]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/PowerPC/PPCVSXFMAMutate.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / PowerPC / PPCVSXFMAMutate.cpp
1 //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass mutates the form of VSX FMA instructions to avoid unnecessary
11 // copies.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCInstrInfo.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/ScheduleDAG.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39
40 using namespace llvm;
41
42 // Temporarily disable FMA mutation by default, since it doesn't handle
43 // cross-basic-block intervals well.
44 // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
45 //      http://reviews.llvm.org/D17087
46 static cl::opt<bool> DisableVSXFMAMutate(
47     "disable-ppc-vsx-fma-mutation",
48     cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
49     cl::Hidden);
50
51 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
52
53 namespace llvm { namespace PPC {
54   int getAltVSXFMAOpcode(uint16_t Opcode);
55 } }
56
57 namespace {
58   // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
59   // (Altivec and scalar floating-point registers), we need to transform the
60   // copies into subregister copies with other restrictions.
61   struct PPCVSXFMAMutate : public MachineFunctionPass {
62     static char ID;
63     PPCVSXFMAMutate() : MachineFunctionPass(ID) {
64       initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
65     }
66
67     LiveIntervals *LIS;
68     const PPCInstrInfo *TII;
69
70 protected:
71     bool processBlock(MachineBasicBlock &MBB) {
72       bool Changed = false;
73
74       MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
75       const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
76       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
77            I != IE; ++I) {
78         MachineInstr &MI = *I;
79
80         // The default (A-type) VSX FMA form kills the addend (it is taken from
81         // the target register, which is then updated to reflect the result of
82         // the FMA). If the instruction, however, kills one of the registers
83         // used for the product, then we can use the M-form instruction (which
84         // will take that value from the to-be-defined register).
85
86         int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
87         if (AltOpc == -1)
88           continue;
89
90         // This pass is run after register coalescing, and so we're looking for
91         // a situation like this:
92         //   ...
93         //   %5 = COPY %9; VSLRC:%5,%9
94         //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
95         //                         implicit %rm; VSLRC:%5,%17,%16
96         //   ...
97         //   %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
98         //                         implicit %rm; VSLRC:%9,%17,%19
99         //   ...
100         // Where we can eliminate the copy by changing from the A-type to the
101         // M-type instruction. Specifically, for this example, this means:
102         //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
103         //                         implicit %rm; VSLRC:%5,%17,%16
104         // is replaced by:
105         //   %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
106         //                         implicit %rm; VSLRC:%16,%18,%9
107         // and we remove: %5 = COPY %9; VSLRC:%5,%9
108
109         SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
110
111         VNInfo *AddendValNo =
112             LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn();
113
114         // This can be null if the register is undef.
115         if (!AddendValNo)
116           continue;
117
118         MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
119
120         // The addend and this instruction must be in the same block.
121
122         if (!AddendMI || AddendMI->getParent() != MI.getParent())
123           continue;
124
125         // The addend must be a full copy within the same register class.
126
127         if (!AddendMI->isFullCopy())
128           continue;
129
130         unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
131         if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
132           if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
133               MRI.getRegClass(AddendSrcReg))
134             continue;
135         } else {
136           // If AddendSrcReg is a physical register, make sure the destination
137           // register class contains it.
138           if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
139                 ->contains(AddendSrcReg))
140             continue;
141         }
142
143         // In theory, there could be other uses of the addend copy before this
144         // fma.  We could deal with this, but that would require additional
145         // logic below and I suspect it will not occur in any relevant
146         // situations.  Additionally, check whether the copy source is killed
147         // prior to the fma.  In order to replace the addend here with the
148         // source of the copy, it must still be live here.  We can't use
149         // interval testing for a physical register, so as long as we're
150         // walking the MIs we may as well test liveness here.
151         //
152         // FIXME: There is a case that occurs in practice, like this:
153         //   %9 = COPY %f1; VSSRC:%9
154         //   ...
155         //   %6 = COPY %9; VSSRC:%6,%9
156         //   %7 = COPY %9; VSSRC:%7,%9
157         //   %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
158         //   %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
159         //   %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
160         // which prevents an otherwise-profitable transformation.
161         bool OtherUsers = false, KillsAddendSrc = false;
162         for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
163              J != JE; --J) {
164           if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
165             OtherUsers = true;
166             break;
167           }
168           if (J->modifiesRegister(AddendSrcReg, TRI) ||
169               J->killsRegister(AddendSrcReg, TRI)) {
170             KillsAddendSrc = true;
171             break;
172           }
173         }
174
175         if (OtherUsers || KillsAddendSrc)
176           continue;
177
178
179         // The transformation doesn't work well with things like:
180         //    %5 = A-form-op %5, %11, %5;
181         // unless %11 is also a kill, so skip when it is not,
182         // and check operand 3 to see it is also a kill to handle the case:
183         //   %5 = A-form-op %5, %5, %11;
184         // where %5 and %11 are both kills. This case would be skipped
185         // otherwise.
186         unsigned OldFMAReg = MI.getOperand(0).getReg();
187
188         // Find one of the product operands that is killed by this instruction.
189         unsigned KilledProdOp = 0, OtherProdOp = 0;
190         unsigned Reg2 = MI.getOperand(2).getReg();
191         unsigned Reg3 = MI.getOperand(3).getReg();
192         if (LIS->getInterval(Reg2).Query(FMAIdx).isKill()
193             && Reg2 != OldFMAReg) {
194           KilledProdOp = 2;
195           OtherProdOp  = 3;
196         } else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill()
197             && Reg3 != OldFMAReg) {
198           KilledProdOp = 3;
199           OtherProdOp  = 2;
200         }
201
202         // If there are no usable killed product operands, then this
203         // transformation is likely not profitable.
204         if (!KilledProdOp)
205           continue;
206
207         // If the addend copy is used only by this MI, then the addend source
208         // register is likely not live here. This could be fixed (based on the
209         // legality checks above, the live range for the addend source register
210         // could be extended), but it seems likely that such a trivial copy can
211         // be coalesced away later, and thus is not worth the effort.
212         if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg) &&
213             !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
214           continue;
215
216         // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
217
218         unsigned KilledProdReg = MI.getOperand(KilledProdOp).getReg();
219         unsigned OtherProdReg = MI.getOperand(OtherProdOp).getReg();
220
221         unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
222         unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg();
223         unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg();
224
225         bool AddRegKill = AddendMI->getOperand(1).isKill();
226         bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill();
227         bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill();
228
229         bool AddRegUndef = AddendMI->getOperand(1).isUndef();
230         bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef();
231         bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef();
232
233         // If there isn't a class that fits, we can't perform the transform.
234         // This is needed for correctness with a mixture of VSX and Altivec
235         // instructions to make sure that a low VSX register is not assigned to
236         // the Altivec instruction.
237         if (!MRI.constrainRegClass(KilledProdReg,
238                                    MRI.getRegClass(OldFMAReg)))
239           continue;
240
241         assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
242                "Addend copy not tied to old FMA output!");
243
244         LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n    " << MI);
245
246         MI.getOperand(0).setReg(KilledProdReg);
247         MI.getOperand(1).setReg(KilledProdReg);
248         MI.getOperand(3).setReg(AddendSrcReg);
249
250         MI.getOperand(0).setSubReg(KilledProdSubReg);
251         MI.getOperand(1).setSubReg(KilledProdSubReg);
252         MI.getOperand(3).setSubReg(AddSubReg);
253
254         MI.getOperand(1).setIsKill(KilledProdRegKill);
255         MI.getOperand(3).setIsKill(AddRegKill);
256
257         MI.getOperand(1).setIsUndef(KilledProdRegUndef);
258         MI.getOperand(3).setIsUndef(AddRegUndef);
259
260         MI.setDesc(TII->get(AltOpc));
261
262         // If the addend is also a multiplicand, replace it with the addend
263         // source in both places.
264         if (OtherProdReg == AddendMI->getOperand(0).getReg()) {
265           MI.getOperand(2).setReg(AddendSrcReg);
266           MI.getOperand(2).setSubReg(AddSubReg);
267           MI.getOperand(2).setIsKill(AddRegKill);
268           MI.getOperand(2).setIsUndef(AddRegUndef);
269         } else {
270           MI.getOperand(2).setReg(OtherProdReg);
271           MI.getOperand(2).setSubReg(OtherProdSubReg);
272           MI.getOperand(2).setIsKill(OtherProdRegKill);
273           MI.getOperand(2).setIsUndef(OtherProdRegUndef);
274         }
275
276         LLVM_DEBUG(dbgs() << " -> " << MI);
277
278         // The killed product operand was killed here, so we can reuse it now
279         // for the result of the fma.
280
281         LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
282         VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
283         for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
284              UI != UE;) {
285           MachineOperand &UseMO = *UI;
286           MachineInstr *UseMI = UseMO.getParent();
287           ++UI;
288
289           // Don't replace the result register of the copy we're about to erase.
290           if (UseMI == AddendMI)
291             continue;
292
293           UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
294         }
295
296         // Extend the live intervals of the killed product operand to hold the
297         // fma result.
298
299         LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
300         for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
301              AI != AE; ++AI) {
302           // Don't add the segment that corresponds to the original copy.
303           if (AI->valno == AddendValNo)
304             continue;
305
306           VNInfo *NewFMAValNo =
307             NewFMAInt.getNextValue(AI->start,
308                                    LIS->getVNInfoAllocator());
309
310           NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
311                                                      NewFMAValNo));
312         }
313         LLVM_DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
314
315         // Extend the live interval of the addend source (it might end at the
316         // copy to be removed, or somewhere in between there and here). This
317         // is necessary only if it is a physical register.
318         if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg))
319           for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid();
320                ++Units) {
321             unsigned Unit = *Units;
322
323             LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
324             AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
325                                          FMAIdx.getRegSlot());
326             LLVM_DEBUG(dbgs() << "  extended: " << AddendSrcRange << '\n');
327           }
328
329         FMAInt.removeValNo(FMAValNo);
330         LLVM_DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
331
332         // Remove the (now unused) copy.
333
334         LLVM_DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
335         LIS->RemoveMachineInstrFromMaps(*AddendMI);
336         AddendMI->eraseFromParent();
337
338         Changed = true;
339       }
340
341       return Changed;
342     }
343
344 public:
345     bool runOnMachineFunction(MachineFunction &MF) override {
346       if (skipFunction(MF.getFunction()))
347         return false;
348
349       // If we don't have VSX then go ahead and return without doing
350       // anything.
351       const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
352       if (!STI.hasVSX())
353         return false;
354
355       LIS = &getAnalysis<LiveIntervals>();
356
357       TII = STI.getInstrInfo();
358
359       bool Changed = false;
360
361       if (DisableVSXFMAMutate)
362         return Changed;
363
364       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
365         MachineBasicBlock &B = *I++;
366         if (processBlock(B))
367           Changed = true;
368       }
369
370       return Changed;
371     }
372
373     void getAnalysisUsage(AnalysisUsage &AU) const override {
374       AU.addRequired<LiveIntervals>();
375       AU.addPreserved<LiveIntervals>();
376       AU.addRequired<SlotIndexes>();
377       AU.addPreserved<SlotIndexes>();
378       AU.addRequired<MachineDominatorTree>();
379       AU.addPreserved<MachineDominatorTree>();
380       MachineFunctionPass::getAnalysisUsage(AU);
381     }
382   };
383 }
384
385 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
386                       "PowerPC VSX FMA Mutation", false, false)
387 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
388 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
389 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
390 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
391                     "PowerPC VSX FMA Mutation", false, false)
392
393 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
394
395 char PPCVSXFMAMutate::ID = 0;
396 FunctionPass *llvm::createPPCVSXFMAMutatePass() {
397   return new PPCVSXFMAMutate();
398 }