5858       // parameter save area.
5859       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5860         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5861         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5862         if (GPR_idx != NumGPRs) {
5863           SDValue Load =
5864               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5865           MemOpChains.push_back(Load.getValue(1));
5866           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5867           ArgOffset += PtrByteSize;
5868         } else {
5869           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5870           break;
5871         }
5872       }
5873       continue;
5874     }
5875
5876     switch (Arg.getSimpleValueType().SimpleTy) {
5877     default: llvm_unreachable("Unexpected ValueType for argument!");
5878     case MVT::i1:
5879     case MVT::i32:
5880     case MVT::i64:
5881       if (GPR_idx != NumGPRs) {
5882         if (Arg.getValueType() == MVT::i1)
5883           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5884
5885         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5886       } else {
5887         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5888                          isPPC64, isTailCall, false, MemOpChains,
5889                          TailCallArguments, dl);
5890       }
5891       ArgOffset += PtrByteSize;
5892       break;
5893     case MVT::f32:
5894     case MVT::f64:
5895       if (FPR_idx != NumFPRs) {
5896         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5897
5898         if (isVarArg) {
5899           SDValue Store =
5900               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5901           MemOpChains.push_back(Store);
5902
5903           // Float varargs are always shadowed in available integer registers
5904           if (GPR_idx != NumGPRs) {
5905             SDValue Load =
5906                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
5907             MemOpChains.push_back(Load.getValue(1));
5908             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5909           }
5910           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5911             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5912             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5913             SDValue Load =
5914                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
5915             MemOpChains.push_back(Load.getValue(1));
5916             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5917           }
5918         } else {
5919           // If we have any FPRs remaining, we may also have GPRs remaining.
5920           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5921           // GPRs.
5922           if (GPR_idx != NumGPRs)
5923             ++GPR_idx;
5924           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5925               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5926             ++GPR_idx;
5927         }
5928       } else
5929         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5930                          isPPC64, isTailCall, false, MemOpChains,
5931                          TailCallArguments, dl);
5932       if (isPPC64)
5933         ArgOffset += 8;
5934       else
5935         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5936       break;
5937     case MVT::v4f32:
5938     case MVT::v4i32:
5939     case MVT::v8i16:
5940     case MVT::v16i8:
5941       if (isVarArg) {
5942         // These go aligned on the stack, or in the corresponding R registers
5943         // when within range.  The Darwin PPC ABI doc claims they also go in
5944         // V registers; in fact gcc does this only for arguments that are
5945         // prototyped, not for those that match the ...  We do it for all
5946         // arguments, seems to work.
5947         while (ArgOffset % 16 !=0) {
5948           ArgOffset += PtrByteSize;
5949           if (GPR_idx != NumGPRs)
5950             GPR_idx++;
5951         }
5952         // We could elide this store in the case where the object fits
5953         // entirely in R registers.  Maybe later.
5954         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5955                              DAG.getConstant(ArgOffset, dl, PtrVT));
5956         SDValue Store =
5957             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
5958         MemOpChains.push_back(Store);
5959         if (VR_idx != NumVRs) {
5960           SDValue Load =
5961               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
5962           MemOpChains.push_back(Load.getValue(1));
5963           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5964         }
5965         ArgOffset += 16;
5966         for (unsigned i=0; i<16; i+=PtrByteSize) {
5967           if (GPR_idx == NumGPRs)
5968             break;
5969           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5970                                    DAG.getConstant(i, dl, PtrVT));
5971           SDValue Load =
5972               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
5973           MemOpChains.push_back(Load.getValue(1));
5974           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5975         }
5976         break;
5977       }
5978
5979       // Non-varargs Altivec params generally go in registers, but have
5980       // stack space allocated at the end.
5981       if (VR_idx != NumVRs) {
5982         // Doesn't have GPR space allocated.
5983         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5984       } else if (nAltivecParamsAtEnd==0) {
5985         // We are emitting Altivec params in order.
5986         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5987                          isPPC64, isTailCall, true, MemOpChains,
5988                          TailCallArguments, dl);
5989         ArgOffset += 16;
5990       }
5991       break;
5992     }
5993   }
5994   // If all Altivec parameters fit in registers, as they usually do,
5995   // they get stack space following the non-Altivec parameters.  We
5996   // don't track this here because nobody below needs it.
5997   // If there are more Altivec parameters than fit in registers emit
5998   // the stores here.
5999   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6000     unsigned j = 0;
6001     // Offset is aligned; skip 1st 12 params which go in V registers.
6002     ArgOffset = ((ArgOffset+15)/16)*16;
6003     ArgOffset += 12*16;
6004     for (unsigned i = 0; i != NumOps; ++i) {
6005       SDValue Arg = OutVals[i];
6006       EVT ArgType = Outs[i].VT;
6007       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6008           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6009         if (++j > NumVRs) {
6010           SDValue PtrOff;
6011           // We are emitting Altivec params in order.
6012           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6013                            isPPC64, isTailCall, true, MemOpChains,
6014                            TailCallArguments, dl);
6015           ArgOffset += 16;
6016         }
6017       }
6018     }
6019   }
6020
6021   if (!MemOpChains.empty())
6022     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6023
6024   // On Darwin, R12 must contain the address of an indirect callee.  This does
6025   // not mean the MTCTR instruction must use R12; it's easier to model this as
6026   // an extra parameter, so do that.
6027   if (!isTailCall &&
6028       !isFunctionGlobalAddress(Callee) &&
6029       !isa<ExternalSymbolSDNode>(Callee) &&
6030       !isBLACompatibleAddress(Callee, DAG))
6031     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6032                                                    PPC::R12), Callee));
6033
6034   // Build a sequence of copy-to-reg nodes chained together with token chain
6035   // and flag operands which copy the outgoing args into the appropriate regs.
6036   SDValue InFlag;
6037   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6038     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6039                              RegsToPass[i].second, InFlag);
6040     InFlag = Chain.getValue(1);
6041   }
6042
6043   if (isTailCall)
6044     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6045                     TailCallArguments);
6046
6047   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6048                     /* unused except on PPC64 ELFv1 */ false, DAG,
6049                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6050                     NumBytes, Ins, InVals, CS);
6051 }
6052
6053 bool
6054 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6055                                   MachineFunction &MF, bool isVarArg,
6056                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6057                                   LLVMContext &Context) const {
6058   SmallVector<CCValAssign, 16> RVLocs;
6059   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6060   return CCInfo.CheckReturn(Outs, RetCC_PPC);
6061 }
6062
6063 SDValue
6064 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6065                                bool isVarArg,
6066                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6067                                const SmallVectorImpl<SDValue> &OutVals,
6068                                const SDLoc &dl, SelectionDAG &DAG) const {
6069
6070   SmallVector<CCValAssign, 16> RVLocs;
6071   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6072                  *DAG.getContext());
6073   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
6074
6075   SDValue Flag;
6076   SmallVector<SDValue, 4> RetOps(1, Chain);
6077
6078   // Copy the result values into the output registers.
6079   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6080     CCValAssign &VA = RVLocs[i];
6081     assert(VA.isRegLoc() && "Can only return in registers!");
6082
6083     SDValue Arg = OutVals[i];
6084
6085     switch (VA.getLocInfo()) {
6086     default: llvm_unreachable("Unknown loc info!");
6087     case CCValAssign::Full: break;
6088     case CCValAssign::AExt:
6089       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6090       break;
6091     case CCValAssign::ZExt:
6092       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6093       break;
6094     case CCValAssign::SExt:
6095       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6096       break;
6097     }
6098
6099     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6100     Flag = Chain.getValue(1);
6101     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6102   }
6103
6104   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6105   const MCPhysReg *I =
6106     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6107   if (I) {
6108     for (; *I; ++I) {
6109
6110       if (PPC::G8RCRegClass.contains(*I))
6111         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6112       else if (PPC::F8RCRegClass.contains(*I))
6113         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6114       else if (PPC::CRRCRegClass.contains(*I))
6115         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6116       else if (PPC::VRRCRegClass.contains(*I))
6117         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6118       else
6119         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6120     }
6121   }
6122
6123   RetOps[0] = Chain;  // Update chain.
6124
6125   // Add the flag if we have it.
6126   if (Flag.getNode())
6127     RetOps.push_back(Flag);
6128
6129   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6130 }
6131
6132 SDValue
6133 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6134                                                 SelectionDAG &DAG) const {
6135   SDLoc dl(Op);
6136
6137   // Get the corect type for integers.
6138   EVT IntVT = Op.getValueType();
6139
6140   // Get the inputs.
6141   SDValue Chain = Op.getOperand(0);
6142   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6143   // Build a DYNAREAOFFSET node.
6144   SDValue Ops[2] = {Chain, FPSIdx};
6145   SDVTList VTs = DAG.getVTList(IntVT);
6146   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6147 }
6148
6149 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6150                                              SelectionDAG &DAG) const {
6151   // When we pop the dynamic allocation we need to restore the SP link.
6152   SDLoc dl(Op);
6153
6154   // Get the corect type for pointers.
6155   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6156
6157   // Construct the stack pointer operand.
6158   bool isPPC64 = Subtarget.isPPC64();
6159   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6160   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6161
6162   // Get the operands for the STACKRESTORE.
6163   SDValue Chain = Op.getOperand(0);
6164   SDValue SaveSP = Op.getOperand(1);
6165
6166   // Load the old link SP.
6167   SDValue LoadLinkSP =
6168       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6169
6170   // Restore the stack pointer.
6171   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6172
6173   // Store the old link SP.
6174   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6175 }
6176
6177 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6178   MachineFunction &MF = DAG.getMachineFunction();
6179   bool isPPC64 = Subtarget.isPPC64();
6180   EVT PtrVT = getPointerTy(MF.getDataLayout());
6181
6182   // Get current frame pointer save index.  The users of this index will be
6183   // primarily DYNALLOC instructions.
6184   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6185   int RASI = FI->getReturnAddrSaveIndex();
6186
6187   // If the frame pointer save index hasn't been defined yet.
6188   if (!RASI) {
6189     // Find out what the fix offset of the frame pointer save area.
6190     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6191     // Allocate the frame index for frame pointer save area.
6192     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6193     // Save the result.
6194     FI->setReturnAddrSaveIndex(RASI);
6195   }
6196   return DAG.getFrameIndex(RASI, PtrVT);
6197 }
6198
6199 SDValue
6200 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6201   MachineFunction &MF = DAG.getMachineFunction();
6202   bool isPPC64 = Subtarget.isPPC64();
6203   EVT PtrVT = getPointerTy(MF.getDataLayout());
6204
6205   // Get current frame pointer save index.  The users of this index will be
6206   // primarily DYNALLOC instructions.
6207   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6208   int FPSI = FI->getFramePointerSaveIndex();
6209
6210   // If the frame pointer save index hasn't been defined yet.
6211   if (!FPSI) {
6212     // Find out what the fix offset of the frame pointer save area.
6213     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6214     // Allocate the frame index for frame pointer save area.
6215     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6216     // Save the result.
6217     FI->setFramePointerSaveIndex(FPSI);
6218   }
6219   return DAG.getFrameIndex(FPSI, PtrVT);
6220 }
6221
6222 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6223                                                    SelectionDAG &DAG) const {
6224   // Get the inputs.
6225   SDValue Chain = Op.getOperand(0);
6226   SDValue Size  = Op.getOperand(1);
6227   SDLoc dl(Op);
6228
6229   // Get the corect type for pointers.
6230   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6231   // Negate the size.
6232   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6233                                 DAG.getConstant(0, dl, PtrVT), Size);
6234   // Construct a node for the frame pointer save index.
6235   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6236   // Build a DYNALLOC node.
6237   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6238   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6239   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6240 }
6241
6242 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6243                                                      SelectionDAG &DAG) const {
6244   MachineFunction &MF = DAG.getMachineFunction();
6245
6246   bool isPPC64 = Subtarget.isPPC64();
6247   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6248
6249   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6250   return DAG.getFrameIndex(FI, PtrVT);
6251 }
6252
6253 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6254                                                SelectionDAG &DAG) const {
6255   SDLoc DL(Op);
6256   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6257                      DAG.getVTList(MVT::i32, MVT::Other),
6258                      Op.getOperand(0), Op.getOperand(1));
6259 }
6260
6261 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6262                                                 SelectionDAG &DAG) const {
6263   SDLoc DL(Op);
6264   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6265                      Op.getOperand(0), Op.getOperand(1));
6266 }
6267
6268 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6269   if (Op.getValueType().isVector())
6270     return LowerVectorLoad(Op, DAG);
6271
6272   assert(Op.getValueType() == MVT::i1 &&
6273          "Custom lowering only for i1 loads");
6274
6275   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6276
6277   SDLoc dl(Op);
6278   LoadSDNode *LD = cast<LoadSDNode>(Op);
6279
6280   SDValue Chain = LD->getChain();
6281   SDValue BasePtr = LD->getBasePtr();
6282   MachineMemOperand *MMO = LD->getMemOperand();
6283
6284   SDValue NewLD =
6285       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6286                      BasePtr, MVT::i8, MMO);
6287   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6288
6289   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6290   return DAG.getMergeValues(Ops, dl);
6291 }
6292
6293 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6294   if (Op.getOperand(1).getValueType().isVector())
6295     return LowerVectorStore(Op, DAG);
6296
6297   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6298          "Custom lowering only for i1 stores");
6299
6300   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6301
6302   SDLoc dl(Op);
6303   StoreSDNode *ST = cast<StoreSDNode>(Op);
6304
6305   SDValue Chain = ST->getChain();
6306   SDValue BasePtr = ST->getBasePtr();
6307   SDValue Value = ST->getValue();
6308   MachineMemOperand *MMO = ST->getMemOperand();
6309
6310   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6311                       Value);
6312   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6313 }
6314
6315 // FIXME: Remove this once the ANDI glue bug is fixed:
6316 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6317   assert(Op.getValueType() == MVT::i1 &&
6318          "Custom lowering only for i1 results");
6319
6320   SDLoc DL(Op);
6321   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6322                      Op.getOperand(0));
6323 }
6324
6325 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6326 /// possible.
6327 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6328   // Not FP? Not a fsel.
6329   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6330       !Op.getOperand(2).getValueType().isFloatingPoint())
6331     return Op;
6332
6333   // We might be able to do better than this under some circumstances, but in
6334   // general, fsel-based lowering of select is a finite-math-only optimization.
6335   // For more information, see section F.3 of the 2.06 ISA specification.
6336   if (!DAG.getTarget().Options.NoInfsFPMath ||
6337       !DAG.getTarget().Options.NoNaNsFPMath)
6338     return Op;
6339   // TODO: Propagate flags from the select rather than global settings.
6340   SDNodeFlags Flags;
6341   Flags.setNoInfs(true);
6342   Flags.setNoNaNs(true);
6343
6344   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6345
6346   EVT ResVT = Op.getValueType();
6347   EVT CmpVT = Op.getOperand(0).getValueType();
6348   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6349   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6350   SDLoc dl(Op);
6351
6352   // If the RHS of the comparison is a 0.0, we don't need to do the
6353   // subtraction at all.
6354   SDValue Sel1;
6355   if (isFloatingPointZero(RHS))
6356     switch (CC) {
6357     default: break;       // SETUO etc aren't handled by fsel.
6358     case ISD::SETNE:
6359       std::swap(TV, FV);
6360     case ISD::SETEQ:
6361       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6362         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6363       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6364       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6365         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6366       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6367                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6368     case ISD::SETULT:
6369     case ISD::SETLT:
6370       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6371     case ISD::SETOGE:
6372     case ISD::SETGE:
6373       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6374         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6375       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6376     case ISD::SETUGT:
6377     case ISD::SETGT:
6378       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6379     case ISD::SETOLE:
6380     case ISD::SETLE:
6381       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6382         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6383       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6384                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6385     }
6386
6387   SDValue Cmp;
6388   switch (CC) {
6389   default: break;       // SETUO etc aren't handled by fsel.
6390   case ISD::SETNE:
6391     std::swap(TV, FV);
6392   case ISD::SETEQ:
6393     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6394     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6395       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6396     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6397     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6398       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6399     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6400                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6401   case ISD::SETULT:
6402   case ISD::SETLT:
6403     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6404     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6405       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6406     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6407   case ISD::SETOGE:
6408   case ISD::SETGE:
6409     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6410     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6411       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6412     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6413   case ISD::SETUGT:
6414   case ISD::SETGT:
6415     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6416     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6417       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6418     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6419   case ISD::SETOLE:
6420   case ISD::SETLE:
6421     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6422     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6423       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6424     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6425   }
6426   return Op;
6427 }
6428
6429 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6430                                                SelectionDAG &DAG,
6431                                                const SDLoc &dl) const {
6432   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6433   SDValue Src = Op.getOperand(0);
6434   if (Src.getValueType() == MVT::f32)
6435     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6436
6437   SDValue Tmp;
6438   switch (Op.getSimpleValueType().SimpleTy) {
6439   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6440   case MVT::i32:
6441     Tmp = DAG.getNode(
6442         Op.getOpcode() == ISD::FP_TO_SINT
6443             ? PPCISD::FCTIWZ
6444             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6445         dl, MVT::f64, Src);
6446     break;
6447   case MVT::i64:
6448     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6449            "i64 FP_TO_UINT is supported only with FPCVT");
6450     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6451                                                         PPCISD::FCTIDUZ,
6452                       dl, MVT::f64, Src);
6453     break;
6454   }
6455
6456   // Convert the FP value to an int value through memory.
6457   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6458     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6459   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6460   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6461   MachinePointerInfo MPI =
6462       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6463
6464   // Emit a store to the stack slot.
6465   SDValue Chain;
6466   if (i32Stack) {
6467     MachineFunction &MF = DAG.getMachineFunction();
6468     MachineMemOperand *MMO =
6469       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6470     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6471     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6472               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6473   } else
6474     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6475
6476   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6477   // add in a bias on big endian.
6478   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6479     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6480                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6481     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6482   }
6483
6484   RLI.Chain = Chain;
6485   RLI.Ptr = FIPtr;
6486   RLI.MPI = MPI;
6487 }
6488
6489 /// \brief Custom lowers floating point to integer conversions to use
6490 /// the direct move instructions available in ISA 2.07 to avoid the
6491 /// need for load/store combinations.
6492 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6493                                                     SelectionDAG &DAG,
6494                                                     const SDLoc &dl) const {
6495   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6496   SDValue Src = Op.getOperand(0);
6497
6498   if (Src.getValueType() == MVT::f32)
6499     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6500
6501   SDValue Tmp;
6502   switch (Op.getSimpleValueType().SimpleTy) {
6503   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6504   case MVT::i32:
6505     Tmp = DAG.getNode(
6506         Op.getOpcode() == ISD::FP_TO_SINT
6507             ? PPCISD::FCTIWZ
6508             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6509         dl, MVT::f64, Src);
6510     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6511     break;
6512   case MVT::i64:
6513     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6514            "i64 FP_TO_UINT is supported only with FPCVT");
6515     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6516                                                         PPCISD::FCTIDUZ,
6517                       dl, MVT::f64, Src);
6518     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6519     break;
6520   }
6521   return Tmp;
6522 }
6523
6524 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6525                                           const SDLoc &dl) const {
6526   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6527     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6528
6529   ReuseLoadInfo RLI;
6530   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6531
6532   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6533                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6534 }
6535
6536 // We're trying to insert a regular store, S, and then a load, L. If the
6537 // incoming value, O, is a load, we might just be able to have our load use the
6538 // address used by O. However, we don't know if anything else will store to
6539 // that address before we can load from it. To prevent this situation, we need
6540 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6541 // the same chain operand as O, we create a token factor from the chain results
6542 // of O and L, and we replace all uses of O's chain result with that token
6543 // factor (see spliceIntoChain below for this last part).
6544 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6545                                             ReuseLoadInfo &RLI,
6546                                             SelectionDAG &DAG,
6547                                             ISD::LoadExtType ET) const {
6548   SDLoc dl(Op);
6549   if (ET == ISD::NON_EXTLOAD &&
6550       (Op.getOpcode() == ISD::FP_TO_UINT ||
6551        Op.getOpcode() == ISD::FP_TO_SINT) &&
6552       isOperationLegalOrCustom(Op.getOpcode(),
6553                                Op.getOperand(0).getValueType())) {
6554
6555     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6556     return true;
6557   }
6558
6559   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6560   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6561       LD->isNonTemporal())
6562     return false;
6563   if (LD->getMemoryVT() != MemVT)
6564     return false;
6565
6566   RLI.Ptr = LD->getBasePtr();
6567   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6568     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6569            "Non-pre-inc AM on PPC?");
6570     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6571                           LD->getOffset());
6572   }
6573
6574   RLI.Chain = LD->getChain();
6575   RLI.MPI = LD->getPointerInfo();
6576   RLI.IsDereferenceable = LD->isDereferenceable();
6577   RLI.IsInvariant = LD->isInvariant();
6578   RLI.Alignment = LD->getAlignment();
6579   RLI.AAInfo = LD->getAAInfo();
6580   RLI.Ranges = LD->getRanges();
6581
6582   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6583   return true;
6584 }
6585
6586 // Given the head of the old chain, ResChain, insert a token factor containing
6587 // it and NewResChain, and make users of ResChain now be users of that token
6588 // factor.
6589 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6590                                         SDValue NewResChain,
6591                                         SelectionDAG &DAG) const {
6592   if (!ResChain)
6593     return;
6594
6595   SDLoc dl(NewResChain);
6596
6597   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6598                            NewResChain, DAG.getUNDEF(MVT::Other));
6599   assert(TF.getNode() != NewResChain.getNode() &&
6600          "A new TF really is required here");
6601
6602   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6603   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6604 }
6605
6606 /// \brief Analyze profitability of direct move
6607 /// prefer float load to int load plus direct move
6608 /// when there is no integer use of int load
6609 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
6610   SDNode *Origin = Op.getOperand(0).getNode();
6611   if (Origin->getOpcode() != ISD::LOAD)
6612     return true;
6613
6614   // If there is no LXSIBZX/LXSIHZX, like Power8,
6615   // prefer direct move if the memory size is 1 or 2 bytes.
6616   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
6617   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
6618     return true;
6619
6620   for (SDNode::use_iterator UI = Origin->use_begin(),
6621                             UE = Origin->use_end();
6622        UI != UE; ++UI) {
6623
6624     // Only look at the users of the loaded value.
6625     if (UI.getUse().get().getResNo() != 0)
6626       continue;
6627
6628     if (UI->getOpcode() != ISD::SINT_TO_FP &&
6629         UI->getOpcode() != ISD::UINT_TO_FP)
6630       return true;
6631   }
6632
6633   return false;
6634 }
6635
6636 /// \brief Custom lowers integer to floating point conversions to use
6637 /// the direct move instructions available in ISA 2.07 to avoid the
6638 /// need for load/store combinations.
6639 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6640                                                     SelectionDAG &DAG,
6641                                                     const SDLoc &dl) const {
6642   assert((Op.getValueType() == MVT::f32 ||
6643           Op.getValueType() == MVT::f64) &&
6644          "Invalid floating point type as target of conversion");
6645   assert(Subtarget.hasFPCVT() &&
6646          "Int to FP conversions with direct moves require FPCVT");
6647   SDValue FP;
6648   SDValue Src = Op.getOperand(0);
6649   bool SinglePrec = Op.getValueType() == MVT::f32;
6650   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6651   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6652   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6653                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6654
6655   if (WordInt) {
6656     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6657                      dl, MVT::f64, Src);
6658     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6659   }
6660   else {
6661     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6662     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6663   }
6664
6665   return FP;
6666 }
6667
6668 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6669                                           SelectionDAG &DAG) const {
6670   SDLoc dl(Op);
6671
6672   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6673     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6674       return SDValue();
6675
6676     SDValue Value = Op.getOperand(0);
6677     // The values are now known to be -1 (false) or 1 (true). To convert this
6678     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6679     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6680     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6681
6682     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
6683
6684     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6685
6686     if (Op.getValueType() != MVT::v4f64)
6687       Value = DAG.getNode(ISD::FP_ROUND, dl,
6688                           Op.getValueType(), Value,
6689                           DAG.getIntPtrConstant(1, dl));
6690     return Value;
6691   }
6692
6693   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6694   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6695     return SDValue();
6696
6697   if (Op.getOperand(0).getValueType() == MVT::i1)
6698     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6699                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6700                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6701
6702   // If we have direct moves, we can do all the conversion, skip the store/load
6703   // however, without FPCVT we can't do most conversions.
6704   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
6705       Subtarget.isPPC64() && Subtarget.hasFPCVT())
6706     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6707
6708   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6709          "UINT_TO_FP is supported only with FPCVT");
6710
6711   // If we have FCFIDS, then use it when converting to single-precision.
6712   // Otherwise, convert to double-precision and then round.
6713   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6714                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6715                                                             : PPCISD::FCFIDS)
6716                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6717                                                             : PPCISD::FCFID);
6718   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6719                   ? MVT::f32
6720                   : MVT::f64;
6721
6722   if (Op.getOperand(0).getValueType() == MVT::i64) {
6723     SDValue SINT = Op.getOperand(0);
6724     // When converting to single-precision, we actually need to convert
6725     // to double-precision first and then round to single-precision.
6726     // To avoid double-rounding effects during that operation, we have
6727     // to prepare the input operand.  Bits that might be truncated when
6728     // converting to double-precision are replaced by a bit that won't
6729     // be lost at this stage, but is below the single-precision rounding
6730     // position.
6731     //
6732     // However, if -enable-unsafe-fp-math is in effect, accept double
6733     // rounding to avoid the extra overhead.
6734     if (Op.getValueType() == MVT::f32 &&
6735         !Subtarget.hasFPCVT() &&
6736         !DAG.getTarget().Options.UnsafeFPMath) {
6737
6738       // Twiddle input to make sure the low 11 bits are zero.  (If this
6739       // is the case, we are guaranteed the value will fit into the 53 bit
6740       // mantissa of an IEEE double-precision value without rounding.)
6741       // If any of those low 11 bits were not zero originally, make sure
6742       // bit 12 (value 2048) is set instead, so that the final rounding
6743       // to single-precision gets the correct result.
6744       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6745                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6746       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6747                           Round, DAG.getConstant(2047, dl, MVT::i64));
6748       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6749       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6750                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6751
6752       // However, we cannot use that value unconditionally: if the magnitude
6753       // of the input value is small, the bit-twiddling we did above might
6754       // end up visibly changing the output.  Fortunately, in that case, we
6755       // don't need to twiddle bits since the original input will convert
6756       // exactly to double-precision floating-point already.  Therefore,
6757       // construct a conditional to use the original value if the top 11
6758       // bits are all sign-bit copies, and use the rounded value computed
6759       // above otherwise.
6760       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6761                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6762       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6763                          Cond, DAG.getConstant(1, dl, MVT::i64));
6764       Cond = DAG.getSetCC(dl, MVT::i32,
6765                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6766
6767       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6768     }
6769
6770     ReuseLoadInfo RLI;
6771     SDValue Bits;
6772
6773     MachineFunction &MF = DAG.getMachineFunction();
6774     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6775       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
6776                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
6777       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6778     } else if (Subtarget.hasLFIWAX() &&
6779                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6780       MachineMemOperand *MMO =
6781         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6782                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6783       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6784       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6785                                      DAG.getVTList(MVT::f64, MVT::Other),
6786                                      Ops, MVT::i32, MMO);
6787       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6788     } else if (Subtarget.hasFPCVT() &&
6789                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6790       MachineMemOperand *MMO =
6791         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6792                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6793       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6794       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6795                                      DAG.getVTList(MVT::f64, MVT::Other),
6796                                      Ops, MVT::i32, MMO);
6797       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6798     } else if (((Subtarget.hasLFIWAX() &&
6799                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6800                 (Subtarget.hasFPCVT() &&
6801                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6802                SINT.getOperand(0).getValueType() == MVT::i32) {
6803       MachineFrameInfo &MFI = MF.getFrameInfo();
6804       EVT PtrVT = getPointerTy(DAG.getDataLayout());
6805
6806       int FrameIdx = MFI.CreateStackObject(4, 4, false);
6807       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6808
6809       SDValue Store =
6810           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6811                        MachinePointerInfo::getFixedStack(
6812                            DAG.getMachineFunction(), FrameIdx));
6813
6814       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6815              "Expected an i32 store");
6816
6817       RLI.Ptr = FIdx;
6818       RLI.Chain = Store;
6819       RLI.MPI =
6820           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6821       RLI.Alignment = 4;
6822
6823       MachineMemOperand *MMO =
6824         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6825                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6826       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6827       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6828                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6829                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6830                                      Ops, MVT::i32, MMO);
6831     } else
6832       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6833
6834     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6835
6836     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6837       FP = DAG.getNode(ISD::FP_ROUND, dl,
6838                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6839     return FP;
6840   }
6841
6842   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6843          "Unhandled INT_TO_FP type in custom expander!");
6844   // Since we only generate this in 64-bit mode, we can take advantage of
6845   // 64-bit registers.  In particular, sign extend the input value into the
6846   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6847   // then lfd it and fcfid it.
6848   MachineFunction &MF = DAG.getMachineFunction();
6849   MachineFrameInfo &MFI = MF.getFrameInfo();
6850   EVT PtrVT = getPointerTy(MF.getDataLayout());
6851
6852   SDValue Ld;
6853   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6854     ReuseLoadInfo RLI;
6855     bool ReusingLoad;
6856     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6857                                             DAG))) {
6858       int FrameIdx = MFI.CreateStackObject(4, 4, false);
6859       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6860
6861       SDValue Store =
6862           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6863                        MachinePointerInfo::getFixedStack(
6864                            DAG.getMachineFunction(), FrameIdx));
6865
6866       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6867              "Expected an i32 store");
6868
6869       RLI.Ptr = FIdx;
6870       RLI.Chain = Store;
6871       RLI.MPI =
6872           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6873       RLI.Alignment = 4;
6874     }
6875
6876     MachineMemOperand *MMO =
6877       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6878                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6879     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6880     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6881                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6882                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6883                                  Ops, MVT::i32, MMO);
6884     if (ReusingLoad)
6885       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6886   } else {
6887     assert(Subtarget.isPPC64() &&
6888            "i32->FP without LFIWAX supported only on PPC64");
6889
6890     int FrameIdx = MFI.CreateStackObject(8, 8, false);
6891     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6892
6893     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6894                                 Op.getOperand(0));
6895
6896     // STD the extended value into the stack slot.
6897     SDValue Store = DAG.getStore(
6898         DAG.getEntryNode(), dl, Ext64, FIdx,
6899         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
6900
6901     // Load the value as a double.
6902     Ld = DAG.getLoad(
6903         MVT::f64, dl, Store, FIdx,
6904         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
6905   }
6906
6907   // FCFID it and return it.
6908   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6909   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6910     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6911                      DAG.getIntPtrConstant(0, dl));
6912   return FP;
6913 }
6914
6915 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6916                                             SelectionDAG &DAG) const {
6917   SDLoc dl(Op);
6918   /*
6919    The rounding mode is in bits 30:31 of FPSR, and has the following
6920    settings:
6921      00 Round to nearest
6922      01 Round to 0
6923      10 Round to +inf
6924      11 Round to -inf
6925
6926   FLT_ROUNDS, on the other hand, expects the following:
6927     -1 Undefined
6928      0 Round to 0
6929      1 Round to nearest
6930      2 Round to +inf
6931      3 Round to -inf
6932
6933   To perform the conversion, we do:
6934     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6935   */
6936
6937   MachineFunction &MF = DAG.getMachineFunction();
6938   EVT VT = Op.getValueType();
6939   EVT PtrVT = getPointerTy(MF.getDataLayout());
6940
6941   // Save FP Control Word to register
6942   EVT NodeTys[] = {
6943     MVT::f64,    // return register
6944     MVT::Glue    // unused in this context
6945   };
6946   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6947
6948   // Save FP register to stack slot
6949   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
6950   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6951   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
6952                                MachinePointerInfo());
6953
6954   // Load FP Control Word from low 32 bits of stack slot.
6955   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6956   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6957   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
6958
6959   // Transform as necessary
6960   SDValue CWD1 =
6961     DAG.getNode(ISD::AND, dl, MVT::i32,
6962                 CWD, DAG.getConstant(3, dl, MVT::i32));
6963   SDValue CWD2 =
6964     DAG.getNode(ISD::SRL, dl, MVT::i32,
6965                 DAG.getNode(ISD::AND, dl, MVT::i32,
6966                             DAG.getNode(ISD::XOR, dl, MVT::i32,
6967                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
6968                             DAG.getConstant(3, dl, MVT::i32)),
6969                 DAG.getConstant(1, dl, MVT::i32));
6970
6971   SDValue RetVal =
6972     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6973
6974   return DAG.getNode((VT.getSizeInBits() < 16 ?
6975                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6976 }
6977
6978 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6979   EVT VT = Op.getValueType();
6980   unsigned BitWidth = VT.getSizeInBits();
6981   SDLoc dl(Op);
6982   assert(Op.getNumOperands() == 3 &&
6983          VT == Op.getOperand(1).getValueType() &&
6984          "Unexpected SHL!");
6985
6986   // Expand into a bunch of logical ops.  Note that these ops
6987   // depend on the PPC behavior for oversized shift amounts.
6988   SDValue Lo = Op.getOperand(0);
6989   SDValue Hi = Op.getOperand(1);
6990   SDValue Amt = Op.getOperand(2);
6991   EVT AmtVT = Amt.getValueType();
6992
6993   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6994                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6995   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6996   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6997   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6998   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6999                              DAG.getConstant(-BitWidth, dl, AmtVT));
7000   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7001   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7002   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7003   SDValue OutOps[] = { OutLo, OutHi };
7004   return DAG.getMergeValues(OutOps, dl);
7005 }
7006
7007 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7008   EVT VT = Op.getValueType();
7009   SDLoc dl(Op);
7010   unsigned BitWidth = VT.getSizeInBits();
7011   assert(Op.getNumOperands() == 3 &&
7012          VT == Op.getOperand(1).getValueType() &&
7013          "Unexpected SRL!");
7014
7015   // Expand into a bunch of logical ops.  Note that these ops
7016   // depend on the PPC behavior for oversized shift amounts.
7017   SDValue Lo = Op.getOperand(0);
7018   SDValue Hi = Op.getOperand(1);
7019   SDValue Amt = Op.getOperand(2);
7020   EVT AmtVT = Amt.getValueType();
7021
7022   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7023                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7024   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7025   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7026   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7027   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7028                              DAG.getConstant(-BitWidth, dl, AmtVT));
7029   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7030   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7031   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7032   SDValue OutOps[] = { OutLo, OutHi };
7033   return DAG.getMergeValues(OutOps, dl);
7034 }
7035
7036 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7037   SDLoc dl(Op);
7038   EVT VT = Op.getValueType();
7039   unsigned BitWidth = VT.getSizeInBits();
7040   assert(Op.getNumOperands() == 3 &&
7041          VT == Op.getOperand(1).getValueType() &&
7042          "Unexpected SRA!");
7043
7044   // Expand into a bunch of logical ops, followed by a select_cc.
7045   SDValue Lo = Op.getOperand(0);
7046   SDValue Hi = Op.getOperand(1);
7047   SDValue Amt = Op.getOperand(2);
7048   EVT AmtVT = Amt.getValueType();
7049
7050   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7051                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7052   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7053   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7054   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7055   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7056                              DAG.getConstant(-BitWidth, dl, AmtVT));
7057   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7058   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7059   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7060                                   Tmp4, Tmp6, ISD::SETLE);
7061   SDValue OutOps[] = { OutLo, OutHi };
7062   return DAG.getMergeValues(OutOps, dl);
7063 }
7064
7065 //===----------------------------------------------------------------------===//
7066 // Vector related lowering.
7067 //
7068
7069 /// BuildSplatI - Build a canonical splati of Val with an element size of
7070 /// SplatSize.  Cast the result to VT.
7071 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7072                            SelectionDAG &DAG, const SDLoc &dl) {
7073   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7074
7075   static const MVT VTys[] = { // canonical VT to use for each size.
7076     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7077   };
7078
7079   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7080
7081   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7082   if (Val == -1)
7083     SplatSize = 1;
7084
7085   EVT CanonicalVT = VTys[SplatSize-1];
7086
7087   // Build a canonical splat for this value.
7088   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7089 }
7090
7091 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7092 /// specified intrinsic ID.
7093 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7094                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7095   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7096   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7097                      DAG.getConstant(IID, dl, MVT::i32), Op);
7098 }
7099
7100 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7101 /// specified intrinsic ID.
7102 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7103                                 SelectionDAG &DAG, const SDLoc &dl,
7104                                 EVT DestVT = MVT::Other) {
7105   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7106   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7107                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7108 }
7109
7110 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7111 /// specified intrinsic ID.
7112 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7113                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7114                                 EVT DestVT = MVT::Other) {
7115   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7116   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7117                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7118 }
7119
7120 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7121 /// amount.  The result has the specified value type.
7122 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7123                            SelectionDAG &DAG, const SDLoc &dl) {
7124   // Force LHS/RHS to be the right type.
7125   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7126   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7127
7128   int Ops[16];
7129   for (unsigned i = 0; i != 16; ++i)
7130     Ops[i] = i + Amt;
7131   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7132   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7133 }
7134
7135 /// Do we have an efficient pattern in a .td file for this node?
7136 ///
7137 /// \param V - pointer to the BuildVectorSDNode being matched
7138 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7139 ///
7140 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7141 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7142 /// the opposite is true (expansion is beneficial) are:
7143 /// - The node builds a vector out of integers that are not 32 or 64-bits
7144 /// - The node builds a vector out of constants
7145 /// - The node is a "load-and-splat"
7146 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7147 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7148                                             bool HasDirectMove) {
7149   EVT VecVT = V->getValueType(0);
7150   bool RightType = VecVT == MVT::v2f64 || VecVT == MVT::v4f32 ||
7151     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7152   if (!RightType)
7153     return false;
7154
7155   bool IsSplat = true;
7156   bool IsLoad = false;
7157   SDValue Op0 = V->getOperand(0);
7158
7159   // This function is called in a block that confirms the node is not a constant
7160   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7161   // different constants.
7162   if (V->isConstant())
7163     return false;
7164   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7165     if (V->getOperand(i).isUndef())
7166       return false;
7167     // We want to expand nodes that represent load-and-splat even if the
7168     // loaded value is a floating point truncation or conversion to int.
7169     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7170         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7171          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7172         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7173          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7174         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7175          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7176       IsLoad = true;
7177     // If the operands are different or the input is not a load and has more
7178     // uses than just this BV node, then it isn't a splat.
7179     if (V->getOperand(i) != Op0 ||
7180         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7181       IsSplat = false;
7182   }
7183   return !(IsSplat && IsLoad);
7184 }
7185
7186 // If this is a case we can't handle, return null and let the default
7187 // expansion code take care of it.  If we CAN select this case, and if it
7188 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7189 // this case more efficiently than a constant pool load, lower it to the
7190 // sequence of ops that should be used.
7191 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7192                                              SelectionDAG &DAG) const {
7193   SDLoc dl(Op);
7194   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7195   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7196
7197   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7198     // We first build an i32 vector, load it into a QPX register,
7199     // then convert it to a floating-point vector and compare it
7200     // to a zero vector to get the boolean result.
7201     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7202     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7203     MachinePointerInfo PtrInfo =
7204         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7205     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7206     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7207
7208     assert(BVN->getNumOperands() == 4 &&
7209       "BUILD_VECTOR for v4i1 does not have 4 operands");
7210
7211     bool IsConst = true;
7212     for (unsigned i = 0; i < 4; ++i) {
7213       if (BVN->getOperand(i).isUndef()) continue;
7214       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7215         IsConst = false;
7216         break;
7217       }
7218     }
7219
7220     if (IsConst) {
7221       Constant *One =
7222         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7223       Constant *NegOne =
7224         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7225
7226       Constant *CV[4];
7227       for (unsigned i = 0; i < 4; ++i) {
7228         if (BVN->getOperand(i).isUndef())
7229           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7230         else if (isNullConstant(BVN->getOperand(i)))
7231           CV[i] = NegOne;
7232         else
7233           CV[i] = One;
7234       }
7235
7236       Constant *CP = ConstantVector::get(CV);
7237       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7238                                           16 /* alignment */);
7239
7240       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7241       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7242       return DAG.getMemIntrinsicNode(
7243           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7244           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7245     }
7246
7247     SmallVector<SDValue, 4> Stores;
7248     for (unsigned i = 0; i < 4; ++i) {
7249       if (BVN->getOperand(i).isUndef()) continue;
7250
7251       unsigned Offset = 4*i;
7252       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7253       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7254
7255       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7256       if (StoreSize > 4) {
7257         Stores.push_back(
7258             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7259                               PtrInfo.getWithOffset(Offset), MVT::i32));
7260       } else {
7261         SDValue StoreValue = BVN->getOperand(i);
7262         if (StoreSize < 4)
7263           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7264
7265         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7266                                       PtrInfo.getWithOffset(Offset)));
7267       }
7268     }
7269
7270     SDValue StoreChain;
7271     if (!Stores.empty())
7272       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7273     else
7274       StoreChain = DAG.getEntryNode();
7275
7276     // Now load from v4i32 into the QPX register; this will extend it to
7277     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7278     // is typed as v4f64 because the QPX register integer states are not
7279     // explicitly represented.
7280
7281     SDValue Ops[] = {StoreChain,
7282                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7283                      FIdx};
7284     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7285
7286     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7287       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7288     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7289       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7290       LoadedVect);
7291
7292     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7293
7294     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7295   }
7296
7297   // All other QPX vectors are handled by generic code.
7298   if (Subtarget.hasQPX())
7299     return SDValue();
7300
7301   // Check if this is a splat of a constant value.
7302   APInt APSplatBits, APSplatUndef;
7303   unsigned SplatBitSize;
7304   bool HasAnyUndefs;
7305   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7306                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7307       SplatBitSize > 32) {
7308     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7309     // lowered to VSX instructions under certain conditions.
7310     // Without VSX, there is no pattern more efficient than expanding the node.
7311     if (Subtarget.hasVSX() &&
7312         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove()))
7313       return Op;
7314     return SDValue();
7315   }
7316
7317   unsigned SplatBits = APSplatBits.getZExtValue();
7318   unsigned SplatUndef = APSplatUndef.getZExtValue();
7319   unsigned SplatSize = SplatBitSize / 8;
7320
7321   // First, handle single instruction cases.
7322
7323   // All zeros?
7324   if (SplatBits == 0) {
7325     // Canonicalize all zero vectors to be v4i32.
7326     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7327       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7328       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7329     }
7330     return Op;
7331   }
7332
7333   // We have XXSPLTIB for constant splats one byte wide
7334   if (Subtarget.hasP9Vector() && SplatSize == 1) {
7335     // This is a splat of 1-byte elements with some elements potentially undef.
7336     // Rather than trying to match undef in the SDAG patterns, ensure that all
7337     // elements are the same constant.
7338     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7339       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7340                                                        dl, MVT::i32));
7341       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7342       if (Op.getValueType() != MVT::v16i8)
7343         return DAG.getBitcast(Op.getValueType(), NewBV);
7344       return NewBV;
7345     }
7346     return Op;
7347   }
7348
7349   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7350   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7351                     (32-SplatBitSize));
7352   if (SextVal >= -16 && SextVal <= 15)
7353     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7354
7355   // Two instruction sequences.
7356
7357   // If this value is in the range [-32,30] and is even, use:
7358   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7359   // If this value is in the range [17,31] and is odd, use:
7360   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7361   // If this value is in the range [-31,-17] and is odd, use:
7362   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7363   // Note the last two are three-instruction sequences.
7364   if (SextVal >= -32 && SextVal <= 31) {
7365     // To avoid having these optimizations undone by constant folding,
7366     // we convert to a pseudo that will be expanded later into one of
7367     // the above forms.
7368     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7369     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7370               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7371     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7372     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7373     if (VT == Op.getValueType())
7374       return RetVal;
7375     else
7376       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7377   }
7378
7379   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7380   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7381   // for fneg/fabs.
7382   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7383     // Make -1 and vspltisw -1:
7384     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7385
7386     // Make the VSLW intrinsic, computing 0x8000_0000.
7387     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7388                                    OnesV, DAG, dl);
7389
7390     // xor by OnesV to invert it.
7391     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7392     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7393   }
7394
7395   // Check to see if this is a wide variety of vsplti*, binop self cases.
7396   static const signed char SplatCsts[] = {
7397     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7398     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7399   };
7400
7401   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7402     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7403     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7404     int i = SplatCsts[idx];
7405
7406     // Figure out what shift amount will be used by altivec if shifted by i in
7407     // this splat size.
7408     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7409
7410     // vsplti + shl self.
7411     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7412       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7413       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7414         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7415         Intrinsic::ppc_altivec_vslw
7416       };
7417       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7418       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7419     }
7420
7421     // vsplti + srl self.
7422     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7423       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7424       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7425         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7426         Intrinsic::ppc_altivec_vsrw
7427       };
7428       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7429       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7430     }
7431
7432     // vsplti + sra self.
7433     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7434       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7435       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7436         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7437         Intrinsic::ppc_altivec_vsraw
7438       };
7439       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7440       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7441     }
7442
7443     // vsplti + rol self.
7444     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7445                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7446       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7447       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7448         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7449         Intrinsic::ppc_altivec_vrlw
7450       };
7451       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7452       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7453     }
7454
7455     // t = vsplti c, result = vsldoi t, t, 1
7456     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7457       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7458       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7459       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7460     }
7461     // t = vsplti c, result = vsldoi t, t, 2
7462     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7463       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7464       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7465       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7466     }
7467     // t = vsplti c, result = vsldoi t, t, 3
7468     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7469       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7470       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7471       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7472     }
7473   }
7474
7475   return SDValue();
7476 }
7477
7478 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7479 /// the specified operations to build the shuffle.
7480 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7481                                       SDValue RHS, SelectionDAG &DAG,
7482                                       const SDLoc &dl) {
7483   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7484   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7485   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7486
7487   enum {
7488     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7489     OP_VMRGHW,
7490     OP_VMRGLW,
7491     OP_VSPLTISW0,
7492     OP_VSPLTISW1,
7493     OP_VSPLTISW2,
7494     OP_VSPLTISW3,
7495     OP_VSLDOI4,
7496     OP_VSLDOI8,
7497     OP_VSLDOI12
7498   };
7499
7500   if (OpNum == OP_COPY) {
7501     if (LHSID == (1*9+2)*9+3) return LHS;
7502     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7503     return RHS;
7504   }
7505
7506   SDValue OpLHS, OpRHS;
7507   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7508   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7509
7510   int ShufIdxs[16];
7511   switch (OpNum) {
7512   default: llvm_unreachable("Unknown i32 permute!");
7513   case OP_VMRGHW:
7514     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7515     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7516     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7517     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7518     break;
7519   case OP_VMRGLW:
7520     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7521     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7522     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7523     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7524     break;
7525   case OP_VSPLTISW0:
7526     for (unsigned i = 0; i != 16; ++i)
7527       ShufIdxs[i] = (i&3)+0;
7528     break;
7529   case OP_VSPLTISW1:
7530     for (unsigned i = 0; i != 16; ++i)
7531       ShufIdxs[i] = (i&3)+4;
7532     break;
7533   case OP_VSPLTISW2:
7534     for (unsigned i = 0; i != 16; ++i)
7535       ShufIdxs[i] = (i&3)+8;
7536     break;
7537   case OP_VSPLTISW3:
7538     for (unsigned i = 0; i != 16; ++i)
7539       ShufIdxs[i] = (i&3)+12;
7540     break;
7541   case OP_VSLDOI4:
7542     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7543   case OP_VSLDOI8:
7544     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7545   case OP_VSLDOI12:
7546     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7547   }
7548   EVT VT = OpLHS.getValueType();
7549   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7550   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7551   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7552   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7553 }
7554
7555 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7556 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7557 /// return the code it can be lowered into.  Worst case, it can always be
7558 /// lowered into a vperm.
7559 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7560                                                SelectionDAG &DAG) const {
7561   SDLoc dl(Op);
7562   SDValue V1 = Op.getOperand(0);
7563   SDValue V2 = Op.getOperand(1);
7564   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7565   EVT VT = Op.getValueType();
7566   bool isLittleEndian = Subtarget.isLittleEndian();
7567
7568   unsigned ShiftElts, InsertAtByte;
7569   bool Swap;
7570   if (Subtarget.hasP9Vector() &&
7571       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
7572                            isLittleEndian)) {
7573     if (Swap)
7574       std::swap(V1, V2);
7575     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7576     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
7577     if (ShiftElts) {
7578       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
7579                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
7580       SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl,
7581                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
7582       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7583     }
7584     SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2,
7585                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
7586     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7587   }
7588
7589   if (Subtarget.hasVSX()) {
7590     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
7591       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
7592
7593       // If the source for the shuffle is a scalar_to_vector that came from a
7594       // 32-bit load, it will have used LXVWSX so we don't need to splat again.
7595       if (Subtarget.hasP9Vector() &&
7596           ((isLittleEndian && SplatIdx == 3) ||
7597            (!isLittleEndian && SplatIdx == 0))) {
7598         SDValue Src = V1.getOperand(0);
7599         if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR &&
7600             Src.getOperand(0).getOpcode() == ISD::LOAD &&
7601             Src.getOperand(0).hasOneUse())
7602           return V1;
7603       }
7604       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7605       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
7606                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
7607       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
7608     }
7609
7610     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
7611     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
7612       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7613       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
7614       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
7615     }
7616
7617   }
7618
7619   if (Subtarget.hasQPX()) {
7620     if (VT.getVectorNumElements() != 4)
7621       return SDValue();
7622
7623     if (V2.isUndef()) V2 = V1;
7624
7625     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7626     if (AlignIdx != -1) {
7627       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7628                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7629     } else if (SVOp->isSplat()) {
7630       int SplatIdx = SVOp->getSplatIndex();
7631       if (SplatIdx >= 4) {
7632         std::swap(V1, V2);
7633         SplatIdx -= 4;
7634       }
7635
7636       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7637                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7638     }
7639
7640     // Lower this into a qvgpci/qvfperm pair.
7641
7642     // Compute the qvgpci literal
7643     unsigned idx = 0;
7644     for (unsigned i = 0; i < 4; ++i) {
7645       int m = SVOp->getMaskElt(i);
7646       unsigned mm = m >= 0 ? (unsigned) m : i;
7647       idx |= mm << (3-i)*3;
7648     }
7649
7650     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7651                              DAG.getConstant(idx, dl, MVT::i32));
7652     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7653   }
7654
7655   // Cases that are handled by instructions that take permute immediates
7656   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7657   // selected by the instruction selector.
7658   if (V2.isUndef()) {
7659     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7660         PPC::isSplatShuffleMask(SVOp, 2) ||
7661         PPC::isSplatShuffleMask(SVOp, 4) ||
7662         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7663         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7664         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7665         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7666         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7667         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7668         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7669         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7670         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7671         (Subtarget.hasP8Altivec() && (
7672          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7673          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7674          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7675       return Op;
7676     }
7677   }
7678
7679   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7680   // and produce a fixed permutation.  If any of these match, do not lower to
7681   // VPERM.
7682   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7683   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7684       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7685       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7686       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7687       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7688       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7689       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7690       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7691       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7692       (Subtarget.hasP8Altivec() && (
7693        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7694        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7695        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7696     return Op;
7697
7698   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7699   // perfect shuffle table to emit an optimal matching sequence.
7700   ArrayRef<int> PermMask = SVOp->getMask();
7701
7702   unsigned PFIndexes[4];
7703   bool isFourElementShuffle = true;
7704   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7705     unsigned EltNo = 8;   // Start out undef.
7706     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7707       if (PermMask[i*4+j] < 0)
7708         continue;   // Undef, ignore it.
7709
7710       unsigned ByteSource = PermMask[i*4+j];
7711       if ((ByteSource & 3) != j) {
7712         isFourElementShuffle = false;
7713         break;
7714       }
7715
7716       if (EltNo == 8) {
7717         EltNo = ByteSource/4;
7718       } else if (EltNo != ByteSource/4) {
7719         isFourElementShuffle = false;
7720         break;
7721       }
7722     }
7723     PFIndexes[i] = EltNo;
7724   }
7725
7726   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7727   // perfect shuffle vector to determine if it is cost effective to do this as
7728   // discrete instructions, or whether we should use a vperm.
7729   // For now, we skip this for little endian until such time as we have a
7730   // little-endian perfect shuffle table.
7731   if (isFourElementShuffle && !isLittleEndian) {
7732     // Compute the index in the perfect shuffle table.
7733     unsigned PFTableIndex =
7734       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7735
7736     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7737     unsigned Cost  = (PFEntry >> 30);
7738
7739     // Determining when to avoid vperm is tricky.  Many things affect the cost
7740     // of vperm, particularly how many times the perm mask needs to be computed.
7741     // For example, if the perm mask can be hoisted out of a loop or is already
7742     // used (perhaps because there are multiple permutes with the same shuffle
7743     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7744     // the loop requires an extra register.
7745     //
7746     // As a compromise, we only emit discrete instructions if the shuffle can be
7747     // generated in 3 or fewer operations.  When we have loop information
7748     // available, if this block is within a loop, we should avoid using vperm
7749     // for 3-operation perms and use a constant pool load instead.
7750     if (Cost < 3)
7751       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7752   }
7753
7754   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7755   // vector that will get spilled to the constant pool.
7756   if (V2.isUndef()) V2 = V1;
7757
7758   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7759   // that it is in input element units, not in bytes.  Convert now.
7760
7761   // For little endian, the order of the input vectors is reversed, and
7762   // the permutation mask is complemented with respect to 31.  This is
7763   // necessary to produce proper semantics with the big-endian-biased vperm
7764   // instruction.
7765   EVT EltVT = V1.getValueType().getVectorElementType();
7766   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7767
7768   SmallVector<SDValue, 16> ResultMask;
7769   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7770     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7771
7772     for (unsigned j = 0; j != BytesPerElement; ++j)
7773       if (isLittleEndian)
7774         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7775                                              dl, MVT::i32));
7776       else
7777         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7778                                              MVT::i32));
7779   }
7780
7781   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
7782   if (isLittleEndian)
7783     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7784                        V2, V1, VPermMask);
7785   else
7786     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7787                        V1, V2, VPermMask);
7788 }
7789
7790 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7791 /// vector comparison.  If it is, return true and fill in Opc/isDot with
7792 /// information about the intrinsic.
7793 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7794                                  bool &isDot, const PPCSubtarget &Subtarget) {
7795   unsigned IntrinsicID =
7796     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7797   CompareOpc = -1;
7798   isDot = false;
7799   switch (IntrinsicID) {
7800   default: return false;
7801     // Comparison predicates.
7802   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7803   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7804   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7805   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7806   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7807   case Intrinsic::ppc_altivec_vcmpequd_p:
7808     if (Subtarget.hasP8Altivec()) {
7809       CompareOpc = 199;
7810       isDot = 1;
7811     } else
7812       return false;
7813
7814     break;
7815   case Intrinsic::ppc_altivec_vcmpneb_p:
7816   case Intrinsic::ppc_altivec_vcmpneh_p:
7817   case Intrinsic::ppc_altivec_vcmpnew_p:
7818   case Intrinsic::ppc_altivec_vcmpnezb_p:
7819   case Intrinsic::ppc_altivec_vcmpnezh_p:
7820   case Intrinsic::ppc_altivec_vcmpnezw_p:
7821     if (Subtarget.hasP9Altivec()) {
7822       switch(IntrinsicID) {
7823       default: llvm_unreachable("Unknown comparison intrinsic.");
7824       case Intrinsic::ppc_altivec_vcmpneb_p: CompareOpc = 7; break;
7825       case Intrinsic::ppc_altivec_vcmpneh_p: CompareOpc = 71; break;
7826       case Intrinsic::ppc_altivec_vcmpnew_p: CompareOpc = 135; break;
7827       case Intrinsic::ppc_altivec_vcmpnezb_p: CompareOpc = 263; break;
7828       case Intrinsic::ppc_altivec_vcmpnezh_p: CompareOpc = 327; break;
7829       case Intrinsic::ppc_altivec_vcmpnezw_p: CompareOpc = 391; break;
7830       }
7831       isDot = 1;
7832     } else
7833       return false;
7834
7835     break;
7836   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7837   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7838   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7839   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7840   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7841   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7842     if (Subtarget.hasP8Altivec()) {
7843       CompareOpc = 967;
7844       isDot = 1;
7845     } else
7846       return false;
7847
7848     break;
7849   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7850   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7851   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7852   case Intrinsic::ppc_altivec_vcmpgtud_p:
7853     if (Subtarget.hasP8Altivec()) {
7854       CompareOpc = 711;
7855       isDot = 1;
7856     } else
7857       return false;
7858
7859     break;
7860     // VSX predicate comparisons use the same infrastructure
7861   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7862   case Intrinsic::ppc_vsx_xvcmpgedp_p:
7863   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7864   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7865   case Intrinsic::ppc_vsx_xvcmpgesp_p:
7866   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7867     if (Subtarget.hasVSX()) {
7868       switch (IntrinsicID) {
7869       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
7870       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
7871       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
7872       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
7873       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
7874       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
7875       }
7876       isDot = 1;
7877     }
7878     else
7879       return false;
7880
7881     break;
7882
7883     // Normal Comparisons.
7884   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7885   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7886   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7887   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7888   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7889   case Intrinsic::ppc_altivec_vcmpequd:
7890     if (Subtarget.hasP8Altivec()) {
7891       CompareOpc = 199;
7892       isDot = 0;
7893     } else
7894       return false;
7895
7896     break;
7897   case Intrinsic::ppc_altivec_vcmpneb:
7898   case Intrinsic::ppc_altivec_vcmpneh:
7899   case Intrinsic::ppc_altivec_vcmpnew:
7900   case Intrinsic::ppc_altivec_vcmpnezb:
7901   case Intrinsic::ppc_altivec_vcmpnezh:
7902   case Intrinsic::ppc_altivec_vcmpnezw:
7903     if (Subtarget.hasP9Altivec()) {
7904       switch (IntrinsicID) {
7905       default: llvm_unreachable("Unknown comparison intrinsic.");
7906       case Intrinsic::ppc_altivec_vcmpneb: CompareOpc = 7; break;
7907       case Intrinsic::ppc_altivec_vcmpneh: CompareOpc = 71; break;
7908       case Intrinsic::ppc_altivec_vcmpnew: CompareOpc = 135; break;
7909       case Intrinsic::ppc_altivec_vcmpnezb: CompareOpc = 263; break;
7910       case Intrinsic::ppc_altivec_vcmpnezh: CompareOpc = 327; break;
7911       case Intrinsic::ppc_altivec_vcmpnezw: CompareOpc = 391; break;
7912       }
7913       isDot = 0;
7914     } else
7915       return false;
7916     break;
7917   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7918   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7919   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7920   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7921   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7922   case Intrinsic::ppc_altivec_vcmpgtsd:
7923     if (Subtarget.hasP8Altivec()) {
7924       CompareOpc = 967;
7925       isDot = 0;
7926     } else
7927       return false;
7928
7929     break;
7930   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7931   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7932   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7933   case Intrinsic::ppc_altivec_vcmpgtud:
7934     if (Subtarget.hasP8Altivec()) {
7935       CompareOpc = 711;
7936       isDot = 0;
7937     } else
7938       return false;
7939
7940     break;
7941   }
7942   return true;
7943 }
7944
7945 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7946 /// lower, do it, otherwise return null.
7947 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7948                                                    SelectionDAG &DAG) const {
7949   unsigned IntrinsicID =
7950     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7951
7952   if (IntrinsicID == Intrinsic::thread_pointer) {
7953     // Reads the thread pointer register, used for __builtin_thread_pointer.
7954     bool is64bit = Subtarget.isPPC64();
7955     return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
7956                            is64bit ? MVT::i64 : MVT::i32);
7957   }
7958
7959   // If this is a lowered altivec predicate compare, CompareOpc is set to the
7960   // opcode number of the comparison.
7961   SDLoc dl(Op);
7962   int CompareOpc;
7963   bool isDot;
7964   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
7965     return SDValue();    // Don't custom lower most intrinsics.
7966
7967   // If this is a non-dot comparison, make the VCMP node and we are done.
7968   if (!isDot) {
7969     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7970                               Op.getOperand(1), Op.getOperand(2),
7971                               DAG.getConstant(CompareOpc, dl, MVT::i32));
7972     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7973   }
7974
7975   // Create the PPCISD altivec 'dot' comparison node.
7976   SDValue Ops[] = {
7977     Op.getOperand(2),  // LHS
7978     Op.getOperand(3),  // RHS
7979     DAG.getConstant(CompareOpc, dl, MVT::i32)
7980   };
7981   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7982   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7983
7984   // Now that we have the comparison, emit a copy from the CR to a GPR.
7985   // This is flagged to the above dot comparison.
7986   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7987                                 DAG.getRegister(PPC::CR6, MVT::i32),
7988                                 CompNode.getValue(1));
7989
7990   // Unpack the result based on how the target uses it.
7991   unsigned BitNo;   // Bit # of CR6.
7992   bool InvertBit;   // Invert result?
7993   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7994   default:  // Can't happen, don't crash on invalid number though.
7995   case 0:   // Return the value of the EQ bit of CR6.
7996     BitNo = 0; InvertBit = false;
7997     break;
7998   case 1:   // Return the inverted value of the EQ bit of CR6.
7999     BitNo = 0; InvertBit = true;
8000     break;
8001   case 2:   // Return the value of the LT bit of CR6.
8002     BitNo = 2; InvertBit = false;
8003     break;
8004   case 3:   // Return the inverted value of the LT bit of CR6.
8005     BitNo = 2; InvertBit = true;
8006     break;
8007   }
8008
8009   // Shift the bit into the low position.
8010   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8011                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8012   // Isolate the bit.
8013   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8014                       DAG.getConstant(1, dl, MVT::i32));
8015
8016   // If we are supposed to, toggle the bit.
8017   if (InvertBit)
8018     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
8019                         DAG.getConstant(1, dl, MVT::i32));
8020   return Flags;
8021 }
8022
8023 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
8024                                                   SelectionDAG &DAG) const {
8025   SDLoc dl(Op);
8026   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
8027   // instructions), but for smaller types, we need to first extend up to v2i32
8028   // before doing going farther.
8029   if (Op.getValueType() == MVT::v2i64) {
8030     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
8031     if (ExtVT != MVT::v2i32) {
8032       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
8033       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
8034                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
8035                                         ExtVT.getVectorElementType(), 4)));
8036       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
8037       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
8038                        DAG.getValueType(MVT::v2i32));
8039     }
8040
8041     return Op;
8042   }
8043
8044   return SDValue();
8045 }
8046
8047 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
8048                                                    SelectionDAG &DAG) const {
8049   SDLoc dl(Op);
8050   // Create a stack slot that is 16-byte aligned.
8051   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8052   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8053   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8054   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8055
8056   // Store the input value into Value#0 of the stack slot.
8057   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8058                                MachinePointerInfo());
8059   // Load it out.
8060   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
8061 }
8062
8063 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8064                                                   SelectionDAG &DAG) const {
8065   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
8066          "Should only be called for ISD::INSERT_VECTOR_ELT");
8067   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
8068   // We have legal lowering for constant indices but not for variable ones.
8069   if (C)
8070     return Op;
8071   return SDValue();
8072 }
8073
8074 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
8075                                                    SelectionDAG &DAG) const {
8076   SDLoc dl(Op);
8077   SDNode *N = Op.getNode();
8078
8079   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
8080          "Unknown extract_vector_elt type");
8081
8082   SDValue Value = N->getOperand(0);
8083
8084   // The first part of this is like the store lowering except that we don't
8085   // need to track the chain.
8086
8087   // The values are now known to be -1 (false) or 1 (true). To convert this
8088   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8089   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8090   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8091
8092   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8093   // understand how to form the extending load.
8094   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8095
8096   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8097
8098   // Now convert to an integer and store.
8099   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8100     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8101     Value);
8102
8103   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8104   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8105   MachinePointerInfo PtrInfo =
8106       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8107   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8108   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8109
8110   SDValue StoreChain = DAG.getEntryNode();
8111   SDValue Ops[] = {StoreChain,
8112                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8113                    Value, FIdx};
8114   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8115
8116   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8117     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8118
8119   // Extract the value requested.
8120   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8121   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8122   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8123
8124   SDValue IntVal =
8125       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
8126
8127   if (!Subtarget.useCRBits())
8128     return IntVal;
8129
8130   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
8131 }
8132
8133 /// Lowering for QPX v4i1 loads
8134 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
8135                                            SelectionDAG &DAG) const {
8136   SDLoc dl(Op);
8137   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
8138   SDValue LoadChain = LN->getChain();
8139   SDValue BasePtr = LN->getBasePtr();
8140
8141   if (Op.getValueType() == MVT::v4f64 ||
8142       Op.getValueType() == MVT::v4f32) {
8143     EVT MemVT = LN->getMemoryVT();
8144     unsigned Alignment = LN->getAlignment();
8145
8146     // If this load is properly aligned, then it is legal.
8147     if (Alignment >= MemVT.getStoreSize())
8148       return Op;
8149
8150     EVT ScalarVT = Op.getValueType().getScalarType(),
8151         ScalarMemVT = MemVT.getScalarType();
8152     unsigned Stride = ScalarMemVT.getStoreSize();
8153
8154     SDValue Vals[4], LoadChains[4];
8155     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8156       SDValue Load;
8157       if (ScalarVT != ScalarMemVT)
8158         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
8159                               BasePtr,
8160                               LN->getPointerInfo().getWithOffset(Idx * Stride),
8161                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
8162                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
8163       else
8164         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
8165                            LN->getPointerInfo().getWithOffset(Idx * Stride),
8166                            MinAlign(Alignment, Idx * Stride),
8167                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
8168
8169       if (Idx == 0 && LN->isIndexed()) {
8170         assert(LN->getAddressingMode() == ISD::PRE_INC &&
8171                "Unknown addressing mode on vector load");
8172         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
8173                                   LN->getAddressingMode());
8174       }
8175
8176       Vals[Idx] = Load;
8177       LoadChains[Idx] = Load.getValue(1);
8178
8179       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8180                             DAG.getConstant(Stride, dl,
8181                                             BasePtr.getValueType()));
8182     }
8183
8184     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8185     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
8186
8187     if (LN->isIndexed()) {
8188       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
8189       return DAG.getMergeValues(RetOps, dl);
8190     }
8191
8192     SDValue RetOps[] = { Value, TF };
8193     return DAG.getMergeValues(RetOps, dl);
8194   }
8195
8196   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
8197   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
8198
8199   // To lower v4i1 from a byte array, we load the byte elements of the
8200   // vector and then reuse the BUILD_VECTOR logic.
8201
8202   SDValue VectElmts[4], VectElmtChains[4];
8203   for (unsigned i = 0; i < 4; ++i) {
8204     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8205     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8206
8207     VectElmts[i] = DAG.getExtLoad(
8208         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
8209         LN->getPointerInfo().getWithOffset(i), MVT::i8,
8210         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
8211     VectElmtChains[i] = VectElmts[i].getValue(1);
8212   }
8213
8214   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
8215   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
8216
8217   SDValue RVals[] = { Value, LoadChain };
8218   return DAG.getMergeValues(RVals, dl);
8219 }
8220
8221 /// Lowering for QPX v4i1 stores
8222 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
8223                                             SelectionDAG &DAG) const {
8224   SDLoc dl(Op);
8225   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
8226   SDValue StoreChain = SN->getChain();
8227   SDValue BasePtr = SN->getBasePtr();
8228   SDValue Value = SN->getValue();
8229
8230   if (Value.getValueType() == MVT::v4f64 ||
8231       Value.getValueType() == MVT::v4f32) {
8232     EVT MemVT = SN->getMemoryVT();
8233     unsigned Alignment = SN->getAlignment();
8234
8235     // If this store is properly aligned, then it is legal.
8236     if (Alignment >= MemVT.getStoreSize())
8237       return Op;
8238
8239     EVT ScalarVT = Value.getValueType().getScalarType(),
8240         ScalarMemVT = MemVT.getScalarType();
8241     unsigned Stride = ScalarMemVT.getStoreSize();
8242
8243     SDValue Stores[4];
8244     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8245       SDValue Ex = DAG.getNode(
8246           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
8247           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
8248       SDValue Store;
8249       if (ScalarVT != ScalarMemVT)
8250         Store =
8251             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
8252                               SN->getPointerInfo().getWithOffset(Idx * Stride),
8253                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
8254                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
8255       else
8256         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
8257                              SN->getPointerInfo().getWithOffset(Idx * Stride),
8258                              MinAlign(Alignment, Idx * Stride),
8259                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
8260
8261       if (Idx == 0 && SN->isIndexed()) {
8262         assert(SN->getAddressingMode() == ISD::PRE_INC &&
8263                "Unknown addressing mode on vector store");
8264         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
8265                                     SN->getAddressingMode());
8266       }
8267
8268       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8269                             DAG.getConstant(Stride, dl,
8270                                             BasePtr.getValueType()));
8271       Stores[Idx] = Store;
8272     }
8273
8274     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8275
8276     if (SN->isIndexed()) {
8277       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
8278       return DAG.getMergeValues(RetOps, dl);
8279     }
8280
8281     return TF;
8282   }
8283
8284   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
8285   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
8286
8287   // The values are now known to be -1 (false) or 1 (true). To convert this
8288   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8289   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8290   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8291
8292   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8293   // understand how to form the extending load.
8294   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8295
8296   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8297
8298   // Now convert to an integer and store.
8299   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8300     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8301     Value);
8302
8303   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8304   int FrameIdx = MFI.CreateStackObject(16, 16, false);
8305   MachinePointerInfo PtrInfo =
8306       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8307   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8308   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8309
8310   SDValue Ops[] = {StoreChain,
8311                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8312                    Value, FIdx};
8313   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8314
8315   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8316     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8317
8318   // Move data into the byte array.
8319   SDValue Loads[4], LoadChains[4];
8320   for (unsigned i = 0; i < 4; ++i) {
8321     unsigned Offset = 4*i;
8322     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8323     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8324
8325     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
8326                            PtrInfo.getWithOffset(Offset));
8327     LoadChains[i] = Loads[i].getValue(1);
8328   }
8329
8330   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8331
8332   SDValue Stores[4];
8333   for (unsigned i = 0; i < 4; ++i) {
8334     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8335     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8336
8337     Stores[i] = DAG.getTruncStore(
8338         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
8339         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
8340         SN->getAAInfo());
8341   }
8342
8343   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8344
8345   return StoreChain;
8346 }
8347
8348 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
8349   SDLoc dl(Op);
8350   if (Op.getValueType() == MVT::v4i32) {
8351     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8352
8353     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
8354     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
8355
8356     SDValue RHSSwap =   // = vrlw RHS, 16
8357       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
8358
8359     // Shrinkify inputs to v8i16.
8360     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
8361     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
8362     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
8363
8364     // Low parts multiplied together, generating 32-bit results (we ignore the
8365     // top parts).
8366     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
8367                                         LHS, RHS, DAG, dl, MVT::v4i32);
8368
8369     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
8370                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
8371     // Shift the high parts up 16 bits.
8372     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
8373                               Neg16, DAG, dl);
8374     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
8375   } else if (Op.getValueType() == MVT::v8i16) {
8376     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8377
8378     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
8379
8380     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
8381                             LHS, RHS, Zero, DAG, dl);
8382   } else if (Op.getValueType() == MVT::v16i8) {
8383     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8384     bool isLittleEndian = Subtarget.isLittleEndian();
8385
8386     // Multiply the even 8-bit parts, producing 16-bit sums.
8387     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
8388                                            LHS, RHS, DAG, dl, MVT::v8i16);
8389     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
8390
8391     // Multiply the odd 8-bit parts, producing 16-bit sums.
8392     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
8393                                           LHS, RHS, DAG, dl, MVT::v8i16);
8394     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
8395
8396     // Merge the results together.  Because vmuleub and vmuloub are
8397     // instructions with a big-endian bias, we must reverse the
8398     // element numbering and reverse the meaning of "odd" and "even"
8399     // when generating little endian code.
8400     int Ops[16];
8401     for (unsigned i = 0; i != 8; ++i) {
8402       if (isLittleEndian) {
8403         Ops[i*2  ] = 2*i;
8404         Ops[i*2+1] = 2*i+16;
8405       } else {
8406         Ops[i*2  ] = 2*i+1;
8407         Ops[i*2+1] = 2*i+1+16;
8408       }
8409     }
8410     if (isLittleEndian)
8411       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
8412     else
8413       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
8414   } else {
8415     llvm_unreachable("Unknown mul to lower!");
8416   }
8417 }
8418
8419 /// LowerOperation - Provide custom lowering hooks for some operations.
8420 ///
8421 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8422   switch (Op.getOpcode()) {
8423   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
8424   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8425   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8426   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8427   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8428   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8429   case ISD::SETCC:              return LowerSETCC(Op, DAG);
8430   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
8431   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
8432   case ISD::VASTART:
8433     return LowerVASTART(Op, DAG);
8434
8435   case ISD::VAARG:
8436     return LowerVAARG(Op, DAG);
8437
8438   case ISD::VACOPY:
8439     return LowerVACOPY(Op, DAG);
8440
8441   case ISD::STACKRESTORE:
8442     return LowerSTACKRESTORE(Op, DAG);
8443
8444   case ISD::DYNAMIC_STACKALLOC:
8445     return LowerDYNAMIC_STACKALLOC(Op, DAG);
8446
8447   case ISD::GET_DYNAMIC_AREA_OFFSET:
8448     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
8449
8450   case ISD::EH_DWARF_CFA:
8451     return LowerEH_DWARF_CFA(Op, DAG);
8452
8453   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
8454   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
8455
8456   case ISD::LOAD:               return LowerLOAD(Op, DAG);
8457   case ISD::STORE:              return LowerSTORE(Op, DAG);
8458   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
8459   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
8460   case ISD::FP_TO_UINT:
8461   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
8462                                                       SDLoc(Op));
8463   case ISD::UINT_TO_FP:
8464   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
8465   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8466
8467   // Lower 64-bit shifts.
8468   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
8469   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
8470   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
8471
8472   // Vector-related lowering.
8473   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8474   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8475   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8476   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8477   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
8478   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8479   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8480   case ISD::MUL:                return LowerMUL(Op, DAG);
8481
8482   // For counter-based loop handling.
8483   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
8484
8485   // Frame & Return address.
8486   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8487   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8488   }
8489 }
8490
8491 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
8492                                            SmallVectorImpl<SDValue>&Results,
8493                                            SelectionDAG &DAG) const {
8494   SDLoc dl(N);
8495   switch (N->getOpcode()) {
8496   default:
8497     llvm_unreachable("Do not know how to custom type legalize this operation!");
8498   case ISD::READCYCLECOUNTER: {
8499     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8500     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
8501
8502     Results.push_back(RTB);
8503     Results.push_back(RTB.getValue(1));
8504     Results.push_back(RTB.getValue(2));
8505     break;
8506   }
8507   case ISD::INTRINSIC_W_CHAIN: {
8508     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8509         Intrinsic::ppc_is_decremented_ctr_nonzero)
8510       break;
8511
8512     assert(N->getValueType(0) == MVT::i1 &&
8513            "Unexpected result type for CTR decrement intrinsic");
8514     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8515                                  N->getValueType(0));
8516     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8517     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8518                                  N->getOperand(1));
8519
8520     Results.push_back(NewInt);
8521     Results.push_back(NewInt.getValue(1));
8522     break;
8523   }
8524   case ISD::VAARG: {
8525     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8526       return;
8527
8528     EVT VT = N->getValueType(0);
8529
8530     if (VT == MVT::i64) {
8531       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
8532
8533       Results.push_back(NewNode);
8534       Results.push_back(NewNode.getValue(1));
8535     }
8536     return;
8537   }
8538   case ISD::FP_ROUND_INREG: {
8539     assert(N->getValueType(0) == MVT::ppcf128);
8540     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8541     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8542                              MVT::f64, N->getOperand(0),
8543                              DAG.getIntPtrConstant(0, dl));
8544     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8545                              MVT::f64, N->getOperand(0),
8546                              DAG.getIntPtrConstant(1, dl));
8547
8548     // Add the two halves of the long double in round-to-zero mode.
8549     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8550
8551     // We know the low half is about to be thrown away, so just use something
8552     // convenient.
8553     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8554                                 FPreg, FPreg));
8555     return;
8556   }
8557   case ISD::FP_TO_SINT:
8558   case ISD::FP_TO_UINT:
8559     // LowerFP_TO_INT() can only handle f32 and f64.
8560     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8561       return;
8562     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8563     return;
8564   }
8565 }
8566
8567 //===----------------------------------------------------------------------===//
8568 //  Other Lowering Code
8569 //===----------------------------------------------------------------------===//
8570
8571 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8572   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8573   Function *Func = Intrinsic::getDeclaration(M, Id);
8574   return Builder.CreateCall(Func, {});
8575 }
8576
8577 // The mappings for emitLeading/TrailingFence is taken from
8578 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
8579 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8580                                          AtomicOrdering Ord, bool IsStore,
8581                                          bool IsLoad) const {
8582   if (Ord == AtomicOrdering::SequentiallyConsistent)
8583     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8584   if (isReleaseOrStronger(Ord))
8585     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8586   return nullptr;
8587 }
8588
8589 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8590                                           AtomicOrdering Ord, bool IsStore,
8591                                           bool IsLoad) const {
8592   if (IsLoad && isAcquireOrStronger(Ord))
8593     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8594   // FIXME: this is too conservative, a dependent branch + isync is enough.
8595   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8596   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8597   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8598   return nullptr;
8599 }
8600
8601 MachineBasicBlock *
8602 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
8603                                     unsigned AtomicSize,
8604                                     unsigned BinOpcode,
8605                                     unsigned CmpOpcode,
8606                                     unsigned CmpPred) const {
8607   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8608   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8609
8610   auto LoadMnemonic = PPC::LDARX;
8611   auto StoreMnemonic = PPC::STDCX;
8612   switch (AtomicSize) {
8613   default:
8614     llvm_unreachable("Unexpected size of atomic entity");
8615   case 1:
8616     LoadMnemonic = PPC::LBARX;
8617     StoreMnemonic = PPC::STBCX;
8618     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8619     break;
8620   case 2:
8621     LoadMnemonic = PPC::LHARX;
8622     StoreMnemonic = PPC::STHCX;
8623     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8624     break;
8625   case 4:
8626     LoadMnemonic = PPC::LWARX;
8627     StoreMnemonic = PPC::STWCX;
8628     break;
8629   case 8:
8630     LoadMnemonic = PPC::LDARX;
8631     StoreMnemonic = PPC::STDCX;
8632     break;
8633   }
8634
8635   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8636   MachineFunction *F = BB->getParent();
8637   MachineFunction::iterator It = ++BB->getIterator();
8638
8639   unsigned dest = MI.getOperand(0).getReg();
8640   unsigned ptrA = MI.getOperand(1).getReg();
8641   unsigned ptrB = MI.getOperand(2).getReg();
8642   unsigned incr = MI.getOperand(3).getReg();
8643   DebugLoc dl = MI.getDebugLoc();
8644
8645   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8646   MachineBasicBlock *loop2MBB =
8647     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
8648   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8649   F->insert(It, loopMBB);
8650   if (CmpOpcode)
8651     F->insert(It, loop2MBB);
8652   F->insert(It, exitMBB);
8653   exitMBB->splice(exitMBB->begin(), BB,
8654                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8655   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8656
8657   MachineRegisterInfo &RegInfo = F->getRegInfo();
8658   unsigned TmpReg = (!BinOpcode) ? incr :
8659     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8660                                            : &PPC::GPRCRegClass);
8661
8662   //  thisMBB:
8663   //   ...
8664   //   fallthrough --> loopMBB
8665   BB->addSuccessor(loopMBB);
8666
8667   //  loopMBB:
8668   //   l[wd]arx dest, ptr
8669   //   add r0, dest, incr
8670   //   st[wd]cx. r0, ptr
8671   //   bne- loopMBB
8672   //   fallthrough --> exitMBB
8673
8674   // For max/min...
8675   //  loopMBB:
8676   //   l[wd]arx dest, ptr
8677   //   cmpl?[wd] incr, dest
8678   //   bgt exitMBB
8679   //  loop2MBB:
8680   //   st[wd]cx. dest, ptr
8681   //   bne- loopMBB
8682   //   fallthrough --> exitMBB
8683
8684   BB = loopMBB;
8685   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8686     .addReg(ptrA).addReg(ptrB);
8687   if (BinOpcode)
8688     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8689   if (CmpOpcode) {
8690     // Signed comparisons of byte or halfword values must be sign-extended.
8691     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
8692       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
8693       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
8694               ExtReg).addReg(dest);
8695       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
8696         .addReg(incr).addReg(ExtReg);
8697     } else
8698       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
8699         .addReg(incr).addReg(dest);
8700
8701     BuildMI(BB, dl, TII->get(PPC::BCC))
8702       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
8703     BB->addSuccessor(loop2MBB);
8704     BB->addSuccessor(exitMBB);
8705     BB = loop2MBB;
8706   }
8707   BuildMI(BB, dl, TII->get(StoreMnemonic))
8708     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8709   BuildMI(BB, dl, TII->get(PPC::BCC))
8710     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8711   BB->addSuccessor(loopMBB);
8712   BB->addSuccessor(exitMBB);
8713
8714   //  exitMBB:
8715   //   ...
8716   BB = exitMBB;
8717   return BB;
8718 }
8719
8720 MachineBasicBlock *
8721 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
8722                                             MachineBasicBlock *BB,
8723                                             bool is8bit, // operation
8724                                             unsigned BinOpcode,
8725                                             unsigned CmpOpcode,
8726                                             unsigned CmpPred) const {
8727   // If we support part-word atomic mnemonics, just use them
8728   if (Subtarget.hasPartwordAtomics())
8729     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
8730                             CmpOpcode, CmpPred);
8731
8732   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8733   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8734   // In 64 bit mode we have to use 64 bits for addresses, even though the
8735   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8736   // registers without caring whether they're 32 or 64, but here we're
8737   // doing actual arithmetic on the addresses.
8738   bool is64bit = Subtarget.isPPC64();
8739   bool isLittleEndian = Subtarget.isLittleEndian();
8740   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8741
8742   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8743   MachineFunction *F = BB->getParent();
8744   MachineFunction::iterator It = ++BB->getIterator();
8745
8746   unsigned dest = MI.getOperand(0).getReg();
8747   unsigned ptrA = MI.getOperand(1).getReg();
8748   unsigned ptrB = MI.getOperand(2).getReg();
8749   unsigned incr = MI.getOperand(3).getReg();
8750   DebugLoc dl = MI.getDebugLoc();
8751
8752   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8753   MachineBasicBlock *loop2MBB =
8754     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
8755   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8756   F->insert(It, loopMBB);
8757   if (CmpOpcode)
8758     F->insert(It, loop2MBB);
8759   F->insert(It, exitMBB);
8760   exitMBB->splice(exitMBB->begin(), BB,
8761                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8762   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8763
8764   MachineRegisterInfo &RegInfo = F->getRegInfo();
8765   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8766                                           : &PPC::GPRCRegClass;
8767   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8768   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8769   unsigned ShiftReg =
8770     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
8771   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8772   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8773   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8774   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8775   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8776   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8777   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8778   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8779   unsigned Ptr1Reg;
8780   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8781
8782   //  thisMBB:
8783   //   ...
8784   //   fallthrough --> loopMBB
8785   BB->addSuccessor(loopMBB);
8786
8787   // The 4-byte load must be aligned, while a char or short may be
8788   // anywhere in the word.  Hence all this nasty bookkeeping code.
8789   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8790   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8791   //   xori shift, shift1, 24 [16]
8792   //   rlwinm ptr, ptr1, 0, 0, 29
8793   //   slw incr2, incr, shift
8794   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8795   //   slw mask, mask2, shift
8796   //  loopMBB:
8797   //   lwarx tmpDest, ptr
8798   //   add tmp, tmpDest, incr2
8799   //   andc tmp2, tmpDest, mask
8800   //   and tmp3, tmp, mask
8801   //   or tmp4, tmp3, tmp2
8802   //   stwcx. tmp4, ptr
8803   //   bne- loopMBB
8804   //   fallthrough --> exitMBB
8805   //   srw dest, tmpDest, shift
8806   if (ptrA != ZeroReg) {
8807     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8808     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8809       .addReg(ptrA).addReg(ptrB);
8810   } else {
8811     Ptr1Reg = ptrB;
8812   }
8813   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8814       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8815   if (!isLittleEndian)
8816     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8817         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8818   if (is64bit)
8819     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8820       .addReg(Ptr1Reg).addImm(0).addImm(61);
8821   else
8822     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8823       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8824   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8825       .addReg(incr).addReg(ShiftReg);
8826   if (is8bit)
8827     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8828   else {
8829     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8830     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8831   }
8832   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8833       .addReg(Mask2Reg).addReg(ShiftReg);
8834
8835   BB = loopMBB;
8836   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8837     .addReg(ZeroReg).addReg(PtrReg);
8838   if (BinOpcode)
8839     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8840       .addReg(Incr2Reg).addReg(TmpDestReg);
8841   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8842     .addReg(TmpDestReg).addReg(MaskReg);
8843   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8844     .addReg(TmpReg).addReg(MaskReg);
8845   if (CmpOpcode) {
8846     // For unsigned comparisons, we can directly compare the shifted values.
8847     // For signed comparisons we shift and sign extend.
8848     unsigned SReg = RegInfo.createVirtualRegister(RC);
8849     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
8850       .addReg(TmpDestReg).addReg(MaskReg);
8851     unsigned ValueReg = SReg;
8852     unsigned CmpReg = Incr2Reg;
8853     if (CmpOpcode == PPC::CMPW) {
8854       ValueReg = RegInfo.createVirtualRegister(RC);
8855       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
8856         .addReg(SReg).addReg(ShiftReg);
8857       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
8858       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
8859         .addReg(ValueReg);
8860       ValueReg = ValueSReg;
8861       CmpReg = incr;
8862     }
8863     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
8864       .addReg(CmpReg).addReg(ValueReg);
8865     BuildMI(BB, dl, TII->get(PPC::BCC))
8866       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
8867     BB->addSuccessor(loop2MBB);
8868     BB->addSuccessor(exitMBB);
8869     BB = loop2MBB;
8870   }
8871   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8872     .addReg(Tmp3Reg).addReg(Tmp2Reg);
8873   BuildMI(BB, dl, TII->get(PPC::STWCX))
8874     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8875   BuildMI(BB, dl, TII->get(PPC::BCC))
8876     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8877   BB->addSuccessor(loopMBB);
8878   BB->addSuccessor(exitMBB);
8879
8880   //  exitMBB:
8881   //   ...
8882   BB = exitMBB;
8883   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8884     .addReg(ShiftReg);
8885   return BB;
8886 }
8887
8888 llvm::MachineBasicBlock *
8889 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
8890                                     MachineBasicBlock *MBB) const {
8891   DebugLoc DL = MI.getDebugLoc();
8892   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8893
8894   MachineFunction *MF = MBB->getParent();
8895   MachineRegisterInfo &MRI = MF->getRegInfo();
8896
8897   const BasicBlock *BB = MBB->getBasicBlock();
8898   MachineFunction::iterator I = ++MBB->getIterator();
8899
8900   // Memory Reference
8901   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
8902   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
8903
8904   unsigned DstReg = MI.getOperand(0).getReg();
8905   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8906   assert(RC->hasType(MVT::i32) && "Invalid destination!");
8907   unsigned mainDstReg = MRI.createVirtualRegister(RC);
8908   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8909
8910   MVT PVT = getPointerTy(MF->getDataLayout());
8911   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8912          "Invalid Pointer Size!");
8913   // For v = setjmp(buf), we generate
8914   //
8915   // thisMBB:
8916   //  SjLjSetup mainMBB
8917   //  bl mainMBB
8918   //  v_restore = 1
8919   //  b sinkMBB
8920   //
8921   // mainMBB:
8922   //  buf[LabelOffset] = LR
8923   //  v_main = 0
8924   //
8925   // sinkMBB:
8926   //  v = phi(main, restore)
8927   //
8928
8929   MachineBasicBlock *thisMBB = MBB;
8930   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8931   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8932   MF->insert(I, mainMBB);
8933   MF->insert(I, sinkMBB);
8934
8935   MachineInstrBuilder MIB;
8936
8937   // Transfer the remainder of BB and its successor edges to sinkMBB.
8938   sinkMBB->splice(sinkMBB->begin(), MBB,
8939                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8940   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8941
8942   // Note that the structure of the jmp_buf used here is not compatible
8943   // with that used by libc, and is not designed to be. Specifically, it
8944   // stores only those 'reserved' registers that LLVM does not otherwise
8945   // understand how to spill. Also, by convention, by the time this
8946   // intrinsic is called, Clang has already stored the frame address in the
8947   // first slot of the buffer and stack address in the third. Following the
8948   // X86 target code, we'll store the jump address in the second slot. We also
8949   // need to save the TOC pointer (R2) to handle jumps between shared
8950   // libraries, and that will be stored in the fourth slot. The thread
8951   // identifier (R13) is not affected.
8952
8953   // thisMBB:
8954   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8955   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8956   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8957
8958   // Prepare IP either in reg.
8959   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8960   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8961   unsigned BufReg = MI.getOperand(1).getReg();
8962
8963   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8964     setUsesTOCBasePtr(*MBB->getParent());
8965     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8966             .addReg(PPC::X2)
8967             .addImm(TOCOffset)
8968             .addReg(BufReg);
8969     MIB.setMemRefs(MMOBegin, MMOEnd);
8970   }
8971
8972   // Naked functions never have a base pointer, and so we use r1. For all
8973   // other functions, this decision must be delayed until during PEI.
8974   unsigned BaseReg;
8975   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8976     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8977   else
8978     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8979
8980   MIB = BuildMI(*thisMBB, MI, DL,
8981                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8982             .addReg(BaseReg)
8983             .addImm(BPOffset)
8984             .addReg(BufReg);
8985   MIB.setMemRefs(MMOBegin, MMOEnd);
8986
8987   // Setup
8988   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8989   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8990   MIB.addRegMask(TRI->getNoPreservedMask());
8991
8992   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8993
8994   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8995           .addMBB(mainMBB);
8996   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8997
8998   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
8999   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
9000
9001   // mainMBB:
9002   //  mainDstReg = 0
9003   MIB =
9004       BuildMI(mainMBB, DL,
9005               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
9006
9007   // Store IP
9008   if (Subtarget.isPPC64()) {
9009     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
9010             .addReg(LabelReg)
9011             .addImm(LabelOffset)
9012             .addReg(BufReg);
9013   } else {
9014     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
9015             .addReg(LabelReg)
9016             .addImm(LabelOffset)
9017             .addReg(BufReg);
9018   }
9019
9020   MIB.setMemRefs(MMOBegin, MMOEnd);
9021
9022   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
9023   mainMBB->addSuccessor(sinkMBB);
9024
9025   // sinkMBB:
9026   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9027           TII->get(PPC::PHI), DstReg)
9028     .addReg(mainDstReg).addMBB(mainMBB)
9029     .addReg(restoreDstReg).addMBB(thisMBB);
9030
9031   MI.eraseFromParent();
9032   return sinkMBB;
9033 }
9034
9035 MachineBasicBlock *
9036 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
9037                                      MachineBasicBlock *MBB) const {
9038   DebugLoc DL = MI.getDebugLoc();
9039   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9040
9041   MachineFunction *MF = MBB->getParent();
9042   MachineRegisterInfo &MRI = MF->getRegInfo();
9043
9044   // Memory Reference
9045   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9046   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9047
9048   MVT PVT = getPointerTy(MF->getDataLayout());
9049   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9050          "Invalid Pointer Size!");
9051
9052   const TargetRegisterClass *RC =
9053     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9054   unsigned Tmp = MRI.createVirtualRegister(RC);
9055   // Since FP is only updated here but NOT referenced, it's treated as GPR.
9056   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
9057   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
9058   unsigned BP =
9059       (PVT == MVT::i64)
9060           ? PPC::X30
9061           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
9062                                                               : PPC::R30);
9063
9064   MachineInstrBuilder MIB;
9065
9066   const int64_t LabelOffset = 1 * PVT.getStoreSize();
9067   const int64_t SPOffset    = 2 * PVT.getStoreSize();
9068   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
9069   const int64_t BPOffset    = 4 * PVT.getStoreSize();
9070
9071   unsigned BufReg = MI.getOperand(0).getReg();
9072
9073   // Reload FP (the jumped-to function may not have had a
9074   // frame pointer, and if so, then its r31 will be restored
9075   // as necessary).
9076   if (PVT == MVT::i64) {
9077     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
9078             .addImm(0)
9079             .addReg(BufReg);
9080   } else {
9081     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
9082             .addImm(0)
9083             .addReg(BufReg);
9084   }
9085   MIB.setMemRefs(MMOBegin, MMOEnd);
9086
9087   // Reload IP
9088   if (PVT == MVT::i64) {
9089     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
9090             .addImm(LabelOffset)
9091             .addReg(BufReg);
9092   } else {
9093     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
9094             .addImm(LabelOffset)
9095             .addReg(BufReg);
9096   }
9097   MIB.setMemRefs(MMOBegin, MMOEnd);
9098
9099   // Reload SP
9100   if (PVT == MVT::i64) {
9101     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
9102             .addImm(SPOffset)
9103             .addReg(BufReg);
9104   } else {
9105     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
9106             .addImm(SPOffset)
9107             .addReg(BufReg);
9108   }
9109   MIB.setMemRefs(MMOBegin, MMOEnd);
9110
9111   // Reload BP
9112   if (PVT == MVT::i64) {
9113     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
9114             .addImm(BPOffset)
9115             .addReg(BufReg);
9116   } else {
9117     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
9118             .addImm(BPOffset)
9119             .addReg(BufReg);
9120   }
9121   MIB.setMemRefs(MMOBegin, MMOEnd);
9122
9123   // Reload TOC
9124   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
9125     setUsesTOCBasePtr(*MBB->getParent());
9126     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
9127             .addImm(TOCOffset)
9128             .addReg(BufReg);
9129
9130     MIB.setMemRefs(MMOBegin, MMOEnd);
9131   }
9132
9133   // Jump
9134   BuildMI(*MBB, MI, DL,
9135           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
9136   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
9137
9138   MI.eraseFromParent();
9139   return MBB;
9140 }
9141
9142 MachineBasicBlock *
9143 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9144                                                MachineBasicBlock *BB) const {
9145   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
9146       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
9147     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
9148         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
9149       // Call lowering should have added an r2 operand to indicate a dependence
9150       // on the TOC base pointer value. It can't however, because there is no
9151       // way to mark the dependence as implicit there, and so the stackmap code
9152       // will confuse it with a regular operand. Instead, add the dependence
9153       // here.
9154       setUsesTOCBasePtr(*BB->getParent());
9155       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
9156     }
9157
9158     return emitPatchPoint(MI, BB);
9159   }
9160
9161   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
9162       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
9163     return emitEHSjLjSetJmp(MI, BB);
9164   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
9165              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
9166     return emitEHSjLjLongJmp(MI, BB);
9167   }
9168
9169   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9170
9171   // To "insert" these instructions we actually have to insert their
9172   // control-flow patterns.
9173   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9174   MachineFunction::iterator It = ++BB->getIterator();
9175
9176   MachineFunction *F = BB->getParent();
9177
9178   if (Subtarget.hasISEL() &&
9179       (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9180        MI.getOpcode() == PPC::SELECT_CC_I8 ||
9181        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) {
9182     SmallVector<MachineOperand, 2> Cond;
9183     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9184         MI.getOpcode() == PPC::SELECT_CC_I8)
9185       Cond.push_back(MI.getOperand(4));
9186     else
9187       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
9188     Cond.push_back(MI.getOperand(1));
9189
9190     DebugLoc dl = MI.getDebugLoc();
9191     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
9192                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
9193   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
9194              MI.getOpcode() == PPC::SELECT_CC_I8 ||
9195              MI.getOpcode() == PPC::SELECT_CC_F4 ||
9196              MI.getOpcode() == PPC::SELECT_CC_F8 ||
9197              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
9198              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
9199              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
9200              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
9201              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
9202              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
9203              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
9204              MI.getOpcode() == PPC::SELECT_I4 ||
9205              MI.getOpcode() == PPC::SELECT_I8 ||
9206              MI.getOpcode() == PPC::SELECT_F4 ||
9207              MI.getOpcode() == PPC::SELECT_F8 ||
9208              MI.getOpcode() == PPC::SELECT_QFRC ||
9209              MI.getOpcode() == PPC::SELECT_QSRC ||
9210              MI.getOpcode() == PPC::SELECT_QBRC ||
9211              MI.getOpcode() == PPC::SELECT_VRRC ||
9212              MI.getOpcode() == PPC::SELECT_VSFRC ||
9213              MI.getOpcode() == PPC::SELECT_VSSRC ||
9214              MI.getOpcode() == PPC::SELECT_VSRC) {
9215     // The incoming instruction knows the destination vreg to set, the
9216     // condition code register to branch on, the true/false values to
9217     // select between, and a branch opcode to use.
9218
9219     //  thisMBB:
9220     //  ...
9221     //   TrueVal = ...
9222     //   cmpTY ccX, r1, r2
9223     //   bCC copy1MBB
9224     //   fallthrough --> copy0MBB
9225     MachineBasicBlock *thisMBB = BB;
9226     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9227     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9228     DebugLoc dl = MI.getDebugLoc();
9229     F->insert(It, copy0MBB);
9230     F->insert(It, sinkMBB);
9231
9232     // Transfer the remainder of BB and its successor edges to sinkMBB.
9233     sinkMBB->splice(sinkMBB->begin(), BB,
9234                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9235     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9236
9237     // Next, add the true and fallthrough blocks as its successors.
9238     BB->addSuccessor(copy0MBB);
9239     BB->addSuccessor(sinkMBB);
9240
9241     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
9242         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
9243         MI.getOpcode() == PPC::SELECT_QFRC ||
9244         MI.getOpcode() == PPC::SELECT_QSRC ||
9245         MI.getOpcode() == PPC::SELECT_QBRC ||
9246         MI.getOpcode() == PPC::SELECT_VRRC ||
9247         MI.getOpcode() == PPC::SELECT_VSFRC ||
9248         MI.getOpcode() == PPC::SELECT_VSSRC ||
9249         MI.getOpcode() == PPC::SELECT_VSRC) {
9250       BuildMI(BB, dl, TII->get(PPC::BC))
9251           .addReg(MI.getOperand(1).getReg())
9252           .addMBB(sinkMBB);
9253     } else {
9254       unsigned SelectPred = MI.getOperand(4).getImm();
9255       BuildMI(BB, dl, TII->get(PPC::BCC))
9256           .addImm(SelectPred)
9257           .addReg(MI.getOperand(1).getReg())
9258           .addMBB(sinkMBB);
9259     }
9260
9261     //  copy0MBB:
9262     //   %FalseValue = ...
9263     //   # fallthrough to sinkMBB
9264     BB = copy0MBB;
9265
9266     // Update machine-CFG edges
9267     BB->addSuccessor(sinkMBB);
9268
9269     //  sinkMBB:
9270     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9271     //  ...
9272     BB = sinkMBB;
9273     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
9274         .addReg(MI.getOperand(3).getReg())
9275         .addMBB(copy0MBB)
9276         .addReg(MI.getOperand(2).getReg())
9277         .addMBB(thisMBB);
9278   } else if (MI.getOpcode() == PPC::ReadTB) {
9279     // To read the 64-bit time-base register on a 32-bit target, we read the
9280     // two halves. Should the counter have wrapped while it was being read, we
9281     // need to try again.
9282     // ...
9283     // readLoop:
9284     // mfspr Rx,TBU # load from TBU
9285     // mfspr Ry,TB  # load from TB
9286     // mfspr Rz,TBU # load from TBU
9287     // cmpw crX,Rx,Rz # check if 'old'='new'
9288     // bne readLoop   # branch if they're not equal
9289     // ...
9290
9291     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
9292     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9293     DebugLoc dl = MI.getDebugLoc();
9294     F->insert(It, readMBB);
9295     F->insert(It, sinkMBB);
9296
9297     // Transfer the remainder of BB and its successor edges to sinkMBB.
9298     sinkMBB->splice(sinkMBB->begin(), BB,
9299                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9300     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9301
9302     BB->addSuccessor(readMBB);
9303     BB = readMBB;
9304
9305     MachineRegisterInfo &RegInfo = F->getRegInfo();
9306     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9307     unsigned LoReg = MI.getOperand(0).getReg();
9308     unsigned HiReg = MI.getOperand(1).getReg();
9309
9310     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
9311     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
9312     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
9313
9314     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9315
9316     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
9317       .addReg(HiReg).addReg(ReadAgainReg);
9318     BuildMI(BB, dl, TII->get(PPC::BCC))
9319       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
9320
9321     BB->addSuccessor(readMBB);
9322     BB->addSuccessor(sinkMBB);
9323   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
9324     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
9325   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
9326     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
9327   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
9328     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
9329   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
9330     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
9331
9332   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
9333     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
9334   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
9335     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
9336   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
9337     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
9338   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
9339     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
9340
9341   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
9342     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
9343   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
9344     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
9345   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
9346     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
9347   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
9348     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
9349
9350   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
9351     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
9352   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
9353     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
9354   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
9355     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
9356   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
9357     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
9358
9359   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
9360     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
9361   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
9362     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
9363   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
9364     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
9365   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
9366     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
9367
9368   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
9369     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
9370   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
9371     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
9372   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
9373     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
9374   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
9375     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
9376
9377   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
9378     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
9379   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
9380     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
9381   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
9382     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
9383   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
9384     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
9385
9386   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
9387     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
9388   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
9389     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
9390   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
9391     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
9392   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
9393     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
9394
9395   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
9396     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
9397   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
9398     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
9399   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
9400     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
9401   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
9402     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
9403
9404   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
9405     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
9406   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
9407     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
9408   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
9409     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
9410   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
9411     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
9412
9413   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
9414     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
9415   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
9416     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
9417   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
9418     BB = EmitAtomicBinary(MI, BB, 4, 0);
9419   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
9420     BB = EmitAtomicBinary(MI, BB, 8, 0);
9421
9422   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
9423            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
9424            (Subtarget.hasPartwordAtomics() &&
9425             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
9426            (Subtarget.hasPartwordAtomics() &&
9427             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
9428     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
9429
9430     auto LoadMnemonic = PPC::LDARX;
9431     auto StoreMnemonic = PPC::STDCX;
9432     switch (MI.getOpcode()) {
9433     default:
9434       llvm_unreachable("Compare and swap of unknown size");
9435     case PPC::ATOMIC_CMP_SWAP_I8:
9436       LoadMnemonic = PPC::LBARX;
9437       StoreMnemonic = PPC::STBCX;
9438       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9439       break;
9440     case PPC::ATOMIC_CMP_SWAP_I16:
9441       LoadMnemonic = PPC::LHARX;
9442       StoreMnemonic = PPC::STHCX;
9443       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9444       break;
9445     case PPC::ATOMIC_CMP_SWAP_I32:
9446       LoadMnemonic = PPC::LWARX;
9447       StoreMnemonic = PPC::STWCX;
9448       break;
9449     case PPC::ATOMIC_CMP_SWAP_I64:
9450       LoadMnemonic = PPC::LDARX;
9451       StoreMnemonic = PPC::STDCX;
9452       break;
9453     }
9454     unsigned dest = MI.getOperand(0).getReg();
9455     unsigned ptrA = MI.getOperand(1).getReg();
9456     unsigned ptrB = MI.getOperand(2).getReg();
9457     unsigned oldval = MI.getOperand(3).getReg();
9458     unsigned newval = MI.getOperand(4).getReg();
9459     DebugLoc dl = MI.getDebugLoc();
9460
9461     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9462     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9463     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9464     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9465     F->insert(It, loop1MBB);
9466     F->insert(It, loop2MBB);
9467     F->insert(It, midMBB);
9468     F->insert(It, exitMBB);
9469     exitMBB->splice(exitMBB->begin(), BB,
9470                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9471     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9472
9473     //  thisMBB:
9474     //   ...
9475     //   fallthrough --> loopMBB
9476     BB->addSuccessor(loop1MBB);
9477
9478     // loop1MBB:
9479     //   l[bhwd]arx dest, ptr
9480     //   cmp[wd] dest, oldval
9481     //   bne- midMBB
9482     // loop2MBB:
9483     //   st[bhwd]cx. newval, ptr
9484     //   bne- loopMBB
9485     //   b exitBB
9486     // midMBB:
9487     //   st[bhwd]cx. dest, ptr
9488     // exitBB:
9489     BB = loop1MBB;
9490     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9491       .addReg(ptrA).addReg(ptrB);
9492     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
9493       .addReg(oldval).addReg(dest);
9494     BuildMI(BB, dl, TII->get(PPC::BCC))
9495       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9496     BB->addSuccessor(loop2MBB);
9497     BB->addSuccessor(midMBB);
9498
9499     BB = loop2MBB;
9500     BuildMI(BB, dl, TII->get(StoreMnemonic))
9501       .addReg(newval).addReg(ptrA).addReg(ptrB);
9502     BuildMI(BB, dl, TII->get(PPC::BCC))
9503       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9504     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9505     BB->addSuccessor(loop1MBB);
9506     BB->addSuccessor(exitMBB);
9507
9508     BB = midMBB;
9509     BuildMI(BB, dl, TII->get(StoreMnemonic))
9510       .addReg(dest).addReg(ptrA).addReg(ptrB);
9511     BB->addSuccessor(exitMBB);
9512
9513     //  exitMBB:
9514     //   ...
9515     BB = exitMBB;
9516   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
9517              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
9518     // We must use 64-bit registers for addresses when targeting 64-bit,
9519     // since we're actually doing arithmetic on them.  Other registers
9520     // can be 32-bit.
9521     bool is64bit = Subtarget.isPPC64();
9522     bool isLittleEndian = Subtarget.isLittleEndian();
9523     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
9524
9525     unsigned dest = MI.getOperand(0).getReg();
9526     unsigned ptrA = MI.getOperand(1).getReg();
9527     unsigned ptrB = MI.getOperand(2).getReg();
9528     unsigned oldval = MI.getOperand(3).getReg();
9529     unsigned newval = MI.getOperand(4).getReg();
9530     DebugLoc dl = MI.getDebugLoc();
9531
9532     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9533     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9534     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9535     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9536     F->insert(It, loop1MBB);
9537     F->insert(It, loop2MBB);
9538     F->insert(It, midMBB);
9539     F->insert(It, exitMBB);
9540     exitMBB->splice(exitMBB->begin(), BB,
9541                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9542     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9543
9544     MachineRegisterInfo &RegInfo = F->getRegInfo();
9545     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9546                                             : &PPC::GPRCRegClass;
9547     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9548     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9549     unsigned ShiftReg =
9550       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9551     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
9552     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
9553     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
9554     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
9555     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9556     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9557     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9558     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9559     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9560     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9561     unsigned Ptr1Reg;
9562     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
9563     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9564     //  thisMBB:
9565     //   ...
9566     //   fallthrough --> loopMBB
9567     BB->addSuccessor(loop1MBB);
9568
9569     // The 4-byte load must be aligned, while a char or short may be
9570     // anywhere in the word.  Hence all this nasty bookkeeping code.
9571     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9572     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9573     //   xori shift, shift1, 24 [16]
9574     //   rlwinm ptr, ptr1, 0, 0, 29
9575     //   slw newval2, newval, shift
9576     //   slw oldval2, oldval,shift
9577     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9578     //   slw mask, mask2, shift
9579     //   and newval3, newval2, mask
9580     //   and oldval3, oldval2, mask
9581     // loop1MBB:
9582     //   lwarx tmpDest, ptr
9583     //   and tmp, tmpDest, mask
9584     //   cmpw tmp, oldval3
9585     //   bne- midMBB
9586     // loop2MBB:
9587     //   andc tmp2, tmpDest, mask
9588     //   or tmp4, tmp2, newval3
9589     //   stwcx. tmp4, ptr
9590     //   bne- loop1MBB
9591     //   b exitBB
9592     // midMBB:
9593     //   stwcx. tmpDest, ptr
9594     // exitBB:
9595     //   srw dest, tmpDest, shift
9596     if (ptrA != ZeroReg) {
9597       Ptr1Reg = RegInfo.createVirtualRegister(RC);
9598       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9599         .addReg(ptrA).addReg(ptrB);
9600     } else {
9601       Ptr1Reg = ptrB;
9602     }
9603     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9604         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9605     if (!isLittleEndian)
9606       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9607           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9608     if (is64bit)
9609       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9610         .addReg(Ptr1Reg).addImm(0).addImm(61);
9611     else
9612       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9613         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9614     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9615         .addReg(newval).addReg(ShiftReg);
9616     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9617         .addReg(oldval).addReg(ShiftReg);
9618     if (is8bit)
9619       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9620     else {
9621       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9622       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9623         .addReg(Mask3Reg).addImm(65535);
9624     }
9625     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9626         .addReg(Mask2Reg).addReg(ShiftReg);
9627     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9628         .addReg(NewVal2Reg).addReg(MaskReg);
9629     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9630         .addReg(OldVal2Reg).addReg(MaskReg);
9631
9632     BB = loop1MBB;
9633     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9634         .addReg(ZeroReg).addReg(PtrReg);
9635     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9636         .addReg(TmpDestReg).addReg(MaskReg);
9637     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9638         .addReg(TmpReg).addReg(OldVal3Reg);
9639     BuildMI(BB, dl, TII->get(PPC::BCC))
9640         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9641     BB->addSuccessor(loop2MBB);
9642     BB->addSuccessor(midMBB);
9643
9644     BB = loop2MBB;
9645     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9646         .addReg(TmpDestReg).addReg(MaskReg);
9647     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9648         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9649     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9650         .addReg(ZeroReg).addReg(PtrReg);
9651     BuildMI(BB, dl, TII->get(PPC::BCC))
9652       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9653     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9654     BB->addSuccessor(loop1MBB);
9655     BB->addSuccessor(exitMBB);
9656
9657     BB = midMBB;
9658     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9659       .addReg(ZeroReg).addReg(PtrReg);
9660     BB->addSuccessor(exitMBB);
9661
9662     //  exitMBB:
9663     //   ...
9664     BB = exitMBB;
9665     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9666       .addReg(ShiftReg);
9667   } else if (MI.getOpcode() == PPC::FADDrtz) {
9668     // This pseudo performs an FADD with rounding mode temporarily forced
9669     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9670     // is not modeled at the SelectionDAG level.
9671     unsigned Dest = MI.getOperand(0).getReg();
9672     unsigned Src1 = MI.getOperand(1).getReg();
9673     unsigned Src2 = MI.getOperand(2).getReg();
9674     DebugLoc dl = MI.getDebugLoc();
9675
9676     MachineRegisterInfo &RegInfo = F->getRegInfo();
9677     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9678
9679     // Save FPSCR value.
9680     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9681
9682     // Set rounding mode to round-to-zero.
9683     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9684     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9685
9686     // Perform addition.
9687     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9688
9689     // Restore FPSCR value.
9690     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9691   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9692              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
9693              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9694              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9695     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9696                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
9697                           ? PPC::ANDIo8
9698                           : PPC::ANDIo;
9699     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9700                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9701
9702     MachineRegisterInfo &RegInfo = F->getRegInfo();
9703     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9704                                                   &PPC::GPRCRegClass :
9705                                                   &PPC::G8RCRegClass);
9706
9707     DebugLoc dl = MI.getDebugLoc();
9708     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9709         .addReg(MI.getOperand(1).getReg())
9710         .addImm(1);
9711     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9712             MI.getOperand(0).getReg())
9713         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9714   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
9715     DebugLoc Dl = MI.getDebugLoc();
9716     MachineRegisterInfo &RegInfo = F->getRegInfo();
9717     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9718     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9719     return BB;
9720   } else {
9721     llvm_unreachable("Unexpected instr type to insert");
9722   }
9723
9724   MI.eraseFromParent(); // The pseudo instruction is gone now.
9725   return BB;
9726 }
9727
9728 //===----------------------------------------------------------------------===//
9729 // Target Optimization Hooks
9730 //===----------------------------------------------------------------------===//
9731
9732 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
9733   // For the estimates, convergence is quadratic, so we essentially double the
9734   // number of digits correct after every iteration. For both FRE and FRSQRTE,
9735   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
9736   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
9737   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
9738   if (VT.getScalarType() == MVT::f64)
9739     RefinementSteps++;
9740   return RefinementSteps;
9741 }
9742
9743 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
9744                                            int Enabled, int &RefinementSteps,
9745                                            bool &UseOneConstNR,
9746                                            bool Reciprocal) const {
9747   EVT VT = Operand.getValueType();
9748   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9749       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9750       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9751       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9752       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9753       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9754     if (RefinementSteps == ReciprocalEstimate::Unspecified)
9755       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
9756
9757     UseOneConstNR = true;
9758     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9759   }
9760   return SDValue();
9761 }
9762
9763 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
9764                                             int Enabled,
9765                                             int &RefinementSteps) const {
9766   EVT VT = Operand.getValueType();
9767   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9768       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9769       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9770       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9771       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9772       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9773     if (RefinementSteps == ReciprocalEstimate::Unspecified)
9774       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
9775     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9776   }
9777   return SDValue();
9778 }
9779
9780 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9781   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9782   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9783   // enabled for division), this functionality is redundant with the default
9784   // combiner logic (once the division -> reciprocal/multiply transformation
9785   // has taken place). As a result, this matters more for older cores than for
9786   // newer ones.
9787
9788   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9789   // reciprocal if there are two or more FDIVs (for embedded cores with only
9790   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9791   switch (Subtarget.getDarwinDirective()) {
9792   default:
9793     return 3;
9794   case PPC::DIR_440:
9795   case PPC::DIR_A2:
9796   case PPC::DIR_E500mc:
9797   case PPC::DIR_E5500:
9798     return 2;
9799   }
9800 }
9801
9802 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9803 // collapsed, and so we need to look through chains of them.
9804 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9805                                      int64_t& Offset, SelectionDAG &DAG) {
9806   if (DAG.isBaseWithConstantOffset(Loc)) {
9807     Base = Loc.getOperand(0);
9808     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9809
9810     // The base might itself be a base plus an offset, and if so, accumulate
9811     // that as well.
9812     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9813   }
9814 }
9815
9816 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9817                             unsigned Bytes, int Dist,
9818                             SelectionDAG &DAG) {
9819   if (VT.getSizeInBits() / 8 != Bytes)
9820     return false;
9821
9822   SDValue BaseLoc = Base->getBasePtr();
9823   if (Loc.getOpcode() == ISD::FrameIndex) {
9824     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9825       return false;
9826     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9827     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9828     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9829     int FS  = MFI.getObjectSize(FI);
9830     int BFS = MFI.getObjectSize(BFI);
9831     if (FS != BFS || FS != (int)Bytes) return false;
9832     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
9833   }
9834
9835   SDValue Base1 = Loc, Base2 = BaseLoc;
9836   int64_t Offset1 = 0, Offset2 = 0;
9837   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9838   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9839   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9840     return true;
9841
9842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9843   const GlobalValue *GV1 = nullptr;
9844   const GlobalValue *GV2 = nullptr;
9845   Offset1 = 0;
9846   Offset2 = 0;
9847   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9848   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9849   if (isGA1 && isGA2 && GV1 == GV2)
9850     return Offset1 == (Offset2 + Dist*Bytes);
9851   return false;
9852 }
9853
9854 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9855 // not enforce equality of the chain operands.
9856 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9857                             unsigned Bytes, int Dist,
9858                             SelectionDAG &DAG) {
9859   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9860     EVT VT = LS->getMemoryVT();
9861     SDValue Loc = LS->getBasePtr();
9862     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9863   }
9864
9865   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9866     EVT VT;
9867     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9868     default: return false;
9869     case Intrinsic::ppc_qpx_qvlfd:
9870     case Intrinsic::ppc_qpx_qvlfda:
9871       VT = MVT::v4f64;
9872       break;
9873     case Intrinsic::ppc_qpx_qvlfs:
9874     case Intrinsic::ppc_qpx_qvlfsa:
9875       VT = MVT::v4f32;
9876       break;
9877     case Intrinsic::ppc_qpx_qvlfcd:
9878     case Intrinsic::ppc_qpx_qvlfcda:
9879       VT = MVT::v2f64;
9880       break;
9881     case Intrinsic::ppc_qpx_qvlfcs:
9882     case Intrinsic::ppc_qpx_qvlfcsa:
9883       VT = MVT::v2f32;
9884       break;
9885     case Intrinsic::ppc_qpx_qvlfiwa:
9886     case Intrinsic::ppc_qpx_qvlfiwz:
9887     case Intrinsic::ppc_altivec_lvx:
9888     case Intrinsic::ppc_altivec_lvxl:
9889     case Intrinsic::ppc_vsx_lxvw4x:
9890     case Intrinsic::ppc_vsx_lxvw4x_be:
9891       VT = MVT::v4i32;
9892       break;
9893     case Intrinsic::ppc_vsx_lxvd2x:
9894     case Intrinsic::ppc_vsx_lxvd2x_be:
9895       VT = MVT::v2f64;
9896       break;
9897     case Intrinsic::ppc_altivec_lvebx:
9898       VT = MVT::i8;
9899       break;
9900     case Intrinsic::ppc_altivec_lvehx:
9901       VT = MVT::i16;
9902       break;
9903     case Intrinsic::ppc_altivec_lvewx:
9904       VT = MVT::i32;
9905       break;
9906     }
9907
9908     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9909   }
9910
9911   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9912     EVT VT;
9913     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9914     default: return false;
9915     case Intrinsic::ppc_qpx_qvstfd:
9916     case Intrinsic::ppc_qpx_qvstfda:
9917       VT = MVT::v4f64;
9918       break;
9919     case Intrinsic::ppc_qpx_qvstfs:
9920     case Intrinsic::ppc_qpx_qvstfsa:
9921       VT = MVT::v4f32;
9922       break;
9923     case Intrinsic::ppc_qpx_qvstfcd:
9924     case Intrinsic::ppc_qpx_qvstfcda:
9925       VT = MVT::v2f64;
9926       break;
9927     case Intrinsic::ppc_qpx_qvstfcs:
9928     case Intrinsic::ppc_qpx_qvstfcsa:
9929       VT = MVT::v2f32;
9930       break;
9931     case Intrinsic::ppc_qpx_qvstfiw:
9932     case Intrinsic::ppc_qpx_qvstfiwa:
9933     case Intrinsic::ppc_altivec_stvx:
9934     case Intrinsic::ppc_altivec_stvxl:
9935     case Intrinsic::ppc_vsx_stxvw4x:
9936       VT = MVT::v4i32;
9937       break;
9938     case Intrinsic::ppc_vsx_stxvd2x:
9939       VT = MVT::v2f64;
9940       break;
9941     case Intrinsic::ppc_vsx_stxvw4x_be:
9942       VT = MVT::v4i32;
9943       break;
9944     case Intrinsic::ppc_vsx_stxvd2x_be:
9945       VT = MVT::v2f64;
9946       break;
9947     case Intrinsic::ppc_altivec_stvebx:
9948       VT = MVT::i8;
9949       break;
9950     case Intrinsic::ppc_altivec_stvehx:
9951       VT = MVT::i16;
9952       break;
9953     case Intrinsic::ppc_altivec_stvewx:
9954       VT = MVT::i32;
9955       break;
9956     }
9957
9958     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9959   }
9960
9961   return false;
9962 }
9963
9964 // Return true is there is a nearyby consecutive load to the one provided
9965 // (regardless of alignment). We search up and down the chain, looking though
9966 // token factors and other loads (but nothing else). As a result, a true result
9967 // indicates that it is safe to create a new consecutive load adjacent to the
9968 // load provided.
9969 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9970   SDValue Chain = LD->getChain();
9971   EVT VT = LD->getMemoryVT();
9972
9973   SmallSet<SDNode *, 16> LoadRoots;
9974   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9975   SmallSet<SDNode *, 16> Visited;
9976
9977   // First, search up the chain, branching to follow all token-factor operands.
9978   // If we find a consecutive load, then we're done, otherwise, record all
9979   // nodes just above the top-level loads and token factors.
9980   while (!Queue.empty()) {
9981     SDNode *ChainNext = Queue.pop_back_val();
9982     if (!Visited.insert(ChainNext).second)
9983       continue;
9984
9985     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9986       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9987         return true;
9988
9989       if (!Visited.count(ChainLD->getChain().getNode()))
9990         Queue.push_back(ChainLD->getChain().getNode());
9991     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9992       for (const SDUse &O : ChainNext->ops())
9993         if (!Visited.count(O.getNode()))
9994           Queue.push_back(O.getNode());
9995     } else
9996       LoadRoots.insert(ChainNext);
9997   }
9998
9999   // Second, search down the chain, starting from the top-level nodes recorded
10000   // in the first phase. These top-level nodes are the nodes just above all
10001   // loads and token factors. Starting with their uses, recursively look though
10002   // all loads (just the chain uses) and token factors to find a consecutive
10003   // load.
10004   Visited.clear();
10005   Queue.clear();
10006
10007   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
10008        IE = LoadRoots.end(); I != IE; ++I) {
10009     Queue.push_back(*I);
10010
10011     while (!Queue.empty()) {
10012       SDNode *LoadRoot = Queue.pop_back_val();
10013       if (!Visited.insert(LoadRoot).second)
10014         continue;
10015
10016       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
10017         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
10018           return true;
10019
10020       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
10021            UE = LoadRoot->use_end(); UI != UE; ++UI)
10022         if (((isa<MemSDNode>(*UI) &&
10023             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
10024             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
10025           Queue.push_back(*UI);
10026     }
10027   }
10028
10029   return false;
10030 }
10031
10032
10033 /// This function is called when we have proved that a SETCC node can be replaced
10034 /// by subtraction (and other supporting instructions) so that the result of
10035 /// comparison is kept in a GPR instead of CR. This function is purely for
10036 /// codegen purposes and has some flags to guide the codegen process.
10037 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
10038                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
10039
10040   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10041
10042   // Zero extend the operands to the largest legal integer. Originally, they
10043   // must be of a strictly smaller size.
10044   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
10045                          DAG.getConstant(Size, DL, MVT::i32));
10046   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
10047                          DAG.getConstant(Size, DL, MVT::i32));
10048
10049   // Swap if needed. Depends on the condition code.
10050   if (Swap)
10051     std::swap(Op0, Op1);
10052
10053   // Subtract extended integers.
10054   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
10055
10056   // Move the sign bit to the least significant position and zero out the rest.
10057   // Now the least significant bit carries the result of original comparison.
10058   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
10059                              DAG.getConstant(Size - 1, DL, MVT::i32));
10060   auto Final = Shifted;
10061
10062   // Complement the result if needed. Based on the condition code.
10063   if (Complement)
10064     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
10065                         DAG.getConstant(1, DL, MVT::i64));
10066
10067   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
10068 }
10069
10070 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
10071                                                   DAGCombinerInfo &DCI) const {
10072
10073   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
10074
10075   SelectionDAG &DAG = DCI.DAG;
10076   SDLoc DL(N);
10077
10078   // Size of integers being compared has a critical role in the following
10079   // analysis, so we prefer to do this when all types are legal.
10080   if (!DCI.isAfterLegalizeVectorOps())
10081     return SDValue();
10082
10083   // If all users of SETCC extend its value to a legal integer type
10084   // then we replace SETCC with a subtraction
10085   for (SDNode::use_iterator UI = N->use_begin(),
10086        UE = N->use_end(); UI != UE; ++UI) {
10087     if (UI->getOpcode() != ISD::ZERO_EXTEND)
10088       return SDValue();
10089   }
10090
10091   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10092   auto OpSize = N->getOperand(0).getValueSizeInBits();
10093
10094   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
10095
10096   if (OpSize < Size) {
10097     switch (CC) {
10098     default: break;
10099     case ISD::SETULT:
10100       return generateEquivalentSub(N, Size, false, false, DL, DAG);
10101     case ISD::SETULE:
10102       return generateEquivalentSub(N, Size, true, true, DL, DAG);
10103     case ISD::SETUGT:
10104       return generateEquivalentSub(N, Size, false, true, DL, DAG);
10105     case ISD::SETUGE:
10106       return generateEquivalentSub(N, Size, true, false, DL, DAG);
10107     }
10108   }
10109
10110   return SDValue();
10111 }
10112
10113 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
10114                                                   DAGCombinerInfo &DCI) const {
10115   SelectionDAG &DAG = DCI.DAG;
10116   SDLoc dl(N);
10117
10118   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
10119   // If we're tracking CR bits, we need to be careful that we don't have:
10120   //   trunc(binary-ops(zext(x), zext(y)))
10121   // or
10122   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
10123   // such that we're unnecessarily moving things into GPRs when it would be
10124   // better to keep them in CR bits.
10125
10126   // Note that trunc here can be an actual i1 trunc, or can be the effective
10127   // truncation that comes from a setcc or select_cc.
10128   if (N->getOpcode() == ISD::TRUNCATE &&
10129       N->getValueType(0) != MVT::i1)
10130     return SDValue();
10131
10132   if (N->getOperand(0).getValueType() != MVT::i32 &&
10133       N->getOperand(0).getValueType() != MVT::i64)
10134     return SDValue();
10135
10136   if (N->getOpcode() == ISD::SETCC ||
10137       N->getOpcode() == ISD::SELECT_CC) {
10138     // If we're looking at a comparison, then we need to make sure that the
10139     // high bits (all except for the first) don't matter the result.
10140     ISD::CondCode CC =
10141       cast<CondCodeSDNode>(N->getOperand(
10142         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
10143     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
10144
10145     if (ISD::isSignedIntSetCC(CC)) {
10146       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
10147           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
10148         return SDValue();
10149     } else if (ISD::isUnsignedIntSetCC(CC)) {
10150       if (!DAG.MaskedValueIsZero(N->getOperand(0),
10151                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
10152           !DAG.MaskedValueIsZero(N->getOperand(1),
10153                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
10154         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
10155                                              : SDValue());
10156     } else {
10157       // This is neither a signed nor an unsigned comparison, just make sure
10158       // that the high bits are equal.
10159       APInt Op1Zero, Op1One;
10160       APInt Op2Zero, Op2One;
10161       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
10162       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
10163
10164       // We don't really care about what is known about the first bit (if
10165       // anything), so clear it in all masks prior to comparing them.
10166       Op1Zero.clearBit(0); Op1One.clearBit(0);
10167       Op2Zero.clearBit(0); Op2One.clearBit(0);
10168
10169       if (Op1Zero != Op2Zero || Op1One != Op2One)
10170         return SDValue();
10171     }
10172   }
10173
10174   // We now know that the higher-order bits are irrelevant, we just need to
10175   // make sure that all of the intermediate operations are bit operations, and
10176   // all inputs are extensions.
10177   if (N->getOperand(0).getOpcode() != ISD::AND &&
10178       N->getOperand(0).getOpcode() != ISD::OR  &&
10179       N->getOperand(0).getOpcode() != ISD::XOR &&
10180       N->getOperand(0).getOpcode() != ISD::SELECT &&
10181       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
10182       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
10183       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
10184       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
10185       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
10186     return SDValue();
10187
10188   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
10189       N->getOperand(1).getOpcode() != ISD::AND &&
10190       N->getOperand(1).getOpcode() != ISD::OR  &&
10191       N->getOperand(1).getOpcode() != ISD::XOR &&
10192       N->getOperand(1).getOpcode() != ISD::SELECT &&
10193       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
10194       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
10195       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
10196       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
10197       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
10198     return SDValue();
10199
10200   SmallVector<SDValue, 4> Inputs;
10201   SmallVector<SDValue, 8> BinOps, PromOps;
10202   SmallPtrSet<SDNode *, 16> Visited;
10203
10204   for (unsigned i = 0; i < 2; ++i) {
10205     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10206           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10207           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
10208           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
10209         isa<ConstantSDNode>(N->getOperand(i)))
10210       Inputs.push_back(N->getOperand(i));
10211     else
10212       BinOps.push_back(N->getOperand(i));
10213
10214     if (N->getOpcode() == ISD::TRUNCATE)
10215       break;
10216   }
10217
10218   // Visit all inputs, collect all binary operations (and, or, xor and
10219   // select) that are all fed by extensions.
10220   while (!BinOps.empty()) {
10221     SDValue BinOp = BinOps.back();
10222     BinOps.pop_back();
10223
10224     if (!Visited.insert(BinOp.getNode()).second)
10225       continue;
10226
10227     PromOps.push_back(BinOp);
10228
10229     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10230       // The condition of the select is not promoted.
10231       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10232         continue;
10233       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10234         continue;
10235
10236       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10237             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10238             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
10239            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
10240           isa<ConstantSDNode>(BinOp.getOperand(i))) {
10241         Inputs.push_back(BinOp.getOperand(i));
10242       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10243                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
10244                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10245                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10246                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
10247                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10248                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
10249                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
10250                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
10251         BinOps.push_back(BinOp.getOperand(i));
10252       } else {
10253         // We have an input that is not an extension or another binary
10254         // operation; we'll abort this transformation.
10255         return SDValue();
10256       }
10257     }
10258   }
10259
10260   // Make sure that this is a self-contained cluster of operations (which
10261   // is not quite the same thing as saying that everything has only one
10262   // use).
10263   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10264     if (isa<ConstantSDNode>(Inputs[i]))
10265       continue;
10266
10267     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
10268                               UE = Inputs[i].getNode()->use_end();
10269          UI != UE; ++UI) {
10270       SDNode *User = *UI;
10271       if (User != N && !Visited.count(User))
10272         return SDValue();
10273
10274       // Make sure that we're not going to promote the non-output-value
10275       // operand(s) or SELECT or SELECT_CC.
10276       // FIXME: Although we could sometimes handle this, and it does occur in
10277       // practice that one of the condition inputs to the select is also one of
10278       // the outputs, we currently can't deal with this.
10279       if (User->getOpcode() == ISD::SELECT) {
10280         if (User->getOperand(0) == Inputs[i])
10281           return SDValue();
10282       } else if (User->getOpcode() == ISD::SELECT_CC) {
10283         if (User->getOperand(0) == Inputs[i] ||
10284             User->getOperand(1) == Inputs[i])
10285           return SDValue();
10286       }
10287     }
10288   }
10289
10290   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10291     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10292                               UE = PromOps[i].getNode()->use_end();
10293          UI != UE; ++UI) {
10294       SDNode *User = *UI;
10295       if (User != N && !Visited.count(User))
10296         return SDValue();
10297
10298       // Make sure that we're not going to promote the non-output-value
10299       // operand(s) or SELECT or SELECT_CC.
10300       // FIXME: Although we could sometimes handle this, and it does occur in
10301       // practice that one of the condition inputs to the select is also one of
10302       // the outputs, we currently can't deal with this.
10303       if (User->getOpcode() == ISD::SELECT) {
10304         if (User->getOperand(0) == PromOps[i])
10305           return SDValue();
10306       } else if (User->getOpcode() == ISD::SELECT_CC) {
10307         if (User->getOperand(0) == PromOps[i] ||
10308             User->getOperand(1) == PromOps[i])
10309           return SDValue();
10310       }
10311     }
10312   }
10313
10314   // Replace all inputs with the extension operand.
10315   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10316     // Constants may have users outside the cluster of to-be-promoted nodes,
10317     // and so we need to replace those as we do the promotions.
10318     if (isa<ConstantSDNode>(Inputs[i]))
10319       continue;
10320     else
10321       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
10322   }
10323
10324   std::list<HandleSDNode> PromOpHandles;
10325   for (auto &PromOp : PromOps)
10326     PromOpHandles.emplace_back(PromOp);
10327
10328   // Replace all operations (these are all the same, but have a different
10329   // (i1) return type). DAG.getNode will validate that the types of
10330   // a binary operator match, so go through the list in reverse so that
10331   // we've likely promoted both operands first. Any intermediate truncations or
10332   // extensions disappear.
10333   while (!PromOpHandles.empty()) {
10334     SDValue PromOp = PromOpHandles.back().getValue();
10335     PromOpHandles.pop_back();
10336
10337     if (PromOp.getOpcode() == ISD::TRUNCATE ||
10338         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
10339         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
10340         PromOp.getOpcode() == ISD::ANY_EXTEND) {
10341       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
10342           PromOp.getOperand(0).getValueType() != MVT::i1) {
10343         // The operand is not yet ready (see comment below).
10344         PromOpHandles.emplace_front(PromOp);
10345         continue;
10346       }
10347
10348       SDValue RepValue = PromOp.getOperand(0);
10349       if (isa<ConstantSDNode>(RepValue))
10350         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
10351
10352       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
10353       continue;
10354     }
10355
10356     unsigned C;
10357     switch (PromOp.getOpcode()) {
10358     default:             C = 0; break;
10359     case ISD::SELECT:    C = 1; break;
10360     case ISD::SELECT_CC: C = 2; break;
10361     }
10362
10363     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10364          PromOp.getOperand(C).getValueType() != MVT::i1) ||
10365         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10366          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
10367       // The to-be-promoted operands of this node have not yet been
10368       // promoted (this should be rare because we're going through the
10369       // list backward, but if one of the operands has several users in
10370       // this cluster of to-be-promoted nodes, it is possible).
10371       PromOpHandles.emplace_front(PromOp);
10372       continue;
10373     }
10374
10375     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10376                                 PromOp.getNode()->op_end());
10377
10378     // If there are any constant inputs, make sure they're replaced now.
10379     for (unsigned i = 0; i < 2; ++i)
10380       if (isa<ConstantSDNode>(Ops[C+i]))
10381         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
10382
10383     DAG.ReplaceAllUsesOfValueWith(PromOp,
10384       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
10385   }
10386
10387   // Now we're left with the initial truncation itself.
10388   if (N->getOpcode() == ISD::TRUNCATE)
10389     return N->getOperand(0);
10390
10391   // Otherwise, this is a comparison. The operands to be compared have just
10392   // changed type (to i1), but everything else is the same.
10393   return SDValue(N, 0);
10394 }
10395
10396 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
10397                                                   DAGCombinerInfo &DCI) const {
10398   SelectionDAG &DAG = DCI.DAG;
10399   SDLoc dl(N);
10400
10401   // If we're tracking CR bits, we need to be careful that we don't have:
10402   //   zext(binary-ops(trunc(x), trunc(y)))
10403   // or
10404   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
10405   // such that we're unnecessarily moving things into CR bits that can more
10406   // efficiently stay in GPRs. Note that if we're not certain that the high
10407   // bits are set as required by the final extension, we still may need to do
10408   // some masking to get the proper behavior.
10409
10410   // This same functionality is important on PPC64 when dealing with
10411   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
10412   // the return values of functions. Because it is so similar, it is handled
10413   // here as well.
10414
10415   if (N->getValueType(0) != MVT::i32 &&
10416       N->getValueType(0) != MVT::i64)
10417     return SDValue();
10418
10419   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
10420         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
10421     return SDValue();
10422
10423   if (N->getOperand(0).getOpcode() != ISD::AND &&
10424       N->getOperand(0).getOpcode() != ISD::OR  &&
10425       N->getOperand(0).getOpcode() != ISD::XOR &&
10426       N->getOperand(0).getOpcode() != ISD::SELECT &&
10427       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
10428     return SDValue();
10429
10430   SmallVector<SDValue, 4> Inputs;
10431   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
10432   SmallPtrSet<SDNode *, 16> Visited;
10433
10434   // Visit all inputs, collect all binary operations (and, or, xor and
10435   // select) that are all fed by truncations.
10436   while (!BinOps.empty()) {
10437     SDValue BinOp = BinOps.back();
10438     BinOps.pop_back();
10439
10440     if (!Visited.insert(BinOp.getNode()).second)
10441       continue;
10442
10443     PromOps.push_back(BinOp);
10444
10445     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10446       // The condition of the select is not promoted.
10447       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10448         continue;
10449       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10450         continue;
10451
10452       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10453           isa<ConstantSDNode>(BinOp.getOperand(i))) {
10454         Inputs.push_back(BinOp.getOperand(i));
10455       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10456                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
10457                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10458                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10459                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
10460         BinOps.push_back(BinOp.getOperand(i));
10461       } else {
10462         // We have an input that is not a truncation or another binary
10463         // operation; we'll abort this transformation.
10464         return SDValue();
10465       }
10466     }
10467   }
10468
10469   // The operands of a select that must be truncated when the select is
10470   // promoted because the operand is actually part of the to-be-promoted set.
10471   DenseMap<SDNode *, EVT> SelectTruncOp[2];
10472
10473   // Make sure that this is a self-contained cluster of operations (which
10474   // is not quite the same thing as saying that everything has only one
10475   // use).
10476   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10477     if (isa<ConstantSDNode>(Inputs[i]))
10478       continue;
10479
10480     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
10481                               UE = Inputs[i].getNode()->use_end();
10482          UI != UE; ++UI) {
10483       SDNode *User = *UI;
10484       if (User != N && !Visited.count(User))
10485         return SDValue();
10486
10487       // If we're going to promote the non-output-value operand(s) or SELECT or
10488       // SELECT_CC, record them for truncation.
10489       if (User->getOpcode() == ISD::SELECT) {
10490         if (User->getOperand(0) == Inputs[i])
10491           SelectTruncOp[0].insert(std::make_pair(User,
10492                                     User->getOperand(0).getValueType()));
10493       } else if (User->getOpcode() == ISD::SELECT_CC) {
10494         if (User->getOperand(0) == Inputs[i])
10495           SelectTruncOp[0].insert(std::make_pair(User,
10496                                     User->getOperand(0).getValueType()));
10497         if (User->getOperand(1) == Inputs[i])
10498           SelectTruncOp[1].insert(std::make_pair(User,
10499                                     User->getOperand(1).getValueType()));
10500       }
10501     }
10502   }
10503
10504   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10505     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10506                               UE = PromOps[i].getNode()->use_end();
10507          UI != UE; ++UI) {
10508       SDNode *User = *UI;
10509       if (User != N && !Visited.count(User))
10510         return SDValue();
10511
10512       // If we're going to promote the non-output-value operand(s) or SELECT or
10513       // SELECT_CC, record them for truncation.
10514       if (User->getOpcode() == ISD::SELECT) {
10515         if (User->getOperand(0) == PromOps[i])
10516           SelectTruncOp[0].insert(std::make_pair(User,
10517                                     User->getOperand(0).getValueType()));
10518       } else if (User->getOpcode() == ISD::SELECT_CC) {
10519         if (User->getOperand(0) == PromOps[i])
10520           SelectTruncOp[0].insert(std::make_pair(User,
10521                                     User->getOperand(0).getValueType()));
10522         if (User->getOperand(1) == PromOps[i])
10523           SelectTruncOp[1].insert(std::make_pair(User,
10524                                     User->getOperand(1).getValueType()));
10525       }
10526     }
10527   }
10528
10529   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
10530   bool ReallyNeedsExt = false;
10531   if (N->getOpcode() != ISD::ANY_EXTEND) {
10532     // If all of the inputs are not already sign/zero extended, then
10533     // we'll still need to do that at the end.
10534     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10535       if (isa<ConstantSDNode>(Inputs[i]))
10536         continue;
10537
10538       unsigned OpBits =
10539         Inputs[i].getOperand(0).getValueSizeInBits();
10540       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
10541
10542       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
10543            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
10544                                   APInt::getHighBitsSet(OpBits,
10545                                                         OpBits-PromBits))) ||
10546           (N->getOpcode() == ISD::SIGN_EXTEND &&
10547            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
10548              (OpBits-(PromBits-1)))) {
10549         ReallyNeedsExt = true;
10550         break;
10551       }
10552     }
10553   }
10554
10555   // Replace all inputs, either with the truncation operand, or a
10556   // truncation or extension to the final output type.
10557   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10558     // Constant inputs need to be replaced with the to-be-promoted nodes that
10559     // use them because they might have users outside of the cluster of
10560     // promoted nodes.
10561     if (isa<ConstantSDNode>(Inputs[i]))
10562       continue;
10563
10564     SDValue InSrc = Inputs[i].getOperand(0);
10565     if (Inputs[i].getValueType() == N->getValueType(0))
10566       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
10567     else if (N->getOpcode() == ISD::SIGN_EXTEND)
10568       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10569         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
10570     else if (N->getOpcode() == ISD::ZERO_EXTEND)
10571       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10572         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
10573     else
10574       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10575         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
10576   }
10577
10578   std::list<HandleSDNode> PromOpHandles;
10579   for (auto &PromOp : PromOps)
10580     PromOpHandles.emplace_back(PromOp);
10581
10582   // Replace all operations (these are all the same, but have a different
10583   // (promoted) return type). DAG.getNode will validate that the types of
10584   // a binary operator match, so go through the list in reverse so that
10585   // we've likely promoted both operands first.
10586   while (!PromOpHandles.empty()) {
10587     SDValue PromOp = PromOpHandles.back().getValue();
10588     PromOpHandles.pop_back();
10589
10590     unsigned C;
10591     switch (PromOp.getOpcode()) {
10592     default:             C = 0; break;
10593     case ISD::SELECT:    C = 1; break;
10594     case ISD::SELECT_CC: C = 2; break;
10595     }
10596
10597     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10598          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
10599         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10600          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
10601       // The to-be-promoted operands of this node have not yet been
10602       // promoted (this should be rare because we're going through the
10603       // list backward, but if one of the operands has several users in
10604       // this cluster of to-be-promoted nodes, it is possible).
10605       PromOpHandles.emplace_front(PromOp);
10606       continue;
10607     }
10608
10609     // For SELECT and SELECT_CC nodes, we do a similar check for any
10610     // to-be-promoted comparison inputs.
10611     if (PromOp.getOpcode() == ISD::SELECT ||
10612         PromOp.getOpcode() == ISD::SELECT_CC) {
10613       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
10614            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
10615           (SelectTruncOp[1].count(PromOp.getNode()) &&
10616            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
10617         PromOpHandles.emplace_front(PromOp);
10618         continue;
10619       }
10620     }
10621
10622     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10623                                 PromOp.getNode()->op_end());
10624
10625     // If this node has constant inputs, then they'll need to be promoted here.
10626     for (unsigned i = 0; i < 2; ++i) {
10627       if (!isa<ConstantSDNode>(Ops[C+i]))
10628         continue;
10629       if (Ops[C+i].getValueType() == N->getValueType(0))
10630         continue;
10631
10632       if (N->getOpcode() == ISD::SIGN_EXTEND)
10633         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10634       else if (N->getOpcode() == ISD::ZERO_EXTEND)
10635         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10636       else
10637         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10638     }
10639
10640     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
10641     // truncate them again to the original value type.
10642     if (PromOp.getOpcode() == ISD::SELECT ||
10643         PromOp.getOpcode() == ISD::SELECT_CC) {
10644       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
10645       if (SI0 != SelectTruncOp[0].end())
10646         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
10647       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
10648       if (SI1 != SelectTruncOp[1].end())
10649         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
10650     }
10651
10652     DAG.ReplaceAllUsesOfValueWith(PromOp,
10653       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
10654   }
10655
10656   // Now we're left with the initial extension itself.
10657   if (!ReallyNeedsExt)
10658     return N->getOperand(0);
10659
10660   // To zero extend, just mask off everything except for the first bit (in the
10661   // i1 case).
10662   if (N->getOpcode() == ISD::ZERO_EXTEND)
10663     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
10664                        DAG.getConstant(APInt::getLowBitsSet(
10665                                          N->getValueSizeInBits(0), PromBits),
10666                                        dl, N->getValueType(0)));
10667
10668   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
10669          "Invalid extension type");
10670   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
10671   SDValue ShiftCst =
10672       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
10673   return DAG.getNode(
10674       ISD::SRA, dl, N->getValueType(0),
10675       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
10676       ShiftCst);
10677 }
10678
10679 /// \brief Reduces the number of fp-to-int conversion when building a vector.
10680 ///
10681 /// If this vector is built out of floating to integer conversions,
10682 /// transform it to a vector built out of floating point values followed by a
10683 /// single floating to integer conversion of the vector.
10684 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
10685 /// becomes (fptosi (build_vector ($A, $B, ...)))
10686 SDValue PPCTargetLowering::
10687 combineElementTruncationToVectorTruncation(SDNode *N,
10688                                            DAGCombinerInfo &DCI) const {
10689   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
10690          "Should be called with a BUILD_VECTOR node");
10691
10692   SelectionDAG &DAG = DCI.DAG;
10693   SDLoc dl(N);
10694
10695   SDValue FirstInput = N->getOperand(0);
10696   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
10697          "The input operand must be an fp-to-int conversion.");
10698
10699   // This combine happens after legalization so the fp_to_[su]i nodes are
10700   // already converted to PPCSISD nodes.
10701   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
10702   if (FirstConversion == PPCISD::FCTIDZ ||
10703       FirstConversion == PPCISD::FCTIDUZ ||
10704       FirstConversion == PPCISD::FCTIWZ ||
10705       FirstConversion == PPCISD::FCTIWUZ) {
10706     bool IsSplat = true;
10707     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
10708       FirstConversion == PPCISD::FCTIWUZ;
10709     EVT SrcVT = FirstInput.getOperand(0).getValueType();
10710     SmallVector<SDValue, 4> Ops;
10711     EVT TargetVT = N->getValueType(0);
10712     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
10713       if (N->getOperand(i).getOpcode() != PPCISD::MFVSR)
10714         return SDValue();
10715       unsigned NextConversion = N->getOperand(i).getOperand(0).getOpcode();
10716       if (NextConversion != FirstConversion)
10717         return SDValue();
10718       if (N->getOperand(i) != FirstInput)
10719         IsSplat = false;
10720     }
10721
10722     // If this is a splat, we leave it as-is since there will be only a single
10723     // fp-to-int conversion followed by a splat of the integer. This is better
10724     // for 32-bit and smaller ints and neutral for 64-bit ints.
10725     if (IsSplat)
10726       return SDValue();
10727
10728     // Now that we know we have the right type of node, get its operands
10729     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
10730       SDValue In = N->getOperand(i).getOperand(0);
10731       // For 32-bit values, we need to add an FP_ROUND node.
10732       if (Is32Bit) {
10733         if (In.isUndef())
10734           Ops.push_back(DAG.getUNDEF(SrcVT));
10735         else {
10736           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
10737                                       MVT::f32, In.getOperand(0),
10738                                       DAG.getIntPtrConstant(1, dl));
10739           Ops.push_back(Trunc);
10740         }
10741       } else
10742         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
10743     }
10744
10745     unsigned Opcode;
10746     if (FirstConversion == PPCISD::FCTIDZ ||
10747         FirstConversion == PPCISD::FCTIWZ)
10748       Opcode = ISD::FP_TO_SINT;
10749     else
10750       Opcode = ISD::FP_TO_UINT;
10751
10752     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
10753     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
10754     return DAG.getNode(Opcode, dl, TargetVT, BV);
10755   }
10756   return SDValue();
10757 }
10758
10759 /// \brief Reduce the number of loads when building a vector.
10760 ///
10761 /// Building a vector out of multiple loads can be converted to a load
10762 /// of the vector type if the loads are consecutive. If the loads are
10763 /// consecutive but in descending order, a shuffle is added at the end
10764 /// to reorder the vector.
10765 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
10766   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
10767          "Should be called with a BUILD_VECTOR node");
10768
10769   SDLoc dl(N);
10770   bool InputsAreConsecutiveLoads = true;
10771   bool InputsAreReverseConsecutive = true;
10772   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
10773   SDValue FirstInput = N->getOperand(0);
10774   bool IsRoundOfExtLoad = false;
10775
10776   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
10777       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
10778     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
10779     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
10780   }
10781   // Not a build vector of (possibly fp_rounded) loads.
10782   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
10783     return SDValue();
10784
10785   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
10786     // If any inputs are fp_round(extload), they all must be.
10787     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
10788       return SDValue();
10789
10790     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
10791       N->getOperand(i);
10792     if (NextInput.getOpcode() != ISD::LOAD)
10793       return SDValue();
10794
10795     SDValue PreviousInput =
10796       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
10797     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
10798     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
10799
10800     // If any inputs are fp_round(extload), they all must be.
10801     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
10802       return SDValue();
10803
10804     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
10805       InputsAreConsecutiveLoads = false;
10806     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
10807       InputsAreReverseConsecutive = false;
10808
10809     // Exit early if the loads are neither consecutive nor reverse consecutive.
10810     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
10811       return SDValue();
10812   }
10813
10814   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
10815          "The loads cannot be both consecutive and reverse consecutive.");
10816
10817   SDValue FirstLoadOp =
10818     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
10819   SDValue LastLoadOp =
10820     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
10821                        N->getOperand(N->getNumOperands()-1);
10822
10823   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
10824   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
10825   if (InputsAreConsecutiveLoads) {
10826     assert(LD1 && "Input needs to be a LoadSDNode.");
10827     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
10828                        LD1->getBasePtr(), LD1->getPointerInfo(),
10829                        LD1->getAlignment());
10830   }
10831   if (InputsAreReverseConsecutive) {
10832     assert(LDL && "Input needs to be a LoadSDNode.");
10833     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
10834                                LDL->getBasePtr(), LDL->getPointerInfo(),
10835                                LDL->getAlignment());
10836     SmallVector<int, 16> Ops;
10837     for (int i = N->getNumOperands() - 1; i >= 0; i--)
10838       Ops.push_back(i);
10839
10840     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
10841                                 DAG.getUNDEF(N->getValueType(0)), Ops);
10842   }
10843   return SDValue();
10844 }
10845
10846 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
10847                                                  DAGCombinerInfo &DCI) const {
10848   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
10849          "Should be called with a BUILD_VECTOR node");
10850
10851   SelectionDAG &DAG = DCI.DAG;
10852   SDLoc dl(N);
10853
10854   if (!Subtarget.hasVSX())
10855     return SDValue();
10856
10857   // The target independent DAG combiner will leave a build_vector of
10858   // float-to-int conversions intact. We can generate MUCH better code for
10859   // a float-to-int conversion of a vector of floats.
10860   SDValue FirstInput = N->getOperand(0);
10861   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
10862     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
10863     if (Reduced)
10864       return Reduced;
10865   }
10866
10867   // If we're building a vector out of consecutive loads, just load that
10868   // vector type.
10869   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
10870   if (Reduced)
10871     return Reduced;
10872
10873   if (N->getValueType(0) != MVT::v2f64)
10874     return SDValue();
10875
10876   // Looking for:
10877   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
10878   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
10879       FirstInput.getOpcode() != ISD::UINT_TO_FP)
10880     return SDValue();
10881   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
10882       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
10883     return SDValue();
10884   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
10885     return SDValue();
10886
10887   SDValue Ext1 = FirstInput.getOperand(0);
10888   SDValue Ext2 = N->getOperand(1).getOperand(0);
10889   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10890      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10891     return SDValue();
10892
10893   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
10894   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
10895   if (!Ext1Op || !Ext2Op)
10896     return SDValue();
10897   if (Ext1.getValueType() != MVT::i32 ||
10898       Ext2.getValueType() != MVT::i32)
10899   if (Ext1.getOperand(0) != Ext2.getOperand(0))
10900     return SDValue();
10901
10902   int FirstElem = Ext1Op->getZExtValue();
10903   int SecondElem = Ext2Op->getZExtValue();
10904   int SubvecIdx;
10905   if (FirstElem == 0 && SecondElem == 1)
10906     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
10907   else if (FirstElem == 2 && SecondElem == 3)
10908     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
10909   else
10910     return SDValue();
10911
10912   SDValue SrcVec = Ext1.getOperand(0);
10913   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
10914     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
10915   return DAG.getNode(NodeType, dl, MVT::v2f64,
10916                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
10917 }
10918
10919 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
10920                                               DAGCombinerInfo &DCI) const {
10921   assert((N->getOpcode() == ISD::SINT_TO_FP ||
10922           N->getOpcode() == ISD::UINT_TO_FP) &&
10923          "Need an int -> FP conversion node here");
10924
10925   if (useSoftFloat() || !Subtarget.has64BitSupport())
10926     return SDValue();
10927
10928   SelectionDAG &DAG = DCI.DAG;
10929   SDLoc dl(N);
10930   SDValue Op(N, 0);
10931
10932   SDValue FirstOperand(Op.getOperand(0));
10933   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
10934     (FirstOperand.getValueType() == MVT::i8 ||
10935      FirstOperand.getValueType() == MVT::i16);
10936   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
10937     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
10938     bool DstDouble = Op.getValueType() == MVT::f64;
10939     unsigned ConvOp = Signed ?
10940       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
10941       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
10942     SDValue WidthConst =
10943       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
10944                             dl, false);
10945     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
10946     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
10947     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
10948                                          DAG.getVTList(MVT::f64, MVT::Other),
10949                                          Ops, MVT::i8, LDN->getMemOperand());
10950
10951     // For signed conversion, we need to sign-extend the value in the VSR
10952     if (Signed) {
10953       SDValue ExtOps[] = { Ld, WidthConst };
10954       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
10955       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
10956     } else
10957       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
10958   }
10959
10960   // Don't handle ppc_fp128 here or i1 conversions.
10961   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
10962     return SDValue();
10963   if (Op.getOperand(0).getValueType() == MVT::i1)
10964     return SDValue();
10965
10966   // For i32 intermediate values, unfortunately, the conversion functions
10967   // leave the upper 32 bits of the value are undefined. Within the set of
10968   // scalar instructions, we have no method for zero- or sign-extending the
10969   // value. Thus, we cannot handle i32 intermediate values here.
10970   if (Op.getOperand(0).getValueType() == MVT::i32)
10971     return SDValue();
10972
10973   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
10974          "UINT_TO_FP is supported only with FPCVT");
10975
10976   // If we have FCFIDS, then use it when converting to single-precision.
10977   // Otherwise, convert to double-precision and then round.
10978   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10979                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
10980                                                             : PPCISD::FCFIDS)
10981                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
10982                                                             : PPCISD::FCFID);
10983   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10984                   ? MVT::f32
10985                   : MVT::f64;
10986
10987   // If we're converting from a float, to an int, and back to a float again,
10988   // then we don't need the store/load pair at all.
10989   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
10990        Subtarget.hasFPCVT()) ||
10991       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
10992     SDValue Src = Op.getOperand(0).getOperand(0);
10993     if (Src.getValueType() == MVT::f32) {
10994       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
10995       DCI.AddToWorklist(Src.getNode());
10996     } else if (Src.getValueType() != MVT::f64) {
10997       // Make sure that we don't pick up a ppc_fp128 source value.
10998       return SDValue();
10999     }
11000
11001     unsigned FCTOp =
11002       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
11003                                                         PPCISD::FCTIDUZ;
11004
11005     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
11006     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
11007
11008     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
11009       FP = DAG.getNode(ISD::FP_ROUND, dl,
11010                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
11011       DCI.AddToWorklist(FP.getNode());
11012     }
11013
11014     return FP;
11015   }
11016
11017   return SDValue();
11018 }
11019
11020 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
11021 // builtins) into loads with swaps.
11022 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
11023                                               DAGCombinerInfo &DCI) const {
11024   SelectionDAG &DAG = DCI.DAG;
11025   SDLoc dl(N);
11026   SDValue Chain;
11027   SDValue Base;
11028   MachineMemOperand *MMO;
11029
11030   switch (N->getOpcode()) {
11031   default:
11032     llvm_unreachable("Unexpected opcode for little endian VSX load");
11033   case ISD::LOAD: {
11034     LoadSDNode *LD = cast<LoadSDNode>(N);
11035     Chain = LD->getChain();
11036     Base = LD->getBasePtr();
11037     MMO = LD->getMemOperand();
11038     // If the MMO suggests this isn't a load of a full vector, leave
11039     // things alone.  For a built-in, we have to make the change for
11040     // correctness, so if there is a size problem that will be a bug.
11041     if (MMO->getSize() < 16)
11042       return SDValue();
11043     break;
11044   }
11045   case ISD::INTRINSIC_W_CHAIN: {
11046     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
11047     Chain = Intrin->getChain();
11048     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
11049     // us what we want. Get operand 2 instead.
11050     Base = Intrin->getOperand(2);
11051     MMO = Intrin->getMemOperand();
11052     break;
11053   }
11054   }
11055
11056   MVT VecTy = N->getValueType(0).getSimpleVT();
11057   SDValue LoadOps[] = { Chain, Base };
11058   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
11059                                          DAG.getVTList(MVT::v2f64, MVT::Other),
11060                                          LoadOps, MVT::v2f64, MMO);
11061
11062   DCI.AddToWorklist(Load.getNode());
11063   Chain = Load.getValue(1);
11064   SDValue Swap = DAG.getNode(
11065       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
11066   DCI.AddToWorklist(Swap.getNode());
11067
11068   // Add a bitcast if the resulting load type doesn't match v2f64.
11069   if (VecTy != MVT::v2f64) {
11070     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
11071     DCI.AddToWorklist(N.getNode());
11072     // Package {bitcast value, swap's chain} to match Load's shape.
11073     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
11074                        N, Swap.getValue(1));
11075   }
11076
11077   return Swap;
11078 }
11079
11080 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
11081 // builtins) into stores with swaps.
11082 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
11083                                                DAGCombinerInfo &DCI) const {
11084   SelectionDAG &DAG = DCI.DAG;
11085   SDLoc dl(N);
11086   SDValue Chain;
11087   SDValue Base;
11088   unsigned SrcOpnd;
11089   MachineMemOperand *MMO;
11090
11091   switch (N->getOpcode()) {
11092   default:
11093     llvm_unreachable("Unexpected opcode for little endian VSX store");
11094   case ISD::STORE: {
11095     StoreSDNode *ST = cast<StoreSDNode>(N);
11096     Chain = ST->getChain();
11097     Base = ST->getBasePtr();
11098     MMO = ST->getMemOperand();
11099     SrcOpnd = 1;
11100     // If the MMO suggests this isn't a store of a full vector, leave
11101     // things alone.  For a built-in, we have to make the change for
11102     // correctness, so if there is a size problem that will be a bug.
11103     if (MMO->getSize() < 16)
11104       return SDValue();
11105     break;
11106   }
11107   case ISD::INTRINSIC_VOID: {
11108     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
11109     Chain = Intrin->getChain();
11110     // Intrin->getBasePtr() oddly does not get what we want.
11111     Base = Intrin->getOperand(3);
11112     MMO = Intrin->getMemOperand();
11113     SrcOpnd = 2;
11114     break;
11115   }
11116   }
11117
11118   SDValue Src = N->getOperand(SrcOpnd);
11119   MVT VecTy = Src.getValueType().getSimpleVT();
11120
11121   // All stores are done as v2f64 and possible bit cast.
11122   if (VecTy != MVT::v2f64) {
11123     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
11124     DCI.AddToWorklist(Src.getNode());
11125   }
11126
11127   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
11128                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
11129   DCI.AddToWorklist(Swap.getNode());
11130   Chain = Swap.getValue(1);
11131   SDValue StoreOps[] = { Chain, Swap, Base };
11132   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
11133                                           DAG.getVTList(MVT::Other),
11134                                           StoreOps, VecTy, MMO);
11135   DCI.AddToWorklist(Store.getNode());
11136   return Store;
11137 }
11138
11139 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
11140                                              DAGCombinerInfo &DCI) const {
11141   SelectionDAG &DAG = DCI.DAG;
11142   SDLoc dl(N);
11143   switch (N->getOpcode()) {
11144   default: break;
11145   case PPCISD::SHL:
11146     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
11147         return N->getOperand(0);
11148     break;
11149   case PPCISD::SRL:
11150     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
11151         return N->getOperand(0);
11152     break;
11153   case PPCISD::SRA:
11154     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11155       if (C->isNullValue() ||   //  0 >>s V -> 0.
11156           C->isAllOnesValue())    // -1 >>s V -> -1.
11157         return N->getOperand(0);
11158     }
11159     break;
11160   case ISD::SIGN_EXTEND:
11161   case ISD::ZERO_EXTEND:
11162   case ISD::ANY_EXTEND:
11163     return DAGCombineExtBoolTrunc(N, DCI);
11164   case ISD::TRUNCATE:
11165   case ISD::SETCC:
11166   case ISD::SELECT_CC:
11167     return DAGCombineTruncBoolExt(N, DCI);
11168   case ISD::SINT_TO_FP:
11169   case ISD::UINT_TO_FP:
11170     return combineFPToIntToFP(N, DCI);
11171   case ISD::STORE: {
11172     EVT Op1VT = N->getOperand(1).getValueType();
11173     bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32) ||
11174       (Subtarget.hasP9Vector() && (Op1VT == MVT::i8 || Op1VT == MVT::i16));
11175
11176     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
11177     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
11178         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
11179         ValidTypeForStoreFltAsInt &&
11180         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
11181       SDValue Val = N->getOperand(1).getOperand(0);
11182       if (Val.getValueType() == MVT::f32) {
11183         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
11184         DCI.AddToWorklist(Val.getNode());
11185       }
11186       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
11187       DCI.AddToWorklist(Val.getNode());
11188
11189       if (Op1VT == MVT::i32) {
11190         SDValue Ops[] = {
11191           N->getOperand(0), Val, N->getOperand(2),
11192           DAG.getValueType(N->getOperand(1).getValueType())
11193         };
11194
11195         Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
11196                 DAG.getVTList(MVT::Other), Ops,
11197                 cast<StoreSDNode>(N)->getMemoryVT(),
11198                 cast<StoreSDNode>(N)->getMemOperand());
11199       } else {
11200         unsigned WidthInBytes =
11201           N->getOperand(1).getValueType() == MVT::i8 ? 1 : 2;
11202         SDValue WidthConst = DAG.getIntPtrConstant(WidthInBytes, dl, false);
11203
11204         SDValue Ops[] = {
11205           N->getOperand(0), Val, N->getOperand(2), WidthConst,
11206           DAG.getValueType(N->getOperand(1).getValueType())
11207         };
11208         Val = DAG.getMemIntrinsicNode(PPCISD::STXSIX, dl,
11209                                       DAG.getVTList(MVT::Other), Ops,
11210                                       cast<StoreSDNode>(N)->getMemoryVT(),
11211                                       cast<StoreSDNode>(N)->getMemOperand());
11212       }
11213
11214       DCI.AddToWorklist(Val.getNode());
11215       return Val;
11216     }
11217
11218     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
11219     if (cast<StoreSDNode>(N)->isUnindexed() &&
11220         N->getOperand(1).getOpcode() == ISD::BSWAP &&
11221         N->getOperand(1).getNode()->hasOneUse() &&
11222         (N->getOperand(1).getValueType() == MVT::i32 ||
11223          N->getOperand(1).getValueType() == MVT::i16 ||
11224          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
11225           N->getOperand(1).getValueType() == MVT::i64))) {
11226       SDValue BSwapOp = N->getOperand(1).getOperand(0);
11227       // Do an any-extend to 32-bits if this is a half-word input.
11228       if (BSwapOp.getValueType() == MVT::i16)
11229         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
11230
11231       SDValue Ops[] = {
11232         N->getOperand(0), BSwapOp, N->getOperand(2),
11233         DAG.getValueType(N->getOperand(1).getValueType())
11234       };
11235       return
11236         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
11237                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
11238                                 cast<StoreSDNode>(N)->getMemOperand());
11239     }
11240
11241     // For little endian, VSX stores require generating xxswapd/lxvd2x.
11242     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
11243     EVT VT = N->getOperand(1).getValueType();
11244     if (VT.isSimple()) {
11245       MVT StoreVT = VT.getSimpleVT();
11246       if (Subtarget.needsSwapsForVSXMemOps() &&
11247           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
11248            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
11249         return expandVSXStoreForLE(N, DCI);
11250     }
11251     break;
11252   }
11253   case ISD::LOAD: {
11254     LoadSDNode *LD = cast<LoadSDNode>(N);
11255     EVT VT = LD->getValueType(0);
11256
11257     // For little endian, VSX loads require generating lxvd2x/xxswapd.
11258     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
11259     if (VT.isSimple()) {
11260       MVT LoadVT = VT.getSimpleVT();
11261       if (Subtarget.needsSwapsForVSXMemOps() &&
11262           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
11263            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
11264         return expandVSXLoadForLE(N, DCI);
11265     }
11266
11267     // We sometimes end up with a 64-bit integer load, from which we extract
11268     // two single-precision floating-point numbers. This happens with
11269     // std::complex<float>, and other similar structures, because of the way we
11270     // canonicalize structure copies. However, if we lack direct moves,
11271     // then the final bitcasts from the extracted integer values to the
11272     // floating-point numbers turn into store/load pairs. Even with direct moves,
11273     // just loading the two floating-point numbers is likely better.
11274     auto ReplaceTwoFloatLoad = [&]() {
11275       if (VT != MVT::i64)
11276         return false;
11277
11278       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
11279           LD->isVolatile())
11280         return false;
11281
11282       //  We're looking for a sequence like this:
11283       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
11284       //      t16: i64 = srl t13, Constant:i32<32>
11285       //    t17: i32 = truncate t16
11286       //  t18: f32 = bitcast t17
11287       //    t19: i32 = truncate t13
11288       //  t20: f32 = bitcast t19
11289
11290       if (!LD->hasNUsesOfValue(2, 0))
11291         return false;
11292
11293       auto UI = LD->use_begin();
11294       while (UI.getUse().getResNo() != 0) ++UI;
11295       SDNode *Trunc = *UI++;
11296       while (UI.getUse().getResNo() != 0) ++UI;
11297       SDNode *RightShift = *UI;
11298       if (Trunc->getOpcode() != ISD::TRUNCATE)
11299         std::swap(Trunc, RightShift);
11300
11301       if (Trunc->getOpcode() != ISD::TRUNCATE ||
11302           Trunc->getValueType(0) != MVT::i32 ||
11303           !Trunc->hasOneUse())
11304         return false;
11305       if (RightShift->getOpcode() != ISD::SRL ||
11306           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
11307           RightShift->getConstantOperandVal(1) != 32 ||
11308           !RightShift->hasOneUse())
11309         return false;
11310
11311       SDNode *Trunc2 = *RightShift->use_begin();
11312       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
11313           Trunc2->getValueType(0) != MVT::i32 ||
11314           !Trunc2->hasOneUse())
11315         return false;
11316
11317       SDNode *Bitcast = *Trunc->use_begin();
11318       SDNode *Bitcast2 = *Trunc2->use_begin();
11319
11320       if (Bitcast->getOpcode() != ISD::BITCAST ||
11321           Bitcast->getValueType(0) != MVT::f32)
11322         return false;
11323       if (Bitcast2->getOpcode() != ISD::BITCAST ||
11324           Bitcast2->getValueType(0) != MVT::f32)
11325         return false;
11326
11327       if (Subtarget.isLittleEndian())
11328         std::swap(Bitcast, Bitcast2);
11329
11330       // Bitcast has the second float (in memory-layout order) and Bitcast2
11331       // has the first one.
11332
11333       SDValue BasePtr = LD->getBasePtr();
11334       if (LD->isIndexed()) {
11335         assert(LD->getAddressingMode() == ISD::PRE_INC &&
11336                "Non-pre-inc AM on PPC?");
11337         BasePtr =
11338           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
11339                       LD->getOffset());
11340       }
11341
11342       auto MMOFlags =
11343           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
11344       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
11345                                       LD->getPointerInfo(), LD->getAlignment(),
11346                                       MMOFlags, LD->getAAInfo());
11347       SDValue AddPtr =
11348         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
11349                     BasePtr, DAG.getIntPtrConstant(4, dl));
11350       SDValue FloatLoad2 = DAG.getLoad(
11351           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
11352           LD->getPointerInfo().getWithOffset(4),
11353           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
11354
11355       if (LD->isIndexed()) {
11356         // Note that DAGCombine should re-form any pre-increment load(s) from
11357         // what is produced here if that makes sense.
11358         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
11359       }
11360
11361       DCI.CombineTo(Bitcast2, FloatLoad);
11362       DCI.CombineTo(Bitcast, FloatLoad2);
11363
11364       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
11365                                     SDValue(FloatLoad2.getNode(), 1));
11366       return true;
11367     };
11368
11369     if (ReplaceTwoFloatLoad())
11370       return SDValue(N, 0);
11371
11372     EVT MemVT = LD->getMemoryVT();
11373     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
11374     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
11375     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
11376     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
11377     if (LD->isUnindexed() && VT.isVector() &&
11378         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
11379           // P8 and later hardware should just use LOAD.
11380           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
11381                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
11382          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
11383           LD->getAlignment() >= ScalarABIAlignment)) &&
11384         LD->getAlignment() < ABIAlignment) {
11385       // This is a type-legal unaligned Altivec or QPX load.
11386       SDValue Chain = LD->getChain();
11387       SDValue Ptr = LD->getBasePtr();
11388       bool isLittleEndian = Subtarget.isLittleEndian();
11389
11390       // This implements the loading of unaligned vectors as described in
11391       // the venerable Apple Velocity Engine overview. Specifically:
11392       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
11393       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
11394       //
11395       // The general idea is to expand a sequence of one or more unaligned
11396       // loads into an alignment-based permutation-control instruction (lvsl
11397       // or lvsr), a series of regular vector loads (which always truncate
11398       // their input address to an aligned address), and a series of
11399       // permutations.  The results of these permutations are the requested
11400       // loaded values.  The trick is that the last "extra" load is not taken
11401       // from the address you might suspect (sizeof(vector) bytes after the
11402       // last requested load), but rather sizeof(vector) - 1 bytes after the
11403       // last requested vector. The point of this is to avoid a page fault if
11404       // the base address happened to be aligned. This works because if the
11405       // base address is aligned, then adding less than a full vector length
11406       // will cause the last vector in the sequence to be (re)loaded.
11407       // Otherwise, the next vector will be fetched as you might suspect was
11408       // necessary.
11409
11410       // We might be able to reuse the permutation generation from
11411       // a different base address offset from this one by an aligned amount.
11412       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
11413       // optimization later.
11414       Intrinsic::ID Intr, IntrLD, IntrPerm;
11415       MVT PermCntlTy, PermTy, LDTy;
11416       if (Subtarget.hasAltivec()) {
11417         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
11418                                  Intrinsic::ppc_altivec_lvsl;
11419         IntrLD = Intrinsic::ppc_altivec_lvx;
11420         IntrPerm = Intrinsic::ppc_altivec_vperm;
11421         PermCntlTy = MVT::v16i8;
11422         PermTy = MVT::v4i32;
11423         LDTy = MVT::v4i32;
11424       } else {
11425         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
11426                                        Intrinsic::ppc_qpx_qvlpcls;
11427         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
11428                                        Intrinsic::ppc_qpx_qvlfs;
11429         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
11430         PermCntlTy = MVT::v4f64;
11431         PermTy = MVT::v4f64;
11432         LDTy = MemVT.getSimpleVT();
11433       }
11434
11435       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
11436
11437       // Create the new MMO for the new base load. It is like the original MMO,
11438       // but represents an area in memory almost twice the vector size centered
11439       // on the original address. If the address is unaligned, we might start
11440       // reading up to (sizeof(vector)-1) bytes below the address of the
11441       // original unaligned load.
11442       MachineFunction &MF = DAG.getMachineFunction();
11443       MachineMemOperand *BaseMMO =
11444         MF.getMachineMemOperand(LD->getMemOperand(),
11445                                 -(long)MemVT.getStoreSize()+1,
11446                                 2*MemVT.getStoreSize()-1);
11447
11448       // Create the new base load.
11449       SDValue LDXIntID =
11450           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
11451       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
11452       SDValue BaseLoad =
11453         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
11454                                 DAG.getVTList(PermTy, MVT::Other),
11455                                 BaseLoadOps, LDTy, BaseMMO);
11456
11457       // Note that the value of IncOffset (which is provided to the next
11458       // load's pointer info offset value, and thus used to calculate the
11459       // alignment), and the value of IncValue (which is actually used to
11460       // increment the pointer value) are different! This is because we
11461       // require the next load to appear to be aligned, even though it
11462       // is actually offset from the base pointer by a lesser amount.
11463       int IncOffset = VT.getSizeInBits() / 8;
11464       int IncValue = IncOffset;
11465
11466       // Walk (both up and down) the chain looking for another load at the real
11467       // (aligned) offset (the alignment of the other load does not matter in
11468       // this case). If found, then do not use the offset reduction trick, as
11469       // that will prevent the loads from being later combined (as they would
11470       // otherwise be duplicates).
11471       if (!findConsecutiveLoad(LD, DAG))
11472         --IncValue;
11473
11474       SDValue Increment =
11475           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
11476       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
11477
11478       MachineMemOperand *ExtraMMO =
11479         MF.getMachineMemOperand(LD->getMemOperand(),
11480                                 1, 2*MemVT.getStoreSize()-1);
11481       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
11482       SDValue ExtraLoad =
11483         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
11484                                 DAG.getVTList(PermTy, MVT::Other),
11485                                 ExtraLoadOps, LDTy, ExtraMMO);
11486
11487       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
11488         BaseLoad.getValue(1), ExtraLoad.getValue(1));
11489
11490       // Because vperm has a big-endian bias, we must reverse the order
11491       // of the input vectors and complement the permute control vector
11492       // when generating little endian code.  We have already handled the
11493       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
11494       // and ExtraLoad here.
11495       SDValue Perm;
11496       if (isLittleEndian)
11497         Perm = BuildIntrinsicOp(IntrPerm,
11498                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
11499       else
11500         Perm = BuildIntrinsicOp(IntrPerm,
11501                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
11502
11503       if (VT != PermTy)
11504         Perm = Subtarget.hasAltivec() ?
11505                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
11506                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
11507                                DAG.getTargetConstant(1, dl, MVT::i64));
11508                                // second argument is 1 because this rounding
11509                                // is always exact.
11510
11511       // The output of the permutation is our loaded result, the TokenFactor is
11512       // our new chain.
11513       DCI.CombineTo(N, Perm, TF);
11514       return SDValue(N, 0);
11515     }
11516     }
11517     break;
11518     case ISD::INTRINSIC_WO_CHAIN: {
11519       bool isLittleEndian = Subtarget.isLittleEndian();
11520       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
11521       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
11522                                            : Intrinsic::ppc_altivec_lvsl);
11523       if ((IID == Intr ||
11524            IID == Intrinsic::ppc_qpx_qvlpcld  ||
11525            IID == Intrinsic::ppc_qpx_qvlpcls) &&
11526         N->getOperand(1)->getOpcode() == ISD::ADD) {
11527         SDValue Add = N->getOperand(1);
11528
11529         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
11530                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
11531
11532         if (DAG.MaskedValueIsZero(Add->getOperand(1),
11533                                   APInt::getAllOnesValue(Bits /* alignment */)
11534                                       .zext(Add.getScalarValueSizeInBits()))) {
11535           SDNode *BasePtr = Add->getOperand(0).getNode();
11536           for (SDNode::use_iterator UI = BasePtr->use_begin(),
11537                                     UE = BasePtr->use_end();
11538                UI != UE; ++UI) {
11539             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11540                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
11541               // We've found another LVSL/LVSR, and this address is an aligned
11542               // multiple of that one. The results will be the same, so use the
11543               // one we've just found instead.
11544
11545               return SDValue(*UI, 0);
11546             }
11547           }
11548         }
11549
11550         if (isa<ConstantSDNode>(Add->getOperand(1))) {
11551           SDNode *BasePtr = Add->getOperand(0).getNode();
11552           for (SDNode::use_iterator UI = BasePtr->use_begin(),
11553                UE = BasePtr->use_end(); UI != UE; ++UI) {
11554             if (UI->getOpcode() == ISD::ADD &&
11555                 isa<ConstantSDNode>(UI->getOperand(1)) &&
11556                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
11557                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
11558                 (1ULL << Bits) == 0) {
11559               SDNode *OtherAdd = *UI;
11560               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
11561                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
11562                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11563                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
11564                   return SDValue(*VI, 0);
11565                 }
11566               }
11567             }
11568           }
11569         }
11570       }
11571     }
11572
11573     break;
11574   case ISD::INTRINSIC_W_CHAIN: {
11575     // For little endian, VSX loads require generating lxvd2x/xxswapd.
11576     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
11577     if (Subtarget.needsSwapsForVSXMemOps()) {
11578       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11579       default:
11580         break;
11581       case Intrinsic::ppc_vsx_lxvw4x:
11582       case Intrinsic::ppc_vsx_lxvd2x:
11583         return expandVSXLoadForLE(N, DCI);
11584       }
11585     }
11586     break;
11587   }
11588   case ISD::INTRINSIC_VOID: {
11589     // For little endian, VSX stores require generating xxswapd/stxvd2x.
11590     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
11591     if (Subtarget.needsSwapsForVSXMemOps()) {
11592       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11593       default:
11594         break;
11595       case Intrinsic::ppc_vsx_stxvw4x:
11596       case Intrinsic::ppc_vsx_stxvd2x:
11597         return expandVSXStoreForLE(N, DCI);
11598       }
11599     }
11600     break;
11601   }
11602   case ISD::BSWAP:
11603     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
11604     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
11605         N->getOperand(0).hasOneUse() &&
11606         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
11607          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
11608           N->getValueType(0) == MVT::i64))) {
11609       SDValue Load = N->getOperand(0);
11610       LoadSDNode *LD = cast<LoadSDNode>(Load);
11611       // Create the byte-swapping load.
11612       SDValue Ops[] = {
11613         LD->getChain(),    // Chain
11614         LD->getBasePtr(),  // Ptr
11615         DAG.getValueType(N->getValueType(0)) // VT
11616       };
11617       SDValue BSLoad =
11618         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
11619                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
11620                                               MVT::i64 : MVT::i32, MVT::Other),
11621                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
11622
11623       // If this is an i16 load, insert the truncate.
11624       SDValue ResVal = BSLoad;
11625       if (N->getValueType(0) == MVT::i16)
11626         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
11627
11628       // First, combine the bswap away.  This makes the value produced by the
11629       // load dead.
11630       DCI.CombineTo(N, ResVal);
11631
11632       // Next, combine the load away, we give it a bogus result value but a real
11633       // chain result.  The result value is dead because the bswap is dead.
11634       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
11635
11636       // Return N so it doesn't get rechecked!
11637       return SDValue(N, 0);
11638     }
11639
11640     break;
11641   case PPCISD::VCMP: {
11642     // If a VCMPo node already exists with exactly the same operands as this
11643     // node, use its result instead of this node (VCMPo computes both a CR6 and
11644     // a normal output).
11645     //
11646     if (!N->getOperand(0).hasOneUse() &&
11647         !N->getOperand(1).hasOneUse() &&
11648         !N->getOperand(2).hasOneUse()) {
11649
11650       // Scan all of the users of the LHS, looking for VCMPo's that match.
11651       SDNode *VCMPoNode = nullptr;
11652
11653       SDNode *LHSN = N->getOperand(0).getNode();
11654       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
11655            UI != E; ++UI)
11656         if (UI->getOpcode() == PPCISD::VCMPo &&
11657             UI->getOperand(1) == N->getOperand(1) &&
11658             UI->getOperand(2) == N->getOperand(2) &&
11659             UI->getOperand(0) == N->getOperand(0)) {
11660           VCMPoNode = *UI;
11661           break;
11662         }
11663
11664       // If there is no VCMPo node, or if the flag value has a single use, don't
11665       // transform this.
11666       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
11667         break;
11668
11669       // Look at the (necessarily single) use of the flag value.  If it has a
11670       // chain, this transformation is more complex.  Note that multiple things
11671       // could use the value result, which we should ignore.
11672       SDNode *FlagUser = nullptr;
11673       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
11674            FlagUser == nullptr; ++UI) {
11675         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
11676         SDNode *User = *UI;
11677         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
11678           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
11679             FlagUser = User;
11680             break;
11681           }
11682         }
11683       }
11684
11685       // If the user is a MFOCRF instruction, we know this is safe.
11686       // Otherwise we give up for right now.
11687       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
11688         return SDValue(VCMPoNode, 0);
11689     }
11690     break;
11691   }
11692   case ISD::BRCOND: {
11693     SDValue Cond = N->getOperand(1);
11694     SDValue Target = N->getOperand(2);
11695
11696     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11697         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
11698           Intrinsic::ppc_is_decremented_ctr_nonzero) {
11699
11700       // We now need to make the intrinsic dead (it cannot be instruction
11701       // selected).
11702       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
11703       assert(Cond.getNode()->hasOneUse() &&
11704              "Counter decrement has more than one use");
11705
11706       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
11707                          N->getOperand(0), Target);
11708     }
11709   }
11710   break;
11711   case ISD::BR_CC: {
11712     // If this is a branch on an altivec predicate comparison, lower this so
11713     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
11714     // lowering is done pre-legalize, because the legalizer lowers the predicate
11715     // compare down to code that is difficult to reassemble.
11716     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
11717     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
11718
11719     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
11720     // value. If so, pass-through the AND to get to the intrinsic.
11721     if (LHS.getOpcode() == ISD::AND &&
11722         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11723         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
11724           Intrinsic::ppc_is_decremented_ctr_nonzero &&
11725         isa<ConstantSDNode>(LHS.getOperand(1)) &&
11726         !isNullConstant(LHS.getOperand(1)))
11727       LHS = LHS.getOperand(0);
11728
11729     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11730         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
11731           Intrinsic::ppc_is_decremented_ctr_nonzero &&
11732         isa<ConstantSDNode>(RHS)) {
11733       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
11734              "Counter decrement comparison is not EQ or NE");
11735
11736       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11737       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
11738                     (CC == ISD::SETNE && !Val);
11739
11740       // We now need to make the intrinsic dead (it cannot be instruction
11741       // selected).
11742       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
11743       assert(LHS.getNode()->hasOneUse() &&
11744              "Counter decrement has more than one use");
11745
11746       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
11747                          N->getOperand(0), N->getOperand(4));
11748     }
11749
11750     int CompareOpc;
11751     bool isDot;
11752
11753     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11754         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
11755         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
11756       assert(isDot && "Can't compare against a vector result!");
11757
11758       // If this is a comparison against something other than 0/1, then we know
11759       // that the condition is never/always true.
11760       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11761       if (Val != 0 && Val != 1) {
11762         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
11763           return N->getOperand(0);
11764         // Always !=, turn it into an unconditional branch.
11765         return DAG.getNode(ISD::BR, dl, MVT::Other,
11766                            N->getOperand(0), N->getOperand(4));
11767       }
11768
11769       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
11770
11771       // Create the PPCISD altivec 'dot' comparison node.
11772       SDValue Ops[] = {
11773         LHS.getOperand(2),  // LHS of compare
11774         LHS.getOperand(3),  // RHS of compare
11775         DAG.getConstant(CompareOpc, dl, MVT::i32)
11776       };
11777       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
11778       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
11779
11780       // Unpack the result based on how the target uses it.
11781       PPC::Predicate CompOpc;
11782       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
11783       default:  // Can't happen, don't crash on invalid number though.
11784       case 0:   // Branch on the value of the EQ bit of CR6.
11785         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
11786         break;
11787       case 1:   // Branch on the inverted value of the EQ bit of CR6.
11788         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
11789         break;
11790       case 2:   // Branch on the value of the LT bit of CR6.
11791         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
11792         break;
11793       case 3:   // Branch on the inverted value of the LT bit of CR6.
11794         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
11795         break;
11796       }
11797
11798       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
11799                          DAG.getConstant(CompOpc, dl, MVT::i32),
11800                          DAG.getRegister(PPC::CR6, MVT::i32),
11801                          N->getOperand(4), CompNode.getValue(1));
11802     }
11803     break;
11804   }
11805   case ISD::BUILD_VECTOR:
11806     return DAGCombineBuildVector(N, DCI);
11807   }
11808
11809   return SDValue();
11810 }
11811
11812 SDValue
11813 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11814                                   SelectionDAG &DAG,
11815                                   std::vector<SDNode *> *Created) const {
11816   // fold (sdiv X, pow2)
11817   EVT VT = N->getValueType(0);
11818   if (VT == MVT::i64 && !Subtarget.isPPC64())
11819     return SDValue();
11820   if ((VT != MVT::i32 && VT != MVT::i64) ||
11821       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
11822     return SDValue();
11823
11824   SDLoc DL(N);
11825   SDValue N0 = N->getOperand(0);
11826
11827   bool IsNegPow2 = (-Divisor).isPowerOf2();
11828   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
11829   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
11830
11831   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
11832   if (Created)
11833     Created->push_back(Op.getNode());
11834
11835   if (IsNegPow2) {
11836     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
11837     if (Created)
11838       Created->push_back(Op.getNode());
11839   }
11840
11841   return Op;
11842 }
11843
11844 //===----------------------------------------------------------------------===//
11845 // Inline Assembly Support
11846 //===----------------------------------------------------------------------===//
11847
11848 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11849                                                       APInt &KnownZero,
11850                                                       APInt &KnownOne,
11851                                                       const SelectionDAG &DAG,
11852                                                       unsigned Depth) const {
11853   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
11854   switch (Op.getOpcode()) {
11855   default: break;
11856   case PPCISD::LBRX: {
11857     // lhbrx is known to have the top bits cleared out.
11858     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
11859       KnownZero = 0xFFFF0000;
11860     break;
11861   }
11862   case ISD::INTRINSIC_WO_CHAIN: {
11863     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
11864     default: break;
11865     case Intrinsic::ppc_altivec_vcmpbfp_p:
11866     case Intrinsic::ppc_altivec_vcmpeqfp_p:
11867     case Intrinsic::ppc_altivec_vcmpequb_p:
11868     case Intrinsic::ppc_altivec_vcmpequh_p:
11869     case Intrinsic::ppc_altivec_vcmpequw_p:
11870     case Intrinsic::ppc_altivec_vcmpequd_p:
11871     case Intrinsic::ppc_altivec_vcmpgefp_p:
11872     case Intrinsic::ppc_altivec_vcmpgtfp_p:
11873     case Intrinsic::ppc_altivec_vcmpgtsb_p:
11874     case Intrinsic::ppc_altivec_vcmpgtsh_p:
11875     case Intrinsic::ppc_altivec_vcmpgtsw_p:
11876     case Intrinsic::ppc_altivec_vcmpgtsd_p:
11877     case Intrinsic::ppc_altivec_vcmpgtub_p:
11878     case Intrinsic::ppc_altivec_vcmpgtuh_p:
11879     case Intrinsic::ppc_altivec_vcmpgtuw_p:
11880     case Intrinsic::ppc_altivec_vcmpgtud_p:
11881       KnownZero = ~1U;  // All bits but the low one are known to be zero.
11882       break;
11883     }
11884   }
11885   }
11886 }
11887
11888 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11889   switch (Subtarget.getDarwinDirective()) {
11890   default: break;
11891   case PPC::DIR_970:
11892   case PPC::DIR_PWR4:
11893   case PPC::DIR_PWR5:
11894   case PPC::DIR_PWR5X:
11895   case PPC::DIR_PWR6:
11896   case PPC::DIR_PWR6X:
11897   case PPC::DIR_PWR7:
11898   case PPC::DIR_PWR8:
11899   case PPC::DIR_PWR9: {
11900     if (!ML)
11901       break;
11902
11903     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11904
11905     // For small loops (between 5 and 8 instructions), align to a 32-byte
11906     // boundary so that the entire loop fits in one instruction-cache line.
11907     uint64_t LoopSize = 0;
11908     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
11909       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
11910         LoopSize += TII->getInstSizeInBytes(*J);
11911         if (LoopSize > 32)
11912           break;
11913       }
11914
11915     if (LoopSize > 16 && LoopSize <= 32)
11916       return 5;
11917
11918     break;
11919   }
11920   }
11921
11922   return TargetLowering::getPrefLoopAlignment(ML);
11923 }
11924
11925 /// getConstraintType - Given a constraint, return the type of
11926 /// constraint it is for this target.
11927 PPCTargetLowering::ConstraintType
11928 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
11929   if (Constraint.size() == 1) {
11930     switch (Constraint[0]) {
11931     default: break;
11932     case 'b':
11933     case 'r':
11934     case 'f':
11935     case 'd':
11936     case 'v':
11937     case 'y':
11938       return C_RegisterClass;
11939     case 'Z':
11940       // FIXME: While Z does indicate a memory constraint, it specifically
11941       // indicates an r+r address (used in conjunction with the 'y' modifier
11942       // in the replacement string). Currently, we're forcing the base
11943       // register to be r0 in the asm printer (which is interpreted as zero)
11944       // and forming the complete address in the second register. This is
11945       // suboptimal.
11946       return C_Memory;
11947     }
11948   } else if (Constraint == "wc") { // individual CR bits.
11949     return C_RegisterClass;
11950   } else if (Constraint == "wa" || Constraint == "wd" ||
11951              Constraint == "wf" || Constraint == "ws") {
11952     return C_RegisterClass; // VSX registers.
11953   }
11954   return TargetLowering::getConstraintType(Constraint);
11955 }
11956
11957 /// Examine constraint type and operand type and determine a weight value.
11958 /// This object must already have been set up with the operand type
11959 /// and the current alternative constraint selected.
11960 TargetLowering::ConstraintWeight
11961 PPCTargetLowering::getSingleConstraintMatchWeight(
11962     AsmOperandInfo &info, const char *constraint) const {
11963   ConstraintWeight weight = CW_Invalid;
11964   Value *CallOperandVal = info.CallOperandVal;
11965     // If we don't have a value, we can't do a match,
11966     // but allow it at the lowest weight.
11967   if (!CallOperandVal)
11968     return CW_Default;
11969   Type *type = CallOperandVal->getType();
11970
11971   // Look at the constraint type.
11972   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
11973     return CW_Register; // an individual CR bit.
11974   else if ((StringRef(constraint) == "wa" ||
11975             StringRef(constraint) == "wd" ||
11976             StringRef(constraint) == "wf") &&
11977            type->isVectorTy())
11978     return CW_Register;
11979   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
11980     return CW_Register;
11981
11982   switch (*constraint) {
11983   default:
11984     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11985     break;
11986   case 'b':
11987     if (type->isIntegerTy())
11988       weight = CW_Register;
11989     break;
11990   case 'f':
11991     if (type->isFloatTy())
11992       weight = CW_Register;
11993     break;
11994   case 'd':
11995     if (type->isDoubleTy())
11996       weight = CW_Register;
11997     break;
11998   case 'v':
11999     if (type->isVectorTy())
12000       weight = CW_Register;
12001     break;
12002   case 'y':
12003     weight = CW_Register;
12004     break;
12005   case 'Z':
12006     weight = CW_Memory;
12007     break;
12008   }
12009   return weight;
12010 }
12011
12012 std::pair<unsigned, const TargetRegisterClass *>
12013 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
12014                                                 StringRef Constraint,
12015                                                 MVT VT) const {
12016   if (Constraint.size() == 1) {
12017     // GCC RS6000 Constraint Letters
12018     switch (Constraint[0]) {
12019     case 'b':   // R1-R31
12020       if (VT == MVT::i64 && Subtarget.isPPC64())
12021         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
12022       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
12023     case 'r':   // R0-R31
12024       if (VT == MVT::i64 && Subtarget.isPPC64())
12025         return std::make_pair(0U, &PPC::G8RCRegClass);
12026       return std::make_pair(0U, &PPC::GPRCRegClass);
12027     // 'd' and 'f' constraints are both defined to be "the floating point
12028     // registers", where one is for 32-bit and the other for 64-bit. We don't
12029     // really care overly much here so just give them all the same reg classes.
12030     case 'd':
12031     case 'f':
12032       if (VT == MVT::f32 || VT == MVT::i32)
12033         return std::make_pair(0U, &PPC::F4RCRegClass);
12034       if (VT == MVT::f64 || VT == MVT::i64)
12035         return std::make_pair(0U, &PPC::F8RCRegClass);
12036       if (VT == MVT::v4f64 && Subtarget.hasQPX())
12037         return std::make_pair(0U, &PPC::QFRCRegClass);
12038       if (VT == MVT::v4f32 && Subtarget.hasQPX())
12039         return std::make_pair(0U, &PPC::QSRCRegClass);
12040       break;
12041     case 'v':
12042       if (VT == MVT::v4f64 && Subtarget.hasQPX())
12043         return std::make_pair(0U, &PPC::QFRCRegClass);
12044       if (VT == MVT::v4f32 && Subtarget.hasQPX())
12045         return std::make_pair(0U, &PPC::QSRCRegClass);
12046       if (Subtarget.hasAltivec())
12047         return std::make_pair(0U, &PPC::VRRCRegClass);
12048     case 'y':   // crrc
12049       return std::make_pair(0U, &PPC::CRRCRegClass);
12050     }
12051   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
12052     // An individual CR bit.
12053     return std::make_pair(0U, &PPC::CRBITRCRegClass);
12054   } else if ((Constraint == "wa" || Constraint == "wd" ||
12055              Constraint == "wf") && Subtarget.hasVSX()) {
12056     return std::make_pair(0U, &PPC::VSRCRegClass);
12057   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
12058     if (VT == MVT::f32 && Subtarget.hasP8Vector())
12059       return std::make_pair(0U, &PPC::VSSRCRegClass);
12060     else
12061       return std::make_pair(0U, &PPC::VSFRCRegClass);
12062   }
12063
12064   std::pair<unsigned, const TargetRegisterClass *> R =
12065       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12066
12067   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
12068   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
12069   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
12070   // register.
12071   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
12072   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
12073   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
12074       PPC::GPRCRegClass.contains(R.first))
12075     return std::make_pair(TRI->getMatchingSuperReg(R.first,
12076                             PPC::sub_32, &PPC::G8RCRegClass),
12077                           &PPC::G8RCRegClass);
12078
12079   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
12080   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
12081     R.first = PPC::CR0;
12082     R.second = &PPC::CRRCRegClass;
12083   }
12084
12085   return R;
12086 }
12087
12088 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12089 /// vector.  If it is invalid, don't add anything to Ops.
12090 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12091                                                      std::string &Constraint,
12092                                                      std::vector<SDValue>&Ops,
12093                                                      SelectionDAG &DAG) const {
12094   SDValue Result;
12095
12096   // Only support length 1 constraints.
12097   if (Constraint.length() > 1) return;
12098
12099   char Letter = Constraint[0];
12100   switch (Letter) {
12101   default: break;
12102   case 'I':
12103   case 'J':
12104   case 'K':
12105   case 'L':
12106   case 'M':
12107   case 'N':
12108   case 'O':
12109   case 'P': {
12110     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
12111     if (!CST) return; // Must be an immediate to match.
12112     SDLoc dl(Op);
12113     int64_t Value = CST->getSExtValue();
12114     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
12115                          // numbers are printed as such.
12116     switch (Letter) {
12117     default: llvm_unreachable("Unknown constraint letter!");
12118     case 'I':  // "I" is a signed 16-bit constant.
12119       if (isInt<16>(Value))
12120         Result = DAG.getTargetConstant(Value, dl, TCVT);
12121       break;
12122     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
12123       if (isShiftedUInt<16, 16>(Value))
12124         Result = DAG.getTargetConstant(Value, dl, TCVT);
12125       break;
12126     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
12127       if (isShiftedInt<16, 16>(Value))
12128         Result = DAG.getTargetConstant(Value, dl, TCVT);
12129       break;
12130     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
12131       if (isUInt<16>(Value))
12132         Result = DAG.getTargetConstant(Value, dl, TCVT);
12133       break;
12134     case 'M':  // "M" is a constant that is greater than 31.
12135       if (Value > 31)
12136         Result = DAG.getTargetConstant(Value, dl, TCVT);
12137       break;
12138     case 'N':  // "N" is a positive constant that is an exact power of two.
12139       if (Value > 0 && isPowerOf2_64(Value))
12140         Result = DAG.getTargetConstant(Value, dl, TCVT);
12141       break;
12142     case 'O':  // "O" is the constant zero.
12143       if (Value == 0)
12144         Result = DAG.getTargetConstant(Value, dl, TCVT);
12145       break;
12146     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
12147       if (isInt<16>(-Value))
12148         Result = DAG.getTargetConstant(Value, dl, TCVT);
12149       break;
12150     }
12151     break;
12152   }
12153   }
12154
12155   if (Result.getNode()) {
12156     Ops.push_back(Result);
12157     return;
12158   }
12159
12160   // Handle standard constraint letters.
12161   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12162 }
12163
12164 // isLegalAddressingMode - Return true if the addressing mode represented
12165 // by AM is legal for this target, for a load/store of the specified type.
12166 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
12167                                               const AddrMode &AM, Type *Ty,
12168                                               unsigned AS) const {
12169   // PPC does not allow r+i addressing modes for vectors!
12170   if (Ty->isVectorTy() && AM.BaseOffs != 0)
12171     return false;
12172
12173   // PPC allows a sign-extended 16-bit immediate field.
12174   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
12175     return false;
12176
12177   // No global is ever allowed as a base.
12178   if (AM.BaseGV)
12179     return false;
12180
12181   // PPC only support r+r,
12182   switch (AM.Scale) {
12183   case 0:  // "r+i" or just "i", depending on HasBaseReg.
12184     break;
12185   case 1:
12186     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
12187       return false;
12188     // Otherwise we have r+r or r+i.
12189     break;
12190   case 2:
12191     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
12192       return false;
12193     // Allow 2*r as r+r.
12194     break;
12195   default:
12196     // No other scales are supported.
12197     return false;
12198   }
12199
12200   return true;
12201 }
12202
12203 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
12204                                            SelectionDAG &DAG) const {
12205   MachineFunction &MF = DAG.getMachineFunction();
12206   MachineFrameInfo &MFI = MF.getFrameInfo();
12207   MFI.setReturnAddressIsTaken(true);
12208
12209   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
12210     return SDValue();
12211
12212   SDLoc dl(Op);
12213   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12214
12215   // Make sure the function does not optimize away the store of the RA to
12216   // the stack.
12217   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
12218   FuncInfo->setLRStoreRequired();
12219   bool isPPC64 = Subtarget.isPPC64();
12220   auto PtrVT = getPointerTy(MF.getDataLayout());
12221
12222   if (Depth > 0) {
12223     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
12224     SDValue Offset =
12225         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
12226                         isPPC64 ? MVT::i64 : MVT::i32);
12227     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
12228                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
12229                        MachinePointerInfo());
12230   }
12231
12232   // Just load the return address off the stack.
12233   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
12234   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
12235                      MachinePointerInfo());
12236 }
12237
12238 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
12239                                           SelectionDAG &DAG) const {
12240   SDLoc dl(Op);
12241   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12242
12243   MachineFunction &MF = DAG.getMachineFunction();
12244   MachineFrameInfo &MFI = MF.getFrameInfo();
12245   MFI.setFrameAddressIsTaken(true);
12246
12247   EVT PtrVT = getPointerTy(MF.getDataLayout());
12248   bool isPPC64 = PtrVT == MVT::i64;
12249
12250   // Naked functions never have a frame pointer, and so we use r1. For all
12251   // other functions, this decision must be delayed until during PEI.
12252   unsigned FrameReg;
12253   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
12254     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
12255   else
12256     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
12257
12258   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
12259                                          PtrVT);
12260   while (Depth--)
12261     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
12262                             FrameAddr, MachinePointerInfo());
12263   return FrameAddr;
12264 }
12265
12266 // FIXME? Maybe this could be a TableGen attribute on some registers and
12267 // this table could be generated automatically from RegInfo.
12268 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
12269                                               SelectionDAG &DAG) const {
12270   bool isPPC64 = Subtarget.isPPC64();
12271   bool isDarwinABI = Subtarget.isDarwinABI();
12272
12273   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
12274       (!isPPC64 && VT != MVT::i32))
12275     report_fatal_error("Invalid register global variable type");
12276
12277   bool is64Bit = isPPC64 && VT == MVT::i64;
12278   unsigned Reg = StringSwitch<unsigned>(RegName)
12279                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
12280                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
12281                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
12282                                   (is64Bit ? PPC::X13 : PPC::R13))
12283                    .Default(0);
12284
12285   if (Reg)
12286     return Reg;
12287   report_fatal_error("Invalid register name global variable");
12288 }
12289
12290 bool
12291 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
12292   // The PowerPC target isn't yet aware of offsets.
12293   return false;
12294 }
12295
12296 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
12297                                            const CallInst &I,
12298                                            unsigned Intrinsic) const {
12299
12300   switch (Intrinsic) {
12301   case Intrinsic::ppc_qpx_qvlfd:
12302   case Intrinsic::ppc_qpx_qvlfs:
12303   case Intrinsic::ppc_qpx_qvlfcd:
12304   case Intrinsic::ppc_qpx_qvlfcs:
12305   case Intrinsic::ppc_qpx_qvlfiwa:
12306   case Intrinsic::ppc_qpx_qvlfiwz:
12307   case Intrinsic::ppc_altivec_lvx:
12308   case Intrinsic::ppc_altivec_lvxl:
12309   case Intrinsic::ppc_altivec_lvebx:
12310   case Intrinsic::ppc_altivec_lvehx:
12311   case Intrinsic::ppc_altivec_lvewx:
12312   case Intrinsic::ppc_vsx_lxvd2x:
12313   case Intrinsic::ppc_vsx_lxvw4x: {
12314     EVT VT;
12315     switch (Intrinsic) {
12316     case Intrinsic::ppc_altivec_lvebx:
12317       VT = MVT::i8;
12318       break;
12319     case Intrinsic::ppc_altivec_lvehx:
12320       VT = MVT::i16;
12321       break;
12322     case Intrinsic::ppc_altivec_lvewx:
12323       VT = MVT::i32;
12324       break;
12325     case Intrinsic::ppc_vsx_lxvd2x:
12326       VT = MVT::v2f64;
12327       break;
12328     case Intrinsic::ppc_qpx_qvlfd:
12329       VT = MVT::v4f64;
12330       break;
12331     case Intrinsic::ppc_qpx_qvlfs:
12332       VT = MVT::v4f32;
12333       break;
12334     case Intrinsic::ppc_qpx_qvlfcd:
12335       VT = MVT::v2f64;
12336       break;
12337     case Intrinsic::ppc_qpx_qvlfcs:
12338       VT = MVT::v2f32;
12339       break;
12340     default:
12341       VT = MVT::v4i32;
12342       break;
12343     }
12344
12345     Info.opc = ISD::INTRINSIC_W_CHAIN;
12346     Info.memVT = VT;
12347     Info.ptrVal = I.getArgOperand(0);
12348     Info.offset = -VT.getStoreSize()+1;
12349     Info.size = 2*VT.getStoreSize()-1;
12350     Info.align = 1;
12351     Info.vol = false;
12352     Info.readMem = true;
12353     Info.writeMem = false;
12354     return true;
12355   }
12356   case Intrinsic::ppc_qpx_qvlfda:
12357   case Intrinsic::ppc_qpx_qvlfsa:
12358   case Intrinsic::ppc_qpx_qvlfcda:
12359   case Intrinsic::ppc_qpx_qvlfcsa:
12360   case Intrinsic::ppc_qpx_qvlfiwaa:
12361   case Intrinsic::ppc_qpx_qvlfiwza: {
12362     EVT VT;
12363     switch (Intrinsic) {
12364     case Intrinsic::ppc_qpx_qvlfda:
12365       VT = MVT::v4f64;
12366       break;
12367     case Intrinsic::ppc_qpx_qvlfsa:
12368       VT = MVT::v4f32;
12369       break;
12370     case Intrinsic::ppc_qpx_qvlfcda:
12371       VT = MVT::v2f64;
12372       break;
12373     case Intrinsic::ppc_qpx_qvlfcsa:
12374       VT = MVT::v2f32;
12375       break;
12376     default:
12377       VT = MVT::v4i32;
12378       break;
12379     }
12380
12381     Info.opc = ISD::INTRINSIC_W_CHAIN;
12382     Info.memVT = VT;
12383     Info.ptrVal = I.getArgOperand(0);
12384     Info.offset = 0;
12385     Info.size = VT.getStoreSize();
12386     Info.align = 1;
12387     Info.vol = false;
12388     Info.readMem = true;
12389     Info.writeMem = false;
12390     return true;
12391   }
12392   case Intrinsic::ppc_qpx_qvstfd:
12393   case Intrinsic::ppc_qpx_qvstfs:
12394   case Intrinsic::ppc_qpx_qvstfcd:
12395   case Intrinsic::ppc_qpx_qvstfcs:
12396   case Intrinsic::ppc_qpx_qvstfiw:
12397   case Intrinsic::ppc_altivec_stvx:
12398   case Intrinsic::ppc_altivec_stvxl:
12399   case Intrinsic::ppc_altivec_stvebx:
12400   case Intrinsic::ppc_altivec_stvehx:
12401   case Intrinsic::ppc_altivec_stvewx:
12402   case Intrinsic::ppc_vsx_stxvd2x:
12403   case Intrinsic::ppc_vsx_stxvw4x: {
12404     EVT VT;
12405     switch (Intrinsic) {
12406     case Intrinsic::ppc_altivec_stvebx:
12407       VT = MVT::i8;
12408       break;
12409     case Intrinsic::ppc_altivec_stvehx:
12410       VT = MVT::i16;
12411       break;
12412     case Intrinsic::ppc_altivec_stvewx:
12413       VT = MVT::i32;
12414       break;
12415     case Intrinsic::ppc_vsx_stxvd2x:
12416       VT = MVT::v2f64;
12417       break;
12418     case Intrinsic::ppc_qpx_qvstfd:
12419       VT = MVT::v4f64;
12420       break;
12421     case Intrinsic::ppc_qpx_qvstfs:
12422       VT = MVT::v4f32;
12423       break;
12424     case Intrinsic::ppc_qpx_qvstfcd:
12425       VT = MVT::v2f64;
12426       break;
12427     case Intrinsic::ppc_qpx_qvstfcs:
12428       VT = MVT::v2f32;
12429       break;
12430     default:
12431       VT = MVT::v4i32;
12432       break;
12433     }
12434
12435     Info.opc = ISD::INTRINSIC_VOID;
12436     Info.memVT = VT;
12437     Info.ptrVal = I.getArgOperand(1);
12438     Info.offset = -VT.getStoreSize()+1;
12439     Info.size = 2*VT.getStoreSize()-1;
12440     Info.align = 1;
12441     Info.vol = false;
12442     Info.readMem = false;
12443     Info.writeMem = true;
12444     return true;
12445   }
12446   case Intrinsic::ppc_qpx_qvstfda:
12447   case Intrinsic::ppc_qpx_qvstfsa:
12448   case Intrinsic::ppc_qpx_qvstfcda:
12449   case Intrinsic::ppc_qpx_qvstfcsa:
12450   case Intrinsic::ppc_qpx_qvstfiwa: {
12451     EVT VT;
12452     switch (Intrinsic) {
12453     case Intrinsic::ppc_qpx_qvstfda:
12454       VT = MVT::v4f64;
12455       break;
12456     case Intrinsic::ppc_qpx_qvstfsa:
12457       VT = MVT::v4f32;
12458       break;
12459     case Intrinsic::ppc_qpx_qvstfcda:
12460       VT = MVT::v2f64;
12461       break;
12462     case Intrinsic::ppc_qpx_qvstfcsa:
12463       VT = MVT::v2f32;
12464       break;
12465     default:
12466       VT = MVT::v4i32;
12467       break;
12468     }
12469
12470     Info.opc = ISD::INTRINSIC_VOID;
12471     Info.memVT = VT;
12472     Info.ptrVal = I.getArgOperand(1);
12473     Info.offset = 0;
12474     Info.size = VT.getStoreSize();
12475     Info.align = 1;
12476     Info.vol = false;
12477     Info.readMem = false;
12478     Info.writeMem = true;
12479     return true;
12480   }
12481   default:
12482     break;
12483   }
12484
12485   return false;
12486 }
12487
12488 /// getOptimalMemOpType - Returns the target specific optimal type for load
12489 /// and store operations as a result of memset, memcpy, and memmove
12490 /// lowering. If DstAlign is zero that means it's safe to destination
12491 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
12492 /// means there isn't a need to check it against alignment requirement,
12493 /// probably because the source does not need to be loaded. If 'IsMemset' is
12494 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
12495 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
12496 /// source is constant so it does not need to be loaded.
12497 /// It returns EVT::Other if the type should be determined using generic
12498 /// target-independent logic.
12499 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
12500                                            unsigned DstAlign, unsigned SrcAlign,
12501                                            bool IsMemset, bool ZeroMemset,
12502                                            bool MemcpyStrSrc,
12503                                            MachineFunction &MF) const {
12504   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
12505     const Function *F = MF.getFunction();
12506     // When expanding a memset, require at least two QPX instructions to cover
12507     // the cost of loading the value to be stored from the constant pool.
12508     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
12509        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
12510         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
12511       return MVT::v4f64;
12512     }
12513
12514     // We should use Altivec/VSX loads and stores when available. For unaligned
12515     // addresses, unaligned VSX loads are only fast starting with the P8.
12516     if (Subtarget.hasAltivec() && Size >= 16 &&
12517         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
12518          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
12519       return MVT::v4i32;
12520   }
12521
12522   if (Subtarget.isPPC64()) {
12523     return MVT::i64;
12524   }
12525
12526   return MVT::i32;
12527 }
12528
12529 /// \brief Returns true if it is beneficial to convert a load of a constant
12530 /// to just the constant itself.
12531 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
12532                                                           Type *Ty) const {
12533   assert(Ty->isIntegerTy());
12534
12535   unsigned BitSize = Ty->getPrimitiveSizeInBits();
12536   return !(BitSize == 0 || BitSize > 64);
12537 }
12538
12539 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12540   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12541     return false;
12542   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12543   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12544   return NumBits1 == 64 && NumBits2 == 32;
12545 }
12546
12547 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12548   if (!VT1.isInteger() || !VT2.isInteger())
12549     return false;
12550   unsigned NumBits1 = VT1.getSizeInBits();
12551   unsigned NumBits2 = VT2.getSizeInBits();
12552   return NumBits1 == 64 && NumBits2 == 32;
12553 }
12554
12555 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12556   // Generally speaking, zexts are not free, but they are free when they can be
12557   // folded with other operations.
12558   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
12559     EVT MemVT = LD->getMemoryVT();
12560     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
12561          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
12562         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
12563          LD->getExtensionType() == ISD::ZEXTLOAD))
12564       return true;
12565   }
12566
12567   // FIXME: Add other cases...
12568   //  - 32-bit shifts with a zext to i64
12569   //  - zext after ctlz, bswap, etc.
12570   //  - zext after and by a constant mask
12571
12572   return TargetLowering::isZExtFree(Val, VT2);
12573 }
12574
12575 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
12576   assert(VT.isFloatingPoint());
12577   return true;
12578 }
12579
12580 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12581   return isInt<16>(Imm) || isUInt<16>(Imm);
12582 }
12583
12584 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
12585   return isInt<16>(Imm) || isUInt<16>(Imm);
12586 }
12587
12588 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
12589                                                        unsigned,
12590                                                        unsigned,
12591                                                        bool *Fast) const {
12592   if (DisablePPCUnaligned)
12593     return false;
12594
12595   // PowerPC supports unaligned memory access for simple non-vector types.
12596   // Although accessing unaligned addresses is not as efficient as accessing
12597   // aligned addresses, it is generally more efficient than manual expansion,
12598   // and generally only traps for software emulation when crossing page
12599   // boundaries.
12600
12601   if (!VT.isSimple())
12602     return false;
12603
12604   if (VT.getSimpleVT().isVector()) {
12605     if (Subtarget.hasVSX()) {
12606       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
12607           VT != MVT::v4f32 && VT != MVT::v4i32)
12608         return false;
12609     } else {
12610       return false;
12611     }
12612   }
12613
12614   if (VT == MVT::ppcf128)
12615     return false;
12616
12617   if (Fast)
12618     *Fast = true;
12619
12620   return true;
12621 }
12622
12623 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
12624   VT = VT.getScalarType();
12625
12626   if (!VT.isSimple())
12627     return false;
12628
12629   switch (VT.getSimpleVT().SimpleTy) {
12630   case MVT::f32:
12631   case MVT::f64:
12632     return true;
12633   default:
12634     break;
12635   }
12636
12637   return false;
12638 }
12639
12640 const MCPhysReg *
12641 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
12642   // LR is a callee-save register, but we must treat it as clobbered by any call
12643   // site. Hence we include LR in the scratch registers, which are in turn added
12644   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
12645   // to CTR, which is used by any indirect call.
12646   static const MCPhysReg ScratchRegs[] = {
12647     PPC::X12, PPC::LR8, PPC::CTR8, 0
12648   };
12649
12650   return ScratchRegs;
12651 }
12652
12653 unsigned PPCTargetLowering::getExceptionPointerRegister(
12654     const Constant *PersonalityFn) const {
12655   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
12656 }
12657
12658 unsigned PPCTargetLowering::getExceptionSelectorRegister(
12659     const Constant *PersonalityFn) const {
12660   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
12661 }
12662
12663 bool
12664 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
12665                      EVT VT , unsigned DefinedValues) const {
12666   if (VT == MVT::v2i64)
12667     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
12668
12669   if (Subtarget.hasVSX() || Subtarget.hasQPX())
12670     return true;
12671
12672   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
12673 }
12674
12675 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
12676   if (DisableILPPref || Subtarget.enableMachineScheduler())
12677     return TargetLowering::getSchedulingPreference(N);
12678
12679   return Sched::ILP;
12680 }
12681
12682 // Create a fast isel object.
12683 FastISel *
12684 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
12685                                   const TargetLibraryInfo *LibInfo) const {
12686   return PPC::createFastISel(FuncInfo, LibInfo);
12687 }
12688
12689 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12690   if (Subtarget.isDarwinABI()) return;
12691   if (!Subtarget.isPPC64()) return;
12692
12693   // Update IsSplitCSR in PPCFunctionInfo
12694   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
12695   PFI->setIsSplitCSR(true);
12696 }
12697
12698 void PPCTargetLowering::insertCopiesSplitCSR(
12699   MachineBasicBlock *Entry,
12700   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12701   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
12702   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12703   if (!IStart)
12704     return;
12705
12706   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12707   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12708   MachineBasicBlock::iterator MBBI = Entry->begin();
12709   for (const MCPhysReg *I = IStart; *I; ++I) {
12710     const TargetRegisterClass *RC = nullptr;
12711     if (PPC::G8RCRegClass.contains(*I))
12712       RC = &PPC::G8RCRegClass;
12713     else if (PPC::F8RCRegClass.contains(*I))
12714       RC = &PPC::F8RCRegClass;
12715     else if (PPC::CRRCRegClass.contains(*I))
12716       RC = &PPC::CRRCRegClass;
12717     else if (PPC::VRRCRegClass.contains(*I))
12718       RC = &PPC::VRRCRegClass;
12719     else
12720       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12721
12722     unsigned NewVR = MRI->createVirtualRegister(RC);
12723     // Create copy from CSR to a virtual register.
12724     // FIXME: this currently does not emit CFI pseudo-instructions, it works
12725     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12726     // nounwind. If we want to generalize this later, we may need to emit
12727     // CFI pseudo-instructions.
12728     assert(Entry->getParent()->getFunction()->hasFnAttribute(
12729              Attribute::NoUnwind) &&
12730            "Function should be nounwind in insertCopiesSplitCSR!");
12731     Entry->addLiveIn(*I);
12732     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12733       .addReg(*I);
12734
12735     // Insert the copy-back instructions right before the terminator
12736     for (auto *Exit : Exits)
12737       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12738               TII->get(TargetOpcode::COPY), *I)
12739         .addReg(NewVR);
12740   }
12741 }
12742
12743 // Override to enable LOAD_STACK_GUARD lowering on Linux.
12744 bool PPCTargetLowering::useLoadStackGuardNode() const {
12745   if (!Subtarget.isTargetLinux())
12746     return TargetLowering::useLoadStackGuardNode();
12747   return true;
12748 }
12749
12750 // Override to disable global variable loading on Linux.
12751 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
12752   if (!Subtarget.isTargetLinux())
12753     return TargetLowering::insertSSPDeclarations(M);
12754 }
12755
12756 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
12757
12758   if (!VT.isSimple() || !Subtarget.hasVSX())
12759     return false;
12760
12761   switch(VT.getSimpleVT().SimpleTy) {
12762   default:
12763     // For FP types that are currently not supported by PPC backend, return
12764     // false. Examples: f16, f80.
12765     return false;
12766   case MVT::f32:
12767   case MVT::f64:
12768   case MVT::ppcf128:
12769     return Imm.isPosZero();
12770   }
12771 }