]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
Merge ^/head r317216 through r317280.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / SystemZInstrInfo.cpp
1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZInstrInfo.h"
18 #include "SystemZSubtarget.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/BranchProbability.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41
42 using namespace llvm;
43
44 #define GET_INSTRINFO_CTOR_DTOR
45 #define GET_INSTRMAP_INFO
46 #include "SystemZGenInstrInfo.inc"
47
48 // Return a mask with Count low bits set.
49 static uint64_t allOnes(unsigned int Count) {
50   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
51 }
52
53 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
54 // than a low register.
55 static bool isHighReg(unsigned int Reg) {
56   if (SystemZ::GRH32BitRegClass.contains(Reg))
57     return true;
58   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
59   return false;
60 }
61
62 // Pin the vtable to this file.
63 void SystemZInstrInfo::anchor() {}
64
65 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
66   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
67     RI(), STI(sti) {
68 }
69
70 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
71 // each having the opcode given by NewOpcode.
72 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
73                                  unsigned NewOpcode) const {
74   MachineBasicBlock *MBB = MI->getParent();
75   MachineFunction &MF = *MBB->getParent();
76
77   // Get two load or store instructions.  Use the original instruction for one
78   // of them (arbitrarily the second here) and create a clone for the other.
79   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
80   MBB->insert(MI, EarlierMI);
81
82   // Set up the two 64-bit registers and remember super reg and its flags.
83   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
84   MachineOperand &LowRegOp = MI->getOperand(0);
85   unsigned Reg128 = LowRegOp.getReg();
86   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
87   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
88   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
89   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
90
91   if (MI->mayStore()) {
92     // Add implicit uses of the super register in case one of the subregs is
93     // undefined. We could track liveness and skip storing an undefined
94     // subreg, but this is hopefully rare (discovered with llvm-stress).
95     // If Reg128 was killed, set kill flag on MI.
96     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
97     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
98     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
99   }
100
101   // The address in the first (high) instruction is already correct.
102   // Adjust the offset in the second (low) instruction.
103   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
104   MachineOperand &LowOffsetOp = MI->getOperand(2);
105   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
106
107   // Clear the kill flags for the base and index registers in the first
108   // instruction.
109   EarlierMI->getOperand(1).setIsKill(false);
110   EarlierMI->getOperand(3).setIsKill(false);
111
112   // Set the opcodes.
113   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
114   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
115   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
116
117   EarlierMI->setDesc(get(HighOpcode));
118   MI->setDesc(get(LowOpcode));
119 }
120
121 // Split ADJDYNALLOC instruction MI.
122 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
123   MachineBasicBlock *MBB = MI->getParent();
124   MachineFunction &MF = *MBB->getParent();
125   MachineFrameInfo &MFFrame = MF.getFrameInfo();
126   MachineOperand &OffsetMO = MI->getOperand(2);
127
128   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
129                      SystemZMC::CallFrameSize +
130                      OffsetMO.getImm());
131   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
132   assert(NewOpcode && "No support for huge argument lists yet");
133   MI->setDesc(get(NewOpcode));
134   OffsetMO.setImm(Offset);
135 }
136
137 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
138 // if the first operand is a low GR32 and HighOpcode if the first operand
139 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
140 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
141 // MI has the same kind of operand as LowOpcode, so needs to be converted
142 // if HighOpcode is used.
143 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
144                                       unsigned HighOpcode,
145                                       bool ConvertHigh) const {
146   unsigned Reg = MI.getOperand(0).getReg();
147   bool IsHigh = isHighReg(Reg);
148   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
149   if (IsHigh && ConvertHigh)
150     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
151 }
152
153 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
154 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
155 // followed by HighOpcode or LowOpcode, depending on whether the target
156 // is a high or low GR32.
157 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
158                                        unsigned LowOpcodeK,
159                                        unsigned HighOpcode) const {
160   unsigned DestReg = MI.getOperand(0).getReg();
161   unsigned SrcReg = MI.getOperand(1).getReg();
162   bool DestIsHigh = isHighReg(DestReg);
163   bool SrcIsHigh = isHighReg(SrcReg);
164   if (!DestIsHigh && !SrcIsHigh)
165     MI.setDesc(get(LowOpcodeK));
166   else {
167     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
168                   SystemZ::LR, 32, MI.getOperand(1).isKill(),
169                   MI.getOperand(1).isUndef());
170     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
171     MI.getOperand(1).setReg(DestReg);
172     MI.tieOperands(0, 1);
173   }
174 }
175
176 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
177 // if the first operand is a low GR32 and HighOpcode if the first operand
178 // is a high GR32.
179 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
180                                        unsigned HighOpcode) const {
181   unsigned Reg = MI.getOperand(0).getReg();
182   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
183                                        MI.getOperand(2).getImm());
184   MI.setDesc(get(Opcode));
185 }
186
187 // MI is a load-on-condition pseudo instruction with a single register
188 // (source or destination) operand.  Replace it with LowOpcode if the
189 // register is a low GR32 and HighOpcode if the register is a high GR32.
190 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
191                                        unsigned HighOpcode) const {
192   unsigned Reg = MI.getOperand(0).getReg();
193   unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode;
194   MI.setDesc(get(Opcode));
195 }
196
197 // MI is a load-register-on-condition pseudo instruction.  Replace it with
198 // LowOpcode if source and destination are both low GR32s and HighOpcode if
199 // source and destination are both high GR32s.
200 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode,
201                                         unsigned HighOpcode) const {
202   unsigned DestReg = MI.getOperand(0).getReg();
203   unsigned SrcReg = MI.getOperand(2).getReg();
204   bool DestIsHigh = isHighReg(DestReg);
205   bool SrcIsHigh = isHighReg(SrcReg);
206
207   if (!DestIsHigh && !SrcIsHigh)
208     MI.setDesc(get(LowOpcode));
209   else if (DestIsHigh && SrcIsHigh)
210     MI.setDesc(get(HighOpcode));
211
212   // If we were unable to implement the pseudo with a single instruction, we
213   // need to convert it back into a branch sequence.  This cannot be done here
214   // since the caller of expandPostRAPseudo does not handle changes to the CFG
215   // correctly.  This change is defered to the SystemZExpandPseudo pass.
216 }
217
218 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
219 // of one GRX32 into another.  Replace it with LowOpcode if both operands
220 // are low registers, otherwise use RISB[LH]G.
221 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
222                                         unsigned Size) const {
223   MachineInstrBuilder MIB =
224     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
225                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
226                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
227
228   // Keep the remaining operands as-is.
229   for (unsigned I = 2; I < MI.getNumOperands(); ++I)
230     MIB.add(MI.getOperand(I));
231
232   MI.eraseFromParent();
233 }
234
235 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
236   MachineBasicBlock *MBB = MI->getParent();
237   MachineFunction &MF = *MBB->getParent();
238   const unsigned Reg = MI->getOperand(0).getReg();
239
240   // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD,
241   // so they already have operand 0 set to reg.
242
243   // ear <reg>, %a0
244   MachineInstr *Ear1MI = MF.CloneMachineInstr(MI);
245   MBB->insert(MI, Ear1MI);
246   Ear1MI->setDesc(get(SystemZ::EAR));
247   MachineInstrBuilder(MF, Ear1MI).addReg(SystemZ::A0);
248
249   // sllg <reg>, <reg>, 32
250   MachineInstr *SllgMI = MF.CloneMachineInstr(MI);
251   MBB->insert(MI, SllgMI);
252   SllgMI->setDesc(get(SystemZ::SLLG));
253   MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32);
254
255   // ear <reg>, %a1
256   MachineInstr *Ear2MI = MF.CloneMachineInstr(MI);
257   MBB->insert(MI, Ear2MI);
258   Ear2MI->setDesc(get(SystemZ::EAR));
259   MachineInstrBuilder(MF, Ear2MI).addReg(SystemZ::A1);
260
261   // lg <reg>, 40(<reg>)
262   MI->setDesc(get(SystemZ::LG));
263   MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0);
264 }
265
266 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
267 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
268 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
269 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
270 // KillSrc is true if this move is the last use of SrcReg.
271 MachineInstrBuilder
272 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
273                                 MachineBasicBlock::iterator MBBI,
274                                 const DebugLoc &DL, unsigned DestReg,
275                                 unsigned SrcReg, unsigned LowLowOpcode,
276                                 unsigned Size, bool KillSrc,
277                                 bool UndefSrc) const {
278   unsigned Opcode;
279   bool DestIsHigh = isHighReg(DestReg);
280   bool SrcIsHigh = isHighReg(SrcReg);
281   if (DestIsHigh && SrcIsHigh)
282     Opcode = SystemZ::RISBHH;
283   else if (DestIsHigh && !SrcIsHigh)
284     Opcode = SystemZ::RISBHL;
285   else if (!DestIsHigh && SrcIsHigh)
286     Opcode = SystemZ::RISBLH;
287   else {
288     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
289       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
290   }
291   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
292   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
293     .addReg(DestReg, RegState::Undef)
294     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
295     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
296 }
297
298 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
299                                                        bool NewMI,
300                                                        unsigned OpIdx1,
301                                                        unsigned OpIdx2) const {
302   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
303     if (NewMI)
304       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
305     return MI;
306   };
307
308   switch (MI.getOpcode()) {
309   case SystemZ::LOCRMux:
310   case SystemZ::LOCFHR:
311   case SystemZ::LOCR:
312   case SystemZ::LOCGR: {
313     auto &WorkingMI = cloneIfNew(MI);
314     // Invert condition.
315     unsigned CCValid = WorkingMI.getOperand(3).getImm();
316     unsigned CCMask = WorkingMI.getOperand(4).getImm();
317     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
318     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
319                                                    OpIdx1, OpIdx2);
320   }
321   default:
322     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
323   }
324 }
325
326 // If MI is a simple load or store for a frame object, return the register
327 // it loads or stores and set FrameIndex to the index of the frame object.
328 // Return 0 otherwise.
329 //
330 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
331 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
332                         unsigned Flag) {
333   const MCInstrDesc &MCID = MI.getDesc();
334   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
335       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
336     FrameIndex = MI.getOperand(1).getIndex();
337     return MI.getOperand(0).getReg();
338   }
339   return 0;
340 }
341
342 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
343                                                int &FrameIndex) const {
344   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
345 }
346
347 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
348                                               int &FrameIndex) const {
349   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
350 }
351
352 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
353                                        int &DestFrameIndex,
354                                        int &SrcFrameIndex) const {
355   // Check for MVC 0(Length,FI1),0(FI2)
356   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
357   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
358       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
359       MI.getOperand(4).getImm() != 0)
360     return false;
361
362   // Check that Length covers the full slots.
363   int64_t Length = MI.getOperand(2).getImm();
364   unsigned FI1 = MI.getOperand(0).getIndex();
365   unsigned FI2 = MI.getOperand(3).getIndex();
366   if (MFI.getObjectSize(FI1) != Length ||
367       MFI.getObjectSize(FI2) != Length)
368     return false;
369
370   DestFrameIndex = FI1;
371   SrcFrameIndex = FI2;
372   return true;
373 }
374
375 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
376                                      MachineBasicBlock *&TBB,
377                                      MachineBasicBlock *&FBB,
378                                      SmallVectorImpl<MachineOperand> &Cond,
379                                      bool AllowModify) const {
380   // Most of the code and comments here are boilerplate.
381
382   // Start from the bottom of the block and work up, examining the
383   // terminator instructions.
384   MachineBasicBlock::iterator I = MBB.end();
385   while (I != MBB.begin()) {
386     --I;
387     if (I->isDebugValue())
388       continue;
389
390     // Working from the bottom, when we see a non-terminator instruction, we're
391     // done.
392     if (!isUnpredicatedTerminator(*I))
393       break;
394
395     // A terminator that isn't a branch can't easily be handled by this
396     // analysis.
397     if (!I->isBranch())
398       return true;
399
400     // Can't handle indirect branches.
401     SystemZII::Branch Branch(getBranchInfo(*I));
402     if (!Branch.Target->isMBB())
403       return true;
404
405     // Punt on compound branches.
406     if (Branch.Type != SystemZII::BranchNormal)
407       return true;
408
409     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
410       // Handle unconditional branches.
411       if (!AllowModify) {
412         TBB = Branch.Target->getMBB();
413         continue;
414       }
415
416       // If the block has any instructions after a JMP, delete them.
417       while (std::next(I) != MBB.end())
418         std::next(I)->eraseFromParent();
419
420       Cond.clear();
421       FBB = nullptr;
422
423       // Delete the JMP if it's equivalent to a fall-through.
424       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
425         TBB = nullptr;
426         I->eraseFromParent();
427         I = MBB.end();
428         continue;
429       }
430
431       // TBB is used to indicate the unconditinal destination.
432       TBB = Branch.Target->getMBB();
433       continue;
434     }
435
436     // Working from the bottom, handle the first conditional branch.
437     if (Cond.empty()) {
438       // FIXME: add X86-style branch swap
439       FBB = TBB;
440       TBB = Branch.Target->getMBB();
441       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
442       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
443       continue;
444     }
445
446     // Handle subsequent conditional branches.
447     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
448
449     // Only handle the case where all conditional branches branch to the same
450     // destination.
451     if (TBB != Branch.Target->getMBB())
452       return true;
453
454     // If the conditions are the same, we can leave them alone.
455     unsigned OldCCValid = Cond[0].getImm();
456     unsigned OldCCMask = Cond[1].getImm();
457     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
458       continue;
459
460     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
461     return false;
462   }
463
464   return false;
465 }
466
467 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
468                                         int *BytesRemoved) const {
469   assert(!BytesRemoved && "code size not handled");
470
471   // Most of the code and comments here are boilerplate.
472   MachineBasicBlock::iterator I = MBB.end();
473   unsigned Count = 0;
474
475   while (I != MBB.begin()) {
476     --I;
477     if (I->isDebugValue())
478       continue;
479     if (!I->isBranch())
480       break;
481     if (!getBranchInfo(*I).Target->isMBB())
482       break;
483     // Remove the branch.
484     I->eraseFromParent();
485     I = MBB.end();
486     ++Count;
487   }
488
489   return Count;
490 }
491
492 bool SystemZInstrInfo::
493 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
494   assert(Cond.size() == 2 && "Invalid condition");
495   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
496   return false;
497 }
498
499 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
500                                         MachineBasicBlock *TBB,
501                                         MachineBasicBlock *FBB,
502                                         ArrayRef<MachineOperand> Cond,
503                                         const DebugLoc &DL,
504                                         int *BytesAdded) const {
505   // In this function we output 32-bit branches, which should always
506   // have enough range.  They can be shortened and relaxed by later code
507   // in the pipeline, if desired.
508
509   // Shouldn't be a fall through.
510   assert(TBB && "insertBranch must not be told to insert a fallthrough");
511   assert((Cond.size() == 2 || Cond.size() == 0) &&
512          "SystemZ branch conditions have one component!");
513   assert(!BytesAdded && "code size not handled");
514
515   if (Cond.empty()) {
516     // Unconditional branch?
517     assert(!FBB && "Unconditional branch with multiple successors!");
518     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
519     return 1;
520   }
521
522   // Conditional branch.
523   unsigned Count = 0;
524   unsigned CCValid = Cond[0].getImm();
525   unsigned CCMask = Cond[1].getImm();
526   BuildMI(&MBB, DL, get(SystemZ::BRC))
527     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
528   ++Count;
529
530   if (FBB) {
531     // Two-way Conditional branch. Insert the second branch.
532     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
533     ++Count;
534   }
535   return Count;
536 }
537
538 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
539                                       unsigned &SrcReg2, int &Mask,
540                                       int &Value) const {
541   assert(MI.isCompare() && "Caller should have checked for a comparison");
542
543   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
544       MI.getOperand(1).isImm()) {
545     SrcReg = MI.getOperand(0).getReg();
546     SrcReg2 = 0;
547     Value = MI.getOperand(1).getImm();
548     Mask = ~0;
549     return true;
550   }
551
552   return false;
553 }
554
555 // If Reg is a virtual register, return its definition, otherwise return null.
556 static MachineInstr *getDef(unsigned Reg,
557                             const MachineRegisterInfo *MRI) {
558   if (TargetRegisterInfo::isPhysicalRegister(Reg))
559     return nullptr;
560   return MRI->getUniqueVRegDef(Reg);
561 }
562
563 // Return true if MI is a shift of type Opcode by Imm bits.
564 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
565   return (MI->getOpcode() == Opcode &&
566           !MI->getOperand(2).getReg() &&
567           MI->getOperand(3).getImm() == Imm);
568 }
569
570 // If the destination of MI has no uses, delete it as dead.
571 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
572   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
573     MI->eraseFromParent();
574 }
575
576 // Compare compares SrcReg against zero.  Check whether SrcReg contains
577 // the result of an IPM sequence whose input CC survives until Compare,
578 // and whether Compare is therefore redundant.  Delete it and return
579 // true if so.
580 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg,
581                                   const MachineRegisterInfo *MRI,
582                                   const TargetRegisterInfo *TRI) {
583   MachineInstr *LGFR = nullptr;
584   MachineInstr *RLL = getDef(SrcReg, MRI);
585   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
586     LGFR = RLL;
587     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
588   }
589   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
590     return false;
591
592   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
593   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
594     return false;
595
596   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
597   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
598     return false;
599
600   // Check that there are no assignments to CC between the IPM and Compare,
601   if (IPM->getParent() != Compare.getParent())
602     return false;
603   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator();
604   for (++MBBI; MBBI != MBBE; ++MBBI) {
605     MachineInstr &MI = *MBBI;
606     if (MI.modifiesRegister(SystemZ::CC, TRI))
607       return false;
608   }
609
610   Compare.eraseFromParent();
611   if (LGFR)
612     eraseIfDead(LGFR, MRI);
613   eraseIfDead(RLL, MRI);
614   eraseIfDead(SRL, MRI);
615   eraseIfDead(IPM, MRI);
616
617   return true;
618 }
619
620 bool SystemZInstrInfo::optimizeCompareInstr(
621     MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask,
622     int Value, const MachineRegisterInfo *MRI) const {
623   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
624   bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0;
625   return Value == 0 && !IsLogical &&
626          removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
627 }
628
629 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
630                                        ArrayRef<MachineOperand> Pred,
631                                        unsigned TrueReg, unsigned FalseReg,
632                                        int &CondCycles, int &TrueCycles,
633                                        int &FalseCycles) const {
634   // Not all subtargets have LOCR instructions.
635   if (!STI.hasLoadStoreOnCond())
636     return false;
637   if (Pred.size() != 2)
638     return false;
639
640   // Check register classes.
641   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
642   const TargetRegisterClass *RC =
643     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
644   if (!RC)
645     return false;
646
647   // We have LOCR instructions for 32 and 64 bit general purpose registers.
648   if ((STI.hasLoadStoreOnCond2() &&
649        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
650       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
651       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
652     CondCycles = 2;
653     TrueCycles = 2;
654     FalseCycles = 2;
655     return true;
656   }
657
658   // Can't do anything else.
659   return false;
660 }
661
662 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
663                                     MachineBasicBlock::iterator I,
664                                     const DebugLoc &DL, unsigned DstReg,
665                                     ArrayRef<MachineOperand> Pred,
666                                     unsigned TrueReg,
667                                     unsigned FalseReg) const {
668   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
669   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
670
671   assert(Pred.size() == 2 && "Invalid condition");
672   unsigned CCValid = Pred[0].getImm();
673   unsigned CCMask = Pred[1].getImm();
674
675   unsigned Opc;
676   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
677     if (STI.hasLoadStoreOnCond2())
678       Opc = SystemZ::LOCRMux;
679     else {
680       Opc = SystemZ::LOCR;
681       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
682       unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
683       unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
684       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
685       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
686       TrueReg = TReg;
687       FalseReg = FReg;
688     }
689   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC))
690     Opc = SystemZ::LOCGR;
691   else
692     llvm_unreachable("Invalid register class");
693
694   BuildMI(MBB, I, DL, get(Opc), DstReg)
695     .addReg(FalseReg).addReg(TrueReg)
696     .addImm(CCValid).addImm(CCMask);
697 }
698
699 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
700                                      unsigned Reg,
701                                      MachineRegisterInfo *MRI) const {
702   unsigned DefOpc = DefMI.getOpcode();
703   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
704       DefOpc != SystemZ::LGHI)
705     return false;
706   if (DefMI.getOperand(0).getReg() != Reg)
707     return false;
708   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
709
710   unsigned UseOpc = UseMI.getOpcode();
711   unsigned NewUseOpc;
712   unsigned UseIdx;
713   int CommuteIdx = -1;
714   switch (UseOpc) {
715   case SystemZ::LOCRMux:
716     if (!STI.hasLoadStoreOnCond2())
717       return false;
718     NewUseOpc = SystemZ::LOCHIMux;
719     if (UseMI.getOperand(2).getReg() == Reg)
720       UseIdx = 2;
721     else if (UseMI.getOperand(1).getReg() == Reg)
722       UseIdx = 2, CommuteIdx = 1;
723     else
724       return false;
725     break;
726   case SystemZ::LOCGR:
727     if (!STI.hasLoadStoreOnCond2())
728       return false;
729     NewUseOpc = SystemZ::LOCGHI;
730     if (UseMI.getOperand(2).getReg() == Reg)
731       UseIdx = 2;
732     else if (UseMI.getOperand(1).getReg() == Reg)
733       UseIdx = 2, CommuteIdx = 1;
734     else
735       return false;
736     break;
737   default:
738     return false;
739   }
740
741   if (CommuteIdx != -1)
742     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
743       return false;
744
745   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
746   UseMI.setDesc(get(NewUseOpc));
747   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
748   if (DeleteDef)
749     DefMI.eraseFromParent();
750
751   return true;
752 }
753
754 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
755   unsigned Opcode = MI.getOpcode();
756   if (Opcode == SystemZ::Return ||
757       Opcode == SystemZ::Trap ||
758       Opcode == SystemZ::CallJG ||
759       Opcode == SystemZ::CallBR)
760     return true;
761   return false;
762 }
763
764 bool SystemZInstrInfo::
765 isProfitableToIfCvt(MachineBasicBlock &MBB,
766                     unsigned NumCycles, unsigned ExtraPredCycles,
767                     BranchProbability Probability) const {
768   // Avoid using conditional returns at the end of a loop (since then
769   // we'd need to emit an unconditional branch to the beginning anyway,
770   // making the loop body longer).  This doesn't apply for low-probability
771   // loops (eg. compare-and-swap retry), so just decide based on branch
772   // probability instead of looping structure.
773   // However, since Compare and Trap instructions cost the same as a regular
774   // Compare instruction, we should allow the if conversion to convert this
775   // into a Conditional Compare regardless of the branch probability.
776   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
777       MBB.succ_empty() && Probability < BranchProbability(1, 8))
778     return false;
779   // For now only convert single instructions.
780   return NumCycles == 1;
781 }
782
783 bool SystemZInstrInfo::
784 isProfitableToIfCvt(MachineBasicBlock &TMBB,
785                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
786                     MachineBasicBlock &FMBB,
787                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
788                     BranchProbability Probability) const {
789   // For now avoid converting mutually-exclusive cases.
790   return false;
791 }
792
793 bool SystemZInstrInfo::
794 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
795                           BranchProbability Probability) const {
796   // For now only duplicate single instructions.
797   return NumCycles == 1;
798 }
799
800 bool SystemZInstrInfo::PredicateInstruction(
801     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
802   assert(Pred.size() == 2 && "Invalid condition");
803   unsigned CCValid = Pred[0].getImm();
804   unsigned CCMask = Pred[1].getImm();
805   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
806   unsigned Opcode = MI.getOpcode();
807   if (Opcode == SystemZ::Trap) {
808     MI.setDesc(get(SystemZ::CondTrap));
809     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
810       .addImm(CCValid).addImm(CCMask)
811       .addReg(SystemZ::CC, RegState::Implicit);
812     return true;
813   }
814   if (Opcode == SystemZ::Return) {
815     MI.setDesc(get(SystemZ::CondReturn));
816     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
817       .addImm(CCValid).addImm(CCMask)
818       .addReg(SystemZ::CC, RegState::Implicit);
819     return true;
820   }
821   if (Opcode == SystemZ::CallJG) {
822     MachineOperand FirstOp = MI.getOperand(0);
823     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
824     MI.RemoveOperand(1);
825     MI.RemoveOperand(0);
826     MI.setDesc(get(SystemZ::CallBRCL));
827     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
828         .addImm(CCValid)
829         .addImm(CCMask)
830         .add(FirstOp)
831         .addRegMask(RegMask)
832         .addReg(SystemZ::CC, RegState::Implicit);
833     return true;
834   }
835   if (Opcode == SystemZ::CallBR) {
836     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
837     MI.RemoveOperand(0);
838     MI.setDesc(get(SystemZ::CallBCR));
839     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
840       .addImm(CCValid).addImm(CCMask)
841       .addRegMask(RegMask)
842       .addReg(SystemZ::CC, RegState::Implicit);
843     return true;
844   }
845   return false;
846 }
847
848 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
849                                    MachineBasicBlock::iterator MBBI,
850                                    const DebugLoc &DL, unsigned DestReg,
851                                    unsigned SrcReg, bool KillSrc) const {
852   // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
853   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
854     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
855                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
856     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
857                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
858     return;
859   }
860
861   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
862     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
863                   false);
864     return;
865   }
866
867   // Everything else needs only one instruction.
868   unsigned Opcode;
869   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
870     Opcode = SystemZ::LGR;
871   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
872     // For z13 we prefer LDR over LER to avoid partial register dependencies.
873     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
874   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
875     Opcode = SystemZ::LDR;
876   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
877     Opcode = SystemZ::LXR;
878   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
879     Opcode = SystemZ::VLR32;
880   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
881     Opcode = SystemZ::VLR64;
882   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
883     Opcode = SystemZ::VLR;
884   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
885     Opcode = SystemZ::CPYA;
886   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
887            SystemZ::GR32BitRegClass.contains(SrcReg))
888     Opcode = SystemZ::SAR;
889   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
890            SystemZ::AR32BitRegClass.contains(SrcReg))
891     Opcode = SystemZ::EAR;
892   else
893     llvm_unreachable("Impossible reg-to-reg copy");
894
895   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
896     .addReg(SrcReg, getKillRegState(KillSrc));
897 }
898
899 void SystemZInstrInfo::storeRegToStackSlot(
900     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
901     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
902     const TargetRegisterInfo *TRI) const {
903   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
904
905   // Callers may expect a single instruction, so keep 128-bit moves
906   // together for now and lower them after register allocation.
907   unsigned LoadOpcode, StoreOpcode;
908   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
909   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
910                         .addReg(SrcReg, getKillRegState(isKill)),
911                     FrameIdx);
912 }
913
914 void SystemZInstrInfo::loadRegFromStackSlot(
915     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
916     int FrameIdx, const TargetRegisterClass *RC,
917     const TargetRegisterInfo *TRI) const {
918   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
919
920   // Callers may expect a single instruction, so keep 128-bit moves
921   // together for now and lower them after register allocation.
922   unsigned LoadOpcode, StoreOpcode;
923   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
924   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
925                     FrameIdx);
926 }
927
928 // Return true if MI is a simple load or store with a 12-bit displacement
929 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
930 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
931   const MCInstrDesc &MCID = MI->getDesc();
932   return ((MCID.TSFlags & Flag) &&
933           isUInt<12>(MI->getOperand(2).getImm()) &&
934           MI->getOperand(3).getReg() == 0);
935 }
936
937 namespace {
938
939 struct LogicOp {
940   LogicOp() = default;
941   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
942     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
943
944   explicit operator bool() const { return RegSize; }
945
946   unsigned RegSize = 0;
947   unsigned ImmLSB = 0;
948   unsigned ImmSize = 0;
949 };
950
951 } // end anonymous namespace
952
953 static LogicOp interpretAndImmediate(unsigned Opcode) {
954   switch (Opcode) {
955   case SystemZ::NILMux: return LogicOp(32,  0, 16);
956   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
957   case SystemZ::NILL64: return LogicOp(64,  0, 16);
958   case SystemZ::NILH64: return LogicOp(64, 16, 16);
959   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
960   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
961   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
962   case SystemZ::NILF64: return LogicOp(64,  0, 32);
963   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
964   default:              return LogicOp();
965   }
966 }
967
968 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
969   if (OldMI->registerDefIsDead(SystemZ::CC)) {
970     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
971     if (CCDef != nullptr)
972       CCDef->setIsDead(true);
973   }
974 }
975
976 // Used to return from convertToThreeAddress after replacing two-address
977 // instruction OldMI with three-address instruction NewMI.
978 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
979                                                  MachineInstr *NewMI,
980                                                  LiveVariables *LV) {
981   if (LV) {
982     unsigned NumOps = OldMI->getNumOperands();
983     for (unsigned I = 1; I < NumOps; ++I) {
984       MachineOperand &Op = OldMI->getOperand(I);
985       if (Op.isReg() && Op.isKill())
986         LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI);
987     }
988   }
989   transferDeadCC(OldMI, NewMI);
990   return NewMI;
991 }
992
993 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
994     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
995   MachineBasicBlock *MBB = MI.getParent();
996   MachineFunction *MF = MBB->getParent();
997   MachineRegisterInfo &MRI = MF->getRegInfo();
998
999   unsigned Opcode = MI.getOpcode();
1000   unsigned NumOps = MI.getNumOperands();
1001
1002   // Try to convert something like SLL into SLLK, if supported.
1003   // We prefer to keep the two-operand form where possible both
1004   // because it tends to be shorter and because some instructions
1005   // have memory forms that can be used during spilling.
1006   if (STI.hasDistinctOps()) {
1007     MachineOperand &Dest = MI.getOperand(0);
1008     MachineOperand &Src = MI.getOperand(1);
1009     unsigned DestReg = Dest.getReg();
1010     unsigned SrcReg = Src.getReg();
1011     // AHIMux is only really a three-operand instruction when both operands
1012     // are low registers.  Try to constrain both operands to be low if
1013     // possible.
1014     if (Opcode == SystemZ::AHIMux &&
1015         TargetRegisterInfo::isVirtualRegister(DestReg) &&
1016         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1017         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
1018         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
1019       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
1020       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
1021     }
1022     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
1023     if (ThreeOperandOpcode >= 0) {
1024       // Create three address instruction without adding the implicit
1025       // operands. Those will instead be copied over from the original
1026       // instruction by the loop below.
1027       MachineInstrBuilder MIB(
1028           *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(),
1029                                       /*NoImplicit=*/true));
1030       MIB.add(Dest);
1031       // Keep the kill state, but drop the tied flag.
1032       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
1033       // Keep the remaining operands as-is.
1034       for (unsigned I = 2; I < NumOps; ++I)
1035         MIB.add(MI.getOperand(I));
1036       MBB->insert(MI, MIB);
1037       return finishConvertToThreeAddress(&MI, MIB, LV);
1038     }
1039   }
1040
1041   // Try to convert an AND into an RISBG-type instruction.
1042   if (LogicOp And = interpretAndImmediate(Opcode)) {
1043     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
1044     // AND IMMEDIATE leaves the other bits of the register unchanged.
1045     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
1046     unsigned Start, End;
1047     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
1048       unsigned NewOpcode;
1049       if (And.RegSize == 64) {
1050         NewOpcode = SystemZ::RISBG;
1051         // Prefer RISBGN if available, since it does not clobber CC.
1052         if (STI.hasMiscellaneousExtensions())
1053           NewOpcode = SystemZ::RISBGN;
1054       } else {
1055         NewOpcode = SystemZ::RISBMux;
1056         Start &= 31;
1057         End &= 31;
1058       }
1059       MachineOperand &Dest = MI.getOperand(0);
1060       MachineOperand &Src = MI.getOperand(1);
1061       MachineInstrBuilder MIB =
1062           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
1063               .add(Dest)
1064               .addReg(0)
1065               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
1066                       Src.getSubReg())
1067               .addImm(Start)
1068               .addImm(End + 128)
1069               .addImm(0);
1070       return finishConvertToThreeAddress(&MI, MIB, LV);
1071     }
1072   }
1073   return nullptr;
1074 }
1075
1076 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1077     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1078     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1079     LiveIntervals *LIS) const {
1080   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1081   const MachineFrameInfo &MFI = MF.getFrameInfo();
1082   unsigned Size = MFI.getObjectSize(FrameIndex);
1083   unsigned Opcode = MI.getOpcode();
1084
1085   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1086     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1087         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1088
1089       // Check CC liveness, since new instruction introduces a dead
1090       // def of CC.
1091       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1092       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1093       ++CCUnit;
1094       assert(!CCUnit.isValid() && "CC only has one reg unit.");
1095       SlotIndex MISlot =
1096           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1097       if (!CCLiveRange.liveAt(MISlot)) {
1098         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1099         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1100                                         MI.getDebugLoc(), get(SystemZ::AGSI))
1101                                     .addFrameIndex(FrameIndex)
1102                                     .addImm(0)
1103                                     .addImm(MI.getOperand(2).getImm());
1104         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1105         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1106         return BuiltMI;
1107       }
1108     }
1109     return nullptr;
1110   }
1111
1112   // All other cases require a single operand.
1113   if (Ops.size() != 1)
1114     return nullptr;
1115
1116   unsigned OpNum = Ops[0];
1117   assert(Size ==
1118              MF.getRegInfo()
1119                  .getRegClass(MI.getOperand(OpNum).getReg())
1120                  ->getSize() &&
1121          "Invalid size combination");
1122
1123   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1124       isInt<8>(MI.getOperand(2).getImm())) {
1125     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1126     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1127     MachineInstr *BuiltMI =
1128         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1129             .addFrameIndex(FrameIndex)
1130             .addImm(0)
1131             .addImm(MI.getOperand(2).getImm());
1132     transferDeadCC(&MI, BuiltMI);
1133     return BuiltMI;
1134   }
1135
1136   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1137     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1138     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1139     // If we're spilling the destination of an LDGR or LGDR, store the
1140     // source register instead.
1141     if (OpNum == 0) {
1142       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1143       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1144                      get(StoreOpcode))
1145           .add(MI.getOperand(1))
1146           .addFrameIndex(FrameIndex)
1147           .addImm(0)
1148           .addReg(0);
1149     }
1150     // If we're spilling the source of an LDGR or LGDR, load the
1151     // destination register instead.
1152     if (OpNum == 1) {
1153       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1154       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1155                      get(LoadOpcode))
1156         .add(MI.getOperand(0))
1157         .addFrameIndex(FrameIndex)
1158         .addImm(0)
1159         .addReg(0);
1160     }
1161   }
1162
1163   // Look for cases where the source of a simple store or the destination
1164   // of a simple load is being spilled.  Try to use MVC instead.
1165   //
1166   // Although MVC is in practice a fast choice in these cases, it is still
1167   // logically a bytewise copy.  This means that we cannot use it if the
1168   // load or store is volatile.  We also wouldn't be able to use MVC if
1169   // the two memories partially overlap, but that case cannot occur here,
1170   // because we know that one of the memories is a full frame index.
1171   //
1172   // For performance reasons, we also want to avoid using MVC if the addresses
1173   // might be equal.  We don't worry about that case here, because spill slot
1174   // coloring happens later, and because we have special code to remove
1175   // MVCs that turn out to be redundant.
1176   if (OpNum == 0 && MI.hasOneMemOperand()) {
1177     MachineMemOperand *MMO = *MI.memoperands_begin();
1178     if (MMO->getSize() == Size && !MMO->isVolatile()) {
1179       // Handle conversion of loads.
1180       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1181         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1182                        get(SystemZ::MVC))
1183             .addFrameIndex(FrameIndex)
1184             .addImm(0)
1185             .addImm(Size)
1186             .add(MI.getOperand(1))
1187             .addImm(MI.getOperand(2).getImm())
1188             .addMemOperand(MMO);
1189       }
1190       // Handle conversion of stores.
1191       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1192         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1193                        get(SystemZ::MVC))
1194             .add(MI.getOperand(1))
1195             .addImm(MI.getOperand(2).getImm())
1196             .addImm(Size)
1197             .addFrameIndex(FrameIndex)
1198             .addImm(0)
1199             .addMemOperand(MMO);
1200       }
1201     }
1202   }
1203
1204   // If the spilled operand is the final one, try to change <INSN>R
1205   // into <INSN>.
1206   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1207   if (MemOpcode >= 0) {
1208     unsigned NumOps = MI.getNumExplicitOperands();
1209     if (OpNum == NumOps - 1) {
1210       const MCInstrDesc &MemDesc = get(MemOpcode);
1211       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1212       assert(AccessBytes != 0 && "Size of access should be known");
1213       assert(AccessBytes <= Size && "Access outside the frame index");
1214       uint64_t Offset = Size - AccessBytes;
1215       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1216                                         MI.getDebugLoc(), get(MemOpcode));
1217       for (unsigned I = 0; I < OpNum; ++I)
1218         MIB.add(MI.getOperand(I));
1219       MIB.addFrameIndex(FrameIndex).addImm(Offset);
1220       if (MemDesc.TSFlags & SystemZII::HasIndex)
1221         MIB.addReg(0);
1222       transferDeadCC(&MI, MIB);
1223       return MIB;
1224     }
1225   }
1226
1227   return nullptr;
1228 }
1229
1230 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1231     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1232     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1233     LiveIntervals *LIS) const {
1234   return nullptr;
1235 }
1236
1237 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1238   switch (MI.getOpcode()) {
1239   case SystemZ::L128:
1240     splitMove(MI, SystemZ::LG);
1241     return true;
1242
1243   case SystemZ::ST128:
1244     splitMove(MI, SystemZ::STG);
1245     return true;
1246
1247   case SystemZ::LX:
1248     splitMove(MI, SystemZ::LD);
1249     return true;
1250
1251   case SystemZ::STX:
1252     splitMove(MI, SystemZ::STD);
1253     return true;
1254
1255   case SystemZ::LBMux:
1256     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1257     return true;
1258
1259   case SystemZ::LHMux:
1260     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1261     return true;
1262
1263   case SystemZ::LLCRMux:
1264     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1265     return true;
1266
1267   case SystemZ::LLHRMux:
1268     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1269     return true;
1270
1271   case SystemZ::LLCMux:
1272     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1273     return true;
1274
1275   case SystemZ::LLHMux:
1276     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1277     return true;
1278
1279   case SystemZ::LMux:
1280     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1281     return true;
1282
1283   case SystemZ::LOCMux:
1284     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1285     return true;
1286
1287   case SystemZ::LOCHIMux:
1288     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1289     return true;
1290
1291   case SystemZ::LOCRMux:
1292     expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR);
1293     return true;
1294
1295   case SystemZ::STCMux:
1296     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1297     return true;
1298
1299   case SystemZ::STHMux:
1300     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1301     return true;
1302
1303   case SystemZ::STMux:
1304     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1305     return true;
1306
1307   case SystemZ::STOCMux:
1308     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1309     return true;
1310
1311   case SystemZ::LHIMux:
1312     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1313     return true;
1314
1315   case SystemZ::IIFMux:
1316     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1317     return true;
1318
1319   case SystemZ::IILMux:
1320     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1321     return true;
1322
1323   case SystemZ::IIHMux:
1324     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1325     return true;
1326
1327   case SystemZ::NIFMux:
1328     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1329     return true;
1330
1331   case SystemZ::NILMux:
1332     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1333     return true;
1334
1335   case SystemZ::NIHMux:
1336     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1337     return true;
1338
1339   case SystemZ::OIFMux:
1340     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1341     return true;
1342
1343   case SystemZ::OILMux:
1344     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1345     return true;
1346
1347   case SystemZ::OIHMux:
1348     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1349     return true;
1350
1351   case SystemZ::XIFMux:
1352     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1353     return true;
1354
1355   case SystemZ::TMLMux:
1356     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1357     return true;
1358
1359   case SystemZ::TMHMux:
1360     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1361     return true;
1362
1363   case SystemZ::AHIMux:
1364     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1365     return true;
1366
1367   case SystemZ::AHIMuxK:
1368     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1369     return true;
1370
1371   case SystemZ::AFIMux:
1372     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1373     return true;
1374
1375   case SystemZ::CHIMux:
1376     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1377     return true;
1378
1379   case SystemZ::CFIMux:
1380     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1381     return true;
1382
1383   case SystemZ::CLFIMux:
1384     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1385     return true;
1386
1387   case SystemZ::CMux:
1388     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1389     return true;
1390
1391   case SystemZ::CLMux:
1392     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1393     return true;
1394
1395   case SystemZ::RISBMux: {
1396     bool DestIsHigh = isHighReg(MI.getOperand(0).getReg());
1397     bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg());
1398     if (SrcIsHigh == DestIsHigh)
1399       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1400     else {
1401       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1402       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1403     }
1404     return true;
1405   }
1406
1407   case SystemZ::ADJDYNALLOC:
1408     splitAdjDynAlloc(MI);
1409     return true;
1410
1411   case TargetOpcode::LOAD_STACK_GUARD:
1412     expandLoadStackGuard(&MI);
1413     return true;
1414
1415   default:
1416     return false;
1417   }
1418 }
1419
1420 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1421   if (MI.getOpcode() == TargetOpcode::INLINEASM) {
1422     const MachineFunction *MF = MI.getParent()->getParent();
1423     const char *AsmStr = MI.getOperand(0).getSymbolName();
1424     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1425   }
1426   return MI.getDesc().getSize();
1427 }
1428
1429 SystemZII::Branch
1430 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1431   switch (MI.getOpcode()) {
1432   case SystemZ::BR:
1433   case SystemZ::J:
1434   case SystemZ::JG:
1435     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1436                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1437
1438   case SystemZ::BRC:
1439   case SystemZ::BRCL:
1440     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1441                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1442
1443   case SystemZ::BRCT:
1444   case SystemZ::BRCTH:
1445     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1446                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1447
1448   case SystemZ::BRCTG:
1449     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1450                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1451
1452   case SystemZ::CIJ:
1453   case SystemZ::CRJ:
1454     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1455                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1456
1457   case SystemZ::CLIJ:
1458   case SystemZ::CLRJ:
1459     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1460                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1461
1462   case SystemZ::CGIJ:
1463   case SystemZ::CGRJ:
1464     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1465                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1466
1467   case SystemZ::CLGIJ:
1468   case SystemZ::CLGRJ:
1469     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1470                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1471
1472   default:
1473     llvm_unreachable("Unrecognized branch opcode");
1474   }
1475 }
1476
1477 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1478                                            unsigned &LoadOpcode,
1479                                            unsigned &StoreOpcode) const {
1480   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1481     LoadOpcode = SystemZ::L;
1482     StoreOpcode = SystemZ::ST;
1483   } else if (RC == &SystemZ::GRH32BitRegClass) {
1484     LoadOpcode = SystemZ::LFH;
1485     StoreOpcode = SystemZ::STFH;
1486   } else if (RC == &SystemZ::GRX32BitRegClass) {
1487     LoadOpcode = SystemZ::LMux;
1488     StoreOpcode = SystemZ::STMux;
1489   } else if (RC == &SystemZ::GR64BitRegClass ||
1490              RC == &SystemZ::ADDR64BitRegClass) {
1491     LoadOpcode = SystemZ::LG;
1492     StoreOpcode = SystemZ::STG;
1493   } else if (RC == &SystemZ::GR128BitRegClass ||
1494              RC == &SystemZ::ADDR128BitRegClass) {
1495     LoadOpcode = SystemZ::L128;
1496     StoreOpcode = SystemZ::ST128;
1497   } else if (RC == &SystemZ::FP32BitRegClass) {
1498     LoadOpcode = SystemZ::LE;
1499     StoreOpcode = SystemZ::STE;
1500   } else if (RC == &SystemZ::FP64BitRegClass) {
1501     LoadOpcode = SystemZ::LD;
1502     StoreOpcode = SystemZ::STD;
1503   } else if (RC == &SystemZ::FP128BitRegClass) {
1504     LoadOpcode = SystemZ::LX;
1505     StoreOpcode = SystemZ::STX;
1506   } else if (RC == &SystemZ::VR32BitRegClass) {
1507     LoadOpcode = SystemZ::VL32;
1508     StoreOpcode = SystemZ::VST32;
1509   } else if (RC == &SystemZ::VR64BitRegClass) {
1510     LoadOpcode = SystemZ::VL64;
1511     StoreOpcode = SystemZ::VST64;
1512   } else if (RC == &SystemZ::VF128BitRegClass ||
1513              RC == &SystemZ::VR128BitRegClass) {
1514     LoadOpcode = SystemZ::VL;
1515     StoreOpcode = SystemZ::VST;
1516   } else
1517     llvm_unreachable("Unsupported regclass to load or store");
1518 }
1519
1520 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1521                                               int64_t Offset) const {
1522   const MCInstrDesc &MCID = get(Opcode);
1523   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1524   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1525     // Get the instruction to use for unsigned 12-bit displacements.
1526     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1527     if (Disp12Opcode >= 0)
1528       return Disp12Opcode;
1529
1530     // All address-related instructions can use unsigned 12-bit
1531     // displacements.
1532     return Opcode;
1533   }
1534   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1535     // Get the instruction to use for signed 20-bit displacements.
1536     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1537     if (Disp20Opcode >= 0)
1538       return Disp20Opcode;
1539
1540     // Check whether Opcode allows signed 20-bit displacements.
1541     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1542       return Opcode;
1543   }
1544   return 0;
1545 }
1546
1547 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1548   switch (Opcode) {
1549   case SystemZ::L:      return SystemZ::LT;
1550   case SystemZ::LY:     return SystemZ::LT;
1551   case SystemZ::LG:     return SystemZ::LTG;
1552   case SystemZ::LGF:    return SystemZ::LTGF;
1553   case SystemZ::LR:     return SystemZ::LTR;
1554   case SystemZ::LGFR:   return SystemZ::LTGFR;
1555   case SystemZ::LGR:    return SystemZ::LTGR;
1556   case SystemZ::LER:    return SystemZ::LTEBR;
1557   case SystemZ::LDR:    return SystemZ::LTDBR;
1558   case SystemZ::LXR:    return SystemZ::LTXBR;
1559   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1560   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1561   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1562   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1563   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1564   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1565   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1566   // actually use the condition code, we may turn it back into RISGB.
1567   // Note that RISBG is not really a "load-and-test" instruction,
1568   // but sets the same condition code values, so is OK to use here.
1569   case SystemZ::RISBGN: return SystemZ::RISBG;
1570   default:              return 0;
1571   }
1572 }
1573
1574 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1575 // have already been filtered out.  Store the first set bit in LSB and
1576 // the number of set bits in Length if so.
1577 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1578   unsigned First = findFirstSet(Mask);
1579   uint64_t Top = (Mask >> First) + 1;
1580   if ((Top & -Top) == Top) {
1581     LSB = First;
1582     Length = findFirstSet(Top);
1583     return true;
1584   }
1585   return false;
1586 }
1587
1588 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1589                                    unsigned &Start, unsigned &End) const {
1590   // Reject trivial all-zero masks.
1591   Mask &= allOnes(BitSize);
1592   if (Mask == 0)
1593     return false;
1594
1595   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1596   // the msb and End specifies the index of the lsb.
1597   unsigned LSB, Length;
1598   if (isStringOfOnes(Mask, LSB, Length)) {
1599     Start = 63 - (LSB + Length - 1);
1600     End = 63 - LSB;
1601     return true;
1602   }
1603
1604   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1605   // of the low 1s and End specifies the lsb of the high 1s.
1606   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1607     assert(LSB > 0 && "Bottom bit must be set");
1608     assert(LSB + Length < BitSize && "Top bit must be set");
1609     Start = 63 - (LSB - 1);
1610     End = 63 - (LSB + Length);
1611     return true;
1612   }
1613
1614   return false;
1615 }
1616
1617 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1618                                            SystemZII::FusedCompareType Type,
1619                                            const MachineInstr *MI) const {
1620   switch (Opcode) {
1621   case SystemZ::CHI:
1622   case SystemZ::CGHI:
1623     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1624       return 0;
1625     break;
1626   case SystemZ::CLFI:
1627   case SystemZ::CLGFI:
1628     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1629       return 0;
1630     break;
1631   case SystemZ::CL:
1632   case SystemZ::CLG:
1633     if (!STI.hasMiscellaneousExtensions())
1634       return 0;
1635     if (!(MI && MI->getOperand(3).getReg() == 0))
1636       return 0;
1637     break;
1638   }
1639   switch (Type) {
1640   case SystemZII::CompareAndBranch:
1641     switch (Opcode) {
1642     case SystemZ::CR:
1643       return SystemZ::CRJ;
1644     case SystemZ::CGR:
1645       return SystemZ::CGRJ;
1646     case SystemZ::CHI:
1647       return SystemZ::CIJ;
1648     case SystemZ::CGHI:
1649       return SystemZ::CGIJ;
1650     case SystemZ::CLR:
1651       return SystemZ::CLRJ;
1652     case SystemZ::CLGR:
1653       return SystemZ::CLGRJ;
1654     case SystemZ::CLFI:
1655       return SystemZ::CLIJ;
1656     case SystemZ::CLGFI:
1657       return SystemZ::CLGIJ;
1658     default:
1659       return 0;
1660     }
1661   case SystemZII::CompareAndReturn:
1662     switch (Opcode) {
1663     case SystemZ::CR:
1664       return SystemZ::CRBReturn;
1665     case SystemZ::CGR:
1666       return SystemZ::CGRBReturn;
1667     case SystemZ::CHI:
1668       return SystemZ::CIBReturn;
1669     case SystemZ::CGHI:
1670       return SystemZ::CGIBReturn;
1671     case SystemZ::CLR:
1672       return SystemZ::CLRBReturn;
1673     case SystemZ::CLGR:
1674       return SystemZ::CLGRBReturn;
1675     case SystemZ::CLFI:
1676       return SystemZ::CLIBReturn;
1677     case SystemZ::CLGFI:
1678       return SystemZ::CLGIBReturn;
1679     default:
1680       return 0;
1681     }
1682   case SystemZII::CompareAndSibcall:
1683     switch (Opcode) {
1684     case SystemZ::CR:
1685       return SystemZ::CRBCall;
1686     case SystemZ::CGR:
1687       return SystemZ::CGRBCall;
1688     case SystemZ::CHI:
1689       return SystemZ::CIBCall;
1690     case SystemZ::CGHI:
1691       return SystemZ::CGIBCall;
1692     case SystemZ::CLR:
1693       return SystemZ::CLRBCall;
1694     case SystemZ::CLGR:
1695       return SystemZ::CLGRBCall;
1696     case SystemZ::CLFI:
1697       return SystemZ::CLIBCall;
1698     case SystemZ::CLGFI:
1699       return SystemZ::CLGIBCall;
1700     default:
1701       return 0;
1702     }
1703   case SystemZII::CompareAndTrap:
1704     switch (Opcode) {
1705     case SystemZ::CR:
1706       return SystemZ::CRT;
1707     case SystemZ::CGR:
1708       return SystemZ::CGRT;
1709     case SystemZ::CHI:
1710       return SystemZ::CIT;
1711     case SystemZ::CGHI:
1712       return SystemZ::CGIT;
1713     case SystemZ::CLR:
1714       return SystemZ::CLRT;
1715     case SystemZ::CLGR:
1716       return SystemZ::CLGRT;
1717     case SystemZ::CLFI:
1718       return SystemZ::CLFIT;
1719     case SystemZ::CLGFI:
1720       return SystemZ::CLGIT;
1721     case SystemZ::CL:
1722       return SystemZ::CLT;
1723     case SystemZ::CLG:
1724       return SystemZ::CLGT;
1725     default:
1726       return 0;
1727     }
1728   }
1729   return 0;
1730 }
1731
1732 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1733   if (!STI.hasLoadAndTrap())
1734     return 0;
1735   switch (Opcode) {
1736   case SystemZ::L:
1737   case SystemZ::LY:
1738     return SystemZ::LAT;
1739   case SystemZ::LG:
1740     return SystemZ::LGAT;
1741   case SystemZ::LFH:
1742     return SystemZ::LFHAT;
1743   case SystemZ::LLGF:
1744     return SystemZ::LLGFAT;
1745   case SystemZ::LLGT:
1746     return SystemZ::LLGTAT;
1747   }
1748   return 0;
1749 }
1750
1751 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1752                                      MachineBasicBlock::iterator MBBI,
1753                                      unsigned Reg, uint64_t Value) const {
1754   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1755   unsigned Opcode;
1756   if (isInt<16>(Value))
1757     Opcode = SystemZ::LGHI;
1758   else if (SystemZ::isImmLL(Value))
1759     Opcode = SystemZ::LLILL;
1760   else if (SystemZ::isImmLH(Value)) {
1761     Opcode = SystemZ::LLILH;
1762     Value >>= 16;
1763   } else {
1764     assert(isInt<32>(Value) && "Huge values not handled yet");
1765     Opcode = SystemZ::LGFI;
1766   }
1767   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1768 }
1769
1770 bool SystemZInstrInfo::
1771 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1772                                 AliasAnalysis *AA) const {
1773
1774   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1775     return false;
1776
1777   // If mem-operands show that the same address Value is used by both
1778   // instructions, check for non-overlapping offsets and widths. Not
1779   // sure if a register based analysis would be an improvement...
1780
1781   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1782   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1783   const Value *VALa = MMOa->getValue();
1784   const Value *VALb = MMOb->getValue();
1785   bool SameVal = (VALa && VALb && (VALa == VALb));
1786   if (!SameVal) {
1787     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1788     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1789     if (PSVa && PSVb && (PSVa == PSVb))
1790       SameVal = true;
1791   }
1792   if (SameVal) {
1793     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1794     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1795     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1796     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1797     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1798     if (LowOffset + LowWidth <= HighOffset)
1799       return true;
1800   }
1801
1802   return false;
1803 }