]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/PowerPC/PPCReduceCRLogicals.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / PowerPC / PPCReduceCRLogicals.cpp
1 //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===---------------------------------------------------------------------===//
9 //
10 // This pass aims to reduce the number of logical operations on bits in the CR
11 // register. These instructions have a fairly high latency and only a single
12 // pipeline at their disposal in modern PPC cores. Furthermore, they have a
13 // tendency to occur in fairly small blocks where there's little opportunity
14 // to hide the latency between the CR logical operation and its user.
15 //
16 //===---------------------------------------------------------------------===//
17
18 #include "PPC.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/Support/Debug.h"
29
30 using namespace llvm;
31
32 #define DEBUG_TYPE "ppc-reduce-cr-ops"
33
34 STATISTIC(NumContainedSingleUseBinOps,
35           "Number of single-use binary CR logical ops contained in a block");
36 STATISTIC(NumToSplitBlocks,
37           "Number of binary CR logical ops that can be used to split blocks");
38 STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
39 STATISTIC(TotalNullaryCRLogicals,
40           "Number of nullary CR logical ops (CRSET/CRUNSET).");
41 STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
42 STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
43 STATISTIC(NumBlocksSplitOnBinaryCROp,
44           "Number of blocks split on CR binary logical ops.");
45 STATISTIC(NumNotSplitIdenticalOperands,
46           "Number of blocks not split due to operands being identical.");
47 STATISTIC(NumNotSplitChainCopies,
48           "Number of blocks not split due to operands being chained copies.");
49 STATISTIC(NumNotSplitWrongOpcode,
50           "Number of blocks not split due to the wrong opcode.");
51
52 namespace llvm {
53   void initializePPCReduceCRLogicalsPass(PassRegistry&);
54 }
55
56 /// Given a basic block \p Successor that potentially contains PHIs, this
57 /// function will look for any incoming values in the PHIs that are supposed to
58 /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
59 /// Any such PHIs will be updated to reflect reality.
60 static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
61                        MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
62   for (auto &MI : Successor->instrs()) {
63     if (!MI.isPHI())
64       continue;
65     // This is a really ugly-looking loop, but it was pillaged directly from
66     // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
67     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
68       MachineOperand &MO = MI.getOperand(i);
69       if (MO.getMBB() == OrigMBB) {
70         // Check if the instruction is actually defined in NewMBB.
71         if (MI.getOperand(i - 1).isReg()) {
72           MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
73           if (DefMI->getParent() == NewMBB ||
74               !OrigMBB->isSuccessor(Successor)) {
75             MO.setMBB(NewMBB);
76             break;
77           }
78         }
79       }
80     }
81   }
82 }
83
84 /// Given a basic block \p Successor that potentially contains PHIs, this
85 /// function will look for PHIs that have an incoming value from \p OrigMBB
86 /// and will add the same incoming value from \p NewMBB.
87 /// NOTE: This should only be used if \p NewMBB is an immediate dominator of
88 /// \p OrigMBB.
89 static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
90                                     MachineBasicBlock *OrigMBB,
91                                     MachineBasicBlock *NewMBB,
92                                     MachineRegisterInfo *MRI) {
93   assert(OrigMBB->isSuccessor(NewMBB) &&
94          "NewMBB must be a successor of OrigMBB");
95   for (auto &MI : Successor->instrs()) {
96     if (!MI.isPHI())
97       continue;
98     // This is a really ugly-looking loop, but it was pillaged directly from
99     // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
100     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
101       MachineOperand &MO = MI.getOperand(i);
102       if (MO.getMBB() == OrigMBB) {
103         MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
104         MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
105         break;
106       }
107     }
108   }
109 }
110
111 struct BlockSplitInfo {
112   MachineInstr *OrigBranch;
113   MachineInstr *SplitBefore;
114   MachineInstr *SplitCond;
115   bool InvertNewBranch;
116   bool InvertOrigBranch;
117   bool BranchToFallThrough;
118   const MachineBranchProbabilityInfo *MBPI;
119   MachineInstr *MIToDelete;
120   MachineInstr *NewCond;
121   bool allInstrsInSameMBB() {
122     if (!OrigBranch || !SplitBefore || !SplitCond)
123       return false;
124     MachineBasicBlock *MBB = OrigBranch->getParent();
125     if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
126       return false;
127     if (MIToDelete && MIToDelete->getParent() != MBB)
128       return false;
129     if (NewCond && NewCond->getParent() != MBB)
130       return false;
131     return true;
132   }
133 };
134
135 /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
136 /// branch is \p OrigBranch. The target of the new branch can either be the same
137 /// as the target of the original branch or the fallthrough successor of the
138 /// original block as determined by \p BranchToFallThrough. The branch
139 /// conditions will be inverted according to \p InvertNewBranch and
140 /// \p InvertOrigBranch. If an instruction that previously fed the branch is to
141 /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
142 /// the branch condition. The branch probabilities will be set if the
143 /// MachineBranchProbabilityInfo isn't null.
144 static bool splitMBB(BlockSplitInfo &BSI) {
145   assert(BSI.allInstrsInSameMBB() &&
146          "All instructions must be in the same block.");
147
148   MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
149   MachineFunction *MF = ThisMBB->getParent();
150   MachineRegisterInfo *MRI = &MF->getRegInfo();
151   assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
152   if (ThisMBB->succ_size() != 2) {
153     LLVM_DEBUG(
154         dbgs() << "Don't know how to handle blocks that don't have exactly"
155                << " two successors.\n");
156     return false;
157   }
158
159   const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
160   unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
161   unsigned InvertedOpcode =
162       OrigBROpcode == PPC::BC
163           ? PPC::BCn
164           : OrigBROpcode == PPC::BCn
165                 ? PPC::BC
166                 : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
167   unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
168   MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
169   MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
170                                            ? *ThisMBB->succ_rbegin()
171                                            : *ThisMBB->succ_begin();
172   MachineBasicBlock *NewBRTarget =
173       BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
174   BranchProbability ProbToNewTarget =
175       !BSI.MBPI ? BranchProbability::getUnknown()
176                 : BSI.MBPI->getEdgeProbability(ThisMBB, NewBRTarget);
177
178   // Create a new basic block.
179   MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
180   const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
181   MachineFunction::iterator It = ThisMBB->getIterator();
182   MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
183   MF->insert(++It, NewMBB);
184
185   // Move everything after SplitBefore into the new block.
186   NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
187   NewMBB->transferSuccessors(ThisMBB);
188
189   // Add the two successors to ThisMBB. The probabilities come from the
190   // existing blocks if available.
191   ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
192   ThisMBB->addSuccessor(NewMBB, ProbToNewTarget.getCompl());
193
194   // Add the branches to ThisMBB.
195   BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
196           TII->get(NewBROpcode))
197       .addReg(BSI.SplitCond->getOperand(0).getReg())
198       .addMBB(NewBRTarget);
199   BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
200           TII->get(PPC::B))
201       .addMBB(NewMBB);
202   if (BSI.MIToDelete)
203     BSI.MIToDelete->eraseFromParent();
204
205   // Change the condition on the original branch and invert it if requested.
206   auto FirstTerminator = NewMBB->getFirstTerminator();
207   if (BSI.NewCond) {
208     assert(FirstTerminator->getOperand(0).isReg() &&
209            "Can't update condition of unconditional branch.");
210     FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
211   }
212   if (BSI.InvertOrigBranch)
213     FirstTerminator->setDesc(TII->get(InvertedOpcode));
214
215   // If any of the PHIs in the successors of NewMBB reference values that
216   // now come from NewMBB, they need to be updated.
217   for (auto *Succ : NewMBB->successors()) {
218     updatePHIs(Succ, ThisMBB, NewMBB, MRI);
219   }
220   addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);
221
222   LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
223   LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
224   LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
225   return true;
226 }
227
228 static bool isBinary(MachineInstr &MI) {
229   return MI.getNumOperands() == 3;
230 }
231
232 static bool isNullary(MachineInstr &MI) {
233   return MI.getNumOperands() == 1;
234 }
235
236 /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
237 /// a flag to indicate if the first operand of \p CROp is used as the
238 /// SplitBefore operand, determines whether either of the branches are to be
239 /// inverted as well as whether the new target should be the original
240 /// fall-through block.
241 static void
242 computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
243                                 bool &InvertNewBranch, bool &InvertOrigBranch,
244                                 bool &TargetIsFallThrough) {
245   // The conditions under which each of the output operands should be [un]set
246   // can certainly be written much more concisely with just 3 if statements or
247   // ternary expressions. However, this provides a much clearer overview to the
248   // reader as to what is set for each <CROp, BROp, OpUsed> combination.
249   if (BROp == PPC::BC || BROp == PPC::BCLR) {
250     // Regular branches.
251     switch (CROp) {
252     default:
253       llvm_unreachable("Don't know how to handle this CR logical.");
254     case PPC::CROR:
255       InvertNewBranch = false;
256       InvertOrigBranch = false;
257       TargetIsFallThrough = false;
258       return;
259     case PPC::CRAND:
260       InvertNewBranch = true;
261       InvertOrigBranch = false;
262       TargetIsFallThrough = true;
263       return;
264     case PPC::CRNAND:
265       InvertNewBranch = true;
266       InvertOrigBranch = true;
267       TargetIsFallThrough = false;
268       return;
269     case PPC::CRNOR:
270       InvertNewBranch = false;
271       InvertOrigBranch = true;
272       TargetIsFallThrough = true;
273       return;
274     case PPC::CRORC:
275       InvertNewBranch = UsingDef1;
276       InvertOrigBranch = !UsingDef1;
277       TargetIsFallThrough = false;
278       return;
279     case PPC::CRANDC:
280       InvertNewBranch = !UsingDef1;
281       InvertOrigBranch = !UsingDef1;
282       TargetIsFallThrough = true;
283       return;
284     }
285   } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
286     // Negated branches.
287     switch (CROp) {
288     default:
289       llvm_unreachable("Don't know how to handle this CR logical.");
290     case PPC::CROR:
291       InvertNewBranch = true;
292       InvertOrigBranch = false;
293       TargetIsFallThrough = true;
294       return;
295     case PPC::CRAND:
296       InvertNewBranch = false;
297       InvertOrigBranch = false;
298       TargetIsFallThrough = false;
299       return;
300     case PPC::CRNAND:
301       InvertNewBranch = false;
302       InvertOrigBranch = true;
303       TargetIsFallThrough = true;
304       return;
305     case PPC::CRNOR:
306       InvertNewBranch = true;
307       InvertOrigBranch = true;
308       TargetIsFallThrough = false;
309       return;
310     case PPC::CRORC:
311       InvertNewBranch = !UsingDef1;
312       InvertOrigBranch = !UsingDef1;
313       TargetIsFallThrough = true;
314       return;
315     case PPC::CRANDC:
316       InvertNewBranch = UsingDef1;
317       InvertOrigBranch = !UsingDef1;
318       TargetIsFallThrough = false;
319       return;
320     }
321   } else
322     llvm_unreachable("Don't know how to handle this branch.");
323 }
324
325 namespace {
326
327 class PPCReduceCRLogicals : public MachineFunctionPass {
328
329 public:
330   static char ID;
331   struct CRLogicalOpInfo {
332     MachineInstr *MI;
333     // FIXME: If chains of copies are to be handled, this should be a vector.
334     std::pair<MachineInstr*, MachineInstr*> CopyDefs;
335     std::pair<MachineInstr*, MachineInstr*> TrueDefs;
336     unsigned IsBinary : 1;
337     unsigned IsNullary : 1;
338     unsigned ContainedInBlock : 1;
339     unsigned FeedsISEL : 1;
340     unsigned FeedsBR : 1;
341     unsigned FeedsLogical : 1;
342     unsigned SingleUse : 1;
343     unsigned DefsSingleUse : 1;
344     unsigned SubregDef1;
345     unsigned SubregDef2;
346     CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
347                         ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
348                         FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
349                         SubregDef1(0), SubregDef2(0) { }
350     void dump();
351   };
352
353 private:
354   const PPCInstrInfo *TII;
355   MachineFunction *MF;
356   MachineRegisterInfo *MRI;
357   const MachineBranchProbabilityInfo *MBPI;
358
359   // A vector to contain all the CR logical operations
360   std::vector<CRLogicalOpInfo> AllCRLogicalOps;
361   void initialize(MachineFunction &MFParm);
362   void collectCRLogicals();
363   bool handleCROp(CRLogicalOpInfo &CRI);
364   bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
365   static bool isCRLogical(MachineInstr &MI) {
366     unsigned Opc = MI.getOpcode();
367     return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
368       Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
369       Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
370       Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
371   }
372   bool simplifyCode() {
373     bool Changed = false;
374     // Not using a range-based for loop here as the vector may grow while being
375     // operated on.
376     for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
377       Changed |= handleCROp(AllCRLogicalOps[i]);
378     return Changed;
379   }
380
381 public:
382   PPCReduceCRLogicals() : MachineFunctionPass(ID) {
383     initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
384   }
385
386   MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
387                                   MachineInstr *&CpDef);
388   bool runOnMachineFunction(MachineFunction &MF) override {
389     if (skipFunction(MF.getFunction()))
390       return false;
391
392     // If the subtarget doesn't use CR bits, there's nothing to do.
393     const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
394     if (!STI.useCRBits())
395       return false;
396
397     initialize(MF);
398     collectCRLogicals();
399     return simplifyCode();
400   }
401   CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
402   void getAnalysisUsage(AnalysisUsage &AU) const override {
403     AU.addRequired<MachineBranchProbabilityInfo>();
404     AU.addRequired<MachineDominatorTree>();
405     MachineFunctionPass::getAnalysisUsage(AU);
406   }
407 };
408
409 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
410 LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
411   dbgs() << "CRLogicalOpMI: ";
412   MI->dump();
413   dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
414   dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
415   dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
416   dbgs() << ", DefsSingleUse: " << DefsSingleUse;
417   dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
418   dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
419   if (!IsNullary) {
420     dbgs() << "\nDefs:\n";
421     TrueDefs.first->dump();
422   }
423   if (IsBinary)
424     TrueDefs.second->dump();
425   dbgs() << "\n";
426   if (CopyDefs.first) {
427     dbgs() << "CopyDef1: ";
428     CopyDefs.first->dump();
429   }
430   if (CopyDefs.second) {
431     dbgs() << "CopyDef2: ";
432     CopyDefs.second->dump();
433   }
434 }
435 #endif
436
437 PPCReduceCRLogicals::CRLogicalOpInfo
438 PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
439   CRLogicalOpInfo Ret;
440   Ret.MI = &MIParam;
441   // Get the defs
442   if (isNullary(MIParam)) {
443     Ret.IsNullary = 1;
444     Ret.TrueDefs = std::make_pair(nullptr, nullptr);
445     Ret.CopyDefs = std::make_pair(nullptr, nullptr);
446   } else {
447     MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
448                                            Ret.SubregDef1, Ret.CopyDefs.first);
449     Ret.DefsSingleUse &=
450       MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
451     Ret.DefsSingleUse &=
452       MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
453     assert(Def1 && "Must be able to find a definition of operand 1.");
454     if (isBinary(MIParam)) {
455       Ret.IsBinary = 1;
456       MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
457                                              Ret.SubregDef2,
458                                              Ret.CopyDefs.second);
459       Ret.DefsSingleUse &=
460         MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
461       Ret.DefsSingleUse &=
462         MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
463       assert(Def2 && "Must be able to find a definition of operand 2.");
464       Ret.TrueDefs = std::make_pair(Def1, Def2);
465     } else {
466       Ret.TrueDefs = std::make_pair(Def1, nullptr);
467       Ret.CopyDefs.second = nullptr;
468     }
469   }
470
471   Ret.ContainedInBlock = 1;
472   // Get the uses
473   for (MachineInstr &UseMI :
474        MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
475     unsigned Opc = UseMI.getOpcode();
476     if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
477       Ret.FeedsISEL = 1;
478     if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
479         Opc == PPC::BCLRn)
480       Ret.FeedsBR = 1;
481     Ret.FeedsLogical = isCRLogical(UseMI);
482     if (UseMI.getParent() != MIParam.getParent())
483       Ret.ContainedInBlock = 0;
484   }
485   Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
486
487   // We now know whether all the uses of the CR logical are in the same block.
488   if (!Ret.IsNullary) {
489     Ret.ContainedInBlock &=
490       (MIParam.getParent() == Ret.TrueDefs.first->getParent());
491     if (Ret.IsBinary)
492       Ret.ContainedInBlock &=
493         (MIParam.getParent() == Ret.TrueDefs.second->getParent());
494   }
495   LLVM_DEBUG(Ret.dump());
496   if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
497     NumContainedSingleUseBinOps++;
498     if (Ret.FeedsBR && Ret.DefsSingleUse)
499       NumToSplitBlocks++;
500   }
501   return Ret;
502 }
503
504 /// Looks through a COPY instruction to the actual definition of the CR-bit
505 /// register and returns the instruction that defines it.
506 /// FIXME: This currently handles what is by-far the most common case:
507 /// an instruction that defines a CR field followed by a single copy of a bit
508 /// from that field into a virtual register. If chains of copies need to be
509 /// handled, this should have a loop until a non-copy instruction is found.
510 MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
511                                                      unsigned &Subreg,
512                                                      MachineInstr *&CpDef) {
513   Subreg = -1;
514   if (!TargetRegisterInfo::isVirtualRegister(Reg))
515     return nullptr;
516   MachineInstr *Copy = MRI->getVRegDef(Reg);
517   CpDef = Copy;
518   if (!Copy->isCopy())
519     return Copy;
520   unsigned CopySrc = Copy->getOperand(1).getReg();
521   Subreg = Copy->getOperand(1).getSubReg();
522   if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) {
523     const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
524     // Set the Subreg
525     if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
526       Subreg = PPC::sub_eq;
527     if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
528       Subreg = PPC::sub_lt;
529     if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
530       Subreg = PPC::sub_gt;
531     if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
532       Subreg = PPC::sub_un;
533     // Loop backwards and return the first MI that modifies the physical CR Reg.
534     MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
535     while (Me != B)
536       if ((--Me)->modifiesRegister(CopySrc, TRI))
537         return &*Me;
538     return nullptr;
539   }
540   return MRI->getVRegDef(CopySrc);
541 }
542
543 void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
544   MF = &MFParam;
545   MRI = &MF->getRegInfo();
546   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
547   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
548
549   AllCRLogicalOps.clear();
550 }
551
552 /// Contains all the implemented transformations on CR logical operations.
553 /// For example, a binary CR logical can be used to split a block on its inputs,
554 /// a unary CR logical might be used to change the condition code on a
555 /// comparison feeding it. A nullary CR logical might simply be removable
556 /// if the user of the bit it [un]sets can be transformed.
557 bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) {
558   // We can definitely split a block on the inputs to a binary CR operation
559   // whose defs and (single) use are within the same block.
560   bool Changed = false;
561   if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
562       CRI.DefsSingleUse) {
563     Changed = splitBlockOnBinaryCROp(CRI);
564     if (Changed)
565       NumBlocksSplitOnBinaryCROp++;
566   }
567   return Changed;
568 }
569
570 /// Splits a block that contains a CR-logical operation that feeds a branch
571 /// and whose operands are produced within the block.
572 /// Example:
573 ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
574 ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
575 ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
576 ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
577 ///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
578 ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
579 /// Becomes:
580 ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
581 ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
582 ///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
583 ///
584 ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
585 ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
586 ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
587 bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
588   if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
589     LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
590     NumNotSplitIdenticalOperands++;
591     return false;
592   }
593   if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
594       CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
595     LLVM_DEBUG(
596         dbgs() << "Unable to split because one of the operands is a PHI or "
597                   "chain of copies.\n");
598     NumNotSplitChainCopies++;
599     return false;
600   }
601   // Note: keep in sync with computeBranchTargetAndInversion().
602   if (CRI.MI->getOpcode() != PPC::CROR &&
603       CRI.MI->getOpcode() != PPC::CRAND &&
604       CRI.MI->getOpcode() != PPC::CRNOR &&
605       CRI.MI->getOpcode() != PPC::CRNAND &&
606       CRI.MI->getOpcode() != PPC::CRORC &&
607       CRI.MI->getOpcode() != PPC::CRANDC) {
608     LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
609     NumNotSplitWrongOpcode++;
610     return false;
611   }
612   LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
613   MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
614   MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
615
616   bool UsingDef1 = false;
617   MachineInstr *SplitBefore = &*Def2It;
618   for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
619     if (Def1It == Def2It) { // Def2 comes before Def1.
620       SplitBefore = &*Def1It;
621       UsingDef1 = true;
622       break;
623     }
624   }
625
626   LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
627   LLVM_DEBUG(CRI.MI->getParent()->dump());
628   LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
629
630   // Get the branch instruction.
631   MachineInstr *Branch =
632     MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
633
634   // We want the new block to have no code in it other than the definition
635   // of the input to the CR logical and the CR logical itself. So we move
636   // those to the bottom of the block (just before the branch). Then we
637   // will split before the CR logical.
638   MachineBasicBlock *MBB = SplitBefore->getParent();
639   auto FirstTerminator = MBB->getFirstTerminator();
640   MachineBasicBlock::iterator FirstInstrToMove =
641     UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
642   MachineBasicBlock::iterator SecondInstrToMove =
643     UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
644
645   // The instructions that need to be moved are not guaranteed to be
646   // contiguous. Move them individually.
647   // FIXME: If one of the operands is a chain of (single use) copies, they
648   // can all be moved and we can still split.
649   MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
650   if (FirstInstrToMove != SecondInstrToMove)
651     MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
652   MBB->splice(FirstTerminator, MBB, CRI.MI);
653
654   unsigned Opc = CRI.MI->getOpcode();
655   bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
656   computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
657                                   InvertNewBranch, InvertOrigBranch,
658                                   TargetIsFallThrough);
659   MachineInstr *SplitCond =
660     UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
661   LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
662   LLVM_DEBUG(dbgs() << " the original branch and the target is the "
663                     << (TargetIsFallThrough ? "fallthrough block\n"
664                                             : "orig. target block\n"));
665   LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
666   BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
667     InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
668     UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
669   bool Changed = splitMBB(BSI);
670   // If we've split on a CR logical that is fed by a CR logical,
671   // recompute the source CR logical as it may be usable for splitting.
672   if (Changed) {
673     bool Input1CRlogical =
674       CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
675     bool Input2CRlogical =
676       CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
677     if (Input1CRlogical)
678       AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
679     if (Input2CRlogical)
680       AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
681   }
682   return Changed;
683 }
684
685 void PPCReduceCRLogicals::collectCRLogicals() {
686   for (MachineBasicBlock &MBB : *MF) {
687     for (MachineInstr &MI : MBB) {
688       if (isCRLogical(MI)) {
689         AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
690         TotalCRLogicals++;
691         if (AllCRLogicalOps.back().IsNullary)
692           TotalNullaryCRLogicals++;
693         else if (AllCRLogicalOps.back().IsBinary)
694           TotalBinaryCRLogicals++;
695         else
696           TotalUnaryCRLogicals++;
697       }
698     }
699   }
700 }
701
702 } // end anonymous namespace
703
704 INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
705                       "PowerPC Reduce CR logical Operation", false, false)
706 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
707 INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
708                     "PowerPC Reduce CR logical Operation", false, false)
709
710 char PPCReduceCRLogicals::ID = 0;
711 FunctionPass*
712 llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }