]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / AsmParser / SystemZAsmParser.cpp
1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "TargetInfo/SystemZTargetInfo.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCInstBuilder.h"
19 #include "llvm/MC/MCParser/MCAsmLexer.h"
20 #include "llvm/MC/MCParser/MCAsmParser.h"
21 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
23 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/SMLoc.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <iterator>
35 #include <memory>
36 #include <string>
37
38 using namespace llvm;
39
40 // Return true if Expr is in the range [MinValue, MaxValue].
41 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
42   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
43     int64_t Value = CE->getValue();
44     return Value >= MinValue && Value <= MaxValue;
45   }
46   return false;
47 }
48
49 namespace {
50
51 enum RegisterKind {
52   GR32Reg,
53   GRH32Reg,
54   GR64Reg,
55   GR128Reg,
56   ADDR32Reg,
57   ADDR64Reg,
58   FP32Reg,
59   FP64Reg,
60   FP128Reg,
61   VR32Reg,
62   VR64Reg,
63   VR128Reg,
64   AR32Reg,
65   CR64Reg,
66 };
67
68 enum MemoryKind {
69   BDMem,
70   BDXMem,
71   BDLMem,
72   BDRMem,
73   BDVMem
74 };
75
76 class SystemZOperand : public MCParsedAsmOperand {
77 private:
78   enum OperandKind {
79     KindInvalid,
80     KindToken,
81     KindReg,
82     KindImm,
83     KindImmTLS,
84     KindMem
85   };
86
87   OperandKind Kind;
88   SMLoc StartLoc, EndLoc;
89
90   // A string of length Length, starting at Data.
91   struct TokenOp {
92     const char *Data;
93     unsigned Length;
94   };
95
96   // LLVM register Num, which has kind Kind.  In some ways it might be
97   // easier for this class to have a register bank (general, floating-point
98   // or access) and a raw register number (0-15).  This would postpone the
99   // interpretation of the operand to the add*() methods and avoid the need
100   // for context-dependent parsing.  However, we do things the current way
101   // because of the virtual getReg() method, which needs to distinguish
102   // between (say) %r0 used as a single register and %r0 used as a pair.
103   // Context-dependent parsing can also give us slightly better error
104   // messages when invalid pairs like %r1 are used.
105   struct RegOp {
106     RegisterKind Kind;
107     unsigned Num;
108   };
109
110   // Base + Disp + Index, where Base and Index are LLVM registers or 0.
111   // MemKind says what type of memory this is and RegKind says what type
112   // the base register has (ADDR32Reg or ADDR64Reg).  Length is the operand
113   // length for D(L,B)-style operands, otherwise it is null.
114   struct MemOp {
115     unsigned Base : 12;
116     unsigned Index : 12;
117     unsigned MemKind : 4;
118     unsigned RegKind : 4;
119     const MCExpr *Disp;
120     union {
121       const MCExpr *Imm;
122       unsigned Reg;
123     } Length;
124   };
125
126   // Imm is an immediate operand, and Sym is an optional TLS symbol
127   // for use with a __tls_get_offset marker relocation.
128   struct ImmTLSOp {
129     const MCExpr *Imm;
130     const MCExpr *Sym;
131   };
132
133   union {
134     TokenOp Token;
135     RegOp Reg;
136     const MCExpr *Imm;
137     ImmTLSOp ImmTLS;
138     MemOp Mem;
139   };
140
141   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
142     // Add as immediates when possible.  Null MCExpr = 0.
143     if (!Expr)
144       Inst.addOperand(MCOperand::createImm(0));
145     else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
146       Inst.addOperand(MCOperand::createImm(CE->getValue()));
147     else
148       Inst.addOperand(MCOperand::createExpr(Expr));
149   }
150
151 public:
152   SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
153       : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
154
155   // Create particular kinds of operand.
156   static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
157                                                        SMLoc EndLoc) {
158     return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
159   }
160
161   static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
162     auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
163     Op->Token.Data = Str.data();
164     Op->Token.Length = Str.size();
165     return Op;
166   }
167
168   static std::unique_ptr<SystemZOperand>
169   createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
170     auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
171     Op->Reg.Kind = Kind;
172     Op->Reg.Num = Num;
173     return Op;
174   }
175
176   static std::unique_ptr<SystemZOperand>
177   createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
178     auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
179     Op->Imm = Expr;
180     return Op;
181   }
182
183   static std::unique_ptr<SystemZOperand>
184   createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
185             const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
186             unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
187     auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
188     Op->Mem.MemKind = MemKind;
189     Op->Mem.RegKind = RegKind;
190     Op->Mem.Base = Base;
191     Op->Mem.Index = Index;
192     Op->Mem.Disp = Disp;
193     if (MemKind == BDLMem)
194       Op->Mem.Length.Imm = LengthImm;
195     if (MemKind == BDRMem)
196       Op->Mem.Length.Reg = LengthReg;
197     return Op;
198   }
199
200   static std::unique_ptr<SystemZOperand>
201   createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
202                SMLoc StartLoc, SMLoc EndLoc) {
203     auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
204     Op->ImmTLS.Imm = Imm;
205     Op->ImmTLS.Sym = Sym;
206     return Op;
207   }
208
209   // Token operands
210   bool isToken() const override {
211     return Kind == KindToken;
212   }
213   StringRef getToken() const {
214     assert(Kind == KindToken && "Not a token");
215     return StringRef(Token.Data, Token.Length);
216   }
217
218   // Register operands.
219   bool isReg() const override {
220     return Kind == KindReg;
221   }
222   bool isReg(RegisterKind RegKind) const {
223     return Kind == KindReg && Reg.Kind == RegKind;
224   }
225   unsigned getReg() const override {
226     assert(Kind == KindReg && "Not a register");
227     return Reg.Num;
228   }
229
230   // Immediate operands.
231   bool isImm() const override {
232     return Kind == KindImm;
233   }
234   bool isImm(int64_t MinValue, int64_t MaxValue) const {
235     return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
236   }
237   const MCExpr *getImm() const {
238     assert(Kind == KindImm && "Not an immediate");
239     return Imm;
240   }
241
242   // Immediate operands with optional TLS symbol.
243   bool isImmTLS() const {
244     return Kind == KindImmTLS;
245   }
246
247   const ImmTLSOp getImmTLS() const {
248     assert(Kind == KindImmTLS && "Not a TLS immediate");
249     return ImmTLS;
250   }
251
252   // Memory operands.
253   bool isMem() const override {
254     return Kind == KindMem;
255   }
256   bool isMem(MemoryKind MemKind) const {
257     return (Kind == KindMem &&
258             (Mem.MemKind == MemKind ||
259              // A BDMem can be treated as a BDXMem in which the index
260              // register field is 0.
261              (Mem.MemKind == BDMem && MemKind == BDXMem)));
262   }
263   bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
264     return isMem(MemKind) && Mem.RegKind == RegKind;
265   }
266   bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
267     return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
268   }
269   bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
270     return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
271   }
272   bool isMemDisp12Len4(RegisterKind RegKind) const {
273     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
274   }
275   bool isMemDisp12Len8(RegisterKind RegKind) const {
276     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
277   }
278
279   const MemOp& getMem() const {
280     assert(Kind == KindMem && "Not a Mem operand");
281     return Mem;
282   }
283
284   // Override MCParsedAsmOperand.
285   SMLoc getStartLoc() const override { return StartLoc; }
286   SMLoc getEndLoc() const override { return EndLoc; }
287   void print(raw_ostream &OS) const override;
288
289   /// getLocRange - Get the range between the first and last token of this
290   /// operand.
291   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
292
293   // Used by the TableGen code to add particular types of operand
294   // to an instruction.
295   void addRegOperands(MCInst &Inst, unsigned N) const {
296     assert(N == 1 && "Invalid number of operands");
297     Inst.addOperand(MCOperand::createReg(getReg()));
298   }
299   void addImmOperands(MCInst &Inst, unsigned N) const {
300     assert(N == 1 && "Invalid number of operands");
301     addExpr(Inst, getImm());
302   }
303   void addBDAddrOperands(MCInst &Inst, unsigned N) const {
304     assert(N == 2 && "Invalid number of operands");
305     assert(isMem(BDMem) && "Invalid operand type");
306     Inst.addOperand(MCOperand::createReg(Mem.Base));
307     addExpr(Inst, Mem.Disp);
308   }
309   void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
310     assert(N == 3 && "Invalid number of operands");
311     assert(isMem(BDXMem) && "Invalid operand type");
312     Inst.addOperand(MCOperand::createReg(Mem.Base));
313     addExpr(Inst, Mem.Disp);
314     Inst.addOperand(MCOperand::createReg(Mem.Index));
315   }
316   void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
317     assert(N == 3 && "Invalid number of operands");
318     assert(isMem(BDLMem) && "Invalid operand type");
319     Inst.addOperand(MCOperand::createReg(Mem.Base));
320     addExpr(Inst, Mem.Disp);
321     addExpr(Inst, Mem.Length.Imm);
322   }
323   void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
324     assert(N == 3 && "Invalid number of operands");
325     assert(isMem(BDRMem) && "Invalid operand type");
326     Inst.addOperand(MCOperand::createReg(Mem.Base));
327     addExpr(Inst, Mem.Disp);
328     Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
329   }
330   void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
331     assert(N == 3 && "Invalid number of operands");
332     assert(isMem(BDVMem) && "Invalid operand type");
333     Inst.addOperand(MCOperand::createReg(Mem.Base));
334     addExpr(Inst, Mem.Disp);
335     Inst.addOperand(MCOperand::createReg(Mem.Index));
336   }
337   void addImmTLSOperands(MCInst &Inst, unsigned N) const {
338     assert(N == 2 && "Invalid number of operands");
339     assert(Kind == KindImmTLS && "Invalid operand type");
340     addExpr(Inst, ImmTLS.Imm);
341     if (ImmTLS.Sym)
342       addExpr(Inst, ImmTLS.Sym);
343   }
344
345   // Used by the TableGen code to check for particular operand types.
346   bool isGR32() const { return isReg(GR32Reg); }
347   bool isGRH32() const { return isReg(GRH32Reg); }
348   bool isGRX32() const { return false; }
349   bool isGR64() const { return isReg(GR64Reg); }
350   bool isGR128() const { return isReg(GR128Reg); }
351   bool isADDR32() const { return isReg(ADDR32Reg); }
352   bool isADDR64() const { return isReg(ADDR64Reg); }
353   bool isADDR128() const { return false; }
354   bool isFP32() const { return isReg(FP32Reg); }
355   bool isFP64() const { return isReg(FP64Reg); }
356   bool isFP128() const { return isReg(FP128Reg); }
357   bool isVR32() const { return isReg(VR32Reg); }
358   bool isVR64() const { return isReg(VR64Reg); }
359   bool isVF128() const { return false; }
360   bool isVR128() const { return isReg(VR128Reg); }
361   bool isAR32() const { return isReg(AR32Reg); }
362   bool isCR64() const { return isReg(CR64Reg); }
363   bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
364   bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); }
365   bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); }
366   bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); }
367   bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); }
368   bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); }
369   bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); }
370   bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(ADDR64Reg); }
371   bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
372   bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); }
373   bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); }
374   bool isU1Imm() const { return isImm(0, 1); }
375   bool isU2Imm() const { return isImm(0, 3); }
376   bool isU3Imm() const { return isImm(0, 7); }
377   bool isU4Imm() const { return isImm(0, 15); }
378   bool isU6Imm() const { return isImm(0, 63); }
379   bool isU8Imm() const { return isImm(0, 255); }
380   bool isS8Imm() const { return isImm(-128, 127); }
381   bool isU12Imm() const { return isImm(0, 4095); }
382   bool isU16Imm() const { return isImm(0, 65535); }
383   bool isS16Imm() const { return isImm(-32768, 32767); }
384   bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
385   bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
386   bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
387 };
388
389 class SystemZAsmParser : public MCTargetAsmParser {
390 #define GET_ASSEMBLER_HEADER
391 #include "SystemZGenAsmMatcher.inc"
392
393 private:
394   MCAsmParser &Parser;
395   enum RegisterGroup {
396     RegGR,
397     RegFP,
398     RegV,
399     RegAR,
400     RegCR
401   };
402   struct Register {
403     RegisterGroup Group;
404     unsigned Num;
405     SMLoc StartLoc, EndLoc;
406   };
407
408   bool parseRegister(Register &Reg);
409
410   bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
411                      bool IsAddress = false);
412
413   OperandMatchResultTy parseRegister(OperandVector &Operands,
414                                      RegisterGroup Group, const unsigned *Regs,
415                                      RegisterKind Kind);
416
417   OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
418
419   bool parseAddress(bool &HaveReg1, Register &Reg1,
420                     bool &HaveReg2, Register &Reg2,
421                     const MCExpr *&Disp, const MCExpr *&Length);
422   bool parseAddressRegister(Register &Reg);
423
424   bool ParseDirectiveInsn(SMLoc L);
425
426   OperandMatchResultTy parseAddress(OperandVector &Operands,
427                                     MemoryKind MemKind, const unsigned *Regs,
428                                     RegisterKind RegKind);
429
430   OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
431                                   int64_t MaxVal, bool AllowTLS);
432
433   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
434
435 public:
436   SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
437                    const MCInstrInfo &MII,
438                    const MCTargetOptions &Options)
439     : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
440     MCAsmParserExtension::Initialize(Parser);
441
442     // Alias the .word directive to .short.
443     parser.addAliasForDirective(".word", ".short");
444
445     // Initialize the set of available features.
446     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
447   }
448
449   // Override MCTargetAsmParser.
450   bool ParseDirective(AsmToken DirectiveID) override;
451   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
452   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
453                         SMLoc NameLoc, OperandVector &Operands) override;
454   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
455                                OperandVector &Operands, MCStreamer &Out,
456                                uint64_t &ErrorInfo,
457                                bool MatchingInlineAsm) override;
458
459   // Used by the TableGen code to parse particular operand types.
460   OperandMatchResultTy parseGR32(OperandVector &Operands) {
461     return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
462   }
463   OperandMatchResultTy parseGRH32(OperandVector &Operands) {
464     return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
465   }
466   OperandMatchResultTy parseGRX32(OperandVector &Operands) {
467     llvm_unreachable("GRX32 should only be used for pseudo instructions");
468   }
469   OperandMatchResultTy parseGR64(OperandVector &Operands) {
470     return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
471   }
472   OperandMatchResultTy parseGR128(OperandVector &Operands) {
473     return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
474   }
475   OperandMatchResultTy parseADDR32(OperandVector &Operands) {
476     return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
477   }
478   OperandMatchResultTy parseADDR64(OperandVector &Operands) {
479     return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
480   }
481   OperandMatchResultTy parseADDR128(OperandVector &Operands) {
482     llvm_unreachable("Shouldn't be used as an operand");
483   }
484   OperandMatchResultTy parseFP32(OperandVector &Operands) {
485     return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
486   }
487   OperandMatchResultTy parseFP64(OperandVector &Operands) {
488     return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
489   }
490   OperandMatchResultTy parseFP128(OperandVector &Operands) {
491     return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
492   }
493   OperandMatchResultTy parseVR32(OperandVector &Operands) {
494     return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg);
495   }
496   OperandMatchResultTy parseVR64(OperandVector &Operands) {
497     return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg);
498   }
499   OperandMatchResultTy parseVF128(OperandVector &Operands) {
500     llvm_unreachable("Shouldn't be used as an operand");
501   }
502   OperandMatchResultTy parseVR128(OperandVector &Operands) {
503     return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg);
504   }
505   OperandMatchResultTy parseAR32(OperandVector &Operands) {
506     return parseRegister(Operands, RegAR, SystemZMC::AR32Regs, AR32Reg);
507   }
508   OperandMatchResultTy parseCR64(OperandVector &Operands) {
509     return parseRegister(Operands, RegCR, SystemZMC::CR64Regs, CR64Reg);
510   }
511   OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
512     return parseAnyRegister(Operands);
513   }
514   OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
515     return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg);
516   }
517   OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
518     return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg);
519   }
520   OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
521     return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg);
522   }
523   OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
524     return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg);
525   }
526   OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
527     return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg);
528   }
529   OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
530     return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg);
531   }
532   OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
533     return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
534   }
535   OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
536     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
537   }
538   OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
539     return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
540   }
541   OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
542     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
543   }
544   OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
545     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
546   }
547   OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
548     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
549   }
550 };
551
552 } // end anonymous namespace
553
554 #define GET_REGISTER_MATCHER
555 #define GET_SUBTARGET_FEATURE_NAME
556 #define GET_MATCHER_IMPLEMENTATION
557 #define GET_MNEMONIC_SPELL_CHECKER
558 #include "SystemZGenAsmMatcher.inc"
559
560 // Used for the .insn directives; contains information needed to parse the
561 // operands in the directive.
562 struct InsnMatchEntry {
563   StringRef Format;
564   uint64_t Opcode;
565   int32_t NumOperands;
566   MatchClassKind OperandKinds[5];
567 };
568
569 // For equal_range comparison.
570 struct CompareInsn {
571   bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
572     return LHS.Format < RHS;
573   }
574   bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
575     return LHS < RHS.Format;
576   }
577   bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
578     return LHS.Format < RHS.Format;
579   }
580 };
581
582 // Table initializing information for parsing the .insn directive.
583 static struct InsnMatchEntry InsnMatchTable[] = {
584   /* Format, Opcode, NumOperands, OperandKinds */
585   { "e", SystemZ::InsnE, 1,
586     { MCK_U16Imm } },
587   { "ri", SystemZ::InsnRI, 3,
588     { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
589   { "rie", SystemZ::InsnRIE, 4,
590     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
591   { "ril", SystemZ::InsnRIL, 3,
592     { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
593   { "rilu", SystemZ::InsnRILU, 3,
594     { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
595   { "ris", SystemZ::InsnRIS, 5,
596     { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
597   { "rr", SystemZ::InsnRR, 3,
598     { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
599   { "rre", SystemZ::InsnRRE, 3,
600     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
601   { "rrf", SystemZ::InsnRRF, 5,
602     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
603   { "rrs", SystemZ::InsnRRS, 5,
604     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
605   { "rs", SystemZ::InsnRS, 4,
606     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
607   { "rse", SystemZ::InsnRSE, 4,
608     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
609   { "rsi", SystemZ::InsnRSI, 4,
610     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
611   { "rsy", SystemZ::InsnRSY, 4,
612     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
613   { "rx", SystemZ::InsnRX, 3,
614     { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
615   { "rxe", SystemZ::InsnRXE, 3,
616     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
617   { "rxf", SystemZ::InsnRXF, 4,
618     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
619   { "rxy", SystemZ::InsnRXY, 3,
620     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
621   { "s", SystemZ::InsnS, 2,
622     { MCK_U32Imm, MCK_BDAddr64Disp12 } },
623   { "si", SystemZ::InsnSI, 3,
624     { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
625   { "sil", SystemZ::InsnSIL, 3,
626     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
627   { "siy", SystemZ::InsnSIY, 3,
628     { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
629   { "ss", SystemZ::InsnSS, 4,
630     { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
631   { "sse", SystemZ::InsnSSE, 3,
632     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
633   { "ssf", SystemZ::InsnSSF, 4,
634     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
635 };
636
637 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
638   if (!E)
639     return;
640   if (auto *CE = dyn_cast<MCConstantExpr>(E))
641     OS << *CE;
642   else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
643     OS << *UE;
644   else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
645     OS << *BE;
646   else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
647     OS << *SRE;
648   else
649     OS << *E;
650 }
651
652 void SystemZOperand::print(raw_ostream &OS) const {
653   switch (Kind) {
654   case KindToken:
655     OS << "Token:" << getToken();
656     break;
657   case KindReg:
658     OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
659     break;
660   case KindImm:
661     OS << "Imm:";
662     printMCExpr(getImm(), OS);
663     break;
664   case KindImmTLS:
665     OS << "ImmTLS:";
666     printMCExpr(getImmTLS().Imm, OS);
667     if (getImmTLS().Sym) {
668       OS << ", ";
669       printMCExpr(getImmTLS().Sym, OS);
670     }
671     break;
672   case KindMem: {
673     const MemOp &Op = getMem();
674     OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
675     if (Op.Base) {
676       OS << "(";
677       if (Op.MemKind == BDLMem)
678         OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
679       else if (Op.MemKind == BDRMem)
680         OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
681       if (Op.Index)
682         OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
683       OS << SystemZInstPrinter::getRegisterName(Op.Base);
684       OS << ")";
685     }
686     break;
687   }
688   case KindInvalid:
689     break;
690   }
691 }
692
693 // Parse one register of the form %<prefix><number>.
694 bool SystemZAsmParser::parseRegister(Register &Reg) {
695   Reg.StartLoc = Parser.getTok().getLoc();
696
697   // Eat the % prefix.
698   if (Parser.getTok().isNot(AsmToken::Percent))
699     return Error(Parser.getTok().getLoc(), "register expected");
700   Parser.Lex();
701
702   // Expect a register name.
703   if (Parser.getTok().isNot(AsmToken::Identifier))
704     return Error(Reg.StartLoc, "invalid register");
705
706   // Check that there's a prefix.
707   StringRef Name = Parser.getTok().getString();
708   if (Name.size() < 2)
709     return Error(Reg.StartLoc, "invalid register");
710   char Prefix = Name[0];
711
712   // Treat the rest of the register name as a register number.
713   if (Name.substr(1).getAsInteger(10, Reg.Num))
714     return Error(Reg.StartLoc, "invalid register");
715
716   // Look for valid combinations of prefix and number.
717   if (Prefix == 'r' && Reg.Num < 16)
718     Reg.Group = RegGR;
719   else if (Prefix == 'f' && Reg.Num < 16)
720     Reg.Group = RegFP;
721   else if (Prefix == 'v' && Reg.Num < 32)
722     Reg.Group = RegV;
723   else if (Prefix == 'a' && Reg.Num < 16)
724     Reg.Group = RegAR;
725   else if (Prefix == 'c' && Reg.Num < 16)
726     Reg.Group = RegCR;
727   else
728     return Error(Reg.StartLoc, "invalid register");
729
730   Reg.EndLoc = Parser.getTok().getLoc();
731   Parser.Lex();
732   return false;
733 }
734
735 // Parse a register of group Group.  If Regs is nonnull, use it to map
736 // the raw register number to LLVM numbering, with zero entries
737 // indicating an invalid register.  IsAddress says whether the
738 // register appears in an address context. Allow FP Group if expecting
739 // RegV Group, since the f-prefix yields the FP group even while used
740 // with vector instructions.
741 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
742                                      const unsigned *Regs, bool IsAddress) {
743   if (parseRegister(Reg))
744     return true;
745   if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV))
746     return Error(Reg.StartLoc, "invalid operand for instruction");
747   if (Regs && Regs[Reg.Num] == 0)
748     return Error(Reg.StartLoc, "invalid register pair");
749   if (Reg.Num == 0 && IsAddress)
750     return Error(Reg.StartLoc, "%r0 used in an address");
751   if (Regs)
752     Reg.Num = Regs[Reg.Num];
753   return false;
754 }
755
756 // Parse a register and add it to Operands.  The other arguments are as above.
757 OperandMatchResultTy
758 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
759                                 const unsigned *Regs, RegisterKind Kind) {
760   if (Parser.getTok().isNot(AsmToken::Percent))
761     return MatchOperand_NoMatch;
762
763   Register Reg;
764   bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
765   if (parseRegister(Reg, Group, Regs, IsAddress))
766     return MatchOperand_ParseFail;
767
768   Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
769                                                Reg.StartLoc, Reg.EndLoc));
770   return MatchOperand_Success;
771 }
772
773 // Parse any type of register (including integers) and add it to Operands.
774 OperandMatchResultTy
775 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
776   // Handle integer values.
777   if (Parser.getTok().is(AsmToken::Integer)) {
778     const MCExpr *Register;
779     SMLoc StartLoc = Parser.getTok().getLoc();
780     if (Parser.parseExpression(Register))
781       return MatchOperand_ParseFail;
782
783     if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
784       int64_t Value = CE->getValue();
785       if (Value < 0 || Value > 15) {
786         Error(StartLoc, "invalid register");
787         return MatchOperand_ParseFail;
788       }
789     }
790
791     SMLoc EndLoc =
792       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
793
794     Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
795   }
796   else {
797     Register Reg;
798     if (parseRegister(Reg))
799       return MatchOperand_ParseFail;
800
801     // Map to the correct register kind.
802     RegisterKind Kind;
803     unsigned RegNo;
804     if (Reg.Group == RegGR) {
805       Kind = GR64Reg;
806       RegNo = SystemZMC::GR64Regs[Reg.Num];
807     }
808     else if (Reg.Group == RegFP) {
809       Kind = FP64Reg;
810       RegNo = SystemZMC::FP64Regs[Reg.Num];
811     }
812     else if (Reg.Group == RegV) {
813       Kind = VR128Reg;
814       RegNo = SystemZMC::VR128Regs[Reg.Num];
815     }
816     else if (Reg.Group == RegAR) {
817       Kind = AR32Reg;
818       RegNo = SystemZMC::AR32Regs[Reg.Num];
819     }
820     else if (Reg.Group == RegCR) {
821       Kind = CR64Reg;
822       RegNo = SystemZMC::CR64Regs[Reg.Num];
823     }
824     else {
825       return MatchOperand_ParseFail;
826     }
827
828     Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
829                                                  Reg.StartLoc, Reg.EndLoc));
830   }
831   return MatchOperand_Success;
832 }
833
834 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
835 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
836                                     bool &HaveReg2, Register &Reg2,
837                                     const MCExpr *&Disp,
838                                     const MCExpr *&Length) {
839   // Parse the displacement, which must always be present.
840   if (getParser().parseExpression(Disp))
841     return true;
842
843   // Parse the optional base and index.
844   HaveReg1 = false;
845   HaveReg2 = false;
846   Length = nullptr;
847   if (getLexer().is(AsmToken::LParen)) {
848     Parser.Lex();
849
850     if (getLexer().is(AsmToken::Percent)) {
851       // Parse the first register.
852       HaveReg1 = true;
853       if (parseRegister(Reg1))
854         return true;
855     } else {
856       // Parse the length.
857       if (getParser().parseExpression(Length))
858         return true;
859     }
860
861     // Check whether there's a second register.
862     if (getLexer().is(AsmToken::Comma)) {
863       Parser.Lex();
864       HaveReg2 = true;
865       if (parseRegister(Reg2))
866         return true;
867     }
868
869     // Consume the closing bracket.
870     if (getLexer().isNot(AsmToken::RParen))
871       return Error(Parser.getTok().getLoc(), "unexpected token in address");
872     Parser.Lex();
873   }
874   return false;
875 }
876
877 // Verify that Reg is a valid address register (base or index).
878 bool
879 SystemZAsmParser::parseAddressRegister(Register &Reg) {
880   if (Reg.Group == RegV) {
881     Error(Reg.StartLoc, "invalid use of vector addressing");
882     return true;
883   } else if (Reg.Group != RegGR) {
884     Error(Reg.StartLoc, "invalid address register");
885     return true;
886   } else if (Reg.Num == 0) {
887     Error(Reg.StartLoc, "%r0 used in an address");
888     return true;
889   }
890   return false;
891 }
892
893 // Parse a memory operand and add it to Operands.  The other arguments
894 // are as above.
895 OperandMatchResultTy
896 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
897                                const unsigned *Regs, RegisterKind RegKind) {
898   SMLoc StartLoc = Parser.getTok().getLoc();
899   unsigned Base = 0, Index = 0, LengthReg = 0;
900   Register Reg1, Reg2;
901   bool HaveReg1, HaveReg2;
902   const MCExpr *Disp;
903   const MCExpr *Length;
904   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length))
905     return MatchOperand_ParseFail;
906
907   switch (MemKind) {
908   case BDMem:
909     // If we have Reg1, it must be an address register.
910     if (HaveReg1) {
911       if (parseAddressRegister(Reg1))
912         return MatchOperand_ParseFail;
913       Base = Regs[Reg1.Num];
914     }
915     // There must be no Reg2 or length.
916     if (Length) {
917       Error(StartLoc, "invalid use of length addressing");
918       return MatchOperand_ParseFail;
919     }
920     if (HaveReg2) {
921       Error(StartLoc, "invalid use of indexed addressing");
922       return MatchOperand_ParseFail;
923     }
924     break;
925   case BDXMem:
926     // If we have Reg1, it must be an address register.
927     if (HaveReg1) {
928       if (parseAddressRegister(Reg1))
929         return MatchOperand_ParseFail;
930       // If the are two registers, the first one is the index and the
931       // second is the base.
932       if (HaveReg2)
933         Index = Regs[Reg1.Num];
934       else
935         Base = Regs[Reg1.Num];
936     }
937     // If we have Reg2, it must be an address register.
938     if (HaveReg2) {
939       if (parseAddressRegister(Reg2))
940         return MatchOperand_ParseFail;
941       Base = Regs[Reg2.Num];
942     }
943     // There must be no length.
944     if (Length) {
945       Error(StartLoc, "invalid use of length addressing");
946       return MatchOperand_ParseFail;
947     }
948     break;
949   case BDLMem:
950     // If we have Reg2, it must be an address register.
951     if (HaveReg2) {
952       if (parseAddressRegister(Reg2))
953         return MatchOperand_ParseFail;
954       Base = Regs[Reg2.Num];
955     }
956     // We cannot support base+index addressing.
957     if (HaveReg1 && HaveReg2) {
958       Error(StartLoc, "invalid use of indexed addressing");
959       return MatchOperand_ParseFail;
960     }
961     // We must have a length.
962     if (!Length) {
963       Error(StartLoc, "missing length in address");
964       return MatchOperand_ParseFail;
965     }
966     break;
967   case BDRMem:
968     // We must have Reg1, and it must be a GPR.
969     if (!HaveReg1 || Reg1.Group != RegGR) {
970       Error(StartLoc, "invalid operand for instruction");
971       return MatchOperand_ParseFail;
972     }
973     LengthReg = SystemZMC::GR64Regs[Reg1.Num];
974     // If we have Reg2, it must be an address register.
975     if (HaveReg2) {
976       if (parseAddressRegister(Reg2))
977         return MatchOperand_ParseFail;
978       Base = Regs[Reg2.Num];
979     }
980     // There must be no length.
981     if (Length) {
982       Error(StartLoc, "invalid use of length addressing");
983       return MatchOperand_ParseFail;
984     }
985     break;
986   case BDVMem:
987     // We must have Reg1, and it must be a vector register.
988     if (!HaveReg1 || Reg1.Group != RegV) {
989       Error(StartLoc, "vector index required in address");
990       return MatchOperand_ParseFail;
991     }
992     Index = SystemZMC::VR128Regs[Reg1.Num];
993     // If we have Reg2, it must be an address register.
994     if (HaveReg2) {
995       if (parseAddressRegister(Reg2))
996         return MatchOperand_ParseFail;
997       Base = Regs[Reg2.Num];
998     }
999     // There must be no length.
1000     if (Length) {
1001       Error(StartLoc, "invalid use of length addressing");
1002       return MatchOperand_ParseFail;
1003     }
1004     break;
1005   }
1006
1007   SMLoc EndLoc =
1008     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1009   Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1010                                                Index, Length, LengthReg,
1011                                                StartLoc, EndLoc));
1012   return MatchOperand_Success;
1013 }
1014
1015 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1016   StringRef IDVal = DirectiveID.getIdentifier();
1017
1018   if (IDVal == ".insn")
1019     return ParseDirectiveInsn(DirectiveID.getLoc());
1020
1021   return true;
1022 }
1023
1024 /// ParseDirectiveInsn
1025 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
1026 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1027   MCAsmParser &Parser = getParser();
1028
1029   // Expect instruction format as identifier.
1030   StringRef Format;
1031   SMLoc ErrorLoc = Parser.getTok().getLoc();
1032   if (Parser.parseIdentifier(Format))
1033     return Error(ErrorLoc, "expected instruction format");
1034
1035   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1036
1037   // Find entry for this format in InsnMatchTable.
1038   auto EntryRange =
1039     std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1040                      Format, CompareInsn());
1041
1042   // If first == second, couldn't find a match in the table.
1043   if (EntryRange.first == EntryRange.second)
1044     return Error(ErrorLoc, "unrecognized format");
1045
1046   struct InsnMatchEntry *Entry = EntryRange.first;
1047
1048   // Format should match from equal_range.
1049   assert(Entry->Format == Format);
1050
1051   // Parse the following operands using the table's information.
1052   for (int i = 0; i < Entry->NumOperands; i++) {
1053     MatchClassKind Kind = Entry->OperandKinds[i];
1054
1055     SMLoc StartLoc = Parser.getTok().getLoc();
1056
1057     // Always expect commas as separators for operands.
1058     if (getLexer().isNot(AsmToken::Comma))
1059       return Error(StartLoc, "unexpected token in directive");
1060     Lex();
1061
1062     // Parse operands.
1063     OperandMatchResultTy ResTy;
1064     if (Kind == MCK_AnyReg)
1065       ResTy = parseAnyReg(Operands);
1066     else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1067       ResTy = parseBDXAddr64(Operands);
1068     else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1069       ResTy = parseBDAddr64(Operands);
1070     else if (Kind == MCK_PCRel32)
1071       ResTy = parsePCRel32(Operands);
1072     else if (Kind == MCK_PCRel16)
1073       ResTy = parsePCRel16(Operands);
1074     else {
1075       // Only remaining operand kind is an immediate.
1076       const MCExpr *Expr;
1077       SMLoc StartLoc = Parser.getTok().getLoc();
1078
1079       // Expect immediate expression.
1080       if (Parser.parseExpression(Expr))
1081         return Error(StartLoc, "unexpected token in directive");
1082
1083       SMLoc EndLoc =
1084         SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1085
1086       Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1087       ResTy = MatchOperand_Success;
1088     }
1089
1090     if (ResTy != MatchOperand_Success)
1091       return true;
1092   }
1093
1094   // Build the instruction with the parsed operands.
1095   MCInst Inst = MCInstBuilder(Entry->Opcode);
1096
1097   for (size_t i = 0; i < Operands.size(); i++) {
1098     MCParsedAsmOperand &Operand = *Operands[i];
1099     MatchClassKind Kind = Entry->OperandKinds[i];
1100
1101     // Verify operand.
1102     unsigned Res = validateOperandClass(Operand, Kind);
1103     if (Res != Match_Success)
1104       return Error(Operand.getStartLoc(), "unexpected operand type");
1105
1106     // Add operands to instruction.
1107     SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1108     if (ZOperand.isReg())
1109       ZOperand.addRegOperands(Inst, 1);
1110     else if (ZOperand.isMem(BDMem))
1111       ZOperand.addBDAddrOperands(Inst, 2);
1112     else if (ZOperand.isMem(BDXMem))
1113       ZOperand.addBDXAddrOperands(Inst, 3);
1114     else if (ZOperand.isImm())
1115       ZOperand.addImmOperands(Inst, 1);
1116     else
1117       llvm_unreachable("unexpected operand type");
1118   }
1119
1120   // Emit as a regular instruction.
1121   Parser.getStreamer().EmitInstruction(Inst, getSTI());
1122
1123   return false;
1124 }
1125
1126 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1127                                      SMLoc &EndLoc) {
1128   Register Reg;
1129   if (parseRegister(Reg))
1130     return true;
1131   if (Reg.Group == RegGR)
1132     RegNo = SystemZMC::GR64Regs[Reg.Num];
1133   else if (Reg.Group == RegFP)
1134     RegNo = SystemZMC::FP64Regs[Reg.Num];
1135   else if (Reg.Group == RegV)
1136     RegNo = SystemZMC::VR128Regs[Reg.Num];
1137   else if (Reg.Group == RegAR)
1138     RegNo = SystemZMC::AR32Regs[Reg.Num];
1139   else if (Reg.Group == RegCR)
1140     RegNo = SystemZMC::CR64Regs[Reg.Num];
1141   StartLoc = Reg.StartLoc;
1142   EndLoc = Reg.EndLoc;
1143   return false;
1144 }
1145
1146 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1147                                         StringRef Name, SMLoc NameLoc,
1148                                         OperandVector &Operands) {
1149   Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1150
1151   // Read the remaining operands.
1152   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1153     // Read the first operand.
1154     if (parseOperand(Operands, Name)) {
1155       return true;
1156     }
1157
1158     // Read any subsequent operands.
1159     while (getLexer().is(AsmToken::Comma)) {
1160       Parser.Lex();
1161       if (parseOperand(Operands, Name)) {
1162         return true;
1163       }
1164     }
1165     if (getLexer().isNot(AsmToken::EndOfStatement)) {
1166       SMLoc Loc = getLexer().getLoc();
1167       return Error(Loc, "unexpected token in argument list");
1168     }
1169   }
1170
1171   // Consume the EndOfStatement.
1172   Parser.Lex();
1173   return false;
1174 }
1175
1176 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1177                                     StringRef Mnemonic) {
1178   // Check if the current operand has a custom associated parser, if so, try to
1179   // custom parse the operand, or fallback to the general approach.  Force all
1180   // features to be available during the operand check, or else we will fail to
1181   // find the custom parser, and then we will later get an InvalidOperand error
1182   // instead of a MissingFeature errror.
1183   FeatureBitset AvailableFeatures = getAvailableFeatures();
1184   FeatureBitset All;
1185   All.set();
1186   setAvailableFeatures(All);
1187   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1188   setAvailableFeatures(AvailableFeatures);
1189   if (ResTy == MatchOperand_Success)
1190     return false;
1191
1192   // If there wasn't a custom match, try the generic matcher below. Otherwise,
1193   // there was a match, but an error occurred, in which case, just return that
1194   // the operand parsing failed.
1195   if (ResTy == MatchOperand_ParseFail)
1196     return true;
1197
1198   // Check for a register.  All real register operands should have used
1199   // a context-dependent parse routine, which gives the required register
1200   // class.  The code is here to mop up other cases, like those where
1201   // the instruction isn't recognized.
1202   if (Parser.getTok().is(AsmToken::Percent)) {
1203     Register Reg;
1204     if (parseRegister(Reg))
1205       return true;
1206     Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1207     return false;
1208   }
1209
1210   // The only other type of operand is an immediate or address.  As above,
1211   // real address operands should have used a context-dependent parse routine,
1212   // so we treat any plain expression as an immediate.
1213   SMLoc StartLoc = Parser.getTok().getLoc();
1214   Register Reg1, Reg2;
1215   bool HaveReg1, HaveReg2;
1216   const MCExpr *Expr;
1217   const MCExpr *Length;
1218   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length))
1219     return true;
1220   // If the register combination is not valid for any instruction, reject it.
1221   // Otherwise, fall back to reporting an unrecognized instruction.
1222   if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1223       && parseAddressRegister(Reg1))
1224     return true;
1225   if (HaveReg2 && parseAddressRegister(Reg2))
1226     return true;
1227
1228   SMLoc EndLoc =
1229     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1230   if (HaveReg1 || HaveReg2 || Length)
1231     Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1232   else
1233     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1234   return false;
1235 }
1236
1237 static std::string SystemZMnemonicSpellCheck(StringRef S,
1238                                              const FeatureBitset &FBS,
1239                                              unsigned VariantID = 0);
1240
1241 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1242                                                OperandVector &Operands,
1243                                                MCStreamer &Out,
1244                                                uint64_t &ErrorInfo,
1245                                                bool MatchingInlineAsm) {
1246   MCInst Inst;
1247   unsigned MatchResult;
1248
1249   FeatureBitset MissingFeatures;
1250   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
1251                                      MissingFeatures, MatchingInlineAsm);
1252   switch (MatchResult) {
1253   case Match_Success:
1254     Inst.setLoc(IDLoc);
1255     Out.EmitInstruction(Inst, getSTI());
1256     return false;
1257
1258   case Match_MissingFeature: {
1259     assert(MissingFeatures.any() && "Unknown missing feature!");
1260     // Special case the error message for the very common case where only
1261     // a single subtarget feature is missing
1262     std::string Msg = "instruction requires:";
1263     for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1264       if (MissingFeatures[I]) {
1265         Msg += " ";
1266         Msg += getSubtargetFeatureName(I);
1267       }
1268     }
1269     return Error(IDLoc, Msg);
1270   }
1271
1272   case Match_InvalidOperand: {
1273     SMLoc ErrorLoc = IDLoc;
1274     if (ErrorInfo != ~0ULL) {
1275       if (ErrorInfo >= Operands.size())
1276         return Error(IDLoc, "too few operands for instruction");
1277
1278       ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1279       if (ErrorLoc == SMLoc())
1280         ErrorLoc = IDLoc;
1281     }
1282     return Error(ErrorLoc, "invalid operand for instruction");
1283   }
1284
1285   case Match_MnemonicFail: {
1286     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1287     std::string Suggestion = SystemZMnemonicSpellCheck(
1288       ((SystemZOperand &)*Operands[0]).getToken(), FBS);
1289     return Error(IDLoc, "invalid instruction" + Suggestion,
1290                  ((SystemZOperand &)*Operands[0]).getLocRange());
1291   }
1292   }
1293
1294   llvm_unreachable("Unexpected match type");
1295 }
1296
1297 OperandMatchResultTy
1298 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1299                              int64_t MaxVal, bool AllowTLS) {
1300   MCContext &Ctx = getContext();
1301   MCStreamer &Out = getStreamer();
1302   const MCExpr *Expr;
1303   SMLoc StartLoc = Parser.getTok().getLoc();
1304   if (getParser().parseExpression(Expr))
1305     return MatchOperand_NoMatch;
1306
1307   // For consistency with the GNU assembler, treat immediates as offsets
1308   // from ".".
1309   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1310     int64_t Value = CE->getValue();
1311     if ((Value & 1) || Value < MinVal || Value > MaxVal) {
1312       Error(StartLoc, "offset out of range");
1313       return MatchOperand_ParseFail;
1314     }
1315     MCSymbol *Sym = Ctx.createTempSymbol();
1316     Out.EmitLabel(Sym);
1317     const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1318                                                  Ctx);
1319     Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1320   }
1321
1322   // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1323   const MCExpr *Sym = nullptr;
1324   if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1325     Parser.Lex();
1326
1327     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1328       Error(Parser.getTok().getLoc(), "unexpected token");
1329       return MatchOperand_ParseFail;
1330     }
1331
1332     MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1333     StringRef Name = Parser.getTok().getString();
1334     if (Name == "tls_gdcall")
1335       Kind = MCSymbolRefExpr::VK_TLSGD;
1336     else if (Name == "tls_ldcall")
1337       Kind = MCSymbolRefExpr::VK_TLSLDM;
1338     else {
1339       Error(Parser.getTok().getLoc(), "unknown TLS tag");
1340       return MatchOperand_ParseFail;
1341     }
1342     Parser.Lex();
1343
1344     if (Parser.getTok().isNot(AsmToken::Colon)) {
1345       Error(Parser.getTok().getLoc(), "unexpected token");
1346       return MatchOperand_ParseFail;
1347     }
1348     Parser.Lex();
1349
1350     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1351       Error(Parser.getTok().getLoc(), "unexpected token");
1352       return MatchOperand_ParseFail;
1353     }
1354
1355     StringRef Identifier = Parser.getTok().getString();
1356     Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1357                                   Kind, Ctx);
1358     Parser.Lex();
1359   }
1360
1361   SMLoc EndLoc =
1362     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1363
1364   if (AllowTLS)
1365     Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1366                                                     StartLoc, EndLoc));
1367   else
1368     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1369
1370   return MatchOperand_Success;
1371 }
1372
1373 // Force static initialization.
1374 extern "C" void LLVMInitializeSystemZAsmParser() {
1375   RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1376 }