]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / SystemZInstrInfo.cpp
1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZInstrInfo.h"
15 #include "MCTargetDesc/SystemZMCTargetDesc.h"
16 #include "SystemZ.h"
17 #include "SystemZInstrBuilder.h"
18 #include "SystemZSubtarget.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCRegisterInfo.h"
35 #include "llvm/Support/BranchProbability.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42
43 using namespace llvm;
44
45 #define GET_INSTRINFO_CTOR_DTOR
46 #define GET_INSTRMAP_INFO
47 #include "SystemZGenInstrInfo.inc"
48
49 #define DEBUG_TYPE "systemz-II"
50 STATISTIC(LOCRMuxJumps, "Number of LOCRMux jump-sequences (lower is better)");
51
52 // Return a mask with Count low bits set.
53 static uint64_t allOnes(unsigned int Count) {
54   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
55 }
56
57 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
58 // than a low register.
59 static bool isHighReg(unsigned int Reg) {
60   if (SystemZ::GRH32BitRegClass.contains(Reg))
61     return true;
62   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
63   return false;
64 }
65
66 // Pin the vtable to this file.
67 void SystemZInstrInfo::anchor() {}
68
69 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
70   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
71     RI(), STI(sti) {
72 }
73
74 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
75 // each having the opcode given by NewOpcode.
76 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
77                                  unsigned NewOpcode) const {
78   MachineBasicBlock *MBB = MI->getParent();
79   MachineFunction &MF = *MBB->getParent();
80
81   // Get two load or store instructions.  Use the original instruction for one
82   // of them (arbitrarily the second here) and create a clone for the other.
83   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
84   MBB->insert(MI, EarlierMI);
85
86   // Set up the two 64-bit registers and remember super reg and its flags.
87   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
88   MachineOperand &LowRegOp = MI->getOperand(0);
89   unsigned Reg128 = LowRegOp.getReg();
90   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
91   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
92   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
93   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
94
95   if (MI->mayStore()) {
96     // Add implicit uses of the super register in case one of the subregs is
97     // undefined. We could track liveness and skip storing an undefined
98     // subreg, but this is hopefully rare (discovered with llvm-stress).
99     // If Reg128 was killed, set kill flag on MI.
100     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
101     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
102     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
103   }
104
105   // The address in the first (high) instruction is already correct.
106   // Adjust the offset in the second (low) instruction.
107   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
108   MachineOperand &LowOffsetOp = MI->getOperand(2);
109   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
110
111   // Clear the kill flags on the registers in the first instruction.
112   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
113     EarlierMI->getOperand(0).setIsKill(false);
114   EarlierMI->getOperand(1).setIsKill(false);
115   EarlierMI->getOperand(3).setIsKill(false);
116
117   // Set the opcodes.
118   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
119   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
120   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
121
122   EarlierMI->setDesc(get(HighOpcode));
123   MI->setDesc(get(LowOpcode));
124 }
125
126 // Split ADJDYNALLOC instruction MI.
127 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
128   MachineBasicBlock *MBB = MI->getParent();
129   MachineFunction &MF = *MBB->getParent();
130   MachineFrameInfo &MFFrame = MF.getFrameInfo();
131   MachineOperand &OffsetMO = MI->getOperand(2);
132
133   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
134                      SystemZMC::CallFrameSize +
135                      OffsetMO.getImm());
136   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
137   assert(NewOpcode && "No support for huge argument lists yet");
138   MI->setDesc(get(NewOpcode));
139   OffsetMO.setImm(Offset);
140 }
141
142 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
143 // if the first operand is a low GR32 and HighOpcode if the first operand
144 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
145 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
146 // MI has the same kind of operand as LowOpcode, so needs to be converted
147 // if HighOpcode is used.
148 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
149                                       unsigned HighOpcode,
150                                       bool ConvertHigh) const {
151   unsigned Reg = MI.getOperand(0).getReg();
152   bool IsHigh = isHighReg(Reg);
153   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
154   if (IsHigh && ConvertHigh)
155     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
156 }
157
158 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
159 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
160 // followed by HighOpcode or LowOpcode, depending on whether the target
161 // is a high or low GR32.
162 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
163                                        unsigned LowOpcodeK,
164                                        unsigned HighOpcode) const {
165   unsigned DestReg = MI.getOperand(0).getReg();
166   unsigned SrcReg = MI.getOperand(1).getReg();
167   bool DestIsHigh = isHighReg(DestReg);
168   bool SrcIsHigh = isHighReg(SrcReg);
169   if (!DestIsHigh && !SrcIsHigh)
170     MI.setDesc(get(LowOpcodeK));
171   else {
172     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
173                   SystemZ::LR, 32, MI.getOperand(1).isKill(),
174                   MI.getOperand(1).isUndef());
175     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
176     MI.getOperand(1).setReg(DestReg);
177     MI.tieOperands(0, 1);
178   }
179 }
180
181 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
182 // if the first operand is a low GR32 and HighOpcode if the first operand
183 // is a high GR32.
184 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
185                                        unsigned HighOpcode) const {
186   unsigned Reg = MI.getOperand(0).getReg();
187   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
188                                        MI.getOperand(2).getImm());
189   MI.setDesc(get(Opcode));
190 }
191
192 // MI is a load-on-condition pseudo instruction with a single register
193 // (source or destination) operand.  Replace it with LowOpcode if the
194 // register is a low GR32 and HighOpcode if the register is a high GR32.
195 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
196                                        unsigned HighOpcode) const {
197   unsigned Reg = MI.getOperand(0).getReg();
198   unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode;
199   MI.setDesc(get(Opcode));
200 }
201
202 // MI is a load-register-on-condition pseudo instruction.  Replace it with
203 // LowOpcode if source and destination are both low GR32s and HighOpcode if
204 // source and destination are both high GR32s.
205 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode,
206                                         unsigned HighOpcode) const {
207   unsigned DestReg = MI.getOperand(0).getReg();
208   unsigned SrcReg = MI.getOperand(2).getReg();
209   bool DestIsHigh = isHighReg(DestReg);
210   bool SrcIsHigh = isHighReg(SrcReg);
211
212   if (!DestIsHigh && !SrcIsHigh)
213     MI.setDesc(get(LowOpcode));
214   else if (DestIsHigh && SrcIsHigh)
215     MI.setDesc(get(HighOpcode));
216   else
217     LOCRMuxJumps++;
218
219   // If we were unable to implement the pseudo with a single instruction, we
220   // need to convert it back into a branch sequence.  This cannot be done here
221   // since the caller of expandPostRAPseudo does not handle changes to the CFG
222   // correctly.  This change is defered to the SystemZExpandPseudo pass.
223 }
224
225 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
226 // of one GRX32 into another.  Replace it with LowOpcode if both operands
227 // are low registers, otherwise use RISB[LH]G.
228 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
229                                         unsigned Size) const {
230   MachineInstrBuilder MIB =
231     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
232                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
233                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
234
235   // Keep the remaining operands as-is.
236   for (unsigned I = 2; I < MI.getNumOperands(); ++I)
237     MIB.add(MI.getOperand(I));
238
239   MI.eraseFromParent();
240 }
241
242 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
243   MachineBasicBlock *MBB = MI->getParent();
244   MachineFunction &MF = *MBB->getParent();
245   const unsigned Reg64 = MI->getOperand(0).getReg();
246   const unsigned Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
247
248   // EAR can only load the low subregister so us a shift for %a0 to produce
249   // the GR containing %a0 and %a1.
250
251   // ear <reg>, %a0
252   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
253     .addReg(SystemZ::A0)
254     .addReg(Reg64, RegState::ImplicitDefine);
255
256   // sllg <reg>, <reg>, 32
257   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
258     .addReg(Reg64)
259     .addReg(0)
260     .addImm(32);
261
262   // ear <reg>, %a1
263   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
264     .addReg(SystemZ::A1);
265
266   // lg <reg>, 40(<reg>)
267   MI->setDesc(get(SystemZ::LG));
268   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
269 }
270
271 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
272 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
273 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
274 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
275 // KillSrc is true if this move is the last use of SrcReg.
276 MachineInstrBuilder
277 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
278                                 MachineBasicBlock::iterator MBBI,
279                                 const DebugLoc &DL, unsigned DestReg,
280                                 unsigned SrcReg, unsigned LowLowOpcode,
281                                 unsigned Size, bool KillSrc,
282                                 bool UndefSrc) const {
283   unsigned Opcode;
284   bool DestIsHigh = isHighReg(DestReg);
285   bool SrcIsHigh = isHighReg(SrcReg);
286   if (DestIsHigh && SrcIsHigh)
287     Opcode = SystemZ::RISBHH;
288   else if (DestIsHigh && !SrcIsHigh)
289     Opcode = SystemZ::RISBHL;
290   else if (!DestIsHigh && SrcIsHigh)
291     Opcode = SystemZ::RISBLH;
292   else {
293     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
294       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
295   }
296   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
297   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
298     .addReg(DestReg, RegState::Undef)
299     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
300     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
301 }
302
303 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
304                                                        bool NewMI,
305                                                        unsigned OpIdx1,
306                                                        unsigned OpIdx2) const {
307   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
308     if (NewMI)
309       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
310     return MI;
311   };
312
313   switch (MI.getOpcode()) {
314   case SystemZ::LOCRMux:
315   case SystemZ::LOCFHR:
316   case SystemZ::LOCR:
317   case SystemZ::LOCGR: {
318     auto &WorkingMI = cloneIfNew(MI);
319     // Invert condition.
320     unsigned CCValid = WorkingMI.getOperand(3).getImm();
321     unsigned CCMask = WorkingMI.getOperand(4).getImm();
322     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
323     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
324                                                    OpIdx1, OpIdx2);
325   }
326   default:
327     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
328   }
329 }
330
331 // If MI is a simple load or store for a frame object, return the register
332 // it loads or stores and set FrameIndex to the index of the frame object.
333 // Return 0 otherwise.
334 //
335 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
336 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
337                         unsigned Flag) {
338   const MCInstrDesc &MCID = MI.getDesc();
339   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
340       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
341     FrameIndex = MI.getOperand(1).getIndex();
342     return MI.getOperand(0).getReg();
343   }
344   return 0;
345 }
346
347 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
348                                                int &FrameIndex) const {
349   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
350 }
351
352 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
353                                               int &FrameIndex) const {
354   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
355 }
356
357 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
358                                        int &DestFrameIndex,
359                                        int &SrcFrameIndex) const {
360   // Check for MVC 0(Length,FI1),0(FI2)
361   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
362   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
363       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
364       MI.getOperand(4).getImm() != 0)
365     return false;
366
367   // Check that Length covers the full slots.
368   int64_t Length = MI.getOperand(2).getImm();
369   unsigned FI1 = MI.getOperand(0).getIndex();
370   unsigned FI2 = MI.getOperand(3).getIndex();
371   if (MFI.getObjectSize(FI1) != Length ||
372       MFI.getObjectSize(FI2) != Length)
373     return false;
374
375   DestFrameIndex = FI1;
376   SrcFrameIndex = FI2;
377   return true;
378 }
379
380 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
381                                      MachineBasicBlock *&TBB,
382                                      MachineBasicBlock *&FBB,
383                                      SmallVectorImpl<MachineOperand> &Cond,
384                                      bool AllowModify) const {
385   // Most of the code and comments here are boilerplate.
386
387   // Start from the bottom of the block and work up, examining the
388   // terminator instructions.
389   MachineBasicBlock::iterator I = MBB.end();
390   while (I != MBB.begin()) {
391     --I;
392     if (I->isDebugInstr())
393       continue;
394
395     // Working from the bottom, when we see a non-terminator instruction, we're
396     // done.
397     if (!isUnpredicatedTerminator(*I))
398       break;
399
400     // A terminator that isn't a branch can't easily be handled by this
401     // analysis.
402     if (!I->isBranch())
403       return true;
404
405     // Can't handle indirect branches.
406     SystemZII::Branch Branch(getBranchInfo(*I));
407     if (!Branch.Target->isMBB())
408       return true;
409
410     // Punt on compound branches.
411     if (Branch.Type != SystemZII::BranchNormal)
412       return true;
413
414     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
415       // Handle unconditional branches.
416       if (!AllowModify) {
417         TBB = Branch.Target->getMBB();
418         continue;
419       }
420
421       // If the block has any instructions after a JMP, delete them.
422       while (std::next(I) != MBB.end())
423         std::next(I)->eraseFromParent();
424
425       Cond.clear();
426       FBB = nullptr;
427
428       // Delete the JMP if it's equivalent to a fall-through.
429       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
430         TBB = nullptr;
431         I->eraseFromParent();
432         I = MBB.end();
433         continue;
434       }
435
436       // TBB is used to indicate the unconditinal destination.
437       TBB = Branch.Target->getMBB();
438       continue;
439     }
440
441     // Working from the bottom, handle the first conditional branch.
442     if (Cond.empty()) {
443       // FIXME: add X86-style branch swap
444       FBB = TBB;
445       TBB = Branch.Target->getMBB();
446       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
447       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
448       continue;
449     }
450
451     // Handle subsequent conditional branches.
452     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
453
454     // Only handle the case where all conditional branches branch to the same
455     // destination.
456     if (TBB != Branch.Target->getMBB())
457       return true;
458
459     // If the conditions are the same, we can leave them alone.
460     unsigned OldCCValid = Cond[0].getImm();
461     unsigned OldCCMask = Cond[1].getImm();
462     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
463       continue;
464
465     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
466     return false;
467   }
468
469   return false;
470 }
471
472 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
473                                         int *BytesRemoved) const {
474   assert(!BytesRemoved && "code size not handled");
475
476   // Most of the code and comments here are boilerplate.
477   MachineBasicBlock::iterator I = MBB.end();
478   unsigned Count = 0;
479
480   while (I != MBB.begin()) {
481     --I;
482     if (I->isDebugInstr())
483       continue;
484     if (!I->isBranch())
485       break;
486     if (!getBranchInfo(*I).Target->isMBB())
487       break;
488     // Remove the branch.
489     I->eraseFromParent();
490     I = MBB.end();
491     ++Count;
492   }
493
494   return Count;
495 }
496
497 bool SystemZInstrInfo::
498 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
499   assert(Cond.size() == 2 && "Invalid condition");
500   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
501   return false;
502 }
503
504 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
505                                         MachineBasicBlock *TBB,
506                                         MachineBasicBlock *FBB,
507                                         ArrayRef<MachineOperand> Cond,
508                                         const DebugLoc &DL,
509                                         int *BytesAdded) const {
510   // In this function we output 32-bit branches, which should always
511   // have enough range.  They can be shortened and relaxed by later code
512   // in the pipeline, if desired.
513
514   // Shouldn't be a fall through.
515   assert(TBB && "insertBranch must not be told to insert a fallthrough");
516   assert((Cond.size() == 2 || Cond.size() == 0) &&
517          "SystemZ branch conditions have one component!");
518   assert(!BytesAdded && "code size not handled");
519
520   if (Cond.empty()) {
521     // Unconditional branch?
522     assert(!FBB && "Unconditional branch with multiple successors!");
523     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
524     return 1;
525   }
526
527   // Conditional branch.
528   unsigned Count = 0;
529   unsigned CCValid = Cond[0].getImm();
530   unsigned CCMask = Cond[1].getImm();
531   BuildMI(&MBB, DL, get(SystemZ::BRC))
532     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
533   ++Count;
534
535   if (FBB) {
536     // Two-way Conditional branch. Insert the second branch.
537     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
538     ++Count;
539   }
540   return Count;
541 }
542
543 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
544                                       unsigned &SrcReg2, int &Mask,
545                                       int &Value) const {
546   assert(MI.isCompare() && "Caller should have checked for a comparison");
547
548   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
549       MI.getOperand(1).isImm()) {
550     SrcReg = MI.getOperand(0).getReg();
551     SrcReg2 = 0;
552     Value = MI.getOperand(1).getImm();
553     Mask = ~0;
554     return true;
555   }
556
557   return false;
558 }
559
560 // If Reg is a virtual register, return its definition, otherwise return null.
561 static MachineInstr *getDef(unsigned Reg,
562                             const MachineRegisterInfo *MRI) {
563   if (TargetRegisterInfo::isPhysicalRegister(Reg))
564     return nullptr;
565   return MRI->getUniqueVRegDef(Reg);
566 }
567
568 // Return true if MI is a shift of type Opcode by Imm bits.
569 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
570   return (MI->getOpcode() == Opcode &&
571           !MI->getOperand(2).getReg() &&
572           MI->getOperand(3).getImm() == Imm);
573 }
574
575 // If the destination of MI has no uses, delete it as dead.
576 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
577   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
578     MI->eraseFromParent();
579 }
580
581 // Compare compares SrcReg against zero.  Check whether SrcReg contains
582 // the result of an IPM sequence whose input CC survives until Compare,
583 // and whether Compare is therefore redundant.  Delete it and return
584 // true if so.
585 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg,
586                                   const MachineRegisterInfo *MRI,
587                                   const TargetRegisterInfo *TRI) {
588   MachineInstr *LGFR = nullptr;
589   MachineInstr *RLL = getDef(SrcReg, MRI);
590   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
591     LGFR = RLL;
592     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
593   }
594   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
595     return false;
596
597   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
598   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
599     return false;
600
601   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
602   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
603     return false;
604
605   // Check that there are no assignments to CC between the IPM and Compare,
606   if (IPM->getParent() != Compare.getParent())
607     return false;
608   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator();
609   for (++MBBI; MBBI != MBBE; ++MBBI) {
610     MachineInstr &MI = *MBBI;
611     if (MI.modifiesRegister(SystemZ::CC, TRI))
612       return false;
613   }
614
615   Compare.eraseFromParent();
616   if (LGFR)
617     eraseIfDead(LGFR, MRI);
618   eraseIfDead(RLL, MRI);
619   eraseIfDead(SRL, MRI);
620   eraseIfDead(IPM, MRI);
621
622   return true;
623 }
624
625 bool SystemZInstrInfo::optimizeCompareInstr(
626     MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask,
627     int Value, const MachineRegisterInfo *MRI) const {
628   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
629   bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0;
630   return Value == 0 && !IsLogical &&
631          removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
632 }
633
634 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
635                                        ArrayRef<MachineOperand> Pred,
636                                        unsigned TrueReg, unsigned FalseReg,
637                                        int &CondCycles, int &TrueCycles,
638                                        int &FalseCycles) const {
639   // Not all subtargets have LOCR instructions.
640   if (!STI.hasLoadStoreOnCond())
641     return false;
642   if (Pred.size() != 2)
643     return false;
644
645   // Check register classes.
646   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
647   const TargetRegisterClass *RC =
648     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
649   if (!RC)
650     return false;
651
652   // We have LOCR instructions for 32 and 64 bit general purpose registers.
653   if ((STI.hasLoadStoreOnCond2() &&
654        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
655       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
656       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
657     CondCycles = 2;
658     TrueCycles = 2;
659     FalseCycles = 2;
660     return true;
661   }
662
663   // Can't do anything else.
664   return false;
665 }
666
667 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
668                                     MachineBasicBlock::iterator I,
669                                     const DebugLoc &DL, unsigned DstReg,
670                                     ArrayRef<MachineOperand> Pred,
671                                     unsigned TrueReg,
672                                     unsigned FalseReg) const {
673   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
674   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
675
676   assert(Pred.size() == 2 && "Invalid condition");
677   unsigned CCValid = Pred[0].getImm();
678   unsigned CCMask = Pred[1].getImm();
679
680   unsigned Opc;
681   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
682     if (STI.hasLoadStoreOnCond2())
683       Opc = SystemZ::LOCRMux;
684     else {
685       Opc = SystemZ::LOCR;
686       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
687       unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
688       unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
689       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
690       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
691       TrueReg = TReg;
692       FalseReg = FReg;
693     }
694   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC))
695     Opc = SystemZ::LOCGR;
696   else
697     llvm_unreachable("Invalid register class");
698
699   BuildMI(MBB, I, DL, get(Opc), DstReg)
700     .addReg(FalseReg).addReg(TrueReg)
701     .addImm(CCValid).addImm(CCMask);
702 }
703
704 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
705                                      unsigned Reg,
706                                      MachineRegisterInfo *MRI) const {
707   unsigned DefOpc = DefMI.getOpcode();
708   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
709       DefOpc != SystemZ::LGHI)
710     return false;
711   if (DefMI.getOperand(0).getReg() != Reg)
712     return false;
713   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
714
715   unsigned UseOpc = UseMI.getOpcode();
716   unsigned NewUseOpc;
717   unsigned UseIdx;
718   int CommuteIdx = -1;
719   switch (UseOpc) {
720   case SystemZ::LOCRMux:
721     if (!STI.hasLoadStoreOnCond2())
722       return false;
723     NewUseOpc = SystemZ::LOCHIMux;
724     if (UseMI.getOperand(2).getReg() == Reg)
725       UseIdx = 2;
726     else if (UseMI.getOperand(1).getReg() == Reg)
727       UseIdx = 2, CommuteIdx = 1;
728     else
729       return false;
730     break;
731   case SystemZ::LOCGR:
732     if (!STI.hasLoadStoreOnCond2())
733       return false;
734     NewUseOpc = SystemZ::LOCGHI;
735     if (UseMI.getOperand(2).getReg() == Reg)
736       UseIdx = 2;
737     else if (UseMI.getOperand(1).getReg() == Reg)
738       UseIdx = 2, CommuteIdx = 1;
739     else
740       return false;
741     break;
742   default:
743     return false;
744   }
745
746   if (CommuteIdx != -1)
747     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
748       return false;
749
750   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
751   UseMI.setDesc(get(NewUseOpc));
752   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
753   if (DeleteDef)
754     DefMI.eraseFromParent();
755
756   return true;
757 }
758
759 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
760   unsigned Opcode = MI.getOpcode();
761   if (Opcode == SystemZ::Return ||
762       Opcode == SystemZ::Trap ||
763       Opcode == SystemZ::CallJG ||
764       Opcode == SystemZ::CallBR)
765     return true;
766   return false;
767 }
768
769 bool SystemZInstrInfo::
770 isProfitableToIfCvt(MachineBasicBlock &MBB,
771                     unsigned NumCycles, unsigned ExtraPredCycles,
772                     BranchProbability Probability) const {
773   // Avoid using conditional returns at the end of a loop (since then
774   // we'd need to emit an unconditional branch to the beginning anyway,
775   // making the loop body longer).  This doesn't apply for low-probability
776   // loops (eg. compare-and-swap retry), so just decide based on branch
777   // probability instead of looping structure.
778   // However, since Compare and Trap instructions cost the same as a regular
779   // Compare instruction, we should allow the if conversion to convert this
780   // into a Conditional Compare regardless of the branch probability.
781   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
782       MBB.succ_empty() && Probability < BranchProbability(1, 8))
783     return false;
784   // For now only convert single instructions.
785   return NumCycles == 1;
786 }
787
788 bool SystemZInstrInfo::
789 isProfitableToIfCvt(MachineBasicBlock &TMBB,
790                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
791                     MachineBasicBlock &FMBB,
792                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
793                     BranchProbability Probability) const {
794   // For now avoid converting mutually-exclusive cases.
795   return false;
796 }
797
798 bool SystemZInstrInfo::
799 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
800                           BranchProbability Probability) const {
801   // For now only duplicate single instructions.
802   return NumCycles == 1;
803 }
804
805 bool SystemZInstrInfo::PredicateInstruction(
806     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
807   assert(Pred.size() == 2 && "Invalid condition");
808   unsigned CCValid = Pred[0].getImm();
809   unsigned CCMask = Pred[1].getImm();
810   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
811   unsigned Opcode = MI.getOpcode();
812   if (Opcode == SystemZ::Trap) {
813     MI.setDesc(get(SystemZ::CondTrap));
814     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
815       .addImm(CCValid).addImm(CCMask)
816       .addReg(SystemZ::CC, RegState::Implicit);
817     return true;
818   }
819   if (Opcode == SystemZ::Return) {
820     MI.setDesc(get(SystemZ::CondReturn));
821     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
822       .addImm(CCValid).addImm(CCMask)
823       .addReg(SystemZ::CC, RegState::Implicit);
824     return true;
825   }
826   if (Opcode == SystemZ::CallJG) {
827     MachineOperand FirstOp = MI.getOperand(0);
828     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
829     MI.RemoveOperand(1);
830     MI.RemoveOperand(0);
831     MI.setDesc(get(SystemZ::CallBRCL));
832     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
833         .addImm(CCValid)
834         .addImm(CCMask)
835         .add(FirstOp)
836         .addRegMask(RegMask)
837         .addReg(SystemZ::CC, RegState::Implicit);
838     return true;
839   }
840   if (Opcode == SystemZ::CallBR) {
841     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
842     MI.RemoveOperand(0);
843     MI.setDesc(get(SystemZ::CallBCR));
844     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
845       .addImm(CCValid).addImm(CCMask)
846       .addRegMask(RegMask)
847       .addReg(SystemZ::CC, RegState::Implicit);
848     return true;
849   }
850   return false;
851 }
852
853 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
854                                    MachineBasicBlock::iterator MBBI,
855                                    const DebugLoc &DL, unsigned DestReg,
856                                    unsigned SrcReg, bool KillSrc) const {
857   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
858   // super register in case one of the subregs is undefined.
859   // This handles ADDR128 too.
860   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
861     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
862                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
863     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
864       .addReg(SrcReg, RegState::Implicit);
865     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
866                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
867     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
868       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
869     return;
870   }
871
872   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
873     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
874                   false);
875     return;
876   }
877
878   // Move 128-bit floating-point values between VR128 and FP128.
879   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
880       SystemZ::FP128BitRegClass.contains(SrcReg)) {
881     unsigned SrcRegHi =
882       RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
883                              SystemZ::subreg_r64, &SystemZ::VR128BitRegClass);
884     unsigned SrcRegLo =
885       RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
886                              SystemZ::subreg_r64, &SystemZ::VR128BitRegClass);
887
888     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
889       .addReg(SrcRegHi, getKillRegState(KillSrc))
890       .addReg(SrcRegLo, getKillRegState(KillSrc));
891     return;
892   }
893   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
894       SystemZ::VR128BitRegClass.contains(SrcReg)) {
895     unsigned DestRegHi =
896       RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
897                              SystemZ::subreg_r64, &SystemZ::VR128BitRegClass);
898     unsigned DestRegLo =
899       RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
900                              SystemZ::subreg_r64, &SystemZ::VR128BitRegClass);
901
902     if (DestRegHi != SrcReg)
903       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
904     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
905       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
906     return;
907   }
908
909   // Move CC value from/to a GR32.
910   if (SrcReg == SystemZ::CC) {
911     auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg);
912     if (KillSrc) {
913       const MachineFunction *MF = MBB.getParent();
914       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
915       MIB->addRegisterKilled(SrcReg, TRI);
916     }
917     return;
918   }
919   if (DestReg == SystemZ::CC) {
920     BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH))
921       .addReg(SrcReg, getKillRegState(KillSrc))
922       .addImm(3 << (SystemZ::IPM_CC - 16));
923     return;
924   }
925
926   // Everything else needs only one instruction.
927   unsigned Opcode;
928   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
929     Opcode = SystemZ::LGR;
930   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
931     // For z13 we prefer LDR over LER to avoid partial register dependencies.
932     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
933   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
934     Opcode = SystemZ::LDR;
935   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
936     Opcode = SystemZ::LXR;
937   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
938     Opcode = SystemZ::VLR32;
939   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
940     Opcode = SystemZ::VLR64;
941   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
942     Opcode = SystemZ::VLR;
943   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
944     Opcode = SystemZ::CPYA;
945   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
946            SystemZ::GR32BitRegClass.contains(SrcReg))
947     Opcode = SystemZ::SAR;
948   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
949            SystemZ::AR32BitRegClass.contains(SrcReg))
950     Opcode = SystemZ::EAR;
951   else
952     llvm_unreachable("Impossible reg-to-reg copy");
953
954   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
955     .addReg(SrcReg, getKillRegState(KillSrc));
956 }
957
958 void SystemZInstrInfo::storeRegToStackSlot(
959     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
960     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
961     const TargetRegisterInfo *TRI) const {
962   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
963
964   // Callers may expect a single instruction, so keep 128-bit moves
965   // together for now and lower them after register allocation.
966   unsigned LoadOpcode, StoreOpcode;
967   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
968   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
969                         .addReg(SrcReg, getKillRegState(isKill)),
970                     FrameIdx);
971 }
972
973 void SystemZInstrInfo::loadRegFromStackSlot(
974     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
975     int FrameIdx, const TargetRegisterClass *RC,
976     const TargetRegisterInfo *TRI) const {
977   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
978
979   // Callers may expect a single instruction, so keep 128-bit moves
980   // together for now and lower them after register allocation.
981   unsigned LoadOpcode, StoreOpcode;
982   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
983   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
984                     FrameIdx);
985 }
986
987 // Return true if MI is a simple load or store with a 12-bit displacement
988 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
989 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
990   const MCInstrDesc &MCID = MI->getDesc();
991   return ((MCID.TSFlags & Flag) &&
992           isUInt<12>(MI->getOperand(2).getImm()) &&
993           MI->getOperand(3).getReg() == 0);
994 }
995
996 namespace {
997
998 struct LogicOp {
999   LogicOp() = default;
1000   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
1001     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
1002
1003   explicit operator bool() const { return RegSize; }
1004
1005   unsigned RegSize = 0;
1006   unsigned ImmLSB = 0;
1007   unsigned ImmSize = 0;
1008 };
1009
1010 } // end anonymous namespace
1011
1012 static LogicOp interpretAndImmediate(unsigned Opcode) {
1013   switch (Opcode) {
1014   case SystemZ::NILMux: return LogicOp(32,  0, 16);
1015   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
1016   case SystemZ::NILL64: return LogicOp(64,  0, 16);
1017   case SystemZ::NILH64: return LogicOp(64, 16, 16);
1018   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
1019   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
1020   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
1021   case SystemZ::NILF64: return LogicOp(64,  0, 32);
1022   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
1023   default:              return LogicOp();
1024   }
1025 }
1026
1027 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
1028   if (OldMI->registerDefIsDead(SystemZ::CC)) {
1029     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
1030     if (CCDef != nullptr)
1031       CCDef->setIsDead(true);
1032   }
1033 }
1034
1035 // Used to return from convertToThreeAddress after replacing two-address
1036 // instruction OldMI with three-address instruction NewMI.
1037 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
1038                                                  MachineInstr *NewMI,
1039                                                  LiveVariables *LV) {
1040   if (LV) {
1041     unsigned NumOps = OldMI->getNumOperands();
1042     for (unsigned I = 1; I < NumOps; ++I) {
1043       MachineOperand &Op = OldMI->getOperand(I);
1044       if (Op.isReg() && Op.isKill())
1045         LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI);
1046     }
1047   }
1048   transferDeadCC(OldMI, NewMI);
1049   return NewMI;
1050 }
1051
1052 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
1053     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
1054   MachineBasicBlock *MBB = MI.getParent();
1055   MachineFunction *MF = MBB->getParent();
1056   MachineRegisterInfo &MRI = MF->getRegInfo();
1057
1058   unsigned Opcode = MI.getOpcode();
1059   unsigned NumOps = MI.getNumOperands();
1060
1061   // Try to convert something like SLL into SLLK, if supported.
1062   // We prefer to keep the two-operand form where possible both
1063   // because it tends to be shorter and because some instructions
1064   // have memory forms that can be used during spilling.
1065   if (STI.hasDistinctOps()) {
1066     MachineOperand &Dest = MI.getOperand(0);
1067     MachineOperand &Src = MI.getOperand(1);
1068     unsigned DestReg = Dest.getReg();
1069     unsigned SrcReg = Src.getReg();
1070     // AHIMux is only really a three-operand instruction when both operands
1071     // are low registers.  Try to constrain both operands to be low if
1072     // possible.
1073     if (Opcode == SystemZ::AHIMux &&
1074         TargetRegisterInfo::isVirtualRegister(DestReg) &&
1075         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1076         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
1077         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
1078       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
1079       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
1080     }
1081     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
1082     if (ThreeOperandOpcode >= 0) {
1083       // Create three address instruction without adding the implicit
1084       // operands. Those will instead be copied over from the original
1085       // instruction by the loop below.
1086       MachineInstrBuilder MIB(
1087           *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(),
1088                                       /*NoImplicit=*/true));
1089       MIB.add(Dest);
1090       // Keep the kill state, but drop the tied flag.
1091       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
1092       // Keep the remaining operands as-is.
1093       for (unsigned I = 2; I < NumOps; ++I)
1094         MIB.add(MI.getOperand(I));
1095       MBB->insert(MI, MIB);
1096       return finishConvertToThreeAddress(&MI, MIB, LV);
1097     }
1098   }
1099
1100   // Try to convert an AND into an RISBG-type instruction.
1101   if (LogicOp And = interpretAndImmediate(Opcode)) {
1102     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
1103     // AND IMMEDIATE leaves the other bits of the register unchanged.
1104     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
1105     unsigned Start, End;
1106     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
1107       unsigned NewOpcode;
1108       if (And.RegSize == 64) {
1109         NewOpcode = SystemZ::RISBG;
1110         // Prefer RISBGN if available, since it does not clobber CC.
1111         if (STI.hasMiscellaneousExtensions())
1112           NewOpcode = SystemZ::RISBGN;
1113       } else {
1114         NewOpcode = SystemZ::RISBMux;
1115         Start &= 31;
1116         End &= 31;
1117       }
1118       MachineOperand &Dest = MI.getOperand(0);
1119       MachineOperand &Src = MI.getOperand(1);
1120       MachineInstrBuilder MIB =
1121           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
1122               .add(Dest)
1123               .addReg(0)
1124               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
1125                       Src.getSubReg())
1126               .addImm(Start)
1127               .addImm(End + 128)
1128               .addImm(0);
1129       return finishConvertToThreeAddress(&MI, MIB, LV);
1130     }
1131   }
1132   return nullptr;
1133 }
1134
1135 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1136     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1137     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1138     LiveIntervals *LIS) const {
1139   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1140   const MachineFrameInfo &MFI = MF.getFrameInfo();
1141   unsigned Size = MFI.getObjectSize(FrameIndex);
1142   unsigned Opcode = MI.getOpcode();
1143
1144   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1145     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1146         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1147
1148       // Check CC liveness, since new instruction introduces a dead
1149       // def of CC.
1150       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1151       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1152       ++CCUnit;
1153       assert(!CCUnit.isValid() && "CC only has one reg unit.");
1154       SlotIndex MISlot =
1155           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1156       if (!CCLiveRange.liveAt(MISlot)) {
1157         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1158         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1159                                         MI.getDebugLoc(), get(SystemZ::AGSI))
1160                                     .addFrameIndex(FrameIndex)
1161                                     .addImm(0)
1162                                     .addImm(MI.getOperand(2).getImm());
1163         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1164         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1165         return BuiltMI;
1166       }
1167     }
1168     return nullptr;
1169   }
1170
1171   // All other cases require a single operand.
1172   if (Ops.size() != 1)
1173     return nullptr;
1174
1175   unsigned OpNum = Ops[0];
1176   assert(Size * 8 ==
1177            TRI->getRegSizeInBits(*MF.getRegInfo()
1178                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1179          "Invalid size combination");
1180
1181   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1182       isInt<8>(MI.getOperand(2).getImm())) {
1183     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1184     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1185     MachineInstr *BuiltMI =
1186         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1187             .addFrameIndex(FrameIndex)
1188             .addImm(0)
1189             .addImm(MI.getOperand(2).getImm());
1190     transferDeadCC(&MI, BuiltMI);
1191     return BuiltMI;
1192   }
1193
1194   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1195        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1196       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1197        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1198     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1199     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1200     MachineInstr *BuiltMI =
1201         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1202             .addFrameIndex(FrameIndex)
1203             .addImm(0)
1204             .addImm((int8_t)MI.getOperand(2).getImm());
1205     transferDeadCC(&MI, BuiltMI);
1206     return BuiltMI;
1207   }
1208
1209   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1210        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1211       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1212        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1213     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1214     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1215     MachineInstr *BuiltMI =
1216         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1217             .addFrameIndex(FrameIndex)
1218             .addImm(0)
1219             .addImm((int8_t)-MI.getOperand(2).getImm());
1220     transferDeadCC(&MI, BuiltMI);
1221     return BuiltMI;
1222   }
1223
1224   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1225     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1226     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1227     // If we're spilling the destination of an LDGR or LGDR, store the
1228     // source register instead.
1229     if (OpNum == 0) {
1230       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1231       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1232                      get(StoreOpcode))
1233           .add(MI.getOperand(1))
1234           .addFrameIndex(FrameIndex)
1235           .addImm(0)
1236           .addReg(0);
1237     }
1238     // If we're spilling the source of an LDGR or LGDR, load the
1239     // destination register instead.
1240     if (OpNum == 1) {
1241       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1242       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1243                      get(LoadOpcode))
1244         .add(MI.getOperand(0))
1245         .addFrameIndex(FrameIndex)
1246         .addImm(0)
1247         .addReg(0);
1248     }
1249   }
1250
1251   // Look for cases where the source of a simple store or the destination
1252   // of a simple load is being spilled.  Try to use MVC instead.
1253   //
1254   // Although MVC is in practice a fast choice in these cases, it is still
1255   // logically a bytewise copy.  This means that we cannot use it if the
1256   // load or store is volatile.  We also wouldn't be able to use MVC if
1257   // the two memories partially overlap, but that case cannot occur here,
1258   // because we know that one of the memories is a full frame index.
1259   //
1260   // For performance reasons, we also want to avoid using MVC if the addresses
1261   // might be equal.  We don't worry about that case here, because spill slot
1262   // coloring happens later, and because we have special code to remove
1263   // MVCs that turn out to be redundant.
1264   if (OpNum == 0 && MI.hasOneMemOperand()) {
1265     MachineMemOperand *MMO = *MI.memoperands_begin();
1266     if (MMO->getSize() == Size && !MMO->isVolatile()) {
1267       // Handle conversion of loads.
1268       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1269         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1270                        get(SystemZ::MVC))
1271             .addFrameIndex(FrameIndex)
1272             .addImm(0)
1273             .addImm(Size)
1274             .add(MI.getOperand(1))
1275             .addImm(MI.getOperand(2).getImm())
1276             .addMemOperand(MMO);
1277       }
1278       // Handle conversion of stores.
1279       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1280         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1281                        get(SystemZ::MVC))
1282             .add(MI.getOperand(1))
1283             .addImm(MI.getOperand(2).getImm())
1284             .addImm(Size)
1285             .addFrameIndex(FrameIndex)
1286             .addImm(0)
1287             .addMemOperand(MMO);
1288       }
1289     }
1290   }
1291
1292   // If the spilled operand is the final one, try to change <INSN>R
1293   // into <INSN>.
1294   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1295   if (MemOpcode >= 0) {
1296     unsigned NumOps = MI.getNumExplicitOperands();
1297     if (OpNum == NumOps - 1) {
1298       const MCInstrDesc &MemDesc = get(MemOpcode);
1299       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1300       assert(AccessBytes != 0 && "Size of access should be known");
1301       assert(AccessBytes <= Size && "Access outside the frame index");
1302       uint64_t Offset = Size - AccessBytes;
1303       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1304                                         MI.getDebugLoc(), get(MemOpcode));
1305       for (unsigned I = 0; I < OpNum; ++I)
1306         MIB.add(MI.getOperand(I));
1307       MIB.addFrameIndex(FrameIndex).addImm(Offset);
1308       if (MemDesc.TSFlags & SystemZII::HasIndex)
1309         MIB.addReg(0);
1310       transferDeadCC(&MI, MIB);
1311       return MIB;
1312     }
1313   }
1314
1315   return nullptr;
1316 }
1317
1318 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1319     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1320     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1321     LiveIntervals *LIS) const {
1322   return nullptr;
1323 }
1324
1325 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1326   switch (MI.getOpcode()) {
1327   case SystemZ::L128:
1328     splitMove(MI, SystemZ::LG);
1329     return true;
1330
1331   case SystemZ::ST128:
1332     splitMove(MI, SystemZ::STG);
1333     return true;
1334
1335   case SystemZ::LX:
1336     splitMove(MI, SystemZ::LD);
1337     return true;
1338
1339   case SystemZ::STX:
1340     splitMove(MI, SystemZ::STD);
1341     return true;
1342
1343   case SystemZ::LBMux:
1344     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1345     return true;
1346
1347   case SystemZ::LHMux:
1348     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1349     return true;
1350
1351   case SystemZ::LLCRMux:
1352     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1353     return true;
1354
1355   case SystemZ::LLHRMux:
1356     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1357     return true;
1358
1359   case SystemZ::LLCMux:
1360     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1361     return true;
1362
1363   case SystemZ::LLHMux:
1364     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1365     return true;
1366
1367   case SystemZ::LMux:
1368     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1369     return true;
1370
1371   case SystemZ::LOCMux:
1372     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1373     return true;
1374
1375   case SystemZ::LOCHIMux:
1376     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1377     return true;
1378
1379   case SystemZ::LOCRMux:
1380     expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR);
1381     return true;
1382
1383   case SystemZ::STCMux:
1384     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1385     return true;
1386
1387   case SystemZ::STHMux:
1388     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1389     return true;
1390
1391   case SystemZ::STMux:
1392     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1393     return true;
1394
1395   case SystemZ::STOCMux:
1396     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1397     return true;
1398
1399   case SystemZ::LHIMux:
1400     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1401     return true;
1402
1403   case SystemZ::IIFMux:
1404     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1405     return true;
1406
1407   case SystemZ::IILMux:
1408     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1409     return true;
1410
1411   case SystemZ::IIHMux:
1412     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1413     return true;
1414
1415   case SystemZ::NIFMux:
1416     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1417     return true;
1418
1419   case SystemZ::NILMux:
1420     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1421     return true;
1422
1423   case SystemZ::NIHMux:
1424     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1425     return true;
1426
1427   case SystemZ::OIFMux:
1428     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1429     return true;
1430
1431   case SystemZ::OILMux:
1432     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1433     return true;
1434
1435   case SystemZ::OIHMux:
1436     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1437     return true;
1438
1439   case SystemZ::XIFMux:
1440     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1441     return true;
1442
1443   case SystemZ::TMLMux:
1444     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1445     return true;
1446
1447   case SystemZ::TMHMux:
1448     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1449     return true;
1450
1451   case SystemZ::AHIMux:
1452     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1453     return true;
1454
1455   case SystemZ::AHIMuxK:
1456     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1457     return true;
1458
1459   case SystemZ::AFIMux:
1460     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1461     return true;
1462
1463   case SystemZ::CHIMux:
1464     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1465     return true;
1466
1467   case SystemZ::CFIMux:
1468     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1469     return true;
1470
1471   case SystemZ::CLFIMux:
1472     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1473     return true;
1474
1475   case SystemZ::CMux:
1476     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1477     return true;
1478
1479   case SystemZ::CLMux:
1480     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1481     return true;
1482
1483   case SystemZ::RISBMux: {
1484     bool DestIsHigh = isHighReg(MI.getOperand(0).getReg());
1485     bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg());
1486     if (SrcIsHigh == DestIsHigh)
1487       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1488     else {
1489       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1490       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1491     }
1492     return true;
1493   }
1494
1495   case SystemZ::ADJDYNALLOC:
1496     splitAdjDynAlloc(MI);
1497     return true;
1498
1499   case TargetOpcode::LOAD_STACK_GUARD:
1500     expandLoadStackGuard(&MI);
1501     return true;
1502
1503   default:
1504     return false;
1505   }
1506 }
1507
1508 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1509   if (MI.getOpcode() == TargetOpcode::INLINEASM) {
1510     const MachineFunction *MF = MI.getParent()->getParent();
1511     const char *AsmStr = MI.getOperand(0).getSymbolName();
1512     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1513   }
1514   return MI.getDesc().getSize();
1515 }
1516
1517 SystemZII::Branch
1518 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1519   switch (MI.getOpcode()) {
1520   case SystemZ::BR:
1521   case SystemZ::BI:
1522   case SystemZ::J:
1523   case SystemZ::JG:
1524     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1525                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1526
1527   case SystemZ::BRC:
1528   case SystemZ::BRCL:
1529     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1530                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1531
1532   case SystemZ::BRCT:
1533   case SystemZ::BRCTH:
1534     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1535                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1536
1537   case SystemZ::BRCTG:
1538     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1539                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1540
1541   case SystemZ::CIJ:
1542   case SystemZ::CRJ:
1543     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1544                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1545
1546   case SystemZ::CLIJ:
1547   case SystemZ::CLRJ:
1548     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1549                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1550
1551   case SystemZ::CGIJ:
1552   case SystemZ::CGRJ:
1553     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1554                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1555
1556   case SystemZ::CLGIJ:
1557   case SystemZ::CLGRJ:
1558     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1559                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1560
1561   default:
1562     llvm_unreachable("Unrecognized branch opcode");
1563   }
1564 }
1565
1566 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1567                                            unsigned &LoadOpcode,
1568                                            unsigned &StoreOpcode) const {
1569   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1570     LoadOpcode = SystemZ::L;
1571     StoreOpcode = SystemZ::ST;
1572   } else if (RC == &SystemZ::GRH32BitRegClass) {
1573     LoadOpcode = SystemZ::LFH;
1574     StoreOpcode = SystemZ::STFH;
1575   } else if (RC == &SystemZ::GRX32BitRegClass) {
1576     LoadOpcode = SystemZ::LMux;
1577     StoreOpcode = SystemZ::STMux;
1578   } else if (RC == &SystemZ::GR64BitRegClass ||
1579              RC == &SystemZ::ADDR64BitRegClass) {
1580     LoadOpcode = SystemZ::LG;
1581     StoreOpcode = SystemZ::STG;
1582   } else if (RC == &SystemZ::GR128BitRegClass ||
1583              RC == &SystemZ::ADDR128BitRegClass) {
1584     LoadOpcode = SystemZ::L128;
1585     StoreOpcode = SystemZ::ST128;
1586   } else if (RC == &SystemZ::FP32BitRegClass) {
1587     LoadOpcode = SystemZ::LE;
1588     StoreOpcode = SystemZ::STE;
1589   } else if (RC == &SystemZ::FP64BitRegClass) {
1590     LoadOpcode = SystemZ::LD;
1591     StoreOpcode = SystemZ::STD;
1592   } else if (RC == &SystemZ::FP128BitRegClass) {
1593     LoadOpcode = SystemZ::LX;
1594     StoreOpcode = SystemZ::STX;
1595   } else if (RC == &SystemZ::VR32BitRegClass) {
1596     LoadOpcode = SystemZ::VL32;
1597     StoreOpcode = SystemZ::VST32;
1598   } else if (RC == &SystemZ::VR64BitRegClass) {
1599     LoadOpcode = SystemZ::VL64;
1600     StoreOpcode = SystemZ::VST64;
1601   } else if (RC == &SystemZ::VF128BitRegClass ||
1602              RC == &SystemZ::VR128BitRegClass) {
1603     LoadOpcode = SystemZ::VL;
1604     StoreOpcode = SystemZ::VST;
1605   } else
1606     llvm_unreachable("Unsupported regclass to load or store");
1607 }
1608
1609 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1610                                               int64_t Offset) const {
1611   const MCInstrDesc &MCID = get(Opcode);
1612   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1613   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1614     // Get the instruction to use for unsigned 12-bit displacements.
1615     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1616     if (Disp12Opcode >= 0)
1617       return Disp12Opcode;
1618
1619     // All address-related instructions can use unsigned 12-bit
1620     // displacements.
1621     return Opcode;
1622   }
1623   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1624     // Get the instruction to use for signed 20-bit displacements.
1625     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1626     if (Disp20Opcode >= 0)
1627       return Disp20Opcode;
1628
1629     // Check whether Opcode allows signed 20-bit displacements.
1630     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1631       return Opcode;
1632   }
1633   return 0;
1634 }
1635
1636 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1637   switch (Opcode) {
1638   case SystemZ::L:      return SystemZ::LT;
1639   case SystemZ::LY:     return SystemZ::LT;
1640   case SystemZ::LG:     return SystemZ::LTG;
1641   case SystemZ::LGF:    return SystemZ::LTGF;
1642   case SystemZ::LR:     return SystemZ::LTR;
1643   case SystemZ::LGFR:   return SystemZ::LTGFR;
1644   case SystemZ::LGR:    return SystemZ::LTGR;
1645   case SystemZ::LER:    return SystemZ::LTEBR;
1646   case SystemZ::LDR:    return SystemZ::LTDBR;
1647   case SystemZ::LXR:    return SystemZ::LTXBR;
1648   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1649   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1650   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1651   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1652   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1653   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1654   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1655   // actually use the condition code, we may turn it back into RISGB.
1656   // Note that RISBG is not really a "load-and-test" instruction,
1657   // but sets the same condition code values, so is OK to use here.
1658   case SystemZ::RISBGN: return SystemZ::RISBG;
1659   default:              return 0;
1660   }
1661 }
1662
1663 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1664 // have already been filtered out.  Store the first set bit in LSB and
1665 // the number of set bits in Length if so.
1666 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1667   unsigned First = findFirstSet(Mask);
1668   uint64_t Top = (Mask >> First) + 1;
1669   if ((Top & -Top) == Top) {
1670     LSB = First;
1671     Length = findFirstSet(Top);
1672     return true;
1673   }
1674   return false;
1675 }
1676
1677 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1678                                    unsigned &Start, unsigned &End) const {
1679   // Reject trivial all-zero masks.
1680   Mask &= allOnes(BitSize);
1681   if (Mask == 0)
1682     return false;
1683
1684   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1685   // the msb and End specifies the index of the lsb.
1686   unsigned LSB, Length;
1687   if (isStringOfOnes(Mask, LSB, Length)) {
1688     Start = 63 - (LSB + Length - 1);
1689     End = 63 - LSB;
1690     return true;
1691   }
1692
1693   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1694   // of the low 1s and End specifies the lsb of the high 1s.
1695   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1696     assert(LSB > 0 && "Bottom bit must be set");
1697     assert(LSB + Length < BitSize && "Top bit must be set");
1698     Start = 63 - (LSB - 1);
1699     End = 63 - (LSB + Length);
1700     return true;
1701   }
1702
1703   return false;
1704 }
1705
1706 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1707                                            SystemZII::FusedCompareType Type,
1708                                            const MachineInstr *MI) const {
1709   switch (Opcode) {
1710   case SystemZ::CHI:
1711   case SystemZ::CGHI:
1712     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1713       return 0;
1714     break;
1715   case SystemZ::CLFI:
1716   case SystemZ::CLGFI:
1717     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1718       return 0;
1719     break;
1720   case SystemZ::CL:
1721   case SystemZ::CLG:
1722     if (!STI.hasMiscellaneousExtensions())
1723       return 0;
1724     if (!(MI && MI->getOperand(3).getReg() == 0))
1725       return 0;
1726     break;
1727   }
1728   switch (Type) {
1729   case SystemZII::CompareAndBranch:
1730     switch (Opcode) {
1731     case SystemZ::CR:
1732       return SystemZ::CRJ;
1733     case SystemZ::CGR:
1734       return SystemZ::CGRJ;
1735     case SystemZ::CHI:
1736       return SystemZ::CIJ;
1737     case SystemZ::CGHI:
1738       return SystemZ::CGIJ;
1739     case SystemZ::CLR:
1740       return SystemZ::CLRJ;
1741     case SystemZ::CLGR:
1742       return SystemZ::CLGRJ;
1743     case SystemZ::CLFI:
1744       return SystemZ::CLIJ;
1745     case SystemZ::CLGFI:
1746       return SystemZ::CLGIJ;
1747     default:
1748       return 0;
1749     }
1750   case SystemZII::CompareAndReturn:
1751     switch (Opcode) {
1752     case SystemZ::CR:
1753       return SystemZ::CRBReturn;
1754     case SystemZ::CGR:
1755       return SystemZ::CGRBReturn;
1756     case SystemZ::CHI:
1757       return SystemZ::CIBReturn;
1758     case SystemZ::CGHI:
1759       return SystemZ::CGIBReturn;
1760     case SystemZ::CLR:
1761       return SystemZ::CLRBReturn;
1762     case SystemZ::CLGR:
1763       return SystemZ::CLGRBReturn;
1764     case SystemZ::CLFI:
1765       return SystemZ::CLIBReturn;
1766     case SystemZ::CLGFI:
1767       return SystemZ::CLGIBReturn;
1768     default:
1769       return 0;
1770     }
1771   case SystemZII::CompareAndSibcall:
1772     switch (Opcode) {
1773     case SystemZ::CR:
1774       return SystemZ::CRBCall;
1775     case SystemZ::CGR:
1776       return SystemZ::CGRBCall;
1777     case SystemZ::CHI:
1778       return SystemZ::CIBCall;
1779     case SystemZ::CGHI:
1780       return SystemZ::CGIBCall;
1781     case SystemZ::CLR:
1782       return SystemZ::CLRBCall;
1783     case SystemZ::CLGR:
1784       return SystemZ::CLGRBCall;
1785     case SystemZ::CLFI:
1786       return SystemZ::CLIBCall;
1787     case SystemZ::CLGFI:
1788       return SystemZ::CLGIBCall;
1789     default:
1790       return 0;
1791     }
1792   case SystemZII::CompareAndTrap:
1793     switch (Opcode) {
1794     case SystemZ::CR:
1795       return SystemZ::CRT;
1796     case SystemZ::CGR:
1797       return SystemZ::CGRT;
1798     case SystemZ::CHI:
1799       return SystemZ::CIT;
1800     case SystemZ::CGHI:
1801       return SystemZ::CGIT;
1802     case SystemZ::CLR:
1803       return SystemZ::CLRT;
1804     case SystemZ::CLGR:
1805       return SystemZ::CLGRT;
1806     case SystemZ::CLFI:
1807       return SystemZ::CLFIT;
1808     case SystemZ::CLGFI:
1809       return SystemZ::CLGIT;
1810     case SystemZ::CL:
1811       return SystemZ::CLT;
1812     case SystemZ::CLG:
1813       return SystemZ::CLGT;
1814     default:
1815       return 0;
1816     }
1817   }
1818   return 0;
1819 }
1820
1821 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1822   if (!STI.hasLoadAndTrap())
1823     return 0;
1824   switch (Opcode) {
1825   case SystemZ::L:
1826   case SystemZ::LY:
1827     return SystemZ::LAT;
1828   case SystemZ::LG:
1829     return SystemZ::LGAT;
1830   case SystemZ::LFH:
1831     return SystemZ::LFHAT;
1832   case SystemZ::LLGF:
1833     return SystemZ::LLGFAT;
1834   case SystemZ::LLGT:
1835     return SystemZ::LLGTAT;
1836   }
1837   return 0;
1838 }
1839
1840 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1841                                      MachineBasicBlock::iterator MBBI,
1842                                      unsigned Reg, uint64_t Value) const {
1843   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1844   unsigned Opcode;
1845   if (isInt<16>(Value))
1846     Opcode = SystemZ::LGHI;
1847   else if (SystemZ::isImmLL(Value))
1848     Opcode = SystemZ::LLILL;
1849   else if (SystemZ::isImmLH(Value)) {
1850     Opcode = SystemZ::LLILH;
1851     Value >>= 16;
1852   } else {
1853     assert(isInt<32>(Value) && "Huge values not handled yet");
1854     Opcode = SystemZ::LGFI;
1855   }
1856   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1857 }
1858
1859 bool SystemZInstrInfo::
1860 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1861                                 AliasAnalysis *AA) const {
1862
1863   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1864     return false;
1865
1866   // If mem-operands show that the same address Value is used by both
1867   // instructions, check for non-overlapping offsets and widths. Not
1868   // sure if a register based analysis would be an improvement...
1869
1870   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1871   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1872   const Value *VALa = MMOa->getValue();
1873   const Value *VALb = MMOb->getValue();
1874   bool SameVal = (VALa && VALb && (VALa == VALb));
1875   if (!SameVal) {
1876     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1877     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1878     if (PSVa && PSVb && (PSVa == PSVb))
1879       SameVal = true;
1880   }
1881   if (SameVal) {
1882     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1883     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1884     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1885     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1886     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1887     if (LowOffset + LowWidth <= HighOffset)
1888       return true;
1889   }
1890
1891   return false;
1892 }