]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r306956, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / PowerPC / PPCTargetTransformInfo.cpp
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "PPCTargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/Debug.h"
15 #include "llvm/Target/CostTable.h"
16 #include "llvm/Target/TargetLowering.h"
17 using namespace llvm;
18
19 #define DEBUG_TYPE "ppctti"
20
21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
23
24 // This is currently only used for the data prefetch pass which is only enabled
25 // for BG/Q by default.
26 static cl::opt<unsigned>
27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
28               cl::desc("The loop prefetch cache line size"));
29
30 //===----------------------------------------------------------------------===//
31 //
32 // PPC cost model.
33 //
34 //===----------------------------------------------------------------------===//
35
36 TargetTransformInfo::PopcntSupportKind
37 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
38   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
39   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
40     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
41              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
42   return TTI::PSK_Software;
43 }
44
45 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
46   if (DisablePPCConstHoist)
47     return BaseT::getIntImmCost(Imm, Ty);
48
49   assert(Ty->isIntegerTy());
50
51   unsigned BitSize = Ty->getPrimitiveSizeInBits();
52   if (BitSize == 0)
53     return ~0U;
54
55   if (Imm == 0)
56     return TTI::TCC_Free;
57
58   if (Imm.getBitWidth() <= 64) {
59     if (isInt<16>(Imm.getSExtValue()))
60       return TTI::TCC_Basic;
61
62     if (isInt<32>(Imm.getSExtValue())) {
63       // A constant that can be materialized using lis.
64       if ((Imm.getZExtValue() & 0xFFFF) == 0)
65         return TTI::TCC_Basic;
66
67       return 2 * TTI::TCC_Basic;
68     }
69   }
70
71   return 4 * TTI::TCC_Basic;
72 }
73
74 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
75                               Type *Ty) {
76   if (DisablePPCConstHoist)
77     return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
78
79   assert(Ty->isIntegerTy());
80
81   unsigned BitSize = Ty->getPrimitiveSizeInBits();
82   if (BitSize == 0)
83     return ~0U;
84
85   switch (IID) {
86   default:
87     return TTI::TCC_Free;
88   case Intrinsic::sadd_with_overflow:
89   case Intrinsic::uadd_with_overflow:
90   case Intrinsic::ssub_with_overflow:
91   case Intrinsic::usub_with_overflow:
92     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
93       return TTI::TCC_Free;
94     break;
95   case Intrinsic::experimental_stackmap:
96     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
97       return TTI::TCC_Free;
98     break;
99   case Intrinsic::experimental_patchpoint_void:
100   case Intrinsic::experimental_patchpoint_i64:
101     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
102       return TTI::TCC_Free;
103     break;
104   }
105   return PPCTTIImpl::getIntImmCost(Imm, Ty);
106 }
107
108 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
109                               Type *Ty) {
110   if (DisablePPCConstHoist)
111     return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
112
113   assert(Ty->isIntegerTy());
114
115   unsigned BitSize = Ty->getPrimitiveSizeInBits();
116   if (BitSize == 0)
117     return ~0U;
118
119   unsigned ImmIdx = ~0U;
120   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
121        ZeroFree = false;
122   switch (Opcode) {
123   default:
124     return TTI::TCC_Free;
125   case Instruction::GetElementPtr:
126     // Always hoist the base address of a GetElementPtr. This prevents the
127     // creation of new constants for every base constant that gets constant
128     // folded with the offset.
129     if (Idx == 0)
130       return 2 * TTI::TCC_Basic;
131     return TTI::TCC_Free;
132   case Instruction::And:
133     RunFree = true; // (for the rotate-and-mask instructions)
134     LLVM_FALLTHROUGH;
135   case Instruction::Add:
136   case Instruction::Or:
137   case Instruction::Xor:
138     ShiftedFree = true;
139     LLVM_FALLTHROUGH;
140   case Instruction::Sub:
141   case Instruction::Mul:
142   case Instruction::Shl:
143   case Instruction::LShr:
144   case Instruction::AShr:
145     ImmIdx = 1;
146     break;
147   case Instruction::ICmp:
148     UnsignedFree = true;
149     ImmIdx = 1;
150     // Zero comparisons can use record-form instructions.
151     LLVM_FALLTHROUGH;
152   case Instruction::Select:
153     ZeroFree = true;
154     break;
155   case Instruction::PHI:
156   case Instruction::Call:
157   case Instruction::Ret:
158   case Instruction::Load:
159   case Instruction::Store:
160     break;
161   }
162
163   if (ZeroFree && Imm == 0)
164     return TTI::TCC_Free;
165
166   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
167     if (isInt<16>(Imm.getSExtValue()))
168       return TTI::TCC_Free;
169
170     if (RunFree) {
171       if (Imm.getBitWidth() <= 32 &&
172           (isShiftedMask_32(Imm.getZExtValue()) ||
173            isShiftedMask_32(~Imm.getZExtValue())))
174         return TTI::TCC_Free;
175
176       if (ST->isPPC64() &&
177           (isShiftedMask_64(Imm.getZExtValue()) ||
178            isShiftedMask_64(~Imm.getZExtValue())))
179         return TTI::TCC_Free;
180     }
181
182     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
183       return TTI::TCC_Free;
184
185     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
186       return TTI::TCC_Free;
187   }
188
189   return PPCTTIImpl::getIntImmCost(Imm, Ty);
190 }
191
192 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
193                                          TTI::UnrollingPreferences &UP) {
194   if (ST->getDarwinDirective() == PPC::DIR_A2) {
195     // The A2 is in-order with a deep pipeline, and concatenation unrolling
196     // helps expose latency-hiding opportunities to the instruction scheduler.
197     UP.Partial = UP.Runtime = true;
198
199     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
200     // often outweigh the cost of a division to compute the trip count.
201     UP.AllowExpensiveTripCount = true;
202   }
203
204   BaseT::getUnrollingPreferences(L, SE, UP);
205 }
206
207 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
208   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
209   // on combining the loads generated for consecutive accesses, and failure to
210   // do so is particularly expensive. This makes it much more likely (compared
211   // to only using concatenation unrolling).
212   if (ST->getDarwinDirective() == PPC::DIR_A2)
213     return true;
214
215   return LoopHasReductions;
216 }
217
218 bool PPCTTIImpl::expandMemCmp(Instruction *I, unsigned &MaxLoadSize) {
219   MaxLoadSize = 8;
220   return true;
221 }
222
223 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
224   return true;
225 }
226
227 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
228   if (Vector && !ST->hasAltivec() && !ST->hasQPX())
229     return 0;
230   return ST->hasVSX() ? 64 : 32;
231 }
232
233 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
234   if (Vector) {
235     if (ST->hasQPX()) return 256;
236     if (ST->hasAltivec()) return 128;
237     return 0;
238   }
239
240   if (ST->isPPC64())
241     return 64;
242   return 32;
243
244 }
245
246 unsigned PPCTTIImpl::getCacheLineSize() {
247   // Check first if the user specified a custom line size.
248   if (CacheLineSize.getNumOccurrences() > 0)
249     return CacheLineSize;
250
251   // On P7, P8 or P9 we have a cache line size of 128.
252   unsigned Directive = ST->getDarwinDirective();
253   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
254       Directive == PPC::DIR_PWR9)
255     return 128;
256
257   // On other processors return a default of 64 bytes.
258   return 64;
259 }
260
261 unsigned PPCTTIImpl::getPrefetchDistance() {
262   // This seems like a reasonable default for the BG/Q (this pass is enabled, by
263   // default, only on the BG/Q).
264   return 300;
265 }
266
267 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
268   unsigned Directive = ST->getDarwinDirective();
269   // The 440 has no SIMD support, but floating-point instructions
270   // have a 5-cycle latency, so unroll by 5x for latency hiding.
271   if (Directive == PPC::DIR_440)
272     return 5;
273
274   // The A2 has no SIMD support, but floating-point instructions
275   // have a 6-cycle latency, so unroll by 6x for latency hiding.
276   if (Directive == PPC::DIR_A2)
277     return 6;
278
279   // FIXME: For lack of any better information, do no harm...
280   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
281     return 1;
282
283   // For P7 and P8, floating-point instructions have a 6-cycle latency and
284   // there are two execution units, so unroll by 12x for latency hiding.
285   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
286   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
287       Directive == PPC::DIR_PWR9)
288     return 12;
289
290   // For most things, modern systems have two execution units (and
291   // out-of-order execution).
292   return 2;
293 }
294
295 int PPCTTIImpl::getArithmeticInstrCost(
296     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
297     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
298     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
299   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
300
301   // Fallback to the default implementation.
302   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
303                                        Opd1PropInfo, Opd2PropInfo);
304 }
305
306 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
307                                Type *SubTp) {
308   // Legalize the type.
309   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
310
311   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
312   // (at least in the sense that there need only be one non-loop-invariant
313   // instruction). We need one such shuffle instruction for each actual
314   // register (this is not true for arbitrary shuffles, but is true for the
315   // structured types of shuffles covered by TTI::ShuffleKind).
316   return LT.first;
317 }
318
319 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
320                                  const Instruction *I) {
321   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
322
323   return BaseT::getCastInstrCost(Opcode, Dst, Src);
324 }
325
326 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
327                                    const Instruction *I) {
328   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
329 }
330
331 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
332   assert(Val->isVectorTy() && "This must be a vector type");
333
334   int ISD = TLI->InstructionOpcodeToISD(Opcode);
335   assert(ISD && "Invalid opcode");
336
337   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
338     // Double-precision scalars are already located in index #0.
339     if (Index == 0)
340       return 0;
341
342     return BaseT::getVectorInstrCost(Opcode, Val, Index);
343   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
344     // Floating point scalars are already located in index #0.
345     if (Index == 0)
346       return 0;
347
348     return BaseT::getVectorInstrCost(Opcode, Val, Index);
349   }
350
351   // Estimated cost of a load-hit-store delay.  This was obtained
352   // experimentally as a minimum needed to prevent unprofitable
353   // vectorization for the paq8p benchmark.  It may need to be
354   // raised further if other unprofitable cases remain.
355   unsigned LHSPenalty = 2;
356   if (ISD == ISD::INSERT_VECTOR_ELT)
357     LHSPenalty += 7;
358
359   // Vector element insert/extract with Altivec is very expensive,
360   // because they require store and reload with the attendant
361   // processor stall for load-hit-store.  Until VSX is available,
362   // these need to be estimated as very costly.
363   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
364       ISD == ISD::INSERT_VECTOR_ELT)
365     return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
366
367   return BaseT::getVectorInstrCost(Opcode, Val, Index);
368 }
369
370 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
371                                 unsigned AddressSpace, const Instruction *I) {
372   // Legalize the type.
373   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
374   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
375          "Invalid Opcode");
376
377   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
378
379   bool IsAltivecType = ST->hasAltivec() &&
380                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
381                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
382   bool IsVSXType = ST->hasVSX() &&
383                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
384   bool IsQPXType = ST->hasQPX() &&
385                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
386
387   // VSX has 32b/64b load instructions. Legalization can handle loading of
388   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
389   // PPCTargetLowering can't compute the cost appropriately. So here we
390   // explicitly check this case.
391   unsigned MemBytes = Src->getPrimitiveSizeInBits();
392   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
393       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
394     return 1;
395
396   // Aligned loads and stores are easy.
397   unsigned SrcBytes = LT.second.getStoreSize();
398   if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
399     return Cost;
400
401   // If we can use the permutation-based load sequence, then this is also
402   // relatively cheap (not counting loop-invariant instructions): one load plus
403   // one permute (the last load in a series has extra cost, but we're
404   // neglecting that here). Note that on the P7, we could do unaligned loads
405   // for Altivec types using the VSX instructions, but that's more expensive
406   // than using the permutation-based load sequence. On the P8, that's no
407   // longer true.
408   if (Opcode == Instruction::Load &&
409       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
410       Alignment >= LT.second.getScalarType().getStoreSize())
411     return Cost + LT.first; // Add the cost of the permutations.
412
413   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
414   // P7, unaligned vector loads are more expensive than the permutation-based
415   // load sequence, so that might be used instead, but regardless, the net cost
416   // is about the same (not counting loop-invariant instructions).
417   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
418     return Cost;
419
420   // Newer PPC supports unaligned memory access.
421   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
422     return Cost;
423
424   // PPC in general does not support unaligned loads and stores. They'll need
425   // to be decomposed based on the alignment factor.
426
427   // Add the cost of each scalar load or store.
428   Cost += LT.first*(SrcBytes/Alignment-1);
429
430   // For a vector type, there is also scalarization overhead (only for
431   // stores, loads are expanded using the vector-load + permutation sequence,
432   // which is much less expensive).
433   if (Src->isVectorTy() && Opcode == Instruction::Store)
434     for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
435       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
436
437   return Cost;
438 }
439
440 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
441                                            unsigned Factor,
442                                            ArrayRef<unsigned> Indices,
443                                            unsigned Alignment,
444                                            unsigned AddressSpace) {
445   assert(isa<VectorType>(VecTy) &&
446          "Expect a vector type for interleaved memory op");
447
448   // Legalize the type.
449   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
450
451   // Firstly, the cost of load/store operation.
452   int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
453
454   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
455   // (at least in the sense that there need only be one non-loop-invariant
456   // instruction). For each result vector, we need one shuffle per incoming
457   // vector (except that the first shuffle can take two incoming vectors
458   // because it does not need to take itself).
459   Cost += Factor*(LT.first-1);
460
461   return Cost;
462 }
463