]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / SystemZInstrFP.td
1 //==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 // TODO: Most floating-point instructions (except for simple moves and the
10 // like) can raise exceptions -- should they have hasSideEffects=1 ?
11
12 //===----------------------------------------------------------------------===//
13 // Select instructions
14 //===----------------------------------------------------------------------===//
15
16 // C's ?: operator for floating-point operands.
17 let Predicates = [FeatureVector] in {
18   def SelectVR32 : SelectWrapper<f32, VR32>;
19   def SelectVR64 : SelectWrapper<f64, VR64>;
20 }
21 def SelectF32  : SelectWrapper<f32, FP32>;
22 def SelectF64  : SelectWrapper<f64, FP64>;
23 let Predicates = [FeatureNoVectorEnhancements1] in
24   def SelectF128 : SelectWrapper<f128, FP128>;
25 let Predicates = [FeatureVectorEnhancements1] in
26   def SelectVR128 : SelectWrapper<f128, VR128>;
27
28 defm CondStoreF32 : CondStores<FP32, nonvolatile_store,
29                                nonvolatile_load, bdxaddr20only>;
30 defm CondStoreF64 : CondStores<FP64, nonvolatile_store,
31                                nonvolatile_load, bdxaddr20only>;
32
33 //===----------------------------------------------------------------------===//
34 // Move instructions
35 //===----------------------------------------------------------------------===//
36
37 // Load zero.
38 let isAsCheapAsAMove = 1, isMoveImm = 1 in {
39   def LZER : InherentRRE<"lzer", 0xB374, FP32,  fpimm0>;
40   def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  fpimm0>;
41   def LZXR : InherentRRE<"lzxr", 0xB376, FP128, fpimm0>;
42 }
43
44 // Moves between two floating-point registers.
45 def LER : UnaryRR <"ler", 0x38,   null_frag, FP32,  FP32>;
46 def LDR : UnaryRR <"ldr", 0x28,   null_frag, FP64,  FP64>;
47 def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;
48
49 // For z13 we prefer LDR over LER to avoid partial register dependencies.
50 let isCodeGenOnly = 1 in
51   def LDR32 : UnaryRR<"ldr", 0x28, null_frag, FP32, FP32>;
52
53 // Moves between two floating-point registers that also set the condition
54 // codes.
55 let Uses = [FPC], mayRaiseFPException = 1,
56     Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
57   defm LTEBR : LoadAndTestRRE<"ltebr", 0xB302, FP32>;
58   defm LTDBR : LoadAndTestRRE<"ltdbr", 0xB312, FP64>;
59   defm LTXBR : LoadAndTestRRE<"ltxbr", 0xB342, FP128>;
60 }
61 // Note that LTxBRCompare is not available if we have vector support,
62 // since load-and-test instructions will partially clobber the target
63 // (vector) register.
64 let Predicates = [FeatureNoVector] in {
65   defm : CompareZeroFP<LTEBRCompare, FP32>;
66   defm : CompareZeroFP<LTDBRCompare, FP64>;
67   defm : CompareZeroFP<LTXBRCompare, FP128>;
68 }
69
70 // Use a normal load-and-test for compare against zero in case of
71 // vector support (via a pseudo to simplify instruction selection).
72 let Uses = [FPC], mayRaiseFPException = 1,
73     Defs = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
74   def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>;
75   def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>;
76   def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>;
77 }
78 let Predicates = [FeatureVector] in {
79   defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>;
80   defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>;
81 }
82 let Predicates = [FeatureVector, FeatureNoVectorEnhancements1] in
83   defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>;
84
85 // Moves between 64-bit integer and floating-point registers.
86 def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
87 def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;
88
89 // fcopysign with an FP32 result.
90 let isCodeGenOnly = 1 in {
91   def CPSDRss : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP32>;
92   def CPSDRsd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP64>;
93 }
94
95 // The sign of an FP128 is in the high register.
96 let Predicates = [FeatureNoVectorEnhancements1] in
97   def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 FP128:$src2)))),
98             (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
99 let Predicates = [FeatureVectorEnhancements1] in
100   def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 VR128:$src2)))),
101             (CPSDRsd FP32:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;
102
103 // fcopysign with an FP64 result.
104 let isCodeGenOnly = 1 in
105   def CPSDRds : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP32>;
106 def CPSDRdd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP64>;
107
108 // The sign of an FP128 is in the high register.
109 let Predicates = [FeatureNoVectorEnhancements1] in
110   def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 FP128:$src2)))),
111             (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
112 let Predicates = [FeatureVectorEnhancements1] in
113   def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 VR128:$src2)))),
114             (CPSDRdd FP64:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;
115
116 // fcopysign with an FP128 result.  Use "upper" as the high half and leave
117 // the low half as-is.
118 class CopySign128<RegisterOperand cls, dag upper>
119   : Pat<(fcopysign FP128:$src1, cls:$src2),
120         (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;
121
122 let Predicates = [FeatureNoVectorEnhancements1] in {
123   def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
124                                     FP32:$src2)>;
125   def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
126                                     FP64:$src2)>;
127   def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
128                                     (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
129 }
130
131 defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCSequence, 4>;
132 defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCSequence, 8>;
133 defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;
134
135 //===----------------------------------------------------------------------===//
136 // Load instructions
137 //===----------------------------------------------------------------------===//
138
139 let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
140   defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
141   defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;
142
143   // For z13 we prefer LDE over LE to avoid partial register dependencies.
144   let isCodeGenOnly = 1 in
145     def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>;
146
147   // These instructions are split after register allocation, so we don't
148   // want a custom inserter.
149   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
150     def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
151                      [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
152   }
153 }
154
155 //===----------------------------------------------------------------------===//
156 // Store instructions
157 //===----------------------------------------------------------------------===//
158
159 let SimpleBDXStore = 1, mayStore = 1 in {
160   defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
161   defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;
162
163   // These instructions are split after register allocation, so we don't
164   // want a custom inserter.
165   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
166     def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
167                      [(store FP128:$src, bdxaddr20only128:$dst)]>;
168   }
169 }
170
171 //===----------------------------------------------------------------------===//
172 // Conversion instructions
173 //===----------------------------------------------------------------------===//
174
175 // Convert floating-point values to narrower representations, rounding
176 // according to the current mode.  The destination of LEXBR and LDXBR
177 // is a 128-bit value, but only the first register of the pair is used.
178 let Uses = [FPC], mayRaiseFPException = 1 in {
179   def LEDBR : UnaryRRE<"ledbr", 0xB344, any_fpround, FP32, FP64>;
180   def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
181   def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;
182
183   def LEDBRA : TernaryRRFe<"ledbra", 0xB344, FP32,  FP64>,
184                Requires<[FeatureFPExtension]>;
185   def LEXBRA : TernaryRRFe<"lexbra", 0xB346, FP128, FP128>,
186                Requires<[FeatureFPExtension]>;
187   def LDXBRA : TernaryRRFe<"ldxbra", 0xB345, FP128, FP128>,
188                Requires<[FeatureFPExtension]>;
189 }
190
191 let Predicates = [FeatureNoVectorEnhancements1] in {
192   def : Pat<(f32 (any_fpround FP128:$src)),
193             (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>;
194   def : Pat<(f64 (any_fpround FP128:$src)),
195             (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
196 }
197
198 // Extend register floating-point values to wider representations.
199 let Uses = [FPC], mayRaiseFPException = 1 in {
200   def LDEBR : UnaryRRE<"ldebr", 0xB304, any_fpextend, FP64, FP32>;
201   def LXEBR : UnaryRRE<"lxebr", 0xB306, null_frag, FP128, FP32>;
202   def LXDBR : UnaryRRE<"lxdbr", 0xB305, null_frag, FP128, FP64>;
203 }
204 let Predicates = [FeatureNoVectorEnhancements1] in {
205   def : Pat<(f128 (any_fpextend (f32 FP32:$src))), (LXEBR FP32:$src)>;
206   def : Pat<(f128 (any_fpextend (f64 FP64:$src))), (LXDBR FP64:$src)>;
207 }
208
209 // Extend memory floating-point values to wider representations.
210 let Uses = [FPC], mayRaiseFPException = 1 in {
211   def LDEB : UnaryRXE<"ldeb", 0xED04, any_extloadf32, FP64, 4>;
212   def LXEB : UnaryRXE<"lxeb", 0xED06, null_frag, FP128, 4>;
213   def LXDB : UnaryRXE<"lxdb", 0xED05, null_frag, FP128, 8>;
214 }
215 let Predicates = [FeatureNoVectorEnhancements1] in {
216   def : Pat<(f128 (any_extloadf32 bdxaddr12only:$src)),
217             (LXEB bdxaddr12only:$src)>;
218   def : Pat<(f128 (any_extloadf64 bdxaddr12only:$src)),
219             (LXDB bdxaddr12only:$src)>;
220 }
221
222 // Convert a signed integer register value to a floating-point one.
223 let Uses = [FPC], mayRaiseFPException = 1 in {
224   def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32,  GR32>;
225   def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64,  GR32>;
226   def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>;
227
228   def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32,  GR64>;
229   def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64,  GR64>;
230   def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>;
231 }
232
233 // The FP extension feature provides versions of the above that allow
234 // specifying rounding mode and inexact-exception suppression flags.
235 let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureFPExtension] in {
236   def CEFBRA : TernaryRRFe<"cefbra", 0xB394, FP32,  GR32>;
237   def CDFBRA : TernaryRRFe<"cdfbra", 0xB395, FP64,  GR32>;
238   def CXFBRA : TernaryRRFe<"cxfbra", 0xB396, FP128, GR32>;
239
240   def CEGBRA : TernaryRRFe<"cegbra", 0xB3A4, FP32,  GR64>;
241   def CDGBRA : TernaryRRFe<"cdgbra", 0xB3A5, FP64,  GR64>;
242   def CXGBRA : TernaryRRFe<"cxgbra", 0xB3A6, FP128, GR64>;
243 }
244
245 // Convert am unsigned integer register value to a floating-point one.
246 let Predicates = [FeatureFPExtension] in {
247   let Uses = [FPC], mayRaiseFPException = 1 in {
248     def CELFBR : TernaryRRFe<"celfbr", 0xB390, FP32,  GR32>;
249     def CDLFBR : TernaryRRFe<"cdlfbr", 0xB391, FP64,  GR32>;
250     def CXLFBR : TernaryRRFe<"cxlfbr", 0xB392, FP128, GR32>;
251
252     def CELGBR : TernaryRRFe<"celgbr", 0xB3A0, FP32,  GR64>;
253     def CDLGBR : TernaryRRFe<"cdlgbr", 0xB3A1, FP64,  GR64>;
254     def CXLGBR : TernaryRRFe<"cxlgbr", 0xB3A2, FP128, GR64>;
255   }
256
257   def : Pat<(f32  (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
258   def : Pat<(f64  (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
259   def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;
260
261   def : Pat<(f32  (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
262   def : Pat<(f64  (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
263   def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
264 }
265
266 // Convert a floating-point register value to a signed integer value,
267 // with the second operand (modifier M3) specifying the rounding mode.
268 let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
269   def CFEBR : BinaryRRFe<"cfebr", 0xB398, GR32, FP32>;
270   def CFDBR : BinaryRRFe<"cfdbr", 0xB399, GR32, FP64>;
271   def CFXBR : BinaryRRFe<"cfxbr", 0xB39A, GR32, FP128>;
272
273   def CGEBR : BinaryRRFe<"cgebr", 0xB3A8, GR64, FP32>;
274   def CGDBR : BinaryRRFe<"cgdbr", 0xB3A9, GR64, FP64>;
275   def CGXBR : BinaryRRFe<"cgxbr", 0xB3AA, GR64, FP128>;
276 }
277
278 // fp_to_sint always rounds towards zero, which is modifier value 5.
279 def : Pat<(i32 (fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
280 def : Pat<(i32 (fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
281 def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
282
283 def : Pat<(i64 (fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
284 def : Pat<(i64 (fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
285 def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
286
287 // The FP extension feature provides versions of the above that allow
288 // also specifying the inexact-exception suppression flag.
289 let Uses = [FPC], mayRaiseFPException = 1,
290     Predicates = [FeatureFPExtension], Defs = [CC] in {
291   def CFEBRA : TernaryRRFe<"cfebra", 0xB398, GR32, FP32>;
292   def CFDBRA : TernaryRRFe<"cfdbra", 0xB399, GR32, FP64>;
293   def CFXBRA : TernaryRRFe<"cfxbra", 0xB39A, GR32, FP128>;
294
295   def CGEBRA : TernaryRRFe<"cgebra", 0xB3A8, GR64, FP32>;
296   def CGDBRA : TernaryRRFe<"cgdbra", 0xB3A9, GR64, FP64>;
297   def CGXBRA : TernaryRRFe<"cgxbra", 0xB3AA, GR64, FP128>;
298 }
299
300 // Convert a floating-point register value to an unsigned integer value.
301 let Predicates = [FeatureFPExtension] in {
302   let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
303     def CLFEBR : TernaryRRFe<"clfebr", 0xB39C, GR32, FP32>;
304     def CLFDBR : TernaryRRFe<"clfdbr", 0xB39D, GR32, FP64>;
305     def CLFXBR : TernaryRRFe<"clfxbr", 0xB39E, GR32, FP128>;
306
307     def CLGEBR : TernaryRRFe<"clgebr", 0xB3AC, GR64, FP32>;
308     def CLGDBR : TernaryRRFe<"clgdbr", 0xB3AD, GR64, FP64>;
309     def CLGXBR : TernaryRRFe<"clgxbr", 0xB3AE, GR64, FP128>;
310   }
311
312   def : Pat<(i32 (fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
313   def : Pat<(i32 (fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
314   def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;
315
316   def : Pat<(i64 (fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
317   def : Pat<(i64 (fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
318   def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
319 }
320
321
322 //===----------------------------------------------------------------------===//
323 // Unary arithmetic
324 //===----------------------------------------------------------------------===//
325
326 // We prefer generic instructions during isel, because they do not
327 // clobber CC and therefore give the scheduler more freedom. In cases
328 // the CC is actually useful, the SystemZElimCompare pass will try to
329 // convert generic instructions into opcodes that also set CC. Note
330 // that lcdf / lpdf / lndf only affect the sign bit, and can therefore
331 // be used with fp32 as well. This could be done for fp128, in which
332 // case the operands would have to be tied.
333
334 // Negation (Load Complement).
335 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
336   def LCEBR : UnaryRRE<"lcebr", 0xB303, null_frag, FP32,  FP32>;
337   def LCDBR : UnaryRRE<"lcdbr", 0xB313, null_frag, FP64,  FP64>;
338   def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
339 }
340 // Generic form, which does not set CC.
341 def LCDFR : UnaryRRE<"lcdfr", 0xB373, fneg, FP64,  FP64>;
342 let isCodeGenOnly = 1 in
343   def LCDFR_32 : UnaryRRE<"lcdfr", 0xB373, fneg, FP32,  FP32>;
344
345 // Absolute value (Load Positive).
346 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
347   def LPEBR : UnaryRRE<"lpebr", 0xB300, null_frag, FP32,  FP32>;
348   def LPDBR : UnaryRRE<"lpdbr", 0xB310, null_frag, FP64,  FP64>;
349   def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
350 }
351 // Generic form, which does not set CC.
352 def LPDFR : UnaryRRE<"lpdfr", 0xB370, fabs, FP64,  FP64>;
353 let isCodeGenOnly = 1 in
354   def LPDFR_32 : UnaryRRE<"lpdfr", 0xB370, fabs, FP32,  FP32>;
355
356 // Negative absolute value (Load Negative).
357 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
358   def LNEBR : UnaryRRE<"lnebr", 0xB301, null_frag, FP32,  FP32>;
359   def LNDBR : UnaryRRE<"lndbr", 0xB311, null_frag, FP64,  FP64>;
360   def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
361 }
362 // Generic form, which does not set CC.
363 def LNDFR : UnaryRRE<"lndfr", 0xB371, fnabs, FP64,  FP64>;
364 let isCodeGenOnly = 1 in
365   def LNDFR_32 : UnaryRRE<"lndfr", 0xB371, fnabs, FP32,  FP32>;
366
367 // Square root.
368 let Uses = [FPC], mayRaiseFPException = 1 in {
369   def SQEBR : UnaryRRE<"sqebr", 0xB314, any_fsqrt, FP32,  FP32>;
370   def SQDBR : UnaryRRE<"sqdbr", 0xB315, any_fsqrt, FP64,  FP64>;
371   def SQXBR : UnaryRRE<"sqxbr", 0xB316, any_fsqrt, FP128, FP128>;
372
373   def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<any_fsqrt>, FP32, 4>;
374   def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<any_fsqrt>, FP64, 8>;
375 }
376
377 // Round to an integer, with the second operand (modifier M3) specifying
378 // the rounding mode.  These forms always check for inexact conditions.
379 let Uses = [FPC], mayRaiseFPException = 1 in {
380   def FIEBR : BinaryRRFe<"fiebr", 0xB357, FP32,  FP32>;
381   def FIDBR : BinaryRRFe<"fidbr", 0xB35F, FP64,  FP64>;
382   def FIXBR : BinaryRRFe<"fixbr", 0xB347, FP128, FP128>;
383 }
384
385 // frint rounds according to the current mode (modifier 0) and detects
386 // inexact conditions.
387 def : Pat<(any_frint FP32:$src),  (FIEBR 0, FP32:$src)>;
388 def : Pat<(any_frint FP64:$src),  (FIDBR 0, FP64:$src)>;
389 def : Pat<(any_frint FP128:$src), (FIXBR 0, FP128:$src)>;
390
391 let Predicates = [FeatureFPExtension] in {
392   // Extended forms of the FIxBR instructions.  M4 can be set to 4
393   // to suppress detection of inexact conditions.
394   let Uses = [FPC], mayRaiseFPException = 1 in {
395     def FIEBRA : TernaryRRFe<"fiebra", 0xB357, FP32,  FP32>;
396     def FIDBRA : TernaryRRFe<"fidbra", 0xB35F, FP64,  FP64>;
397     def FIXBRA : TernaryRRFe<"fixbra", 0xB347, FP128, FP128>;
398   }
399
400   // fnearbyint is like frint but does not detect inexact conditions.
401   def : Pat<(any_fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
402   def : Pat<(any_fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
403   def : Pat<(any_fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;
404
405   // floor is no longer allowed to raise an inexact condition,
406   // so restrict it to the cases where the condition can be suppressed.
407   // Mode 7 is round towards -inf.
408   def : Pat<(any_ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
409   def : Pat<(any_ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
410   def : Pat<(any_ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;
411
412   // Same idea for ceil, where mode 6 is round towards +inf.
413   def : Pat<(any_fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
414   def : Pat<(any_fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
415   def : Pat<(any_fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;
416
417   // Same idea for trunc, where mode 5 is round towards zero.
418   def : Pat<(any_ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
419   def : Pat<(any_ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
420   def : Pat<(any_ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;
421
422   // Same idea for round, where mode 1 is round towards nearest with
423   // ties away from zero.
424   def : Pat<(any_fround FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
425   def : Pat<(any_fround FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
426   def : Pat<(any_fround FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
427 }
428
429 //===----------------------------------------------------------------------===//
430 // Binary arithmetic
431 //===----------------------------------------------------------------------===//
432
433 // Addition.
434 let Uses = [FPC], mayRaiseFPException = 1,
435     Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
436   let isCommutable = 1 in {
437     def AEBR : BinaryRRE<"aebr", 0xB30A, any_fadd, FP32,  FP32>;
438     def ADBR : BinaryRRE<"adbr", 0xB31A, any_fadd, FP64,  FP64>;
439     def AXBR : BinaryRRE<"axbr", 0xB34A, any_fadd, FP128, FP128>;
440   }
441   def AEB : BinaryRXE<"aeb", 0xED0A, any_fadd, FP32, load, 4>;
442   def ADB : BinaryRXE<"adb", 0xED1A, any_fadd, FP64, load, 8>;
443 }
444
445 // Subtraction.
446 let Uses = [FPC], mayRaiseFPException = 1,
447     Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
448   def SEBR : BinaryRRE<"sebr", 0xB30B, any_fsub, FP32,  FP32>;
449   def SDBR : BinaryRRE<"sdbr", 0xB31B, any_fsub, FP64,  FP64>;
450   def SXBR : BinaryRRE<"sxbr", 0xB34B, any_fsub, FP128, FP128>;
451
452   def SEB : BinaryRXE<"seb",  0xED0B, any_fsub, FP32, load, 4>;
453   def SDB : BinaryRXE<"sdb",  0xED1B, any_fsub, FP64, load, 8>;
454 }
455
456 // Multiplication.
457 let Uses = [FPC], mayRaiseFPException = 1 in {
458   let isCommutable = 1 in {
459     def MEEBR : BinaryRRE<"meebr", 0xB317, any_fmul, FP32,  FP32>;
460     def MDBR  : BinaryRRE<"mdbr",  0xB31C, any_fmul, FP64,  FP64>;
461     def MXBR  : BinaryRRE<"mxbr",  0xB34C, any_fmul, FP128, FP128>;
462   }
463   def MEEB : BinaryRXE<"meeb", 0xED17, any_fmul, FP32, load, 4>;
464   def MDB  : BinaryRXE<"mdb",  0xED1C, any_fmul, FP64, load, 8>;
465 }
466
467 // f64 multiplication of two FP32 registers.
468 let Uses = [FPC], mayRaiseFPException = 1 in
469   def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
470 def : Pat<(any_fmul (f64 (fpextend FP32:$src1)),
471                     (f64 (fpextend FP32:$src2))),
472           (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
473                                 FP32:$src1, subreg_h32), FP32:$src2)>;
474
475 // f64 multiplication of an FP32 register and an f32 memory.
476 let Uses = [FPC], mayRaiseFPException = 1 in
477   def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
478 def : Pat<(any_fmul (f64 (fpextend FP32:$src1)),
479                     (f64 (extloadf32 bdxaddr12only:$addr))),
480           (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32),
481                 bdxaddr12only:$addr)>;
482
483 // f128 multiplication of two FP64 registers.
484 let Uses = [FPC], mayRaiseFPException = 1 in
485   def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
486 let Predicates = [FeatureNoVectorEnhancements1] in
487   def : Pat<(any_fmul (f128 (fpextend FP64:$src1)),
488                       (f128 (fpextend FP64:$src2))),
489             (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
490                                   FP64:$src1, subreg_h64), FP64:$src2)>;
491
492 // f128 multiplication of an FP64 register and an f64 memory.
493 let Uses = [FPC], mayRaiseFPException = 1 in
494   def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
495 let Predicates = [FeatureNoVectorEnhancements1] in
496   def : Pat<(any_fmul (f128 (fpextend FP64:$src1)),
497                       (f128 (extloadf64 bdxaddr12only:$addr))),
498             (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
499                   bdxaddr12only:$addr)>;
500
501 // Fused multiply-add.
502 let Uses = [FPC], mayRaiseFPException = 1 in {
503   def MAEBR : TernaryRRD<"maebr", 0xB30E, z_any_fma, FP32, FP32>;
504   def MADBR : TernaryRRD<"madbr", 0xB31E, z_any_fma, FP64, FP64>;
505
506   def MAEB : TernaryRXF<"maeb", 0xED0E, z_any_fma, FP32, FP32, load, 4>;
507   def MADB : TernaryRXF<"madb", 0xED1E, z_any_fma, FP64, FP64, load, 8>;
508 }
509
510 // Fused multiply-subtract.
511 let Uses = [FPC], mayRaiseFPException = 1 in {
512   def MSEBR : TernaryRRD<"msebr", 0xB30F, z_any_fms, FP32, FP32>;
513   def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_any_fms, FP64, FP64>;
514
515   def MSEB : TernaryRXF<"mseb", 0xED0F, z_any_fms, FP32, FP32, load, 4>;
516   def MSDB : TernaryRXF<"msdb", 0xED1F, z_any_fms, FP64, FP64, load, 8>;
517 }
518
519 // Division.
520 let Uses = [FPC], mayRaiseFPException = 1 in {
521   def DEBR : BinaryRRE<"debr", 0xB30D, any_fdiv, FP32,  FP32>;
522   def DDBR : BinaryRRE<"ddbr", 0xB31D, any_fdiv, FP64,  FP64>;
523   def DXBR : BinaryRRE<"dxbr", 0xB34D, any_fdiv, FP128, FP128>;
524
525   def DEB : BinaryRXE<"deb", 0xED0D, any_fdiv, FP32, load, 4>;
526   def DDB : BinaryRXE<"ddb", 0xED1D, any_fdiv, FP64, load, 8>;
527 }
528
529 // Divide to integer.
530 let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
531   def DIEBR : TernaryRRFb<"diebr", 0xB353, FP32, FP32, FP32>;
532   def DIDBR : TernaryRRFb<"didbr", 0xB35B, FP64, FP64, FP64>;
533 }
534
535 //===----------------------------------------------------------------------===//
536 // Comparisons
537 //===----------------------------------------------------------------------===//
538
539 let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC], CCValues = 0xF in {
540   def CEBR : CompareRRE<"cebr", 0xB309, z_fcmp, FP32,  FP32>;
541   def CDBR : CompareRRE<"cdbr", 0xB319, z_fcmp, FP64,  FP64>;
542   def CXBR : CompareRRE<"cxbr", 0xB349, z_fcmp, FP128, FP128>;
543
544   def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>;
545   def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>;
546
547   def KEBR : CompareRRE<"kebr", 0xB308, null_frag, FP32,  FP32>;
548   def KDBR : CompareRRE<"kdbr", 0xB318, null_frag, FP64,  FP64>;
549   def KXBR : CompareRRE<"kxbr", 0xB348, null_frag, FP128, FP128>;
550
551   def KEB : CompareRXE<"keb", 0xED08, null_frag, FP32, load, 4>;
552   def KDB : CompareRXE<"kdb", 0xED18, null_frag, FP64, load, 8>;
553 }
554
555 // Test Data Class.
556 let Defs = [CC], CCValues = 0xC in {
557   def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>;
558   def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>;
559   def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>;
560 }
561
562 //===----------------------------------------------------------------------===//
563 // Floating-point control register instructions
564 //===----------------------------------------------------------------------===//
565
566 let hasSideEffects = 1 in {
567   let mayLoad = 1, mayStore = 1 in {
568     // TODO: EFPC and SFPC do not touch memory at all
569     let Uses = [FPC] in {
570       def EFPC  : InherentRRE<"efpc", 0xB38C, GR32, int_s390_efpc>;
571       def STFPC : StoreInherentS<"stfpc", 0xB29C, storei<int_s390_efpc>, 4>;
572     }
573
574     let Defs = [FPC] in {
575       def SFPC : SideEffectUnaryRRE<"sfpc", 0xB384, GR32, int_s390_sfpc>;
576       def LFPC : SideEffectUnaryS<"lfpc", 0xB29D, loadu<int_s390_sfpc>, 4>;
577     }
578   }
579
580   let Defs = [FPC], mayRaiseFPException = 1 in {
581     def SFASR : SideEffectUnaryRRE<"sfasr", 0xB385, GR32, null_frag>;
582     def LFAS  : SideEffectUnaryS<"lfas", 0xB2BD, null_frag, 4>;
583   }
584
585   let Uses = [FPC], Defs = [FPC] in {
586     def SRNMB : SideEffectAddressS<"srnmb", 0xB2B8, null_frag, shift12only>,
587                 Requires<[FeatureFPExtension]>;
588     def SRNM  : SideEffectAddressS<"srnm", 0xB299, null_frag, shift12only>;
589     def SRNMT : SideEffectAddressS<"srnmt", 0xB2B9, null_frag, shift12only>;
590   }
591 }
592
593 //===----------------------------------------------------------------------===//
594 // Peepholes
595 //===----------------------------------------------------------------------===//
596
597 def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>;
598 def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>;
599 def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;