]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / PowerPC / PPCInstrInfo.cpp
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "ppc-instr-info"
44
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48
49 STATISTIC(NumStoreSPILLVSRRCAsVec,
50           "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr,
52           "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted,
55           "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs,
57           "Number of compare-immediate instructions fed by constants");
58 STATISTIC(NumRcRotatesConvertedToRcAnd,
59           "Number of record-form rotates converted to record-form andi");
60
61 static cl::
62 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
63             cl::desc("Disable analysis for CTR loops"));
64
65 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
66 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67
68 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
69 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
70 cl::Hidden);
71
72 static cl::opt<bool>
73 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
74   cl::desc("Use the old (incorrect) instruction latency calculation"));
75
76 // Index into the OpcodesForSpill array.
77 enum SpillOpcodeKey {
78   SOK_Int4Spill,
79   SOK_Int8Spill,
80   SOK_Float8Spill,
81   SOK_Float4Spill,
82   SOK_CRSpill,
83   SOK_CRBitSpill,
84   SOK_VRVectorSpill,
85   SOK_VSXVectorSpill,
86   SOK_VectorFloat8Spill,
87   SOK_VectorFloat4Spill,
88   SOK_VRSaveSpill,
89   SOK_QuadFloat8Spill,
90   SOK_QuadFloat4Spill,
91   SOK_QuadBitSpill,
92   SOK_SpillToVSR,
93   SOK_SPESpill,
94   SOK_SPE4Spill,
95   SOK_LastOpcodeSpill  // This must be last on the enum.
96 };
97
98 // Pin the vtable to this file.
99 void PPCInstrInfo::anchor() {}
100
101 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
102     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
103                       /* CatchRetOpcode */ -1,
104                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
105       Subtarget(STI), RI(STI.getTargetMachine()) {}
106
107 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
108 /// this target when scheduling the DAG.
109 ScheduleHazardRecognizer *
110 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
111                                            const ScheduleDAG *DAG) const {
112   unsigned Directive =
113       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
114   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
115       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
116     const InstrItineraryData *II =
117         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
118     return new ScoreboardHazardRecognizer(II, DAG);
119   }
120
121   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
122 }
123
124 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
125 /// to use for this target when scheduling the DAG.
126 ScheduleHazardRecognizer *
127 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
128                                                  const ScheduleDAG *DAG) const {
129   unsigned Directive =
130       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
131
132   // FIXME: Leaving this as-is until we have POWER9 scheduling info
133   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
134     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
135
136   // Most subtargets use a PPC970 recognizer.
137   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
138       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
139     assert(DAG->TII && "No InstrInfo?");
140
141     return new PPCHazardRecognizer970(*DAG);
142   }
143
144   return new ScoreboardHazardRecognizer(II, DAG);
145 }
146
147 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
148                                        const MachineInstr &MI,
149                                        unsigned *PredCost) const {
150   if (!ItinData || UseOldLatencyCalc)
151     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
152
153   // The default implementation of getInstrLatency calls getStageLatency, but
154   // getStageLatency does not do the right thing for us. While we have
155   // itinerary, most cores are fully pipelined, and so the itineraries only
156   // express the first part of the pipeline, not every stage. Instead, we need
157   // to use the listed output operand cycle number (using operand 0 here, which
158   // is an output).
159
160   unsigned Latency = 1;
161   unsigned DefClass = MI.getDesc().getSchedClass();
162   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
163     const MachineOperand &MO = MI.getOperand(i);
164     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
165       continue;
166
167     int Cycle = ItinData->getOperandCycle(DefClass, i);
168     if (Cycle < 0)
169       continue;
170
171     Latency = std::max(Latency, (unsigned) Cycle);
172   }
173
174   return Latency;
175 }
176
177 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
178                                     const MachineInstr &DefMI, unsigned DefIdx,
179                                     const MachineInstr &UseMI,
180                                     unsigned UseIdx) const {
181   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
182                                                    UseMI, UseIdx);
183
184   if (!DefMI.getParent())
185     return Latency;
186
187   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
188   unsigned Reg = DefMO.getReg();
189
190   bool IsRegCR;
191   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
192     const MachineRegisterInfo *MRI =
193         &DefMI.getParent()->getParent()->getRegInfo();
194     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
195               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
196   } else {
197     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
198               PPC::CRBITRCRegClass.contains(Reg);
199   }
200
201   if (UseMI.isBranch() && IsRegCR) {
202     if (Latency < 0)
203       Latency = getInstrLatency(ItinData, DefMI);
204
205     // On some cores, there is an additional delay between writing to a condition
206     // register, and using it from a branch.
207     unsigned Directive = Subtarget.getDarwinDirective();
208     switch (Directive) {
209     default: break;
210     case PPC::DIR_7400:
211     case PPC::DIR_750:
212     case PPC::DIR_970:
213     case PPC::DIR_E5500:
214     case PPC::DIR_PWR4:
215     case PPC::DIR_PWR5:
216     case PPC::DIR_PWR5X:
217     case PPC::DIR_PWR6:
218     case PPC::DIR_PWR6X:
219     case PPC::DIR_PWR7:
220     case PPC::DIR_PWR8:
221     // FIXME: Is this needed for POWER9?
222       Latency += 2;
223       break;
224     }
225   }
226
227   return Latency;
228 }
229
230 // This function does not list all associative and commutative operations, but
231 // only those worth feeding through the machine combiner in an attempt to
232 // reduce the critical path. Mostly, this means floating-point operations,
233 // because they have high latencies (compared to other operations, such and
234 // and/or, which are also associative and commutative, but have low latencies).
235 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
236   switch (Inst.getOpcode()) {
237   // FP Add:
238   case PPC::FADD:
239   case PPC::FADDS:
240   // FP Multiply:
241   case PPC::FMUL:
242   case PPC::FMULS:
243   // Altivec Add:
244   case PPC::VADDFP:
245   // VSX Add:
246   case PPC::XSADDDP:
247   case PPC::XVADDDP:
248   case PPC::XVADDSP:
249   case PPC::XSADDSP:
250   // VSX Multiply:
251   case PPC::XSMULDP:
252   case PPC::XVMULDP:
253   case PPC::XVMULSP:
254   case PPC::XSMULSP:
255   // QPX Add:
256   case PPC::QVFADD:
257   case PPC::QVFADDS:
258   case PPC::QVFADDSs:
259   // QPX Multiply:
260   case PPC::QVFMUL:
261   case PPC::QVFMULS:
262   case PPC::QVFMULSs:
263     return true;
264   default:
265     return false;
266   }
267 }
268
269 bool PPCInstrInfo::getMachineCombinerPatterns(
270     MachineInstr &Root,
271     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
272   // Using the machine combiner in this way is potentially expensive, so
273   // restrict to when aggressive optimizations are desired.
274   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
275     return false;
276
277   // FP reassociation is only legal when we don't need strict IEEE semantics.
278   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
279     return false;
280
281   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
282 }
283
284 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
285 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
286                                          unsigned &SrcReg, unsigned &DstReg,
287                                          unsigned &SubIdx) const {
288   switch (MI.getOpcode()) {
289   default: return false;
290   case PPC::EXTSW:
291   case PPC::EXTSW_32:
292   case PPC::EXTSW_32_64:
293     SrcReg = MI.getOperand(1).getReg();
294     DstReg = MI.getOperand(0).getReg();
295     SubIdx = PPC::sub_32;
296     return true;
297   }
298 }
299
300 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
301                                            int &FrameIndex) const {
302   unsigned Opcode = MI.getOpcode();
303   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
304   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
305
306   if (End != std::find(OpcodesForSpill, End, Opcode)) {
307     // Check for the operands added by addFrameReference (the immediate is the
308     // offset which defaults to 0).
309     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
310         MI.getOperand(2).isFI()) {
311       FrameIndex = MI.getOperand(2).getIndex();
312       return MI.getOperand(0).getReg();
313     }
314   }
315   return 0;
316 }
317
318 // For opcodes with the ReMaterializable flag set, this function is called to
319 // verify the instruction is really rematable.
320 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
321                                                      AliasAnalysis *AA) const {
322   switch (MI.getOpcode()) {
323   default:
324     // This function should only be called for opcodes with the ReMaterializable
325     // flag set.
326     llvm_unreachable("Unknown rematerializable operation!");
327     break;
328   case PPC::LI:
329   case PPC::LI8:
330   case PPC::LIS:
331   case PPC::LIS8:
332   case PPC::QVGPCI:
333   case PPC::ADDIStocHA:
334   case PPC::ADDItocL:
335   case PPC::LOAD_STACK_GUARD:
336     return true;
337   }
338   return false;
339 }
340
341 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
342                                           int &FrameIndex) const {
343   unsigned Opcode = MI.getOpcode();
344   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
345   const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
346
347   if (End != std::find(OpcodesForSpill, End, Opcode)) {
348     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
349         MI.getOperand(2).isFI()) {
350       FrameIndex = MI.getOperand(2).getIndex();
351       return MI.getOperand(0).getReg();
352     }
353   }
354   return 0;
355 }
356
357 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
358                                                    unsigned OpIdx1,
359                                                    unsigned OpIdx2) const {
360   MachineFunction &MF = *MI.getParent()->getParent();
361
362   // Normal instructions can be commuted the obvious way.
363   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
364     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
365   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
366   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
367   // changing the relative order of the mask operands might change what happens
368   // to the high-bits of the mask (and, thus, the result).
369
370   // Cannot commute if it has a non-zero rotate count.
371   if (MI.getOperand(3).getImm() != 0)
372     return nullptr;
373
374   // If we have a zero rotate count, we have:
375   //   M = mask(MB,ME)
376   //   Op0 = (Op1 & ~M) | (Op2 & M)
377   // Change this to:
378   //   M = mask((ME+1)&31, (MB-1)&31)
379   //   Op0 = (Op2 & ~M) | (Op1 & M)
380
381   // Swap op1/op2
382   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
383          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
384   unsigned Reg0 = MI.getOperand(0).getReg();
385   unsigned Reg1 = MI.getOperand(1).getReg();
386   unsigned Reg2 = MI.getOperand(2).getReg();
387   unsigned SubReg1 = MI.getOperand(1).getSubReg();
388   unsigned SubReg2 = MI.getOperand(2).getSubReg();
389   bool Reg1IsKill = MI.getOperand(1).isKill();
390   bool Reg2IsKill = MI.getOperand(2).isKill();
391   bool ChangeReg0 = false;
392   // If machine instrs are no longer in two-address forms, update
393   // destination register as well.
394   if (Reg0 == Reg1) {
395     // Must be two address instruction!
396     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
397            "Expecting a two-address instruction!");
398     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
399     Reg2IsKill = false;
400     ChangeReg0 = true;
401   }
402
403   // Masks.
404   unsigned MB = MI.getOperand(4).getImm();
405   unsigned ME = MI.getOperand(5).getImm();
406
407   // We can't commute a trivial mask (there is no way to represent an all-zero
408   // mask).
409   if (MB == 0 && ME == 31)
410     return nullptr;
411
412   if (NewMI) {
413     // Create a new instruction.
414     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
415     bool Reg0IsDead = MI.getOperand(0).isDead();
416     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
417         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
418         .addReg(Reg2, getKillRegState(Reg2IsKill))
419         .addReg(Reg1, getKillRegState(Reg1IsKill))
420         .addImm((ME + 1) & 31)
421         .addImm((MB - 1) & 31);
422   }
423
424   if (ChangeReg0) {
425     MI.getOperand(0).setReg(Reg2);
426     MI.getOperand(0).setSubReg(SubReg2);
427   }
428   MI.getOperand(2).setReg(Reg1);
429   MI.getOperand(1).setReg(Reg2);
430   MI.getOperand(2).setSubReg(SubReg1);
431   MI.getOperand(1).setSubReg(SubReg2);
432   MI.getOperand(2).setIsKill(Reg1IsKill);
433   MI.getOperand(1).setIsKill(Reg2IsKill);
434
435   // Swap the mask around.
436   MI.getOperand(4).setImm((ME + 1) & 31);
437   MI.getOperand(5).setImm((MB - 1) & 31);
438   return &MI;
439 }
440
441 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
442                                          unsigned &SrcOpIdx2) const {
443   // For VSX A-Type FMA instructions, it is the first two operands that can be
444   // commuted, however, because the non-encoded tied input operand is listed
445   // first, the operands to swap are actually the second and third.
446
447   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
448   if (AltOpc == -1)
449     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
450
451   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
452   // and SrcOpIdx2.
453   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
454 }
455
456 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
457                               MachineBasicBlock::iterator MI) const {
458   // This function is used for scheduling, and the nop wanted here is the type
459   // that terminates dispatch groups on the POWER cores.
460   unsigned Directive = Subtarget.getDarwinDirective();
461   unsigned Opcode;
462   switch (Directive) {
463   default:            Opcode = PPC::NOP; break;
464   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
465   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
466   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
467   // FIXME: Update when POWER9 scheduling model is ready.
468   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
469   }
470
471   DebugLoc DL;
472   BuildMI(MBB, MI, DL, get(Opcode));
473 }
474
475 /// Return the noop instruction to use for a noop.
476 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
477   NopInst.setOpcode(PPC::NOP);
478 }
479
480 // Branch analysis.
481 // Note: If the condition register is set to CTR or CTR8 then this is a
482 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
483 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
484                                  MachineBasicBlock *&TBB,
485                                  MachineBasicBlock *&FBB,
486                                  SmallVectorImpl<MachineOperand> &Cond,
487                                  bool AllowModify) const {
488   bool isPPC64 = Subtarget.isPPC64();
489
490   // If the block has no terminators, it just falls into the block after it.
491   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
492   if (I == MBB.end())
493     return false;
494
495   if (!isUnpredicatedTerminator(*I))
496     return false;
497
498   if (AllowModify) {
499     // If the BB ends with an unconditional branch to the fallthrough BB,
500     // we eliminate the branch instruction.
501     if (I->getOpcode() == PPC::B &&
502         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
503       I->eraseFromParent();
504
505       // We update iterator after deleting the last branch.
506       I = MBB.getLastNonDebugInstr();
507       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
508         return false;
509     }
510   }
511
512   // Get the last instruction in the block.
513   MachineInstr &LastInst = *I;
514
515   // If there is only one terminator instruction, process it.
516   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
517     if (LastInst.getOpcode() == PPC::B) {
518       if (!LastInst.getOperand(0).isMBB())
519         return true;
520       TBB = LastInst.getOperand(0).getMBB();
521       return false;
522     } else if (LastInst.getOpcode() == PPC::BCC) {
523       if (!LastInst.getOperand(2).isMBB())
524         return true;
525       // Block ends with fall-through condbranch.
526       TBB = LastInst.getOperand(2).getMBB();
527       Cond.push_back(LastInst.getOperand(0));
528       Cond.push_back(LastInst.getOperand(1));
529       return false;
530     } else if (LastInst.getOpcode() == PPC::BC) {
531       if (!LastInst.getOperand(1).isMBB())
532         return true;
533       // Block ends with fall-through condbranch.
534       TBB = LastInst.getOperand(1).getMBB();
535       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
536       Cond.push_back(LastInst.getOperand(0));
537       return false;
538     } else if (LastInst.getOpcode() == PPC::BCn) {
539       if (!LastInst.getOperand(1).isMBB())
540         return true;
541       // Block ends with fall-through condbranch.
542       TBB = LastInst.getOperand(1).getMBB();
543       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
544       Cond.push_back(LastInst.getOperand(0));
545       return false;
546     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
547                LastInst.getOpcode() == PPC::BDNZ) {
548       if (!LastInst.getOperand(0).isMBB())
549         return true;
550       if (DisableCTRLoopAnal)
551         return true;
552       TBB = LastInst.getOperand(0).getMBB();
553       Cond.push_back(MachineOperand::CreateImm(1));
554       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
555                                                true));
556       return false;
557     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
558                LastInst.getOpcode() == PPC::BDZ) {
559       if (!LastInst.getOperand(0).isMBB())
560         return true;
561       if (DisableCTRLoopAnal)
562         return true;
563       TBB = LastInst.getOperand(0).getMBB();
564       Cond.push_back(MachineOperand::CreateImm(0));
565       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
566                                                true));
567       return false;
568     }
569
570     // Otherwise, don't know what this is.
571     return true;
572   }
573
574   // Get the instruction before it if it's a terminator.
575   MachineInstr &SecondLastInst = *I;
576
577   // If there are three terminators, we don't know what sort of block this is.
578   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
579     return true;
580
581   // If the block ends with PPC::B and PPC:BCC, handle it.
582   if (SecondLastInst.getOpcode() == PPC::BCC &&
583       LastInst.getOpcode() == PPC::B) {
584     if (!SecondLastInst.getOperand(2).isMBB() ||
585         !LastInst.getOperand(0).isMBB())
586       return true;
587     TBB = SecondLastInst.getOperand(2).getMBB();
588     Cond.push_back(SecondLastInst.getOperand(0));
589     Cond.push_back(SecondLastInst.getOperand(1));
590     FBB = LastInst.getOperand(0).getMBB();
591     return false;
592   } else if (SecondLastInst.getOpcode() == PPC::BC &&
593              LastInst.getOpcode() == PPC::B) {
594     if (!SecondLastInst.getOperand(1).isMBB() ||
595         !LastInst.getOperand(0).isMBB())
596       return true;
597     TBB = SecondLastInst.getOperand(1).getMBB();
598     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
599     Cond.push_back(SecondLastInst.getOperand(0));
600     FBB = LastInst.getOperand(0).getMBB();
601     return false;
602   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
603              LastInst.getOpcode() == PPC::B) {
604     if (!SecondLastInst.getOperand(1).isMBB() ||
605         !LastInst.getOperand(0).isMBB())
606       return true;
607     TBB = SecondLastInst.getOperand(1).getMBB();
608     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
609     Cond.push_back(SecondLastInst.getOperand(0));
610     FBB = LastInst.getOperand(0).getMBB();
611     return false;
612   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
613               SecondLastInst.getOpcode() == PPC::BDNZ) &&
614              LastInst.getOpcode() == PPC::B) {
615     if (!SecondLastInst.getOperand(0).isMBB() ||
616         !LastInst.getOperand(0).isMBB())
617       return true;
618     if (DisableCTRLoopAnal)
619       return true;
620     TBB = SecondLastInst.getOperand(0).getMBB();
621     Cond.push_back(MachineOperand::CreateImm(1));
622     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
623                                              true));
624     FBB = LastInst.getOperand(0).getMBB();
625     return false;
626   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
627               SecondLastInst.getOpcode() == PPC::BDZ) &&
628              LastInst.getOpcode() == PPC::B) {
629     if (!SecondLastInst.getOperand(0).isMBB() ||
630         !LastInst.getOperand(0).isMBB())
631       return true;
632     if (DisableCTRLoopAnal)
633       return true;
634     TBB = SecondLastInst.getOperand(0).getMBB();
635     Cond.push_back(MachineOperand::CreateImm(0));
636     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
637                                              true));
638     FBB = LastInst.getOperand(0).getMBB();
639     return false;
640   }
641
642   // If the block ends with two PPC:Bs, handle it.  The second one is not
643   // executed, so remove it.
644   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
645     if (!SecondLastInst.getOperand(0).isMBB())
646       return true;
647     TBB = SecondLastInst.getOperand(0).getMBB();
648     I = LastInst;
649     if (AllowModify)
650       I->eraseFromParent();
651     return false;
652   }
653
654   // Otherwise, can't handle this.
655   return true;
656 }
657
658 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
659                                     int *BytesRemoved) const {
660   assert(!BytesRemoved && "code size not handled");
661
662   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
663   if (I == MBB.end())
664     return 0;
665
666   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
667       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
668       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
669       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
670     return 0;
671
672   // Remove the branch.
673   I->eraseFromParent();
674
675   I = MBB.end();
676
677   if (I == MBB.begin()) return 1;
678   --I;
679   if (I->getOpcode() != PPC::BCC &&
680       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
681       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
682       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
683     return 1;
684
685   // Remove the branch.
686   I->eraseFromParent();
687   return 2;
688 }
689
690 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
691                                     MachineBasicBlock *TBB,
692                                     MachineBasicBlock *FBB,
693                                     ArrayRef<MachineOperand> Cond,
694                                     const DebugLoc &DL,
695                                     int *BytesAdded) const {
696   // Shouldn't be a fall through.
697   assert(TBB && "insertBranch must not be told to insert a fallthrough");
698   assert((Cond.size() == 2 || Cond.size() == 0) &&
699          "PPC branch conditions have two components!");
700   assert(!BytesAdded && "code size not handled");
701
702   bool isPPC64 = Subtarget.isPPC64();
703
704   // One-way branch.
705   if (!FBB) {
706     if (Cond.empty())   // Unconditional branch
707       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
708     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
709       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
710                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
711                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
712     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
713       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
714     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
715       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
716     else                // Conditional branch
717       BuildMI(&MBB, DL, get(PPC::BCC))
718           .addImm(Cond[0].getImm())
719           .add(Cond[1])
720           .addMBB(TBB);
721     return 1;
722   }
723
724   // Two-way Conditional Branch.
725   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
726     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
727                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
728                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
729   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
730     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
731   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
732     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
733   else
734     BuildMI(&MBB, DL, get(PPC::BCC))
735         .addImm(Cond[0].getImm())
736         .add(Cond[1])
737         .addMBB(TBB);
738   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
739   return 2;
740 }
741
742 // Select analysis.
743 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
744                 ArrayRef<MachineOperand> Cond,
745                 unsigned TrueReg, unsigned FalseReg,
746                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
747   if (Cond.size() != 2)
748     return false;
749
750   // If this is really a bdnz-like condition, then it cannot be turned into a
751   // select.
752   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
753     return false;
754
755   // Check register classes.
756   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
757   const TargetRegisterClass *RC =
758     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
759   if (!RC)
760     return false;
761
762   // isel is for regular integer GPRs only.
763   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
764       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
765       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
766       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
767     return false;
768
769   // FIXME: These numbers are for the A2, how well they work for other cores is
770   // an open question. On the A2, the isel instruction has a 2-cycle latency
771   // but single-cycle throughput. These numbers are used in combination with
772   // the MispredictPenalty setting from the active SchedMachineModel.
773   CondCycles = 1;
774   TrueCycles = 1;
775   FalseCycles = 1;
776
777   return true;
778 }
779
780 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
781                                 MachineBasicBlock::iterator MI,
782                                 const DebugLoc &dl, unsigned DestReg,
783                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
784                                 unsigned FalseReg) const {
785   assert(Cond.size() == 2 &&
786          "PPC branch conditions have two components!");
787
788   // Get the register classes.
789   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
790   const TargetRegisterClass *RC =
791     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
792   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
793
794   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
795                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
796   assert((Is64Bit ||
797           PPC::GPRCRegClass.hasSubClassEq(RC) ||
798           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
799          "isel is for regular integer GPRs only");
800
801   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
802   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
803
804   unsigned SubIdx = 0;
805   bool SwapOps = false;
806   switch (SelectPred) {
807   case PPC::PRED_EQ:
808   case PPC::PRED_EQ_MINUS:
809   case PPC::PRED_EQ_PLUS:
810       SubIdx = PPC::sub_eq; SwapOps = false; break;
811   case PPC::PRED_NE:
812   case PPC::PRED_NE_MINUS:
813   case PPC::PRED_NE_PLUS:
814       SubIdx = PPC::sub_eq; SwapOps = true; break;
815   case PPC::PRED_LT:
816   case PPC::PRED_LT_MINUS:
817   case PPC::PRED_LT_PLUS:
818       SubIdx = PPC::sub_lt; SwapOps = false; break;
819   case PPC::PRED_GE:
820   case PPC::PRED_GE_MINUS:
821   case PPC::PRED_GE_PLUS:
822       SubIdx = PPC::sub_lt; SwapOps = true; break;
823   case PPC::PRED_GT:
824   case PPC::PRED_GT_MINUS:
825   case PPC::PRED_GT_PLUS:
826       SubIdx = PPC::sub_gt; SwapOps = false; break;
827   case PPC::PRED_LE:
828   case PPC::PRED_LE_MINUS:
829   case PPC::PRED_LE_PLUS:
830       SubIdx = PPC::sub_gt; SwapOps = true; break;
831   case PPC::PRED_UN:
832   case PPC::PRED_UN_MINUS:
833   case PPC::PRED_UN_PLUS:
834       SubIdx = PPC::sub_un; SwapOps = false; break;
835   case PPC::PRED_NU:
836   case PPC::PRED_NU_MINUS:
837   case PPC::PRED_NU_PLUS:
838       SubIdx = PPC::sub_un; SwapOps = true; break;
839   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
840   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
841   }
842
843   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
844            SecondReg = SwapOps ? TrueReg  : FalseReg;
845
846   // The first input register of isel cannot be r0. If it is a member
847   // of a register class that can be r0, then copy it first (the
848   // register allocator should eliminate the copy).
849   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
850       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
851     const TargetRegisterClass *FirstRC =
852       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
853         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
854     unsigned OldFirstReg = FirstReg;
855     FirstReg = MRI.createVirtualRegister(FirstRC);
856     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
857       .addReg(OldFirstReg);
858   }
859
860   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
861     .addReg(FirstReg).addReg(SecondReg)
862     .addReg(Cond[1].getReg(), 0, SubIdx);
863 }
864
865 static unsigned getCRBitValue(unsigned CRBit) {
866   unsigned Ret = 4;
867   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
868       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
869       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
870       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
871     Ret = 3;
872   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
873       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
874       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
875       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
876     Ret = 2;
877   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
878       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
879       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
880       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
881     Ret = 1;
882   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
883       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
884       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
885       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
886     Ret = 0;
887
888   assert(Ret != 4 && "Invalid CR bit register");
889   return Ret;
890 }
891
892 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
893                                MachineBasicBlock::iterator I,
894                                const DebugLoc &DL, unsigned DestReg,
895                                unsigned SrcReg, bool KillSrc) const {
896   // We can end up with self copies and similar things as a result of VSX copy
897   // legalization. Promote them here.
898   const TargetRegisterInfo *TRI = &getRegisterInfo();
899   if (PPC::F8RCRegClass.contains(DestReg) &&
900       PPC::VSRCRegClass.contains(SrcReg)) {
901     unsigned SuperReg =
902       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
903
904     if (VSXSelfCopyCrash && SrcReg == SuperReg)
905       llvm_unreachable("nop VSX copy");
906
907     DestReg = SuperReg;
908   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
909              PPC::VSRCRegClass.contains(DestReg)) {
910     unsigned SuperReg =
911       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
912
913     if (VSXSelfCopyCrash && DestReg == SuperReg)
914       llvm_unreachable("nop VSX copy");
915
916     SrcReg = SuperReg;
917   }
918
919   // Different class register copy
920   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
921       PPC::GPRCRegClass.contains(DestReg)) {
922     unsigned CRReg = getCRFromCRBit(SrcReg);
923     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
924     getKillRegState(KillSrc);
925     // Rotate the CR bit in the CR fields to be the least significant bit and
926     // then mask with 0x1 (MB = ME = 31).
927     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
928        .addReg(DestReg, RegState::Kill)
929        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
930        .addImm(31)
931        .addImm(31);
932     return;
933   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
934       PPC::G8RCRegClass.contains(DestReg)) {
935     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
936     getKillRegState(KillSrc);
937     return;
938   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
939       PPC::GPRCRegClass.contains(DestReg)) {
940     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
941     getKillRegState(KillSrc);
942     return;
943   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
944              PPC::VSFRCRegClass.contains(DestReg)) {
945     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
946     NumGPRtoVSRSpill++;
947     getKillRegState(KillSrc);
948     return;
949   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
950              PPC::G8RCRegClass.contains(DestReg)) {
951     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
952     getKillRegState(KillSrc);
953     return;
954   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
955              PPC::SPE4RCRegClass.contains(DestReg)) {
956     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
957     getKillRegState(KillSrc);
958     return;
959   } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
960              PPC::SPERCRegClass.contains(DestReg)) {
961     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
962     getKillRegState(KillSrc);
963     return;
964   }
965
966
967   unsigned Opc;
968   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
969     Opc = PPC::OR;
970   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
971     Opc = PPC::OR8;
972   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
973     Opc = PPC::FMR;
974   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
975     Opc = PPC::MCRF;
976   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
977     Opc = PPC::VOR;
978   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
979     // There are two different ways this can be done:
980     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
981     //      issue in VSU pipeline 0.
982     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
983     //      can go to either pipeline.
984     // We'll always use xxlor here, because in practically all cases where
985     // copies are generated, they are close enough to some use that the
986     // lower-latency form is preferable.
987     Opc = PPC::XXLOR;
988   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
989            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
990     Opc = PPC::XXLORf;
991   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
992     Opc = PPC::QVFMR;
993   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
994     Opc = PPC::QVFMRs;
995   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
996     Opc = PPC::QVFMRb;
997   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
998     Opc = PPC::CROR;
999   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1000     Opc = PPC::EVOR;
1001   else
1002     llvm_unreachable("Impossible reg-to-reg copy");
1003
1004   const MCInstrDesc &MCID = get(Opc);
1005   if (MCID.getNumOperands() == 3)
1006     BuildMI(MBB, I, DL, MCID, DestReg)
1007       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1008   else
1009     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1010 }
1011
1012 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1013                                               const TargetRegisterClass *RC)
1014                                               const {
1015   const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1016   int OpcodeIndex = 0;
1017
1018   if (RC != nullptr) {
1019     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1020         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1021       OpcodeIndex = SOK_Int4Spill;
1022     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1023                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1024       OpcodeIndex = SOK_Int8Spill;
1025     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1026       OpcodeIndex = SOK_Float8Spill;
1027     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1028       OpcodeIndex = SOK_Float4Spill;
1029     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1030       OpcodeIndex = SOK_SPESpill;
1031     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1032       OpcodeIndex = SOK_SPE4Spill;
1033     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1034       OpcodeIndex = SOK_CRSpill;
1035     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1036       OpcodeIndex = SOK_CRBitSpill;
1037     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1038       OpcodeIndex = SOK_VRVectorSpill;
1039     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1040       OpcodeIndex = SOK_VSXVectorSpill;
1041     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1042       OpcodeIndex = SOK_VectorFloat8Spill;
1043     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1044       OpcodeIndex = SOK_VectorFloat4Spill;
1045     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1046       OpcodeIndex = SOK_VRSaveSpill;
1047     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1048       OpcodeIndex = SOK_QuadFloat8Spill;
1049     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1050       OpcodeIndex = SOK_QuadFloat4Spill;
1051     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1052       OpcodeIndex = SOK_QuadBitSpill;
1053     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1054       OpcodeIndex = SOK_SpillToVSR;
1055     } else {
1056       llvm_unreachable("Unknown regclass!");
1057     }
1058   } else {
1059     if (PPC::GPRCRegClass.contains(Reg) ||
1060         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1061       OpcodeIndex = SOK_Int4Spill;
1062     } else if (PPC::G8RCRegClass.contains(Reg) ||
1063                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1064       OpcodeIndex = SOK_Int8Spill;
1065     } else if (PPC::F8RCRegClass.contains(Reg)) {
1066       OpcodeIndex = SOK_Float8Spill;
1067     } else if (PPC::F4RCRegClass.contains(Reg)) {
1068       OpcodeIndex = SOK_Float4Spill;
1069     } else if (PPC::CRRCRegClass.contains(Reg)) {
1070       OpcodeIndex = SOK_CRSpill;
1071     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1072       OpcodeIndex = SOK_CRBitSpill;
1073     } else if (PPC::VRRCRegClass.contains(Reg)) {
1074       OpcodeIndex = SOK_VRVectorSpill;
1075     } else if (PPC::VSRCRegClass.contains(Reg)) {
1076       OpcodeIndex = SOK_VSXVectorSpill;
1077     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1078       OpcodeIndex = SOK_VectorFloat8Spill;
1079     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1080       OpcodeIndex = SOK_VectorFloat4Spill;
1081     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1082       OpcodeIndex = SOK_VRSaveSpill;
1083     } else if (PPC::QFRCRegClass.contains(Reg)) {
1084       OpcodeIndex = SOK_QuadFloat8Spill;
1085     } else if (PPC::QSRCRegClass.contains(Reg)) {
1086       OpcodeIndex = SOK_QuadFloat4Spill;
1087     } else if (PPC::QBRCRegClass.contains(Reg)) {
1088       OpcodeIndex = SOK_QuadBitSpill;
1089     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1090       OpcodeIndex = SOK_SpillToVSR;
1091     } else {
1092       llvm_unreachable("Unknown regclass!");
1093     }
1094   }
1095   return OpcodesForSpill[OpcodeIndex];
1096 }
1097
1098 unsigned
1099 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1100                                     const TargetRegisterClass *RC) const {
1101   const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1102   int OpcodeIndex = 0;
1103
1104   if (RC != nullptr) {
1105     if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1106         PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1107       OpcodeIndex = SOK_Int4Spill;
1108     } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1109                PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1110       OpcodeIndex = SOK_Int8Spill;
1111     } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1112       OpcodeIndex = SOK_Float8Spill;
1113     } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1114       OpcodeIndex = SOK_Float4Spill;
1115     } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1116       OpcodeIndex = SOK_SPESpill;
1117     } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1118       OpcodeIndex = SOK_SPE4Spill;
1119     } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1120       OpcodeIndex = SOK_CRSpill;
1121     } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1122       OpcodeIndex = SOK_CRBitSpill;
1123     } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1124       OpcodeIndex = SOK_VRVectorSpill;
1125     } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1126       OpcodeIndex = SOK_VSXVectorSpill;
1127     } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1128       OpcodeIndex = SOK_VectorFloat8Spill;
1129     } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1130       OpcodeIndex = SOK_VectorFloat4Spill;
1131     } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1132       OpcodeIndex = SOK_VRSaveSpill;
1133     } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1134       OpcodeIndex = SOK_QuadFloat8Spill;
1135     } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1136       OpcodeIndex = SOK_QuadFloat4Spill;
1137     } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1138       OpcodeIndex = SOK_QuadBitSpill;
1139     } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1140       OpcodeIndex = SOK_SpillToVSR;
1141     } else {
1142       llvm_unreachable("Unknown regclass!");
1143     }
1144   } else {
1145     if (PPC::GPRCRegClass.contains(Reg) ||
1146         PPC::GPRC_NOR0RegClass.contains(Reg)) {
1147       OpcodeIndex = SOK_Int4Spill;
1148     } else if (PPC::G8RCRegClass.contains(Reg) ||
1149                PPC::G8RC_NOX0RegClass.contains(Reg)) {
1150       OpcodeIndex = SOK_Int8Spill;
1151     } else if (PPC::F8RCRegClass.contains(Reg)) {
1152       OpcodeIndex = SOK_Float8Spill;
1153     } else if (PPC::F4RCRegClass.contains(Reg)) {
1154       OpcodeIndex = SOK_Float4Spill;
1155     } else if (PPC::CRRCRegClass.contains(Reg)) {
1156       OpcodeIndex = SOK_CRSpill;
1157     } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1158       OpcodeIndex = SOK_CRBitSpill;
1159     } else if (PPC::VRRCRegClass.contains(Reg)) {
1160       OpcodeIndex = SOK_VRVectorSpill;
1161     } else if (PPC::VSRCRegClass.contains(Reg)) {
1162       OpcodeIndex = SOK_VSXVectorSpill;
1163     } else if (PPC::VSFRCRegClass.contains(Reg)) {
1164       OpcodeIndex = SOK_VectorFloat8Spill;
1165     } else if (PPC::VSSRCRegClass.contains(Reg)) {
1166       OpcodeIndex = SOK_VectorFloat4Spill;
1167     } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1168       OpcodeIndex = SOK_VRSaveSpill;
1169     } else if (PPC::QFRCRegClass.contains(Reg)) {
1170       OpcodeIndex = SOK_QuadFloat8Spill;
1171     } else if (PPC::QSRCRegClass.contains(Reg)) {
1172       OpcodeIndex = SOK_QuadFloat4Spill;
1173     } else if (PPC::QBRCRegClass.contains(Reg)) {
1174       OpcodeIndex = SOK_QuadBitSpill;
1175     } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1176       OpcodeIndex = SOK_SpillToVSR;
1177     } else {
1178       llvm_unreachable("Unknown regclass!");
1179     }
1180   }
1181   return OpcodesForSpill[OpcodeIndex];
1182 }
1183
1184 void PPCInstrInfo::StoreRegToStackSlot(
1185     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1186     const TargetRegisterClass *RC,
1187     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1188   unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1189   DebugLoc DL;
1190
1191   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1192   FuncInfo->setHasSpills();
1193
1194   NewMIs.push_back(addFrameReference(
1195       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1196       FrameIdx));
1197
1198   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1199       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1200     FuncInfo->setSpillsCR();
1201
1202   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1203     FuncInfo->setSpillsVRSAVE();
1204
1205   if (isXFormMemOp(Opcode))
1206     FuncInfo->setHasNonRISpills();
1207 }
1208
1209 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1210                                        MachineBasicBlock::iterator MI,
1211                                        unsigned SrcReg, bool isKill,
1212                                        int FrameIdx,
1213                                        const TargetRegisterClass *RC,
1214                                        const TargetRegisterInfo *TRI) const {
1215   MachineFunction &MF = *MBB.getParent();
1216   SmallVector<MachineInstr *, 4> NewMIs;
1217
1218   // We need to avoid a situation in which the value from a VRRC register is
1219   // spilled using an Altivec instruction and reloaded into a VSRC register
1220   // using a VSX instruction. The issue with this is that the VSX
1221   // load/store instructions swap the doublewords in the vector and the Altivec
1222   // ones don't. The register classes on the spill/reload may be different if
1223   // the register is defined using an Altivec instruction and is then used by a
1224   // VSX instruction.
1225   RC = updatedRC(RC);
1226
1227   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1228
1229   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1230     MBB.insert(MI, NewMIs[i]);
1231
1232   const MachineFrameInfo &MFI = MF.getFrameInfo();
1233   MachineMemOperand *MMO = MF.getMachineMemOperand(
1234       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1235       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1236       MFI.getObjectAlignment(FrameIdx));
1237   NewMIs.back()->addMemOperand(MF, MMO);
1238 }
1239
1240 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1241                                         unsigned DestReg, int FrameIdx,
1242                                         const TargetRegisterClass *RC,
1243                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1244                                         const {
1245   unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1246   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1247                                      FrameIdx));
1248   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1249
1250   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1251       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1252     FuncInfo->setSpillsCR();
1253
1254   if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1255     FuncInfo->setSpillsVRSAVE();
1256
1257   if (isXFormMemOp(Opcode))
1258     FuncInfo->setHasNonRISpills();
1259 }
1260
1261 void
1262 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1263                                    MachineBasicBlock::iterator MI,
1264                                    unsigned DestReg, int FrameIdx,
1265                                    const TargetRegisterClass *RC,
1266                                    const TargetRegisterInfo *TRI) const {
1267   MachineFunction &MF = *MBB.getParent();
1268   SmallVector<MachineInstr*, 4> NewMIs;
1269   DebugLoc DL;
1270   if (MI != MBB.end()) DL = MI->getDebugLoc();
1271
1272   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1273   FuncInfo->setHasSpills();
1274
1275   // We need to avoid a situation in which the value from a VRRC register is
1276   // spilled using an Altivec instruction and reloaded into a VSRC register
1277   // using a VSX instruction. The issue with this is that the VSX
1278   // load/store instructions swap the doublewords in the vector and the Altivec
1279   // ones don't. The register classes on the spill/reload may be different if
1280   // the register is defined using an Altivec instruction and is then used by a
1281   // VSX instruction.
1282   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1283     RC = &PPC::VSRCRegClass;
1284
1285   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1286
1287   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1288     MBB.insert(MI, NewMIs[i]);
1289
1290   const MachineFrameInfo &MFI = MF.getFrameInfo();
1291   MachineMemOperand *MMO = MF.getMachineMemOperand(
1292       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1293       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1294       MFI.getObjectAlignment(FrameIdx));
1295   NewMIs.back()->addMemOperand(MF, MMO);
1296 }
1297
1298 bool PPCInstrInfo::
1299 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1300   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1301   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1302     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1303   else
1304     // Leave the CR# the same, but invert the condition.
1305     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1306   return false;
1307 }
1308
1309 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1310                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1311   // For some instructions, it is legal to fold ZERO into the RA register field.
1312   // A zero immediate should always be loaded with a single li.
1313   unsigned DefOpc = DefMI.getOpcode();
1314   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1315     return false;
1316   if (!DefMI.getOperand(1).isImm())
1317     return false;
1318   if (DefMI.getOperand(1).getImm() != 0)
1319     return false;
1320
1321   // Note that we cannot here invert the arguments of an isel in order to fold
1322   // a ZERO into what is presented as the second argument. All we have here
1323   // is the condition bit, and that might come from a CR-logical bit operation.
1324
1325   const MCInstrDesc &UseMCID = UseMI.getDesc();
1326
1327   // Only fold into real machine instructions.
1328   if (UseMCID.isPseudo())
1329     return false;
1330
1331   unsigned UseIdx;
1332   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1333     if (UseMI.getOperand(UseIdx).isReg() &&
1334         UseMI.getOperand(UseIdx).getReg() == Reg)
1335       break;
1336
1337   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1338   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1339
1340   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1341
1342   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1343   // register (which might also be specified as a pointer class kind).
1344   if (UseInfo->isLookupPtrRegClass()) {
1345     if (UseInfo->RegClass /* Kind */ != 1)
1346       return false;
1347   } else {
1348     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1349         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1350       return false;
1351   }
1352
1353   // Make sure this is not tied to an output register (or otherwise
1354   // constrained). This is true for ST?UX registers, for example, which
1355   // are tied to their output registers.
1356   if (UseInfo->Constraints != 0)
1357     return false;
1358
1359   unsigned ZeroReg;
1360   if (UseInfo->isLookupPtrRegClass()) {
1361     bool isPPC64 = Subtarget.isPPC64();
1362     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1363   } else {
1364     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1365               PPC::ZERO8 : PPC::ZERO;
1366   }
1367
1368   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1369   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1370
1371   if (DeleteDef)
1372     DefMI.eraseFromParent();
1373
1374   return true;
1375 }
1376
1377 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1378   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1379        I != IE; ++I)
1380     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1381       return true;
1382   return false;
1383 }
1384
1385 // We should make sure that, if we're going to predicate both sides of a
1386 // condition (a diamond), that both sides don't define the counter register. We
1387 // can predicate counter-decrement-based branches, but while that predicates
1388 // the branching, it does not predicate the counter decrement. If we tried to
1389 // merge the triangle into one predicated block, we'd decrement the counter
1390 // twice.
1391 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1392                      unsigned NumT, unsigned ExtraT,
1393                      MachineBasicBlock &FMBB,
1394                      unsigned NumF, unsigned ExtraF,
1395                      BranchProbability Probability) const {
1396   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1397 }
1398
1399
1400 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1401   // The predicated branches are identified by their type, not really by the
1402   // explicit presence of a predicate. Furthermore, some of them can be
1403   // predicated more than once. Because if conversion won't try to predicate
1404   // any instruction which already claims to be predicated (by returning true
1405   // here), always return false. In doing so, we let isPredicable() be the
1406   // final word on whether not the instruction can be (further) predicated.
1407
1408   return false;
1409 }
1410
1411 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1412   if (!MI.isTerminator())
1413     return false;
1414
1415   // Conditional branch is a special case.
1416   if (MI.isBranch() && !MI.isBarrier())
1417     return true;
1418
1419   return !isPredicated(MI);
1420 }
1421
1422 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1423                                         ArrayRef<MachineOperand> Pred) const {
1424   unsigned OpC = MI.getOpcode();
1425   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1426     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1427       bool isPPC64 = Subtarget.isPPC64();
1428       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1429                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1430     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1431       MI.setDesc(get(PPC::BCLR));
1432       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1433           .addReg(Pred[1].getReg());
1434     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1435       MI.setDesc(get(PPC::BCLRn));
1436       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1437           .addReg(Pred[1].getReg());
1438     } else {
1439       MI.setDesc(get(PPC::BCCLR));
1440       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1441           .addImm(Pred[0].getImm())
1442           .addReg(Pred[1].getReg());
1443     }
1444
1445     return true;
1446   } else if (OpC == PPC::B) {
1447     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1448       bool isPPC64 = Subtarget.isPPC64();
1449       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1450                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1451     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1452       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1453       MI.RemoveOperand(0);
1454
1455       MI.setDesc(get(PPC::BC));
1456       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1457           .addReg(Pred[1].getReg())
1458           .addMBB(MBB);
1459     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1460       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1461       MI.RemoveOperand(0);
1462
1463       MI.setDesc(get(PPC::BCn));
1464       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1465           .addReg(Pred[1].getReg())
1466           .addMBB(MBB);
1467     } else {
1468       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1469       MI.RemoveOperand(0);
1470
1471       MI.setDesc(get(PPC::BCC));
1472       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1473           .addImm(Pred[0].getImm())
1474           .addReg(Pred[1].getReg())
1475           .addMBB(MBB);
1476     }
1477
1478     return true;
1479   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1480              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1481     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1482       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1483
1484     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1485     bool isPPC64 = Subtarget.isPPC64();
1486
1487     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1488       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1489                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1490       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1491           .addReg(Pred[1].getReg());
1492       return true;
1493     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1494       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1495                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1496       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1497           .addReg(Pred[1].getReg());
1498       return true;
1499     }
1500
1501     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1502                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1503     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1504         .addImm(Pred[0].getImm())
1505         .addReg(Pred[1].getReg());
1506     return true;
1507   }
1508
1509   return false;
1510 }
1511
1512 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1513                                      ArrayRef<MachineOperand> Pred2) const {
1514   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1515   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1516
1517   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1518     return false;
1519   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1520     return false;
1521
1522   // P1 can only subsume P2 if they test the same condition register.
1523   if (Pred1[1].getReg() != Pred2[1].getReg())
1524     return false;
1525
1526   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1527   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1528
1529   if (P1 == P2)
1530     return true;
1531
1532   // Does P1 subsume P2, e.g. GE subsumes GT.
1533   if (P1 == PPC::PRED_LE &&
1534       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1535     return true;
1536   if (P1 == PPC::PRED_GE &&
1537       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1538     return true;
1539
1540   return false;
1541 }
1542
1543 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1544                                     std::vector<MachineOperand> &Pred) const {
1545   // Note: At the present time, the contents of Pred from this function is
1546   // unused by IfConversion. This implementation follows ARM by pushing the
1547   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1548   // predicate, instructions defining CTR or CTR8 are also included as
1549   // predicate-defining instructions.
1550
1551   const TargetRegisterClass *RCs[] =
1552     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1553       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1554
1555   bool Found = false;
1556   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1557     const MachineOperand &MO = MI.getOperand(i);
1558     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1559       const TargetRegisterClass *RC = RCs[c];
1560       if (MO.isReg()) {
1561         if (MO.isDef() && RC->contains(MO.getReg())) {
1562           Pred.push_back(MO);
1563           Found = true;
1564         }
1565       } else if (MO.isRegMask()) {
1566         for (TargetRegisterClass::iterator I = RC->begin(),
1567              IE = RC->end(); I != IE; ++I)
1568           if (MO.clobbersPhysReg(*I)) {
1569             Pred.push_back(MO);
1570             Found = true;
1571           }
1572       }
1573     }
1574   }
1575
1576   return Found;
1577 }
1578
1579 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1580   unsigned OpC = MI.getOpcode();
1581   switch (OpC) {
1582   default:
1583     return false;
1584   case PPC::B:
1585   case PPC::BLR:
1586   case PPC::BLR8:
1587   case PPC::BCTR:
1588   case PPC::BCTR8:
1589   case PPC::BCTRL:
1590   case PPC::BCTRL8:
1591     return true;
1592   }
1593 }
1594
1595 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1596                                   unsigned &SrcReg2, int &Mask,
1597                                   int &Value) const {
1598   unsigned Opc = MI.getOpcode();
1599
1600   switch (Opc) {
1601   default: return false;
1602   case PPC::CMPWI:
1603   case PPC::CMPLWI:
1604   case PPC::CMPDI:
1605   case PPC::CMPLDI:
1606     SrcReg = MI.getOperand(1).getReg();
1607     SrcReg2 = 0;
1608     Value = MI.getOperand(2).getImm();
1609     Mask = 0xFFFF;
1610     return true;
1611   case PPC::CMPW:
1612   case PPC::CMPLW:
1613   case PPC::CMPD:
1614   case PPC::CMPLD:
1615   case PPC::FCMPUS:
1616   case PPC::FCMPUD:
1617     SrcReg = MI.getOperand(1).getReg();
1618     SrcReg2 = MI.getOperand(2).getReg();
1619     Value = 0;
1620     Mask = 0;
1621     return true;
1622   }
1623 }
1624
1625 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1626                                         unsigned SrcReg2, int Mask, int Value,
1627                                         const MachineRegisterInfo *MRI) const {
1628   if (DisableCmpOpt)
1629     return false;
1630
1631   int OpC = CmpInstr.getOpcode();
1632   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1633
1634   // FP record forms set CR1 based on the exception status bits, not a
1635   // comparison with zero.
1636   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1637     return false;
1638
1639   // The record forms set the condition register based on a signed comparison
1640   // with zero (so says the ISA manual). This is not as straightforward as it
1641   // seems, however, because this is always a 64-bit comparison on PPC64, even
1642   // for instructions that are 32-bit in nature (like slw for example).
1643   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1644   // for equality checks (as those don't depend on the sign). On PPC64,
1645   // we are restricted to equality for unsigned 64-bit comparisons and for
1646   // signed 32-bit comparisons the applicability is more restricted.
1647   bool isPPC64 = Subtarget.isPPC64();
1648   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1649   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1650   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1651
1652   // Get the unique definition of SrcReg.
1653   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1654   if (!MI) return false;
1655
1656   bool equalityOnly = false;
1657   bool noSub = false;
1658   if (isPPC64) {
1659     if (is32BitSignedCompare) {
1660       // We can perform this optimization only if MI is sign-extending.
1661       if (isSignExtended(*MI))
1662         noSub = true;
1663       else
1664         return false;
1665     } else if (is32BitUnsignedCompare) {
1666       // We can perform this optimization, equality only, if MI is
1667       // zero-extending.
1668       if (isZeroExtended(*MI)) {
1669         noSub = true;
1670         equalityOnly = true;
1671       } else
1672         return false;
1673     } else
1674       equalityOnly = is64BitUnsignedCompare;
1675   } else
1676     equalityOnly = is32BitUnsignedCompare;
1677
1678   if (equalityOnly) {
1679     // We need to check the uses of the condition register in order to reject
1680     // non-equality comparisons.
1681     for (MachineRegisterInfo::use_instr_iterator
1682          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1683          I != IE; ++I) {
1684       MachineInstr *UseMI = &*I;
1685       if (UseMI->getOpcode() == PPC::BCC) {
1686         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1687         unsigned PredCond = PPC::getPredicateCondition(Pred);
1688         // We ignore hint bits when checking for non-equality comparisons.
1689         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1690           return false;
1691       } else if (UseMI->getOpcode() == PPC::ISEL ||
1692                  UseMI->getOpcode() == PPC::ISEL8) {
1693         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1694         if (SubIdx != PPC::sub_eq)
1695           return false;
1696       } else
1697         return false;
1698     }
1699   }
1700
1701   MachineBasicBlock::iterator I = CmpInstr;
1702
1703   // Scan forward to find the first use of the compare.
1704   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1705        ++I) {
1706     bool FoundUse = false;
1707     for (MachineRegisterInfo::use_instr_iterator
1708          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1709          J != JE; ++J)
1710       if (&*J == &*I) {
1711         FoundUse = true;
1712         break;
1713       }
1714
1715     if (FoundUse)
1716       break;
1717   }
1718
1719   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1720   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1721
1722   // There are two possible candidates which can be changed to set CR[01].
1723   // One is MI, the other is a SUB instruction.
1724   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1725   MachineInstr *Sub = nullptr;
1726   if (SrcReg2 != 0)
1727     // MI is not a candidate for CMPrr.
1728     MI = nullptr;
1729   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1730   // same BB as the comparison. This is to allow the check below to avoid calls
1731   // (and other explicit clobbers); instead we should really check for these
1732   // more explicitly (in at least a few predecessors).
1733   else if (MI->getParent() != CmpInstr.getParent())
1734     return false;
1735   else if (Value != 0) {
1736     // The record-form instructions set CR bit based on signed comparison
1737     // against 0. We try to convert a compare against 1 or -1 into a compare
1738     // against 0 to exploit record-form instructions. For example, we change
1739     // the condition "greater than -1" into "greater than or equal to 0"
1740     // and "less than 1" into "less than or equal to 0".
1741
1742     // Since we optimize comparison based on a specific branch condition,
1743     // we don't optimize if condition code is used by more than once.
1744     if (equalityOnly || !MRI->hasOneUse(CRReg))
1745       return false;
1746
1747     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1748     if (UseMI->getOpcode() != PPC::BCC)
1749       return false;
1750
1751     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1752     PPC::Predicate NewPred = Pred;
1753     unsigned PredCond = PPC::getPredicateCondition(Pred);
1754     unsigned PredHint = PPC::getPredicateHint(Pred);
1755     int16_t Immed = (int16_t)Value;
1756
1757     // When modifying the condition in the predicate, we propagate hint bits
1758     // from the original predicate to the new one.
1759     if (Immed == -1 && PredCond == PPC::PRED_GT)
1760       // We convert "greater than -1" into "greater than or equal to 0",
1761       // since we are assuming signed comparison by !equalityOnly
1762       NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1763     else if (Immed == -1 && PredCond == PPC::PRED_LE)
1764       // We convert "less than or equal to -1" into "less than 0".
1765       NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1766     else if (Immed == 1 && PredCond == PPC::PRED_LT)
1767       // We convert "less than 1" into "less than or equal to 0".
1768       NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1769     else if (Immed == 1 && PredCond == PPC::PRED_GE)
1770       // We convert "greater than or equal to 1" into "greater than 0".
1771       NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1772     else
1773       return false;
1774
1775     PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1776                                             NewPred));
1777   }
1778
1779   // Search for Sub.
1780   const TargetRegisterInfo *TRI = &getRegisterInfo();
1781   --I;
1782
1783   // Get ready to iterate backward from CmpInstr.
1784   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1785
1786   for (; I != E && !noSub; --I) {
1787     const MachineInstr &Instr = *I;
1788     unsigned IOpC = Instr.getOpcode();
1789
1790     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1791                              Instr.readsRegister(PPC::CR0, TRI)))
1792       // This instruction modifies or uses the record condition register after
1793       // the one we want to change. While we could do this transformation, it
1794       // would likely not be profitable. This transformation removes one
1795       // instruction, and so even forcing RA to generate one move probably
1796       // makes it unprofitable.
1797       return false;
1798
1799     // Check whether CmpInstr can be made redundant by the current instruction.
1800     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1801          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1802         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1803         ((Instr.getOperand(1).getReg() == SrcReg &&
1804           Instr.getOperand(2).getReg() == SrcReg2) ||
1805         (Instr.getOperand(1).getReg() == SrcReg2 &&
1806          Instr.getOperand(2).getReg() == SrcReg))) {
1807       Sub = &*I;
1808       break;
1809     }
1810
1811     if (I == B)
1812       // The 'and' is below the comparison instruction.
1813       return false;
1814   }
1815
1816   // Return false if no candidates exist.
1817   if (!MI && !Sub)
1818     return false;
1819
1820   // The single candidate is called MI.
1821   if (!MI) MI = Sub;
1822
1823   int NewOpC = -1;
1824   int MIOpC = MI->getOpcode();
1825   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1826     NewOpC = MIOpC;
1827   else {
1828     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1829     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1830       NewOpC = MIOpC;
1831   }
1832
1833   // FIXME: On the non-embedded POWER architectures, only some of the record
1834   // forms are fast, and we should use only the fast ones.
1835
1836   // The defining instruction has a record form (or is already a record
1837   // form). It is possible, however, that we'll need to reverse the condition
1838   // code of the users.
1839   if (NewOpC == -1)
1840     return false;
1841
1842   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1843   // needs to be updated to be based on SUB.  Push the condition code
1844   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1845   // condition code of these operands will be modified.
1846   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1847   // comparison against 0, which may modify predicate.
1848   bool ShouldSwap = false;
1849   if (Sub && Value == 0) {
1850     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1851       Sub->getOperand(2).getReg() == SrcReg;
1852
1853     // The operands to subf are the opposite of sub, so only in the fixed-point
1854     // case, invert the order.
1855     ShouldSwap = !ShouldSwap;
1856   }
1857
1858   if (ShouldSwap)
1859     for (MachineRegisterInfo::use_instr_iterator
1860          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1861          I != IE; ++I) {
1862       MachineInstr *UseMI = &*I;
1863       if (UseMI->getOpcode() == PPC::BCC) {
1864         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1865         unsigned PredCond = PPC::getPredicateCondition(Pred);
1866         assert((!equalityOnly ||
1867                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1868                "Invalid predicate for equality-only optimization");
1869         (void)PredCond; // To suppress warning in release build.
1870         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1871                                 PPC::getSwappedPredicate(Pred)));
1872       } else if (UseMI->getOpcode() == PPC::ISEL ||
1873                  UseMI->getOpcode() == PPC::ISEL8) {
1874         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1875         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1876                "Invalid CR bit for equality-only optimization");
1877
1878         if (NewSubReg == PPC::sub_lt)
1879           NewSubReg = PPC::sub_gt;
1880         else if (NewSubReg == PPC::sub_gt)
1881           NewSubReg = PPC::sub_lt;
1882
1883         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1884                                                  NewSubReg));
1885       } else // We need to abort on a user we don't understand.
1886         return false;
1887     }
1888   assert(!(Value != 0 && ShouldSwap) &&
1889          "Non-zero immediate support and ShouldSwap"
1890          "may conflict in updating predicate");
1891
1892   // Create a new virtual register to hold the value of the CR set by the
1893   // record-form instruction. If the instruction was not previously in
1894   // record form, then set the kill flag on the CR.
1895   CmpInstr.eraseFromParent();
1896
1897   MachineBasicBlock::iterator MII = MI;
1898   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1899           get(TargetOpcode::COPY), CRReg)
1900     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1901
1902   // Even if CR0 register were dead before, it is alive now since the
1903   // instruction we just built uses it.
1904   MI->clearRegisterDeads(PPC::CR0);
1905
1906   if (MIOpC != NewOpC) {
1907     // We need to be careful here: we're replacing one instruction with
1908     // another, and we need to make sure that we get all of the right
1909     // implicit uses and defs. On the other hand, the caller may be holding
1910     // an iterator to this instruction, and so we can't delete it (this is
1911     // specifically the case if this is the instruction directly after the
1912     // compare).
1913
1914     // Rotates are expensive instructions. If we're emitting a record-form
1915     // rotate that can just be an andi, we should just emit the andi.
1916     if ((MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) &&
1917         MI->getOperand(2).getImm() == 0) {
1918       int64_t MB = MI->getOperand(3).getImm();
1919       int64_t ME = MI->getOperand(4).getImm();
1920       if (MB < ME && MB >= 16) {
1921         uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1922         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIo : PPC::ANDIo8;
1923         MI->RemoveOperand(4);
1924         MI->RemoveOperand(3);
1925         MI->getOperand(2).setImm(Mask);
1926         NumRcRotatesConvertedToRcAnd++;
1927       }
1928     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1929       int64_t MB = MI->getOperand(3).getImm();
1930       if (MB >= 48) {
1931         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1932         NewOpC = PPC::ANDIo8;
1933         MI->RemoveOperand(3);
1934         MI->getOperand(2).setImm(Mask);
1935         NumRcRotatesConvertedToRcAnd++;
1936       }
1937     }
1938
1939     const MCInstrDesc &NewDesc = get(NewOpC);
1940     MI->setDesc(NewDesc);
1941
1942     if (NewDesc.ImplicitDefs)
1943       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1944            *ImpDefs; ++ImpDefs)
1945         if (!MI->definesRegister(*ImpDefs))
1946           MI->addOperand(*MI->getParent()->getParent(),
1947                          MachineOperand::CreateReg(*ImpDefs, true, true));
1948     if (NewDesc.ImplicitUses)
1949       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1950            *ImpUses; ++ImpUses)
1951         if (!MI->readsRegister(*ImpUses))
1952           MI->addOperand(*MI->getParent()->getParent(),
1953                          MachineOperand::CreateReg(*ImpUses, false, true));
1954   }
1955   assert(MI->definesRegister(PPC::CR0) &&
1956          "Record-form instruction does not define cr0?");
1957
1958   // Modify the condition code of operands in OperandsToUpdate.
1959   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1960   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1961   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1962     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1963
1964   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1965     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1966
1967   return true;
1968 }
1969
1970 /// GetInstSize - Return the number of bytes of code the specified
1971 /// instruction may be.  This returns the maximum number of bytes.
1972 ///
1973 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1974   unsigned Opcode = MI.getOpcode();
1975
1976   if (Opcode == PPC::INLINEASM) {
1977     const MachineFunction *MF = MI.getParent()->getParent();
1978     const char *AsmStr = MI.getOperand(0).getSymbolName();
1979     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1980   } else if (Opcode == TargetOpcode::STACKMAP) {
1981     StackMapOpers Opers(&MI);
1982     return Opers.getNumPatchBytes();
1983   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1984     PatchPointOpers Opers(&MI);
1985     return Opers.getNumPatchBytes();
1986   } else {
1987     return get(Opcode).getSize();
1988   }
1989 }
1990
1991 std::pair<unsigned, unsigned>
1992 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1993   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1994   return std::make_pair(TF & Mask, TF & ~Mask);
1995 }
1996
1997 ArrayRef<std::pair<unsigned, const char *>>
1998 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1999   using namespace PPCII;
2000   static const std::pair<unsigned, const char *> TargetFlags[] = {
2001       {MO_LO, "ppc-lo"},
2002       {MO_HA, "ppc-ha"},
2003       {MO_TPREL_LO, "ppc-tprel-lo"},
2004       {MO_TPREL_HA, "ppc-tprel-ha"},
2005       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2006       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2007       {MO_TOC_LO, "ppc-toc-lo"},
2008       {MO_TLS, "ppc-tls"}};
2009   return makeArrayRef(TargetFlags);
2010 }
2011
2012 ArrayRef<std::pair<unsigned, const char *>>
2013 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2014   using namespace PPCII;
2015   static const std::pair<unsigned, const char *> TargetFlags[] = {
2016       {MO_PLT, "ppc-plt"},
2017       {MO_PIC_FLAG, "ppc-pic"},
2018       {MO_NLP_FLAG, "ppc-nlp"},
2019       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2020   return makeArrayRef(TargetFlags);
2021 }
2022
2023 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2024 // The VSX versions have the advantage of a full 64-register target whereas
2025 // the FP ones have the advantage of lower latency and higher throughput. So
2026 // what we are after is using the faster instructions in low register pressure
2027 // situations and using the larger register file in high register pressure
2028 // situations.
2029 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2030     unsigned UpperOpcode, LowerOpcode;
2031     switch (MI.getOpcode()) {
2032     case PPC::DFLOADf32:
2033       UpperOpcode = PPC::LXSSP;
2034       LowerOpcode = PPC::LFS;
2035       break;
2036     case PPC::DFLOADf64:
2037       UpperOpcode = PPC::LXSD;
2038       LowerOpcode = PPC::LFD;
2039       break;
2040     case PPC::DFSTOREf32:
2041       UpperOpcode = PPC::STXSSP;
2042       LowerOpcode = PPC::STFS;
2043       break;
2044     case PPC::DFSTOREf64:
2045       UpperOpcode = PPC::STXSD;
2046       LowerOpcode = PPC::STFD;
2047       break;
2048     case PPC::XFLOADf32:
2049       UpperOpcode = PPC::LXSSPX;
2050       LowerOpcode = PPC::LFSX;
2051       break;
2052     case PPC::XFLOADf64:
2053       UpperOpcode = PPC::LXSDX;
2054       LowerOpcode = PPC::LFDX;
2055       break;
2056     case PPC::XFSTOREf32:
2057       UpperOpcode = PPC::STXSSPX;
2058       LowerOpcode = PPC::STFSX;
2059       break;
2060     case PPC::XFSTOREf64:
2061       UpperOpcode = PPC::STXSDX;
2062       LowerOpcode = PPC::STFDX;
2063       break;
2064     case PPC::LIWAX:
2065       UpperOpcode = PPC::LXSIWAX;
2066       LowerOpcode = PPC::LFIWAX;
2067       break;
2068     case PPC::LIWZX:
2069       UpperOpcode = PPC::LXSIWZX;
2070       LowerOpcode = PPC::LFIWZX;
2071       break;
2072     case PPC::STIWX:
2073       UpperOpcode = PPC::STXSIWX;
2074       LowerOpcode = PPC::STFIWX;
2075       break;
2076     default:
2077       llvm_unreachable("Unknown Operation!");
2078     }
2079
2080     unsigned TargetReg = MI.getOperand(0).getReg();
2081     unsigned Opcode;
2082     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2083         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2084       Opcode = LowerOpcode;
2085     else
2086       Opcode = UpperOpcode;
2087     MI.setDesc(get(Opcode));
2088     return true;
2089 }
2090
2091 #ifndef NDEBUG
2092 static bool isAnImmediateOperand(const MachineOperand &MO) {
2093   return MO.isCPI() || MO.isGlobal() || MO.isImm();
2094 }
2095 #endif
2096
2097 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2098   auto &MBB = *MI.getParent();
2099   auto DL = MI.getDebugLoc();
2100
2101   switch (MI.getOpcode()) {
2102   case TargetOpcode::LOAD_STACK_GUARD: {
2103     assert(Subtarget.isTargetLinux() &&
2104            "Only Linux target is expected to contain LOAD_STACK_GUARD");
2105     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2106     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2107     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2108     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2109         .addImm(Offset)
2110         .addReg(Reg);
2111     return true;
2112   }
2113   case PPC::DFLOADf32:
2114   case PPC::DFLOADf64:
2115   case PPC::DFSTOREf32:
2116   case PPC::DFSTOREf64: {
2117     assert(Subtarget.hasP9Vector() &&
2118            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2119     assert(MI.getOperand(2).isReg() &&
2120            isAnImmediateOperand(MI.getOperand(1)) &&
2121            "D-form op must have register and immediate operands");
2122     return expandVSXMemPseudo(MI);
2123   }
2124   case PPC::XFLOADf32:
2125   case PPC::XFSTOREf32:
2126   case PPC::LIWAX:
2127   case PPC::LIWZX:
2128   case PPC::STIWX: {
2129     assert(Subtarget.hasP8Vector() &&
2130            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2131     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2132            "X-form op must have register and register operands");
2133     return expandVSXMemPseudo(MI);
2134   }
2135   case PPC::XFLOADf64:
2136   case PPC::XFSTOREf64: {
2137     assert(Subtarget.hasVSX() &&
2138            "Invalid X-Form Pseudo-ops on target that has no VSX.");
2139     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2140            "X-form op must have register and register operands");
2141     return expandVSXMemPseudo(MI);
2142   }
2143   case PPC::SPILLTOVSR_LD: {
2144     unsigned TargetReg = MI.getOperand(0).getReg();
2145     if (PPC::VSFRCRegClass.contains(TargetReg)) {
2146       MI.setDesc(get(PPC::DFLOADf64));
2147       return expandPostRAPseudo(MI);
2148     }
2149     else
2150       MI.setDesc(get(PPC::LD));
2151     return true;
2152   }
2153   case PPC::SPILLTOVSR_ST: {
2154     unsigned SrcReg = MI.getOperand(0).getReg();
2155     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2156       NumStoreSPILLVSRRCAsVec++;
2157       MI.setDesc(get(PPC::DFSTOREf64));
2158       return expandPostRAPseudo(MI);
2159     } else {
2160       NumStoreSPILLVSRRCAsGpr++;
2161       MI.setDesc(get(PPC::STD));
2162     }
2163     return true;
2164   }
2165   case PPC::SPILLTOVSR_LDX: {
2166     unsigned TargetReg = MI.getOperand(0).getReg();
2167     if (PPC::VSFRCRegClass.contains(TargetReg))
2168       MI.setDesc(get(PPC::LXSDX));
2169     else
2170       MI.setDesc(get(PPC::LDX));
2171     return true;
2172   }
2173   case PPC::SPILLTOVSR_STX: {
2174     unsigned SrcReg = MI.getOperand(0).getReg();
2175     if (PPC::VSFRCRegClass.contains(SrcReg)) {
2176       NumStoreSPILLVSRRCAsVec++;
2177       MI.setDesc(get(PPC::STXSDX));
2178     } else {
2179       NumStoreSPILLVSRRCAsGpr++;
2180       MI.setDesc(get(PPC::STDX));
2181     }
2182     return true;
2183   }
2184
2185   case PPC::CFENCE8: {
2186     auto Val = MI.getOperand(0).getReg();
2187     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2188     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2189         .addImm(PPC::PRED_NE_MINUS)
2190         .addReg(PPC::CR7)
2191         .addImm(1);
2192     MI.setDesc(get(PPC::ISYNC));
2193     MI.RemoveOperand(0);
2194     return true;
2195   }
2196   }
2197   return false;
2198 }
2199
2200 // Essentially a compile-time implementation of a compare->isel sequence.
2201 // It takes two constants to compare, along with the true/false registers
2202 // and the comparison type (as a subreg to a CR field) and returns one
2203 // of the true/false registers, depending on the comparison results.
2204 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2205                           unsigned TrueReg, unsigned FalseReg,
2206                           unsigned CRSubReg) {
2207   // Signed comparisons. The immediates are assumed to be sign-extended.
2208   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2209     switch (CRSubReg) {
2210     default: llvm_unreachable("Unknown integer comparison type.");
2211     case PPC::sub_lt:
2212       return Imm1 < Imm2 ? TrueReg : FalseReg;
2213     case PPC::sub_gt:
2214       return Imm1 > Imm2 ? TrueReg : FalseReg;
2215     case PPC::sub_eq:
2216       return Imm1 == Imm2 ? TrueReg : FalseReg;
2217     }
2218   }
2219   // Unsigned comparisons.
2220   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2221     switch (CRSubReg) {
2222     default: llvm_unreachable("Unknown integer comparison type.");
2223     case PPC::sub_lt:
2224       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2225     case PPC::sub_gt:
2226       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2227     case PPC::sub_eq:
2228       return Imm1 == Imm2 ? TrueReg : FalseReg;
2229     }
2230   }
2231   return PPC::NoRegister;
2232 }
2233
2234 // Replace an instruction with one that materializes a constant (and sets
2235 // CR0 if the original instruction was a record-form instruction).
2236 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2237                                       const LoadImmediateInfo &LII) const {
2238   // Remove existing operands.
2239   int OperandToKeep = LII.SetCR ? 1 : 0;
2240   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2241     MI.RemoveOperand(i);
2242
2243   // Replace the instruction.
2244   if (LII.SetCR) {
2245     MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2246     // Set the immediate.
2247     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2248         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2249     return;
2250   }
2251   else
2252     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2253
2254   // Set the immediate.
2255   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2256       .addImm(LII.Imm);
2257 }
2258
2259 MachineInstr *PPCInstrInfo::getConstantDefMI(MachineInstr &MI,
2260                                              unsigned &ConstOp,
2261                                              bool &SeenIntermediateUse) const {
2262   ConstOp = ~0U;
2263   MachineInstr *DefMI = nullptr;
2264   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2265   const TargetRegisterInfo *TRI = &getRegisterInfo();
2266   // If we're in SSA, get the defs through the MRI. Otherwise, only look
2267   // within the basic block to see if the register is defined using an LI/LI8.
2268   if (MRI->isSSA()) {
2269     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2270       if (!MI.getOperand(i).isReg())
2271         continue;
2272       unsigned Reg = MI.getOperand(i).getReg();
2273       if (!TargetRegisterInfo::isVirtualRegister(Reg))
2274         continue;
2275       unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2276       if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2277         DefMI = MRI->getVRegDef(TrueReg);
2278         if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2279           ConstOp = i;
2280           break;
2281         }
2282       }
2283     }
2284   } else {
2285     // Looking back through the definition for each operand could be expensive,
2286     // so exit early if this isn't an instruction that either has an immediate
2287     // form or is already an immediate form that we can handle.
2288     ImmInstrInfo III;
2289     unsigned Opc = MI.getOpcode();
2290     bool ConvertibleImmForm =
2291       Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2292       Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2293       Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2294       Opc == PPC::ORI || Opc == PPC::ORI8 ||
2295       Opc == PPC::XORI || Opc == PPC::XORI8 ||
2296       Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2297       Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2298       Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2299       Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2300     if (!instrHasImmForm(MI, III) && !ConvertibleImmForm)
2301       return nullptr;
2302
2303     // Don't convert or %X, %Y, %Y since that's just a register move.
2304     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2305         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2306       return nullptr;
2307     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2308       MachineOperand &MO = MI.getOperand(i);
2309       SeenIntermediateUse = false;
2310       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2311         MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2312         It++;
2313         unsigned Reg = MI.getOperand(i).getReg();
2314         // MachineInstr::readsRegister only returns true if the machine
2315         // instruction reads the exact register or its super-register. It
2316         // does not consider uses of sub-registers which seems like strange
2317         // behaviour. Nonetheless, if we end up with a 64-bit register here,
2318         // get the corresponding 32-bit register to check.
2319         if (PPC::G8RCRegClass.contains(Reg))
2320           Reg = Reg - PPC::X0 + PPC::R0;
2321
2322         // Is this register defined by a load-immediate in this block?
2323         for ( ; It != E; ++It) {
2324           if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2325             if (It->getOpcode() == PPC::LI || It->getOpcode() == PPC::LI8) {
2326               ConstOp = i;
2327               return &*It;
2328             } else
2329               break;
2330           } else if (It->readsRegister(Reg, &getRegisterInfo()))
2331             // If we see another use of this reg between the def and the MI,
2332             // we want to flat it so the def isn't deleted.
2333             SeenIntermediateUse = true;
2334         }
2335       }
2336     }
2337   }
2338   return ConstOp == ~0U ? nullptr : DefMI;
2339 }
2340
2341 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2342   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2343       // Power 8
2344       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2345        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2346        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2347        PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2348       // Power 9
2349       {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2350        PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2351        PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2352        PPC::SPILLTOVSR_ST}};
2353
2354   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2355 }
2356
2357 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2358   static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2359       // Power 8
2360       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2361        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2362        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2363        PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2364       // Power 9
2365       {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2366        PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2367        PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2368        PPC::SPILLTOVSR_LD}};
2369
2370   return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2371 }
2372
2373 // If this instruction has an immediate form and one of its operands is a
2374 // result of a load-immediate, convert it to the immediate form if the constant
2375 // is in range.
2376 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2377                                           MachineInstr **KilledDef) const {
2378   MachineFunction *MF = MI.getParent()->getParent();
2379   MachineRegisterInfo *MRI = &MF->getRegInfo();
2380   bool PostRA = !MRI->isSSA();
2381   bool SeenIntermediateUse = true;
2382   unsigned ConstantOperand = ~0U;
2383   MachineInstr *DefMI = getConstantDefMI(MI, ConstantOperand,
2384                                          SeenIntermediateUse);
2385   if (!DefMI || !DefMI->getOperand(1).isImm())
2386     return false;
2387   assert(ConstantOperand < MI.getNumOperands() &&
2388          "The constant operand needs to be valid at this point");
2389
2390   int64_t Immediate = DefMI->getOperand(1).getImm();
2391   // Sign-extend to 64-bits.
2392   int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2393     (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2394
2395   if (KilledDef && MI.getOperand(ConstantOperand).isKill() &&
2396       !SeenIntermediateUse)
2397     *KilledDef = DefMI;
2398
2399   // If this is a reg+reg instruction that has a reg+imm form, convert it now.
2400   ImmInstrInfo III;
2401   if (instrHasImmForm(MI, III))
2402     return transformToImmForm(MI, III, ConstantOperand, SExtImm);
2403
2404   bool ReplaceWithLI = false;
2405   bool Is64BitLI = false;
2406   int64_t NewImm = 0;
2407   bool SetCR = false;
2408   unsigned Opc = MI.getOpcode();
2409   switch (Opc) {
2410   default: return false;
2411
2412   // FIXME: Any branches conditional on such a comparison can be made
2413   // unconditional. At this time, this happens too infrequently to be worth
2414   // the implementation effort, but if that ever changes, we could convert
2415   // such a pattern here.
2416   case PPC::CMPWI:
2417   case PPC::CMPLWI:
2418   case PPC::CMPDI:
2419   case PPC::CMPLDI: {
2420     // Doing this post-RA would require dataflow analysis to reliably find uses
2421     // of the CR register set by the compare.
2422     if (PostRA)
2423       return false;
2424     // If a compare-immediate is fed by an immediate and is itself an input of
2425     // an ISEL (the most common case) into a COPY of the correct register.
2426     bool Changed = false;
2427     unsigned DefReg = MI.getOperand(0).getReg();
2428     int64_t Comparand = MI.getOperand(2).getImm();
2429     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2430       (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2431
2432     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2433       unsigned UseOpc = CompareUseMI.getOpcode();
2434       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2435         continue;
2436       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2437       unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2438       unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2439       unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2440                                      FalseReg, CRSubReg);
2441       if (RegToCopy == PPC::NoRegister)
2442         continue;
2443       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2444       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2445         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2446         CompareUseMI.getOperand(1).ChangeToImmediate(0);
2447         CompareUseMI.RemoveOperand(3);
2448         CompareUseMI.RemoveOperand(2);
2449         continue;
2450       }
2451       LLVM_DEBUG(
2452           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2453       LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2454       LLVM_DEBUG(dbgs() << "Is converted to:\n");
2455       // Convert to copy and remove unneeded operands.
2456       CompareUseMI.setDesc(get(PPC::COPY));
2457       CompareUseMI.RemoveOperand(3);
2458       CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2459       CmpIselsConverted++;
2460       Changed = true;
2461       LLVM_DEBUG(CompareUseMI.dump());
2462     }
2463     if (Changed)
2464       return true;
2465     // This may end up incremented multiple times since this function is called
2466     // during a fixed-point transformation, but it is only meant to indicate the
2467     // presence of this opportunity.
2468     MissedConvertibleImmediateInstrs++;
2469     return false;
2470   }
2471
2472   // Immediate forms - may simply be convertable to an LI.
2473   case PPC::ADDI:
2474   case PPC::ADDI8: {
2475     // Does the sum fit in a 16-bit signed field?
2476     int64_t Addend = MI.getOperand(2).getImm();
2477     if (isInt<16>(Addend + SExtImm)) {
2478       ReplaceWithLI = true;
2479       Is64BitLI = Opc == PPC::ADDI8;
2480       NewImm = Addend + SExtImm;
2481       break;
2482     }
2483     return false;
2484   }
2485   case PPC::RLDICL:
2486   case PPC::RLDICLo:
2487   case PPC::RLDICL_32:
2488   case PPC::RLDICL_32_64: {
2489     // Use APInt's rotate function.
2490     int64_t SH = MI.getOperand(2).getImm();
2491     int64_t MB = MI.getOperand(3).getImm();
2492     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2493                 64 : 32, SExtImm, true);
2494     InVal = InVal.rotl(SH);
2495     uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2496     InVal &= Mask;
2497     // Can't replace negative values with an LI as that will sign-extend
2498     // and not clear the left bits. If we're setting the CR bit, we will use
2499     // ANDIo which won't sign extend, so that's safe.
2500     if (isUInt<15>(InVal.getSExtValue()) ||
2501         (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2502       ReplaceWithLI = true;
2503       Is64BitLI = Opc != PPC::RLDICL_32;
2504       NewImm = InVal.getSExtValue();
2505       SetCR = Opc == PPC::RLDICLo;
2506       break;
2507     }
2508     return false;
2509   }
2510   case PPC::RLWINM:
2511   case PPC::RLWINM8:
2512   case PPC::RLWINMo:
2513   case PPC::RLWINM8o: {
2514     int64_t SH = MI.getOperand(2).getImm();
2515     int64_t MB = MI.getOperand(3).getImm();
2516     int64_t ME = MI.getOperand(4).getImm();
2517     APInt InVal(32, SExtImm, true);
2518     InVal = InVal.rotl(SH);
2519     // Set the bits (        MB + 32        ) to (        ME + 32        ).
2520     uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2521     InVal &= Mask;
2522     // Can't replace negative values with an LI as that will sign-extend
2523     // and not clear the left bits. If we're setting the CR bit, we will use
2524     // ANDIo which won't sign extend, so that's safe.
2525     bool ValueFits = isUInt<15>(InVal.getSExtValue());
2526     ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2527                   isUInt<16>(InVal.getSExtValue()));
2528     if (ValueFits) {
2529       ReplaceWithLI = true;
2530       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2531       NewImm = InVal.getSExtValue();
2532       SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2533       break;
2534     }
2535     return false;
2536   }
2537   case PPC::ORI:
2538   case PPC::ORI8:
2539   case PPC::XORI:
2540   case PPC::XORI8: {
2541     int64_t LogicalImm = MI.getOperand(2).getImm();
2542     int64_t Result = 0;
2543     if (Opc == PPC::ORI || Opc == PPC::ORI8)
2544       Result = LogicalImm | SExtImm;
2545     else
2546       Result = LogicalImm ^ SExtImm;
2547     if (isInt<16>(Result)) {
2548       ReplaceWithLI = true;
2549       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2550       NewImm = Result;
2551       break;
2552     }
2553     return false;
2554   }
2555   }
2556
2557   if (ReplaceWithLI) {
2558     // We need to be careful with CR-setting instructions we're replacing.
2559     if (SetCR) {
2560       // We don't know anything about uses when we're out of SSA, so only
2561       // replace if the new immediate will be reproduced.
2562       bool ImmChanged = (SExtImm & NewImm) != NewImm;
2563       if (PostRA && ImmChanged)
2564         return false;
2565
2566       if (!PostRA) {
2567         // If the defining load-immediate has no other uses, we can just replace
2568         // the immediate with the new immediate.
2569         if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2570           DefMI->getOperand(1).setImm(NewImm);
2571
2572         // If we're not using the GPR result of the CR-setting instruction, we
2573         // just need to and with zero/non-zero depending on the new immediate.
2574         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2575           if (NewImm) {
2576             assert(Immediate && "Transformation converted zero to non-zero?");
2577             NewImm = Immediate;
2578           }
2579         }
2580         else if (ImmChanged)
2581           return false;
2582       }
2583     }
2584
2585     LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2586     LLVM_DEBUG(MI.dump());
2587     LLVM_DEBUG(dbgs() << "Fed by:\n");
2588     LLVM_DEBUG(DefMI->dump());
2589     LoadImmediateInfo LII;
2590     LII.Imm = NewImm;
2591     LII.Is64Bit = Is64BitLI;
2592     LII.SetCR = SetCR;
2593     // If we're setting the CR, the original load-immediate must be kept (as an
2594     // operand to ANDIo/ANDI8o).
2595     if (KilledDef && SetCR)
2596       *KilledDef = nullptr;
2597     replaceInstrWithLI(MI, LII);
2598     LLVM_DEBUG(dbgs() << "With:\n");
2599     LLVM_DEBUG(MI.dump());
2600     return true;
2601   }
2602   return false;
2603 }
2604
2605 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
2606                                    ImmInstrInfo &III) const {
2607   unsigned Opc = MI.getOpcode();
2608   // The vast majority of the instructions would need their operand 2 replaced
2609   // with an immediate when switching to the reg+imm form. A marked exception
2610   // are the update form loads/stores for which a constant operand 2 would need
2611   // to turn into a displacement and move operand 1 to the operand 2 position.
2612   III.ImmOpNo = 2;
2613   III.ConstantOpNo = 2;
2614   III.ImmWidth = 16;
2615   III.ImmMustBeMultipleOf = 1;
2616   III.TruncateImmTo = 0;
2617   switch (Opc) {
2618   default: return false;
2619   case PPC::ADD4:
2620   case PPC::ADD8:
2621     III.SignedImm = true;
2622     III.ZeroIsSpecialOrig = 0;
2623     III.ZeroIsSpecialNew = 1;
2624     III.IsCommutative = true;
2625     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2626     break;
2627   case PPC::ADDC:
2628   case PPC::ADDC8:
2629     III.SignedImm = true;
2630     III.ZeroIsSpecialOrig = 0;
2631     III.ZeroIsSpecialNew = 0;
2632     III.IsCommutative = true;
2633     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2634     break;
2635   case PPC::ADDCo:
2636     III.SignedImm = true;
2637     III.ZeroIsSpecialOrig = 0;
2638     III.ZeroIsSpecialNew = 0;
2639     III.IsCommutative = true;
2640     III.ImmOpcode = PPC::ADDICo;
2641     break;
2642   case PPC::SUBFC:
2643   case PPC::SUBFC8:
2644     III.SignedImm = true;
2645     III.ZeroIsSpecialOrig = 0;
2646     III.ZeroIsSpecialNew = 0;
2647     III.IsCommutative = false;
2648     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2649     break;
2650   case PPC::CMPW:
2651   case PPC::CMPD:
2652     III.SignedImm = true;
2653     III.ZeroIsSpecialOrig = 0;
2654     III.ZeroIsSpecialNew = 0;
2655     III.IsCommutative = false;
2656     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2657     break;
2658   case PPC::CMPLW:
2659   case PPC::CMPLD:
2660     III.SignedImm = false;
2661     III.ZeroIsSpecialOrig = 0;
2662     III.ZeroIsSpecialNew = 0;
2663     III.IsCommutative = false;
2664     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2665     break;
2666   case PPC::ANDo:
2667   case PPC::AND8o:
2668   case PPC::OR:
2669   case PPC::OR8:
2670   case PPC::XOR:
2671   case PPC::XOR8:
2672     III.SignedImm = false;
2673     III.ZeroIsSpecialOrig = 0;
2674     III.ZeroIsSpecialNew = 0;
2675     III.IsCommutative = true;
2676     switch(Opc) {
2677     default: llvm_unreachable("Unknown opcode");
2678     case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2679     case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2680     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2681     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2682     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2683     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2684     }
2685     break;
2686   case PPC::RLWNM:
2687   case PPC::RLWNM8:
2688   case PPC::RLWNMo:
2689   case PPC::RLWNM8o:
2690   case PPC::SLW:
2691   case PPC::SLW8:
2692   case PPC::SLWo:
2693   case PPC::SLW8o:
2694   case PPC::SRW:
2695   case PPC::SRW8:
2696   case PPC::SRWo:
2697   case PPC::SRW8o:
2698   case PPC::SRAW:
2699   case PPC::SRAWo:
2700     III.SignedImm = false;
2701     III.ZeroIsSpecialOrig = 0;
2702     III.ZeroIsSpecialNew = 0;
2703     III.IsCommutative = false;
2704     // This isn't actually true, but the instructions ignore any of the
2705     // upper bits, so any immediate loaded with an LI is acceptable.
2706     // This does not apply to shift right algebraic because a value
2707     // out of range will produce a -1/0.
2708     III.ImmWidth = 16;
2709     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2710         Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2711       III.TruncateImmTo = 5;
2712     else
2713       III.TruncateImmTo = 6;
2714     switch(Opc) {
2715     default: llvm_unreachable("Unknown opcode");
2716     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2717     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2718     case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2719     case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2720     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2721     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2722     case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2723     case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2724     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2725     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2726     case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2727     case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2728     case PPC::SRAW:
2729       III.ImmWidth = 5;
2730       III.TruncateImmTo = 0;
2731       III.ImmOpcode = PPC::SRAWI;
2732       break;
2733     case PPC::SRAWo:
2734       III.ImmWidth = 5;
2735       III.TruncateImmTo = 0;
2736       III.ImmOpcode = PPC::SRAWIo;
2737       break;
2738     }
2739     break;
2740   case PPC::RLDCL:
2741   case PPC::RLDCLo:
2742   case PPC::RLDCR:
2743   case PPC::RLDCRo:
2744   case PPC::SLD:
2745   case PPC::SLDo:
2746   case PPC::SRD:
2747   case PPC::SRDo:
2748   case PPC::SRAD:
2749   case PPC::SRADo:
2750     III.SignedImm = false;
2751     III.ZeroIsSpecialOrig = 0;
2752     III.ZeroIsSpecialNew = 0;
2753     III.IsCommutative = false;
2754     // This isn't actually true, but the instructions ignore any of the
2755     // upper bits, so any immediate loaded with an LI is acceptable.
2756     // This does not apply to shift right algebraic because a value
2757     // out of range will produce a -1/0.
2758     III.ImmWidth = 16;
2759     if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2760         Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2761       III.TruncateImmTo = 6;
2762     else
2763       III.TruncateImmTo = 7;
2764     switch(Opc) {
2765     default: llvm_unreachable("Unknown opcode");
2766     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2767     case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2768     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2769     case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2770     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2771     case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2772     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2773     case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2774     case PPC::SRAD:
2775       III.ImmWidth = 6;
2776       III.TruncateImmTo = 0;
2777       III.ImmOpcode = PPC::SRADI;
2778        break;
2779     case PPC::SRADo:
2780       III.ImmWidth = 6;
2781       III.TruncateImmTo = 0;
2782       III.ImmOpcode = PPC::SRADIo;
2783       break;
2784     }
2785     break;
2786   // Loads and stores:
2787   case PPC::LBZX:
2788   case PPC::LBZX8:
2789   case PPC::LHZX:
2790   case PPC::LHZX8:
2791   case PPC::LHAX:
2792   case PPC::LHAX8:
2793   case PPC::LWZX:
2794   case PPC::LWZX8:
2795   case PPC::LWAX:
2796   case PPC::LDX:
2797   case PPC::LFSX:
2798   case PPC::LFDX:
2799   case PPC::STBX:
2800   case PPC::STBX8:
2801   case PPC::STHX:
2802   case PPC::STHX8:
2803   case PPC::STWX:
2804   case PPC::STWX8:
2805   case PPC::STDX:
2806   case PPC::STFSX:
2807   case PPC::STFDX:
2808     III.SignedImm = true;
2809     III.ZeroIsSpecialOrig = 1;
2810     III.ZeroIsSpecialNew = 2;
2811     III.IsCommutative = true;
2812     III.ImmOpNo = 1;
2813     III.ConstantOpNo = 2;
2814     switch(Opc) {
2815     default: llvm_unreachable("Unknown opcode");
2816     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
2817     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
2818     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
2819     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
2820     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
2821     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
2822     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
2823     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
2824     case PPC::LWAX:
2825       III.ImmOpcode = PPC::LWA;
2826       III.ImmMustBeMultipleOf = 4;
2827       break;
2828     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
2829     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
2830     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
2831     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
2832     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
2833     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
2834     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
2835     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
2836     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
2837     case PPC::STDX:
2838       III.ImmOpcode = PPC::STD;
2839       III.ImmMustBeMultipleOf = 4;
2840       break;
2841     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
2842     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
2843     }
2844     break;
2845   case PPC::LBZUX:
2846   case PPC::LBZUX8:
2847   case PPC::LHZUX:
2848   case PPC::LHZUX8:
2849   case PPC::LHAUX:
2850   case PPC::LHAUX8:
2851   case PPC::LWZUX:
2852   case PPC::LWZUX8:
2853   case PPC::LDUX:
2854   case PPC::LFSUX:
2855   case PPC::LFDUX:
2856   case PPC::STBUX:
2857   case PPC::STBUX8:
2858   case PPC::STHUX:
2859   case PPC::STHUX8:
2860   case PPC::STWUX:
2861   case PPC::STWUX8:
2862   case PPC::STDUX:
2863   case PPC::STFSUX:
2864   case PPC::STFDUX:
2865     III.SignedImm = true;
2866     III.ZeroIsSpecialOrig = 2;
2867     III.ZeroIsSpecialNew = 3;
2868     III.IsCommutative = false;
2869     III.ImmOpNo = 2;
2870     III.ConstantOpNo = 3;
2871     switch(Opc) {
2872     default: llvm_unreachable("Unknown opcode");
2873     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
2874     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
2875     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
2876     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
2877     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
2878     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
2879     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
2880     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
2881     case PPC::LDUX:
2882       III.ImmOpcode = PPC::LDU;
2883       III.ImmMustBeMultipleOf = 4;
2884       break;
2885     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
2886     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
2887     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
2888     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
2889     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
2890     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
2891     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
2892     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
2893     case PPC::STDUX:
2894       III.ImmOpcode = PPC::STDU;
2895       III.ImmMustBeMultipleOf = 4;
2896       break;
2897     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
2898     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
2899     }
2900     break;
2901   // Power9 only.
2902   case PPC::LXVX:
2903   case PPC::LXSSPX:
2904   case PPC::LXSDX:
2905   case PPC::STXVX:
2906   case PPC::STXSSPX:
2907   case PPC::STXSDX:
2908     if (!Subtarget.hasP9Vector())
2909       return false;
2910     III.SignedImm = true;
2911     III.ZeroIsSpecialOrig = 1;
2912     III.ZeroIsSpecialNew = 2;
2913     III.IsCommutative = true;
2914     III.ImmOpNo = 1;
2915     III.ConstantOpNo = 2;
2916     switch(Opc) {
2917     default: llvm_unreachable("Unknown opcode");
2918     case PPC::LXVX:
2919       III.ImmOpcode = PPC::LXV;
2920       III.ImmMustBeMultipleOf = 16;
2921       break;
2922     case PPC::LXSSPX:
2923       III.ImmOpcode = PPC::LXSSP;
2924       III.ImmMustBeMultipleOf = 4;
2925       break;
2926     case PPC::LXSDX:
2927       III.ImmOpcode = PPC::LXSD;
2928       III.ImmMustBeMultipleOf = 4;
2929       break;
2930     case PPC::STXVX:
2931       III.ImmOpcode = PPC::STXV;
2932       III.ImmMustBeMultipleOf = 16;
2933       break;
2934     case PPC::STXSSPX:
2935       III.ImmOpcode = PPC::STXSSP;
2936       III.ImmMustBeMultipleOf = 4;
2937       break;
2938     case PPC::STXSDX:
2939       III.ImmOpcode = PPC::STXSD;
2940       III.ImmMustBeMultipleOf = 4;
2941       break;
2942     }
2943     break;
2944   }
2945   return true;
2946 }
2947
2948 // Utility function for swaping two arbitrary operands of an instruction.
2949 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
2950   assert(Op1 != Op2 && "Cannot swap operand with itself.");
2951
2952   unsigned MaxOp = std::max(Op1, Op2);
2953   unsigned MinOp = std::min(Op1, Op2);
2954   MachineOperand MOp1 = MI.getOperand(MinOp);
2955   MachineOperand MOp2 = MI.getOperand(MaxOp);
2956   MI.RemoveOperand(std::max(Op1, Op2));
2957   MI.RemoveOperand(std::min(Op1, Op2));
2958
2959   // If the operands we are swapping are the two at the end (the common case)
2960   // we can just remove both and add them in the opposite order.
2961   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
2962     MI.addOperand(MOp2);
2963     MI.addOperand(MOp1);
2964   } else {
2965     // Store all operands in a temporary vector, remove them and re-add in the
2966     // right order.
2967     SmallVector<MachineOperand, 2> MOps;
2968     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
2969     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
2970       MOps.push_back(MI.getOperand(i));
2971       MI.RemoveOperand(i);
2972     }
2973     // MOp2 needs to be added next.
2974     MI.addOperand(MOp2);
2975     // Now add the rest.
2976     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
2977       if (i == MaxOp)
2978         MI.addOperand(MOp1);
2979       else {
2980         MI.addOperand(MOps.back());
2981         MOps.pop_back();
2982       }
2983     }
2984   }
2985 }
2986
2987 bool PPCInstrInfo::transformToImmForm(MachineInstr &MI, const ImmInstrInfo &III,
2988                                       unsigned ConstantOpNo,
2989                                       int64_t Imm) const {
2990   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2991   bool PostRA = !MRI.isSSA();
2992   // Exit early if we can't convert this.
2993   if ((ConstantOpNo != III.ConstantOpNo) && !III.IsCommutative)
2994     return false;
2995   if (Imm % III.ImmMustBeMultipleOf)
2996     return false;
2997   if (III.TruncateImmTo)
2998     Imm &= ((1 << III.TruncateImmTo) - 1);
2999   if (III.SignedImm) {
3000     APInt ActualValue(64, Imm, true);
3001     if (!ActualValue.isSignedIntN(III.ImmWidth))
3002       return false;
3003   } else {
3004     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3005     if ((uint64_t)Imm > UnsignedMax)
3006       return false;
3007   }
3008
3009   // If we're post-RA, the instructions don't agree on whether register zero is
3010   // special, we can transform this as long as the register operand that will
3011   // end up in the location where zero is special isn't R0.
3012   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3013     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3014       III.ZeroIsSpecialNew + 1;
3015     unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3016     unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3017     // If R0 is in the operand where zero is special for the new instruction,
3018     // it is unsafe to transform if the constant operand isn't that operand.
3019     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3020         ConstantOpNo != III.ZeroIsSpecialNew)
3021       return false;
3022     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3023         ConstantOpNo != PosForOrigZero)
3024       return false;
3025   }
3026
3027   unsigned Opc = MI.getOpcode();
3028   bool SpecialShift32 =
3029     Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3030   bool SpecialShift64 =
3031     Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3032   bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3033     Opc == PPC::SLDo || Opc == PPC::SRDo;
3034   bool RightShift =
3035     Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3036
3037   MI.setDesc(get(III.ImmOpcode));
3038   if (ConstantOpNo == III.ConstantOpNo) {
3039     // Converting shifts to immediate form is a bit tricky since they may do
3040     // one of three things:
3041     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3042     // 2. If the shift amount is zero, the result is unchanged (save for maybe
3043     //    setting CR0)
3044     // 3. If the shift amount is in [1, OpSize), it's just a shift
3045     if (SpecialShift32 || SpecialShift64) {
3046       LoadImmediateInfo LII;
3047       LII.Imm = 0;
3048       LII.SetCR = SetCR;
3049       LII.Is64Bit = SpecialShift64;
3050       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3051       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3052         replaceInstrWithLI(MI, LII);
3053       // Shifts by zero don't change the value. If we don't need to set CR0,
3054       // just convert this to a COPY. Can't do this post-RA since we've already
3055       // cleaned up the copies.
3056       else if (!SetCR && ShAmt == 0 && !PostRA) {
3057         MI.RemoveOperand(2);
3058         MI.setDesc(get(PPC::COPY));
3059       } else {
3060         // The 32 bit and 64 bit instructions are quite different.
3061         if (SpecialShift32) {
3062           // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3063           uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3064           uint64_t MB = RightShift ? ShAmt : 0;
3065           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3066           MI.getOperand(III.ConstantOpNo).ChangeToImmediate(SH);
3067           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3068             .addImm(ME);
3069         } else {
3070           // Left shifts use (N, 63-N), right shifts use (64-N, N).
3071           uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3072           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3073           MI.getOperand(III.ConstantOpNo).ChangeToImmediate(SH);
3074           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3075         }
3076       }
3077     } else
3078       MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm);
3079   }
3080   // Convert commutative instructions (switch the operands and convert the
3081   // desired one to an immediate.
3082   else if (III.IsCommutative) {
3083     MI.getOperand(ConstantOpNo).ChangeToImmediate(Imm);
3084     swapMIOperands(MI, ConstantOpNo, III.ConstantOpNo);
3085   } else
3086     llvm_unreachable("Should have exited early!");
3087
3088   // For instructions for which the constant register replaces a different
3089   // operand than where the immediate goes, we need to swap them.
3090   if (III.ConstantOpNo != III.ImmOpNo)
3091     swapMIOperands(MI, III.ConstantOpNo, III.ImmOpNo);
3092
3093   // If the R0/X0 register is special for the original instruction and not for
3094   // the new instruction (or vice versa), we need to fix up the register class.
3095   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3096     if (!III.ZeroIsSpecialOrig) {
3097       unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3098       const TargetRegisterClass *NewRC =
3099         MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3100         &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3101       MRI.setRegClass(RegToModify, NewRC);
3102     }
3103   }
3104   return true;
3105 }
3106
3107 const TargetRegisterClass *
3108 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3109   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3110     return &PPC::VSRCRegClass;
3111   return RC;
3112 }
3113
3114 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3115   return PPC::getRecordFormOpcode(Opcode);
3116 }
3117
3118 // This function returns true if the machine instruction
3119 // always outputs a value by sign-extending a 32 bit value,
3120 // i.e. 0 to 31-th bits are same as 32-th bit.
3121 static bool isSignExtendingOp(const MachineInstr &MI) {
3122   int Opcode = MI.getOpcode();
3123   if (Opcode == PPC::LI     || Opcode == PPC::LI8     ||
3124       Opcode == PPC::LIS    || Opcode == PPC::LIS8    ||
3125       Opcode == PPC::SRAW   || Opcode == PPC::SRAWo   ||
3126       Opcode == PPC::SRAWI  || Opcode == PPC::SRAWIo  ||
3127       Opcode == PPC::LWA    || Opcode == PPC::LWAX    ||
3128       Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3129       Opcode == PPC::LHA    || Opcode == PPC::LHAX    ||
3130       Opcode == PPC::LHA8   || Opcode == PPC::LHAX8   ||
3131       Opcode == PPC::LBZ    || Opcode == PPC::LBZX    ||
3132       Opcode == PPC::LBZ8   || Opcode == PPC::LBZX8   ||
3133       Opcode == PPC::LBZU   || Opcode == PPC::LBZUX   ||
3134       Opcode == PPC::LBZU8  || Opcode == PPC::LBZUX8  ||
3135       Opcode == PPC::LHZ    || Opcode == PPC::LHZX    ||
3136       Opcode == PPC::LHZ8   || Opcode == PPC::LHZX8   ||
3137       Opcode == PPC::LHZU   || Opcode == PPC::LHZUX   ||
3138       Opcode == PPC::LHZU8  || Opcode == PPC::LHZUX8  ||
3139       Opcode == PPC::EXTSB  || Opcode == PPC::EXTSBo  ||
3140       Opcode == PPC::EXTSH  || Opcode == PPC::EXTSHo  ||
3141       Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8  ||
3142       Opcode == PPC::EXTSW  || Opcode == PPC::EXTSWo  ||
3143       Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3144       Opcode == PPC::EXTSB8_32_64)
3145     return true;
3146
3147   if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3148     return true;
3149
3150   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3151        Opcode == PPC::RLWNM  || Opcode == PPC::RLWNMo) &&
3152       MI.getOperand(3).getImm() > 0 &&
3153       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3154     return true;
3155
3156   return false;
3157 }
3158
3159 // This function returns true if the machine instruction
3160 // always outputs zeros in higher 32 bits.
3161 static bool isZeroExtendingOp(const MachineInstr &MI) {
3162   int Opcode = MI.getOpcode();
3163   // The 16-bit immediate is sign-extended in li/lis.
3164   // If the most significant bit is zero, all higher bits are zero.
3165   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
3166       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3167     int64_t Imm = MI.getOperand(1).getImm();
3168     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3169       return true;
3170   }
3171
3172   // We have some variations of rotate-and-mask instructions
3173   // that clear higher 32-bits.
3174   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3175        Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo  ||
3176        Opcode == PPC::RLDICL_32_64) &&
3177       MI.getOperand(3).getImm() >= 32)
3178     return true;
3179
3180   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3181       MI.getOperand(3).getImm() >= 32 &&
3182       MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3183     return true;
3184
3185   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
3186        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
3187        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3188       MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3189     return true;
3190
3191   // There are other instructions that clear higher 32-bits.
3192   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
3193       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
3194       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3195       Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
3196       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo ||
3197       Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3198       Opcode == PPC::SLW     || Opcode == PPC::SLWo    ||
3199       Opcode == PPC::SRW     || Opcode == PPC::SRWo    ||
3200       Opcode == PPC::SLW8    || Opcode == PPC::SRW8    ||
3201       Opcode == PPC::SLWI    || Opcode == PPC::SLWIo   ||
3202       Opcode == PPC::SRWI    || Opcode == PPC::SRWIo   ||
3203       Opcode == PPC::LWZ     || Opcode == PPC::LWZX    ||
3204       Opcode == PPC::LWZU    || Opcode == PPC::LWZUX   ||
3205       Opcode == PPC::LWBRX   || Opcode == PPC::LHBRX   ||
3206       Opcode == PPC::LHZ     || Opcode == PPC::LHZX    ||
3207       Opcode == PPC::LHZU    || Opcode == PPC::LHZUX   ||
3208       Opcode == PPC::LBZ     || Opcode == PPC::LBZX    ||
3209       Opcode == PPC::LBZU    || Opcode == PPC::LBZUX   ||
3210       Opcode == PPC::LWZ8    || Opcode == PPC::LWZX8   ||
3211       Opcode == PPC::LWZU8   || Opcode == PPC::LWZUX8  ||
3212       Opcode == PPC::LWBRX8  || Opcode == PPC::LHBRX8  ||
3213       Opcode == PPC::LHZ8    || Opcode == PPC::LHZX8   ||
3214       Opcode == PPC::LHZU8   || Opcode == PPC::LHZUX8  ||
3215       Opcode == PPC::LBZ8    || Opcode == PPC::LBZX8   ||
3216       Opcode == PPC::LBZU8   || Opcode == PPC::LBZUX8  ||
3217       Opcode == PPC::ANDIo   || Opcode == PPC::ANDISo  ||
3218       Opcode == PPC::ROTRWI  || Opcode == PPC::ROTRWIo ||
3219       Opcode == PPC::EXTLWI  || Opcode == PPC::EXTLWIo ||
3220       Opcode == PPC::MFVSRWZ)
3221     return true;
3222
3223   return false;
3224 }
3225
3226 // This function returns true if the input MachineInstr is a TOC save
3227 // instruction.
3228 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3229   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3230     return false;
3231   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3232   unsigned StackOffset = MI.getOperand(1).getImm();
3233   unsigned StackReg = MI.getOperand(2).getReg();
3234   if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3235     return true;
3236
3237   return false;
3238 }
3239
3240 // We limit the max depth to track incoming values of PHIs or binary ops
3241 // (e.g. AND) to avoid excessive cost.
3242 const unsigned MAX_DEPTH = 1;
3243
3244 bool
3245 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3246                                    const unsigned Depth) const {
3247   const MachineFunction *MF = MI.getParent()->getParent();
3248   const MachineRegisterInfo *MRI = &MF->getRegInfo();
3249
3250   // If we know this instruction returns sign- or zero-extended result,
3251   // return true.
3252   if (SignExt ? isSignExtendingOp(MI):
3253                 isZeroExtendingOp(MI))
3254     return true;
3255
3256   switch (MI.getOpcode()) {
3257   case PPC::COPY: {
3258     unsigned SrcReg = MI.getOperand(1).getReg();
3259
3260     // In both ELFv1 and v2 ABI, method parameters and the return value
3261     // are sign- or zero-extended.
3262     if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3263       const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3264       // We check the ZExt/SExt flags for a method parameter.
3265       if (MI.getParent()->getBasicBlock() ==
3266           &MF->getFunction().getEntryBlock()) {
3267         unsigned VReg = MI.getOperand(0).getReg();
3268         if (MF->getRegInfo().isLiveIn(VReg))
3269           return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3270                            FuncInfo->isLiveInZExt(VReg);
3271       }
3272
3273       // For a method return value, we check the ZExt/SExt flags in attribute.
3274       // We assume the following code sequence for method call.
3275       //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3276       //   BL8_NOP @func,...
3277       //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3278       //   %5 = COPY %x3; G8RC:%5
3279       if (SrcReg == PPC::X3) {
3280         const MachineBasicBlock *MBB = MI.getParent();
3281         MachineBasicBlock::const_instr_iterator II =
3282           MachineBasicBlock::const_instr_iterator(&MI);
3283         if (II != MBB->instr_begin() &&
3284             (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3285           const MachineInstr &CallMI = *(--II);
3286           if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3287             const Function *CalleeFn =
3288               dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3289             if (!CalleeFn)
3290               return false;
3291             const IntegerType *IntTy =
3292               dyn_cast<IntegerType>(CalleeFn->getReturnType());
3293             const AttributeSet &Attrs =
3294               CalleeFn->getAttributes().getRetAttributes();
3295             if (IntTy && IntTy->getBitWidth() <= 32)
3296               return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3297                                                   Attribute::ZExt);
3298           }
3299         }
3300       }
3301     }
3302
3303     // If this is a copy from another register, we recursively check source.
3304     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3305       return false;
3306     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3307     if (SrcMI != NULL)
3308       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3309
3310     return false;
3311   }
3312
3313   case PPC::ANDIo:
3314   case PPC::ANDISo:
3315   case PPC::ORI:
3316   case PPC::ORIS:
3317   case PPC::XORI:
3318   case PPC::XORIS:
3319   case PPC::ANDIo8:
3320   case PPC::ANDISo8:
3321   case PPC::ORI8:
3322   case PPC::ORIS8:
3323   case PPC::XORI8:
3324   case PPC::XORIS8: {
3325     // logical operation with 16-bit immediate does not change the upper bits.
3326     // So, we track the operand register as we do for register copy.
3327     unsigned SrcReg = MI.getOperand(1).getReg();
3328     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3329       return false;
3330     const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3331     if (SrcMI != NULL)
3332       return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3333
3334     return false;
3335   }
3336
3337   // If all incoming values are sign-/zero-extended,
3338   // the output of OR, ISEL or PHI is also sign-/zero-extended.
3339   case PPC::OR:
3340   case PPC::OR8:
3341   case PPC::ISEL:
3342   case PPC::PHI: {
3343     if (Depth >= MAX_DEPTH)
3344       return false;
3345
3346     // The input registers for PHI are operand 1, 3, ...
3347     // The input registers for others are operand 1 and 2.
3348     unsigned E = 3, D = 1;
3349     if (MI.getOpcode() == PPC::PHI) {
3350       E = MI.getNumOperands();
3351       D = 2;
3352     }
3353
3354     for (unsigned I = 1; I != E; I += D) {
3355       if (MI.getOperand(I).isReg()) {
3356         unsigned SrcReg = MI.getOperand(I).getReg();
3357         if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3358           return false;
3359         const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3360         if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3361           return false;
3362       }
3363       else
3364         return false;
3365     }
3366     return true;
3367   }
3368
3369   // If at least one of the incoming values of an AND is zero extended
3370   // then the output is also zero-extended. If both of the incoming values
3371   // are sign-extended then the output is also sign extended.
3372   case PPC::AND:
3373   case PPC::AND8: {
3374     if (Depth >= MAX_DEPTH)
3375        return false;
3376
3377     assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3378
3379     unsigned SrcReg1 = MI.getOperand(1).getReg();
3380     unsigned SrcReg2 = MI.getOperand(2).getReg();
3381
3382     if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3383         !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3384        return false;
3385
3386     const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3387     const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3388     if (!MISrc1 || !MISrc2)
3389         return false;
3390
3391     if(SignExt)
3392         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3393                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3394     else
3395         return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3396                isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3397   }
3398
3399   default:
3400     break;
3401   }
3402   return false;
3403 }