]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
MFV r310115,310184:
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / SystemZISelDAGToDAG.cpp
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZTargetMachine.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19
20 using namespace llvm;
21
22 #define DEBUG_TYPE "systemz-isel"
23
24 namespace {
25 // Used to build addressing modes.
26 struct SystemZAddressingMode {
27   // The shape of the address.
28   enum AddrForm {
29     // base+displacement
30     FormBD,
31
32     // base+displacement+index for load and store operands
33     FormBDXNormal,
34
35     // base+displacement+index for load address operands
36     FormBDXLA,
37
38     // base+displacement+index+ADJDYNALLOC
39     FormBDXDynAlloc
40   };
41   AddrForm Form;
42
43   // The type of displacement.  The enum names here correspond directly
44   // to the definitions in SystemZOperand.td.  We could split them into
45   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
46   enum DispRange {
47     Disp12Only,
48     Disp12Pair,
49     Disp20Only,
50     Disp20Only128,
51     Disp20Pair
52   };
53   DispRange DR;
54
55   // The parts of the address.  The address is equivalent to:
56   //
57   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
58   SDValue Base;
59   int64_t Disp;
60   SDValue Index;
61   bool IncludesDynAlloc;
62
63   SystemZAddressingMode(AddrForm form, DispRange dr)
64     : Form(form), DR(dr), Base(), Disp(0), Index(),
65       IncludesDynAlloc(false) {}
66
67   // True if the address can have an index register.
68   bool hasIndexField() { return Form != FormBD; }
69
70   // True if the address can (and must) include ADJDYNALLOC.
71   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
72
73   void dump() {
74     errs() << "SystemZAddressingMode " << this << '\n';
75
76     errs() << " Base ";
77     if (Base.getNode())
78       Base.getNode()->dump();
79     else
80       errs() << "null\n";
81
82     if (hasIndexField()) {
83       errs() << " Index ";
84       if (Index.getNode())
85         Index.getNode()->dump();
86       else
87         errs() << "null\n";
88     }
89
90     errs() << " Disp " << Disp;
91     if (IncludesDynAlloc)
92       errs() << " + ADJDYNALLOC";
93     errs() << '\n';
94   }
95 };
96
97 // Return a mask with Count low bits set.
98 static uint64_t allOnes(unsigned int Count) {
99   assert(Count <= 64);
100   if (Count > 63)
101     return UINT64_MAX;
102   return (uint64_t(1) << Count) - 1;
103 }
104
105 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
106 // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
107 // Rotate (I5).  The combined operand value is effectively:
108 //
109 //   (or (rotl Input, Rotate), ~Mask)
110 //
111 // for RNSBG and:
112 //
113 //   (and (rotl Input, Rotate), Mask)
114 //
115 // otherwise.  The output value has BitSize bits, although Input may be
116 // narrower (in which case the upper bits are don't care), or wider (in which
117 // case the result will be truncated as part of the operation).
118 struct RxSBGOperands {
119   RxSBGOperands(unsigned Op, SDValue N)
120     : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
121       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
122       Rotate(0) {}
123
124   unsigned Opcode;
125   unsigned BitSize;
126   uint64_t Mask;
127   SDValue Input;
128   unsigned Start;
129   unsigned End;
130   unsigned Rotate;
131 };
132
133 class SystemZDAGToDAGISel : public SelectionDAGISel {
134   const SystemZSubtarget *Subtarget;
135
136   // Used by SystemZOperands.td to create integer constants.
137   inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
138     return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
139   }
140
141   const SystemZTargetMachine &getTargetMachine() const {
142     return static_cast<const SystemZTargetMachine &>(TM);
143   }
144
145   const SystemZInstrInfo *getInstrInfo() const {
146     return Subtarget->getInstrInfo();
147   }
148
149   // Try to fold more of the base or index of AM into AM, where IsBase
150   // selects between the base and index.
151   bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
152
153   // Try to describe N in AM, returning true on success.
154   bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
155
156   // Extract individual target operands from matched address AM.
157   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
158                           SDValue &Base, SDValue &Disp) const;
159   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
160                           SDValue &Base, SDValue &Disp, SDValue &Index) const;
161
162   // Try to match Addr as a FormBD address with displacement type DR.
163   // Return true on success, storing the base and displacement in
164   // Base and Disp respectively.
165   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
166                     SDValue &Base, SDValue &Disp) const;
167
168   // Try to match Addr as a FormBDX address with displacement type DR.
169   // Return true on success and if the result had no index.  Store the
170   // base and displacement in Base and Disp respectively.
171   bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
172                      SDValue &Base, SDValue &Disp) const;
173
174   // Try to match Addr as a FormBDX* address of form Form with
175   // displacement type DR.  Return true on success, storing the base,
176   // displacement and index in Base, Disp and Index respectively.
177   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
178                      SystemZAddressingMode::DispRange DR, SDValue Addr,
179                      SDValue &Base, SDValue &Disp, SDValue &Index) const;
180
181   // PC-relative address matching routines used by SystemZOperands.td.
182   bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
183     if (SystemZISD::isPCREL(Addr.getOpcode())) {
184       Target = Addr.getOperand(0);
185       return true;
186     }
187     return false;
188   }
189
190   // BD matching routines used by SystemZOperands.td.
191   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
192     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
193   }
194   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
195     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
196   }
197   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
198     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
199   }
200   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
201     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
202   }
203
204   // MVI matching routines used by SystemZOperands.td.
205   bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
206     return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
207   }
208   bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
209     return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
210   }
211
212   // BDX matching routines used by SystemZOperands.td.
213   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
214                            SDValue &Index) const {
215     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
216                          SystemZAddressingMode::Disp12Only,
217                          Addr, Base, Disp, Index);
218   }
219   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
220                            SDValue &Index) const {
221     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
222                          SystemZAddressingMode::Disp12Pair,
223                          Addr, Base, Disp, Index);
224   }
225   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
226                             SDValue &Index) const {
227     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
228                          SystemZAddressingMode::Disp12Only,
229                          Addr, Base, Disp, Index);
230   }
231   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
232                            SDValue &Index) const {
233     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
234                          SystemZAddressingMode::Disp20Only,
235                          Addr, Base, Disp, Index);
236   }
237   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
238                               SDValue &Index) const {
239     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
240                          SystemZAddressingMode::Disp20Only128,
241                          Addr, Base, Disp, Index);
242   }
243   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
244                            SDValue &Index) const {
245     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
246                          SystemZAddressingMode::Disp20Pair,
247                          Addr, Base, Disp, Index);
248   }
249   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
250                           SDValue &Index) const {
251     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
252                          SystemZAddressingMode::Disp12Pair,
253                          Addr, Base, Disp, Index);
254   }
255   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
256                           SDValue &Index) const {
257     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
258                          SystemZAddressingMode::Disp20Pair,
259                          Addr, Base, Disp, Index);
260   }
261
262   // Try to match Addr as an address with a base, 12-bit displacement
263   // and index, where the index is element Elem of a vector.
264   // Return true on success, storing the base, displacement and vector
265   // in Base, Disp and Index respectively.
266   bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
267                            SDValue &Disp, SDValue &Index) const;
268
269   // Check whether (or Op (and X InsertMask)) is effectively an insertion
270   // of X into bits InsertMask of some Y != Op.  Return true if so and
271   // set Op to that Y.
272   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
273
274   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
275   // Return true on success.
276   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
277
278   // Try to fold some of RxSBG.Input into other fields of RxSBG.
279   // Return true on success.
280   bool expandRxSBG(RxSBGOperands &RxSBG) const;
281
282   // Return an undefined value of type VT.
283   SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
284
285   // Convert N to VT, if it isn't already.
286   SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
287
288   // Try to implement AND or shift node N using RISBG with the zero flag set.
289   // Return the selected node on success, otherwise return null.
290   bool tryRISBGZero(SDNode *N);
291
292   // Try to use RISBG or Opcode to implement OR or XOR node N.
293   // Return the selected node on success, otherwise return null.
294   bool tryRxSBG(SDNode *N, unsigned Opcode);
295
296   // If Op0 is null, then Node is a constant that can be loaded using:
297   //
298   //   (Opcode UpperVal LowerVal)
299   //
300   // If Op0 is nonnull, then Node can be implemented using:
301   //
302   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
303   void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
304                            uint64_t UpperVal, uint64_t LowerVal);
305
306   // Try to use gather instruction Opcode to implement vector insertion N.
307   bool tryGather(SDNode *N, unsigned Opcode);
308
309   // Try to use scatter instruction Opcode to implement store Store.
310   bool tryScatter(StoreSDNode *Store, unsigned Opcode);
311
312   // Return true if Load and Store are loads and stores of the same size
313   // and are guaranteed not to overlap.  Such operations can be implemented
314   // using block (SS-format) instructions.
315   //
316   // Partial overlap would lead to incorrect code, since the block operations
317   // are logically bytewise, even though they have a fast path for the
318   // non-overlapping case.  We also need to avoid full overlap (i.e. two
319   // addresses that might be equal at run time) because although that case
320   // would be handled correctly, it might be implemented by millicode.
321   bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
322
323   // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
324   // from Y to X.
325   bool storeLoadCanUseMVC(SDNode *N) const;
326
327   // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
328   // if A[1 - I] == X and if N can use a block operation like NC from A[I]
329   // to X.
330   bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
331
332 public:
333   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
334       : SelectionDAGISel(TM, OptLevel) {}
335
336   bool runOnMachineFunction(MachineFunction &MF) override {
337     Subtarget = &MF.getSubtarget<SystemZSubtarget>();
338     return SelectionDAGISel::runOnMachineFunction(MF);
339   }
340
341   // Override MachineFunctionPass.
342   const char *getPassName() const override {
343     return "SystemZ DAG->DAG Pattern Instruction Selection";
344   }
345
346   // Override SelectionDAGISel.
347   void Select(SDNode *Node) override;
348   bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
349                                     std::vector<SDValue> &OutOps) override;
350
351   // Include the pieces autogenerated from the target description.
352   #include "SystemZGenDAGISel.inc"
353 };
354 } // end anonymous namespace
355
356 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
357                                          CodeGenOpt::Level OptLevel) {
358   return new SystemZDAGToDAGISel(TM, OptLevel);
359 }
360
361 // Return true if Val should be selected as a displacement for an address
362 // with range DR.  Here we're interested in the range of both the instruction
363 // described by DR and of any pairing instruction.
364 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
365   switch (DR) {
366   case SystemZAddressingMode::Disp12Only:
367     return isUInt<12>(Val);
368
369   case SystemZAddressingMode::Disp12Pair:
370   case SystemZAddressingMode::Disp20Only:
371   case SystemZAddressingMode::Disp20Pair:
372     return isInt<20>(Val);
373
374   case SystemZAddressingMode::Disp20Only128:
375     return isInt<20>(Val) && isInt<20>(Val + 8);
376   }
377   llvm_unreachable("Unhandled displacement range");
378 }
379
380 // Change the base or index in AM to Value, where IsBase selects
381 // between the base and index.
382 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
383                             SDValue Value) {
384   if (IsBase)
385     AM.Base = Value;
386   else
387     AM.Index = Value;
388 }
389
390 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
391 // where IsBase selects between the base and index.  Try to fold the
392 // ADJDYNALLOC into AM.
393 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
394                               SDValue Value) {
395   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
396     changeComponent(AM, IsBase, Value);
397     AM.IncludesDynAlloc = true;
398     return true;
399   }
400   return false;
401 }
402
403 // The base of AM is equivalent to Base + Index.  Try to use Index as
404 // the index register.
405 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
406                         SDValue Index) {
407   if (AM.hasIndexField() && !AM.Index.getNode()) {
408     AM.Base = Base;
409     AM.Index = Index;
410     return true;
411   }
412   return false;
413 }
414
415 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
416 // between the base and index.  Try to fold Op1 into AM's displacement.
417 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
418                        SDValue Op0, uint64_t Op1) {
419   // First try adjusting the displacement.
420   int64_t TestDisp = AM.Disp + Op1;
421   if (selectDisp(AM.DR, TestDisp)) {
422     changeComponent(AM, IsBase, Op0);
423     AM.Disp = TestDisp;
424     return true;
425   }
426
427   // We could consider forcing the displacement into a register and
428   // using it as an index, but it would need to be carefully tuned.
429   return false;
430 }
431
432 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
433                                         bool IsBase) const {
434   SDValue N = IsBase ? AM.Base : AM.Index;
435   unsigned Opcode = N.getOpcode();
436   if (Opcode == ISD::TRUNCATE) {
437     N = N.getOperand(0);
438     Opcode = N.getOpcode();
439   }
440   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
441     SDValue Op0 = N.getOperand(0);
442     SDValue Op1 = N.getOperand(1);
443
444     unsigned Op0Code = Op0->getOpcode();
445     unsigned Op1Code = Op1->getOpcode();
446
447     if (Op0Code == SystemZISD::ADJDYNALLOC)
448       return expandAdjDynAlloc(AM, IsBase, Op1);
449     if (Op1Code == SystemZISD::ADJDYNALLOC)
450       return expandAdjDynAlloc(AM, IsBase, Op0);
451
452     if (Op0Code == ISD::Constant)
453       return expandDisp(AM, IsBase, Op1,
454                         cast<ConstantSDNode>(Op0)->getSExtValue());
455     if (Op1Code == ISD::Constant)
456       return expandDisp(AM, IsBase, Op0,
457                         cast<ConstantSDNode>(Op1)->getSExtValue());
458
459     if (IsBase && expandIndex(AM, Op0, Op1))
460       return true;
461   }
462   if (Opcode == SystemZISD::PCREL_OFFSET) {
463     SDValue Full = N.getOperand(0);
464     SDValue Base = N.getOperand(1);
465     SDValue Anchor = Base.getOperand(0);
466     uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
467                        cast<GlobalAddressSDNode>(Anchor)->getOffset());
468     return expandDisp(AM, IsBase, Base, Offset);
469   }
470   return false;
471 }
472
473 // Return true if an instruction with displacement range DR should be
474 // used for displacement value Val.  selectDisp(DR, Val) must already hold.
475 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
476   assert(selectDisp(DR, Val) && "Invalid displacement");
477   switch (DR) {
478   case SystemZAddressingMode::Disp12Only:
479   case SystemZAddressingMode::Disp20Only:
480   case SystemZAddressingMode::Disp20Only128:
481     return true;
482
483   case SystemZAddressingMode::Disp12Pair:
484     // Use the other instruction if the displacement is too large.
485     return isUInt<12>(Val);
486
487   case SystemZAddressingMode::Disp20Pair:
488     // Use the other instruction if the displacement is small enough.
489     return !isUInt<12>(Val);
490   }
491   llvm_unreachable("Unhandled displacement range");
492 }
493
494 // Return true if Base + Disp + Index should be performed by LA(Y).
495 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
496   // Don't use LA(Y) for constants.
497   if (!Base)
498     return false;
499
500   // Always use LA(Y) for frame addresses, since we know that the destination
501   // register is almost always (perhaps always) going to be different from
502   // the frame register.
503   if (Base->getOpcode() == ISD::FrameIndex)
504     return true;
505
506   if (Disp) {
507     // Always use LA(Y) if there is a base, displacement and index.
508     if (Index)
509       return true;
510
511     // Always use LA if the displacement is small enough.  It should always
512     // be no worse than AGHI (and better if it avoids a move).
513     if (isUInt<12>(Disp))
514       return true;
515
516     // For similar reasons, always use LAY if the constant is too big for AGHI.
517     // LAY should be no worse than AGFI.
518     if (!isInt<16>(Disp))
519       return true;
520   } else {
521     // Don't use LA for plain registers.
522     if (!Index)
523       return false;
524
525     // Don't use LA for plain addition if the index operand is only used
526     // once.  It should be a natural two-operand addition in that case.
527     if (Index->hasOneUse())
528       return false;
529
530     // Prefer addition if the second operation is sign-extended, in the
531     // hope of using AGF.
532     unsigned IndexOpcode = Index->getOpcode();
533     if (IndexOpcode == ISD::SIGN_EXTEND ||
534         IndexOpcode == ISD::SIGN_EXTEND_INREG)
535       return false;
536   }
537
538   // Don't use LA for two-operand addition if either operand is only
539   // used once.  The addition instructions are better in that case.
540   if (Base->hasOneUse())
541     return false;
542
543   return true;
544 }
545
546 // Return true if Addr is suitable for AM, updating AM if so.
547 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
548                                         SystemZAddressingMode &AM) const {
549   // Start out assuming that the address will need to be loaded separately,
550   // then try to extend it as much as we can.
551   AM.Base = Addr;
552
553   // First try treating the address as a constant.
554   if (Addr.getOpcode() == ISD::Constant &&
555       expandDisp(AM, true, SDValue(),
556                  cast<ConstantSDNode>(Addr)->getSExtValue()))
557     ;
558   // Also see if it's a bare ADJDYNALLOC.
559   else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
560            expandAdjDynAlloc(AM, true, SDValue()))
561     ;
562   else
563     // Otherwise try expanding each component.
564     while (expandAddress(AM, true) ||
565            (AM.Index.getNode() && expandAddress(AM, false)))
566       continue;
567
568   // Reject cases where it isn't profitable to use LA(Y).
569   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
570       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
571     return false;
572
573   // Reject cases where the other instruction in a pair should be used.
574   if (!isValidDisp(AM.DR, AM.Disp))
575     return false;
576
577   // Make sure that ADJDYNALLOC is included where necessary.
578   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
579     return false;
580
581   DEBUG(AM.dump());
582   return true;
583 }
584
585 // Insert a node into the DAG at least before Pos.  This will reposition
586 // the node as needed, and will assign it a node ID that is <= Pos's ID.
587 // Note that this does *not* preserve the uniqueness of node IDs!
588 // The selection DAG must no longer depend on their uniqueness when this
589 // function is used.
590 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
591   if (N.getNode()->getNodeId() == -1 ||
592       N.getNode()->getNodeId() > Pos->getNodeId()) {
593     DAG->RepositionNode(Pos->getIterator(), N.getNode());
594     N.getNode()->setNodeId(Pos->getNodeId());
595   }
596 }
597
598 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
599                                              EVT VT, SDValue &Base,
600                                              SDValue &Disp) const {
601   Base = AM.Base;
602   if (!Base.getNode())
603     // Register 0 means "no base".  This is mostly useful for shifts.
604     Base = CurDAG->getRegister(0, VT);
605   else if (Base.getOpcode() == ISD::FrameIndex) {
606     // Lower a FrameIndex to a TargetFrameIndex.
607     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
608     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
609   } else if (Base.getValueType() != VT) {
610     // Truncate values from i64 to i32, for shifts.
611     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
612            "Unexpected truncation");
613     SDLoc DL(Base);
614     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
615     insertDAGNode(CurDAG, Base.getNode(), Trunc);
616     Base = Trunc;
617   }
618
619   // Lower the displacement to a TargetConstant.
620   Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
621 }
622
623 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
624                                              EVT VT, SDValue &Base,
625                                              SDValue &Disp,
626                                              SDValue &Index) const {
627   getAddressOperands(AM, VT, Base, Disp);
628
629   Index = AM.Index;
630   if (!Index.getNode())
631     // Register 0 means "no index".
632     Index = CurDAG->getRegister(0, VT);
633 }
634
635 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
636                                        SDValue Addr, SDValue &Base,
637                                        SDValue &Disp) const {
638   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
639   if (!selectAddress(Addr, AM))
640     return false;
641
642   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
643   return true;
644 }
645
646 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
647                                         SDValue Addr, SDValue &Base,
648                                         SDValue &Disp) const {
649   SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
650   if (!selectAddress(Addr, AM) || AM.Index.getNode())
651     return false;
652
653   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
654   return true;
655 }
656
657 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
658                                         SystemZAddressingMode::DispRange DR,
659                                         SDValue Addr, SDValue &Base,
660                                         SDValue &Disp, SDValue &Index) const {
661   SystemZAddressingMode AM(Form, DR);
662   if (!selectAddress(Addr, AM))
663     return false;
664
665   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
666   return true;
667 }
668
669 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
670                                               SDValue &Base,
671                                               SDValue &Disp,
672                                               SDValue &Index) const {
673   SDValue Regs[2];
674   if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
675       Regs[0].getNode() && Regs[1].getNode()) {
676     for (unsigned int I = 0; I < 2; ++I) {
677       Base = Regs[I];
678       Index = Regs[1 - I];
679       // We can't tell here whether the index vector has the right type
680       // for the access; the caller needs to do that instead.
681       if (Index.getOpcode() == ISD::ZERO_EXTEND)
682         Index = Index.getOperand(0);
683       if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
684           Index.getOperand(1) == Elem) {
685         Index = Index.getOperand(0);
686         return true;
687       }
688     }
689   }
690   return false;
691 }
692
693 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
694                                                uint64_t InsertMask) const {
695   // We're only interested in cases where the insertion is into some operand
696   // of Op, rather than into Op itself.  The only useful case is an AND.
697   if (Op.getOpcode() != ISD::AND)
698     return false;
699
700   // We need a constant mask.
701   auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
702   if (!MaskNode)
703     return false;
704
705   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
706   uint64_t AndMask = MaskNode->getZExtValue();
707   if (InsertMask & AndMask)
708     return false;
709
710   // It's only an insertion if all bits are covered or are known to be zero.
711   // The inner check covers all cases but is more expensive.
712   uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
713   if (Used != (AndMask | InsertMask)) {
714     APInt KnownZero, KnownOne;
715     CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
716     if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
717       return false;
718   }
719
720   Op = Op.getOperand(0);
721   return true;
722 }
723
724 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
725                                           uint64_t Mask) const {
726   const SystemZInstrInfo *TII = getInstrInfo();
727   if (RxSBG.Rotate != 0)
728     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
729   Mask &= RxSBG.Mask;
730   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
731     RxSBG.Mask = Mask;
732     return true;
733   }
734   return false;
735 }
736
737 // Return true if any bits of (RxSBG.Input & Mask) are significant.
738 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
739   // Rotate the mask in the same way as RxSBG.Input is rotated.
740   if (RxSBG.Rotate != 0)
741     Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
742   return (Mask & RxSBG.Mask) != 0;
743 }
744
745 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
746   SDValue N = RxSBG.Input;
747   unsigned Opcode = N.getOpcode();
748   switch (Opcode) {
749   case ISD::TRUNCATE: {
750     if (RxSBG.Opcode == SystemZ::RNSBG)
751       return false;
752     uint64_t BitSize = N.getValueType().getSizeInBits();
753     uint64_t Mask = allOnes(BitSize);
754     if (!refineRxSBGMask(RxSBG, Mask))
755       return false;
756     RxSBG.Input = N.getOperand(0);
757     return true;
758   }
759   case ISD::AND: {
760     if (RxSBG.Opcode == SystemZ::RNSBG)
761       return false;
762
763     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
764     if (!MaskNode)
765       return false;
766
767     SDValue Input = N.getOperand(0);
768     uint64_t Mask = MaskNode->getZExtValue();
769     if (!refineRxSBGMask(RxSBG, Mask)) {
770       // If some bits of Input are already known zeros, those bits will have
771       // been removed from the mask.  See if adding them back in makes the
772       // mask suitable.
773       APInt KnownZero, KnownOne;
774       CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
775       Mask |= KnownZero.getZExtValue();
776       if (!refineRxSBGMask(RxSBG, Mask))
777         return false;
778     }
779     RxSBG.Input = Input;
780     return true;
781   }
782
783   case ISD::OR: {
784     if (RxSBG.Opcode != SystemZ::RNSBG)
785       return false;
786
787     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
788     if (!MaskNode)
789       return false;
790
791     SDValue Input = N.getOperand(0);
792     uint64_t Mask = ~MaskNode->getZExtValue();
793     if (!refineRxSBGMask(RxSBG, Mask)) {
794       // If some bits of Input are already known ones, those bits will have
795       // been removed from the mask.  See if adding them back in makes the
796       // mask suitable.
797       APInt KnownZero, KnownOne;
798       CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
799       Mask &= ~KnownOne.getZExtValue();
800       if (!refineRxSBGMask(RxSBG, Mask))
801         return false;
802     }
803     RxSBG.Input = Input;
804     return true;
805   }
806
807   case ISD::ROTL: {
808     // Any 64-bit rotate left can be merged into the RxSBG.
809     if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
810       return false;
811     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
812     if (!CountNode)
813       return false;
814
815     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
816     RxSBG.Input = N.getOperand(0);
817     return true;
818   }
819
820   case ISD::ANY_EXTEND:
821     // Bits above the extended operand are don't-care.
822     RxSBG.Input = N.getOperand(0);
823     return true;
824
825   case ISD::ZERO_EXTEND:
826     if (RxSBG.Opcode != SystemZ::RNSBG) {
827       // Restrict the mask to the extended operand.
828       unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
829       if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
830         return false;
831
832       RxSBG.Input = N.getOperand(0);
833       return true;
834     }
835     // Fall through.
836
837   case ISD::SIGN_EXTEND: {
838     // Check that the extension bits are don't-care (i.e. are masked out
839     // by the final mask).
840     unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
841     if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
842       return false;
843
844     RxSBG.Input = N.getOperand(0);
845     return true;
846   }
847
848   case ISD::SHL: {
849     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
850     if (!CountNode)
851       return false;
852
853     uint64_t Count = CountNode->getZExtValue();
854     unsigned BitSize = N.getValueType().getSizeInBits();
855     if (Count < 1 || Count >= BitSize)
856       return false;
857
858     if (RxSBG.Opcode == SystemZ::RNSBG) {
859       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
860       // count bits from RxSBG.Input are ignored.
861       if (maskMatters(RxSBG, allOnes(Count)))
862         return false;
863     } else {
864       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
865       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
866         return false;
867     }
868
869     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
870     RxSBG.Input = N.getOperand(0);
871     return true;
872   }
873
874   case ISD::SRL:
875   case ISD::SRA: {
876     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
877     if (!CountNode)
878       return false;
879
880     uint64_t Count = CountNode->getZExtValue();
881     unsigned BitSize = N.getValueType().getSizeInBits();
882     if (Count < 1 || Count >= BitSize)
883       return false;
884
885     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
886       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
887       // count bits from RxSBG.Input are ignored.
888       if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
889         return false;
890     } else {
891       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
892       // which is similar to SLL above.
893       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
894         return false;
895     }
896
897     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
898     RxSBG.Input = N.getOperand(0);
899     return true;
900   }
901   default:
902     return false;
903   }
904 }
905
906 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
907   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
908   return SDValue(N, 0);
909 }
910
911 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
912                                        SDValue N) const {
913   if (N.getValueType() == MVT::i32 && VT == MVT::i64)
914     return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
915                                          DL, VT, getUNDEF(DL, MVT::i64), N);
916   if (N.getValueType() == MVT::i64 && VT == MVT::i32)
917     return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
918   assert(N.getValueType() == VT && "Unexpected value types");
919   return N;
920 }
921
922 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
923   SDLoc DL(N);
924   EVT VT = N->getValueType(0);
925   if (!VT.isInteger() || VT.getSizeInBits() > 64)
926     return false;
927   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
928   unsigned Count = 0;
929   while (expandRxSBG(RISBG))
930     // The widening or narrowing is expected to be free.
931     // Counting widening or narrowing as a saved operation will result in
932     // preferring an R*SBG over a simple shift/logical instruction.
933     if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
934         RISBG.Input.getOpcode() != ISD::TRUNCATE)
935       Count += 1;
936   if (Count == 0)
937     return false;
938   if (Count == 1) {
939     // Prefer to use normal shift instructions over RISBG, since they can handle
940     // all cases and are sometimes shorter.
941     if (N->getOpcode() != ISD::AND)
942       return false;
943
944     // Prefer register extensions like LLC over RISBG.  Also prefer to start
945     // out with normal ANDs if one instruction would be enough.  We can convert
946     // these ANDs into an RISBG later if a three-address instruction is useful.
947     if (VT == MVT::i32 ||
948         RISBG.Mask == 0xff ||
949         RISBG.Mask == 0xffff ||
950         SystemZ::isImmLF(~RISBG.Mask) ||
951         SystemZ::isImmHF(~RISBG.Mask)) {
952       // Force the new mask into the DAG, since it may include known-one bits.
953       auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
954       if (MaskN->getZExtValue() != RISBG.Mask) {
955         SDValue NewMask = CurDAG->getConstant(RISBG.Mask, DL, VT);
956         N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
957         SelectCode(N);
958         return true;
959       }
960       return false;
961     }
962   }
963
964   // If the RISBG operands require no rotation and just masks the bottom
965   // 8/16 bits, attempt to convert this to a LLC zero extension.
966   if (RISBG.Rotate == 0 && (RISBG.Mask == 0xff || RISBG.Mask == 0xffff)) {
967     unsigned OpCode = (RISBG.Mask == 0xff ? SystemZ::LLGCR : SystemZ::LLGHR);
968     if (VT == MVT::i32) {
969       if (Subtarget->hasHighWord())
970         OpCode = (RISBG.Mask == 0xff ? SystemZ::LLCRMux : SystemZ::LLHRMux);
971       else
972         OpCode = (RISBG.Mask == 0xff ? SystemZ::LLCR : SystemZ::LLHR);
973     }
974
975     SDValue In = convertTo(DL, VT, RISBG.Input);
976     SDValue New = convertTo(
977         DL, VT, SDValue(CurDAG->getMachineNode(OpCode, DL, VT, In), 0));
978     ReplaceUses(N, New.getNode());
979     CurDAG->RemoveDeadNode(N);
980     return true;
981   }
982
983   unsigned Opcode = SystemZ::RISBG;
984   // Prefer RISBGN if available, since it does not clobber CC.
985   if (Subtarget->hasMiscellaneousExtensions())
986     Opcode = SystemZ::RISBGN;
987   EVT OpcodeVT = MVT::i64;
988   if (VT == MVT::i32 && Subtarget->hasHighWord()) {
989     Opcode = SystemZ::RISBMux;
990     OpcodeVT = MVT::i32;
991     RISBG.Start &= 31;
992     RISBG.End &= 31;
993   }
994   SDValue Ops[5] = {
995     getUNDEF(DL, OpcodeVT),
996     convertTo(DL, OpcodeVT, RISBG.Input),
997     CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
998     CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
999     CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1000   };
1001   SDValue New = convertTo(
1002       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1003   ReplaceUses(N, New.getNode());
1004   CurDAG->RemoveDeadNode(N);
1005   return true;
1006 }
1007
1008 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1009   SDLoc DL(N);
1010   EVT VT = N->getValueType(0);
1011   if (!VT.isInteger() || VT.getSizeInBits() > 64)
1012     return false;
1013   // Try treating each operand of N as the second operand of the RxSBG
1014   // and see which goes deepest.
1015   RxSBGOperands RxSBG[] = {
1016     RxSBGOperands(Opcode, N->getOperand(0)),
1017     RxSBGOperands(Opcode, N->getOperand(1))
1018   };
1019   unsigned Count[] = { 0, 0 };
1020   for (unsigned I = 0; I < 2; ++I)
1021     while (expandRxSBG(RxSBG[I]))
1022       // The widening or narrowing is expected to be free.
1023       // Counting widening or narrowing as a saved operation will result in
1024       // preferring an R*SBG over a simple shift/logical instruction.
1025       if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1026           RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1027         Count[I] += 1;
1028
1029   // Do nothing if neither operand is suitable.
1030   if (Count[0] == 0 && Count[1] == 0)
1031     return false;
1032
1033   // Pick the deepest second operand.
1034   unsigned I = Count[0] > Count[1] ? 0 : 1;
1035   SDValue Op0 = N->getOperand(I ^ 1);
1036
1037   // Prefer IC for character insertions from memory.
1038   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1039     if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1040       if (Load->getMemoryVT() == MVT::i8)
1041         return false;
1042
1043   // See whether we can avoid an AND in the first operand by converting
1044   // ROSBG to RISBG.
1045   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1046     Opcode = SystemZ::RISBG;
1047     // Prefer RISBGN if available, since it does not clobber CC.
1048     if (Subtarget->hasMiscellaneousExtensions())
1049       Opcode = SystemZ::RISBGN;
1050   }
1051
1052   SDValue Ops[5] = {
1053     convertTo(DL, MVT::i64, Op0),
1054     convertTo(DL, MVT::i64, RxSBG[I].Input),
1055     CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1056     CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1057     CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1058   };
1059   SDValue New = convertTo(
1060       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1061   ReplaceNode(N, New.getNode());
1062   return true;
1063 }
1064
1065 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1066                                               SDValue Op0, uint64_t UpperVal,
1067                                               uint64_t LowerVal) {
1068   EVT VT = Node->getValueType(0);
1069   SDLoc DL(Node);
1070   SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1071   if (Op0.getNode())
1072     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1073
1074   {
1075     // When we haven't passed in Op0, Upper will be a constant. In order to
1076     // prevent folding back to the large immediate in `Or = getNode(...)` we run
1077     // SelectCode first and end up with an opaque machine node. This means that
1078     // we need to use a handle to keep track of Upper in case it gets CSE'd by
1079     // SelectCode.
1080     //
1081     // Note that in the case where Op0 is passed in we could just call
1082     // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1083     // the handle at all, but it's fine to do it here.
1084     //
1085     // TODO: This is a pretty hacky way to do this. Can we do something that
1086     // doesn't require a two paragraph explanation?
1087     HandleSDNode Handle(Upper);
1088     SelectCode(Upper.getNode());
1089     Upper = Handle.getValue();
1090   }
1091
1092   SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1093   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1094
1095   ReplaceUses(Node, Or.getNode());
1096   CurDAG->RemoveDeadNode(Node);
1097
1098   SelectCode(Or.getNode());
1099 }
1100
1101 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1102   SDValue ElemV = N->getOperand(2);
1103   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1104   if (!ElemN)
1105     return false;
1106
1107   unsigned Elem = ElemN->getZExtValue();
1108   EVT VT = N->getValueType(0);
1109   if (Elem >= VT.getVectorNumElements())
1110     return false;
1111
1112   auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1113   if (!Load || !Load->hasOneUse())
1114     return false;
1115   if (Load->getMemoryVT().getSizeInBits() !=
1116       Load->getValueType(0).getSizeInBits())
1117     return false;
1118
1119   SDValue Base, Disp, Index;
1120   if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1121       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1122     return false;
1123
1124   SDLoc DL(Load);
1125   SDValue Ops[] = {
1126     N->getOperand(0), Base, Disp, Index,
1127     CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1128   };
1129   SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1130   ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1131   ReplaceNode(N, Res);
1132   return true;
1133 }
1134
1135 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1136   SDValue Value = Store->getValue();
1137   if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1138     return false;
1139   if (Store->getMemoryVT().getSizeInBits() !=
1140       Value.getValueType().getSizeInBits())
1141     return false;
1142
1143   SDValue ElemV = Value.getOperand(1);
1144   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1145   if (!ElemN)
1146     return false;
1147
1148   SDValue Vec = Value.getOperand(0);
1149   EVT VT = Vec.getValueType();
1150   unsigned Elem = ElemN->getZExtValue();
1151   if (Elem >= VT.getVectorNumElements())
1152     return false;
1153
1154   SDValue Base, Disp, Index;
1155   if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1156       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1157     return false;
1158
1159   SDLoc DL(Store);
1160   SDValue Ops[] = {
1161     Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1162     Store->getChain()
1163   };
1164   ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1165   return true;
1166 }
1167
1168 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1169                                                LoadSDNode *Load) const {
1170   // Check that the two memory operands have the same size.
1171   if (Load->getMemoryVT() != Store->getMemoryVT())
1172     return false;
1173
1174   // Volatility stops an access from being decomposed.
1175   if (Load->isVolatile() || Store->isVolatile())
1176     return false;
1177
1178   // There's no chance of overlap if the load is invariant.
1179   if (Load->isInvariant())
1180     return true;
1181
1182   // Otherwise we need to check whether there's an alias.
1183   const Value *V1 = Load->getMemOperand()->getValue();
1184   const Value *V2 = Store->getMemOperand()->getValue();
1185   if (!V1 || !V2)
1186     return false;
1187
1188   // Reject equality.
1189   uint64_t Size = Load->getMemoryVT().getStoreSize();
1190   int64_t End1 = Load->getSrcValueOffset() + Size;
1191   int64_t End2 = Store->getSrcValueOffset() + Size;
1192   if (V1 == V2 && End1 == End2)
1193     return false;
1194
1195   return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1196                     MemoryLocation(V2, End2, Store->getAAInfo()));
1197 }
1198
1199 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1200   auto *Store = cast<StoreSDNode>(N);
1201   auto *Load = cast<LoadSDNode>(Store->getValue());
1202
1203   // Prefer not to use MVC if either address can use ... RELATIVE LONG
1204   // instructions.
1205   uint64_t Size = Load->getMemoryVT().getStoreSize();
1206   if (Size > 1 && Size <= 8) {
1207     // Prefer LHRL, LRL and LGRL.
1208     if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1209       return false;
1210     // Prefer STHRL, STRL and STGRL.
1211     if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1212       return false;
1213   }
1214
1215   return canUseBlockOperation(Store, Load);
1216 }
1217
1218 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1219                                                      unsigned I) const {
1220   auto *StoreA = cast<StoreSDNode>(N);
1221   auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1222   auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1223   return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1224 }
1225
1226 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1227   // Dump information about the Node being selected
1228   DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1229
1230   // If we have a custom node, we already have selected!
1231   if (Node->isMachineOpcode()) {
1232     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1233     Node->setNodeId(-1);
1234     return;
1235   }
1236
1237   unsigned Opcode = Node->getOpcode();
1238   switch (Opcode) {
1239   case ISD::OR:
1240     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1241       if (tryRxSBG(Node, SystemZ::ROSBG))
1242         return;
1243     goto or_xor;
1244
1245   case ISD::XOR:
1246     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1247       if (tryRxSBG(Node, SystemZ::RXSBG))
1248         return;
1249     // Fall through.
1250   or_xor:
1251     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1252     // split the operation into two.
1253     if (Node->getValueType(0) == MVT::i64)
1254       if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1255         uint64_t Val = Op1->getZExtValue();
1256         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1257           splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1258                               Val - uint32_t(Val), uint32_t(Val));
1259           return;
1260         }
1261       }
1262     break;
1263
1264   case ISD::AND:
1265     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1266       if (tryRxSBG(Node, SystemZ::RNSBG))
1267         return;
1268     // Fall through.
1269   case ISD::ROTL:
1270   case ISD::SHL:
1271   case ISD::SRL:
1272   case ISD::ZERO_EXTEND:
1273     if (tryRISBGZero(Node))
1274       return;
1275     break;
1276
1277   case ISD::Constant:
1278     // If this is a 64-bit constant that is out of the range of LLILF,
1279     // LLIHF and LGFI, split it into two 32-bit pieces.
1280     if (Node->getValueType(0) == MVT::i64) {
1281       uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1282       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1283         splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1284                             uint32_t(Val));
1285         return;
1286       }
1287     }
1288     break;
1289
1290   case SystemZISD::SELECT_CCMASK: {
1291     SDValue Op0 = Node->getOperand(0);
1292     SDValue Op1 = Node->getOperand(1);
1293     // Prefer to put any load first, so that it can be matched as a
1294     // conditional load.
1295     if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1296       SDValue CCValid = Node->getOperand(2);
1297       SDValue CCMask = Node->getOperand(3);
1298       uint64_t ConstCCValid =
1299         cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1300       uint64_t ConstCCMask =
1301         cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1302       // Invert the condition.
1303       CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
1304                                    CCMask.getValueType());
1305       SDValue Op4 = Node->getOperand(4);
1306       Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1307     }
1308     break;
1309   }
1310
1311   case ISD::INSERT_VECTOR_ELT: {
1312     EVT VT = Node->getValueType(0);
1313     unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
1314     if (ElemBitSize == 32) {
1315       if (tryGather(Node, SystemZ::VGEF))
1316         return;
1317     } else if (ElemBitSize == 64) {
1318       if (tryGather(Node, SystemZ::VGEG))
1319         return;
1320     }
1321     break;
1322   }
1323
1324   case ISD::STORE: {
1325     auto *Store = cast<StoreSDNode>(Node);
1326     unsigned ElemBitSize = Store->getValue().getValueType().getSizeInBits();
1327     if (ElemBitSize == 32) {
1328       if (tryScatter(Store, SystemZ::VSCEF))
1329         return;
1330     } else if (ElemBitSize == 64) {
1331       if (tryScatter(Store, SystemZ::VSCEG))
1332         return;
1333     }
1334     break;
1335   }
1336   }
1337
1338   SelectCode(Node);
1339 }
1340
1341 bool SystemZDAGToDAGISel::
1342 SelectInlineAsmMemoryOperand(const SDValue &Op,
1343                              unsigned ConstraintID,
1344                              std::vector<SDValue> &OutOps) {
1345   SystemZAddressingMode::AddrForm Form;
1346   SystemZAddressingMode::DispRange DispRange;
1347   SDValue Base, Disp, Index;
1348
1349   switch(ConstraintID) {
1350   default:
1351     llvm_unreachable("Unexpected asm memory constraint");
1352   case InlineAsm::Constraint_i:
1353   case InlineAsm::Constraint_Q:
1354     // Accept an address with a short displacement, but no index.
1355     Form = SystemZAddressingMode::FormBD;
1356     DispRange = SystemZAddressingMode::Disp12Only;
1357     break;
1358   case InlineAsm::Constraint_R:
1359     // Accept an address with a short displacement and an index.
1360     Form = SystemZAddressingMode::FormBDXNormal;
1361     DispRange = SystemZAddressingMode::Disp12Only;
1362     break;
1363   case InlineAsm::Constraint_S:
1364     // Accept an address with a long displacement, but no index.
1365     Form = SystemZAddressingMode::FormBD;
1366     DispRange = SystemZAddressingMode::Disp20Only;
1367     break;
1368   case InlineAsm::Constraint_T:
1369   case InlineAsm::Constraint_m:
1370     // Accept an address with a long displacement and an index.
1371     // m works the same as T, as this is the most general case.
1372     Form = SystemZAddressingMode::FormBDXNormal;
1373     DispRange = SystemZAddressingMode::Disp20Only;
1374     break;
1375   }
1376
1377   if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1378     OutOps.push_back(Base);
1379     OutOps.push_back(Disp);
1380     OutOps.push_back(Index);
1381     return false;
1382   }
1383
1384   return true;
1385 }