]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
MFV r318947: 7578 Fix/improve some aspects of ZIL writing.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / SystemZLongBranch.cpp
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass makes sure that all branches are in range.  There are several ways
11 // in which this could be done.  One aggressive approach is to assume that all
12 // branches are in range and successively replace those that turn out not
13 // to be in range with a longer form (branch relaxation).  A simple
14 // implementation is to continually walk through the function relaxing
15 // branches until no more changes are needed and a fixed point is reached.
16 // However, in the pathological worst case, this implementation is
17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
18 // go out of range, which in turn can make branch N-2 go out of range,
19 // and so on.
20 //
21 // An alternative approach is to assume that all branches must be
22 // converted to their long forms, then reinstate the short forms of
23 // branches that, even under this pessimistic assumption, turn out to be
24 // in range (branch shortening).  This too can be implemented as a function
25 // walk that is repeated until a fixed point is reached.  In general,
26 // the result of shortening is not as good as that of relaxation, and
27 // shortening is also quadratic in the worst case; shortening branch N
28 // can bring branch N-1 in range of the short form, which in turn can do
29 // the same for branch N-2, and so on.  The main advantage of shortening
30 // is that each walk through the function produces valid code, so it is
31 // possible to stop at any point after the first walk.  The quadraticness
32 // could therefore be handled with a maximum pass count, although the
33 // question then becomes: what maximum count should be used?
34 //
35 // On SystemZ, long branches are only needed for functions bigger than 64k,
36 // which are relatively rare to begin with, and the long branch sequences
37 // are actually relatively cheap.  It therefore doesn't seem worth spending
38 // much compilation time on the problem.  Instead, the approach we take is:
39 //
40 // (1) Work out the address that each block would have if no branches
41 //     need relaxing.  Exit the pass early if all branches are in range
42 //     according to this assumption.
43 //
44 // (2) Work out the address that each block would have if all branches
45 //     need relaxing.
46 //
47 // (3) Walk through the block calculating the final address of each instruction
48 //     and relaxing those that need to be relaxed.  For backward branches,
49 //     this check uses the final address of the target block, as calculated
50 //     earlier in the walk.  For forward branches, this check uses the
51 //     address of the target block that was calculated in (2).  Both checks
52 //     give a conservatively-correct range.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "SystemZTargetMachine.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/CodeGen/MachineFunctionPass.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Target/TargetInstrInfo.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Target/TargetRegisterInfo.h"
65
66 using namespace llvm;
67
68 #define DEBUG_TYPE "systemz-long-branch"
69
70 STATISTIC(LongBranches, "Number of long branches.");
71
72 namespace {
73 // Represents positional information about a basic block.
74 struct MBBInfo {
75   // The address that we currently assume the block has.
76   uint64_t Address;
77
78   // The size of the block in bytes, excluding terminators.
79   // This value never changes.
80   uint64_t Size;
81
82   // The minimum alignment of the block, as a log2 value.
83   // This value never changes.
84   unsigned Alignment;
85
86   // The number of terminators in this block.  This value never changes.
87   unsigned NumTerminators;
88
89   MBBInfo()
90     : Address(0), Size(0), Alignment(0), NumTerminators(0) {} 
91 };
92
93 // Represents the state of a block terminator.
94 struct TerminatorInfo {
95   // If this terminator is a relaxable branch, this points to the branch
96   // instruction, otherwise it is null.
97   MachineInstr *Branch;
98
99   // The address that we currently assume the terminator has.
100   uint64_t Address;
101
102   // The current size of the terminator in bytes.
103   uint64_t Size;
104
105   // If Branch is nonnull, this is the number of the target block,
106   // otherwise it is unused.
107   unsigned TargetBlock;
108
109   // If Branch is nonnull, this is the length of the longest relaxed form,
110   // otherwise it is zero.
111   unsigned ExtraRelaxSize;
112
113   TerminatorInfo() : Branch(nullptr), Size(0), TargetBlock(0),
114                      ExtraRelaxSize(0) {}
115 };
116
117 // Used to keep track of the current position while iterating over the blocks.
118 struct BlockPosition {
119   // The address that we assume this position has.
120   uint64_t Address;
121
122   // The number of low bits in Address that are known to be the same
123   // as the runtime address.
124   unsigned KnownBits;
125
126   BlockPosition(unsigned InitialAlignment)
127     : Address(0), KnownBits(InitialAlignment) {}
128 };
129
130 class SystemZLongBranch : public MachineFunctionPass {
131 public:
132   static char ID;
133   SystemZLongBranch(const SystemZTargetMachine &tm)
134     : MachineFunctionPass(ID), TII(nullptr) {}
135
136   StringRef getPassName() const override { return "SystemZ Long Branch"; }
137
138   bool runOnMachineFunction(MachineFunction &F) override;
139   MachineFunctionProperties getRequiredProperties() const override {
140     return MachineFunctionProperties().set(
141         MachineFunctionProperties::Property::NoVRegs);
142   }
143
144 private:
145   void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
146   void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
147                       bool AssumeRelaxed);
148   TerminatorInfo describeTerminator(MachineInstr &MI);
149   uint64_t initMBBInfo();
150   bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
151   bool mustRelaxABranch();
152   void setWorstCaseAddresses();
153   void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
154   void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
155   void relaxBranch(TerminatorInfo &Terminator);
156   void relaxBranches();
157
158   const SystemZInstrInfo *TII;
159   MachineFunction *MF;
160   SmallVector<MBBInfo, 16> MBBs;
161   SmallVector<TerminatorInfo, 16> Terminators;
162 };
163
164 char SystemZLongBranch::ID = 0;
165
166 const uint64_t MaxBackwardRange = 0x10000;
167 const uint64_t MaxForwardRange = 0xfffe;
168 } // end anonymous namespace
169
170 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
171   return new SystemZLongBranch(TM);
172 }
173
174 // Position describes the state immediately before Block.  Update Block
175 // accordingly and move Position to the end of the block's non-terminator
176 // instructions.
177 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
178                                            MBBInfo &Block) {
179   if (Block.Alignment > Position.KnownBits) {
180     // When calculating the address of Block, we need to conservatively
181     // assume that Block had the worst possible misalignment.
182     Position.Address += ((uint64_t(1) << Block.Alignment) -
183                          (uint64_t(1) << Position.KnownBits));
184     Position.KnownBits = Block.Alignment;
185   }
186
187   // Align the addresses.
188   uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
189   Position.Address = (Position.Address + AlignMask) & ~AlignMask;
190
191   // Record the block's position.
192   Block.Address = Position.Address;
193
194   // Move past the non-terminators in the block.
195   Position.Address += Block.Size;
196 }
197
198 // Position describes the state immediately before Terminator.
199 // Update Terminator accordingly and move Position past it.
200 // Assume that Terminator will be relaxed if AssumeRelaxed.
201 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
202                                        TerminatorInfo &Terminator,
203                                        bool AssumeRelaxed) {
204   Terminator.Address = Position.Address;
205   Position.Address += Terminator.Size;
206   if (AssumeRelaxed)
207     Position.Address += Terminator.ExtraRelaxSize;
208 }
209
210 // Return a description of terminator instruction MI.
211 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
212   TerminatorInfo Terminator;
213   Terminator.Size = TII->getInstSizeInBytes(MI);
214   if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
215     switch (MI.getOpcode()) {
216     case SystemZ::J:
217       // Relaxes to JG, which is 2 bytes longer.
218       Terminator.ExtraRelaxSize = 2;
219       break;
220     case SystemZ::BRC:
221       // Relaxes to BRCL, which is 2 bytes longer.
222       Terminator.ExtraRelaxSize = 2;
223       break;
224     case SystemZ::BRCT:
225     case SystemZ::BRCTG:
226       // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
227       Terminator.ExtraRelaxSize = 6;
228       break;
229     case SystemZ::BRCTH:
230       // Never needs to be relaxed.
231       Terminator.ExtraRelaxSize = 0;
232       break;
233     case SystemZ::CRJ:
234     case SystemZ::CLRJ:
235       // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
236       Terminator.ExtraRelaxSize = 2;
237       break;
238     case SystemZ::CGRJ:
239     case SystemZ::CLGRJ:
240       // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
241       Terminator.ExtraRelaxSize = 4;
242       break;
243     case SystemZ::CIJ:
244     case SystemZ::CGIJ:
245       // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
246       Terminator.ExtraRelaxSize = 4;
247       break;
248     case SystemZ::CLIJ:
249     case SystemZ::CLGIJ:
250       // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
251       Terminator.ExtraRelaxSize = 6;
252       break;
253     default:
254       llvm_unreachable("Unrecognized branch instruction");
255     }
256     Terminator.Branch = &MI;
257     Terminator.TargetBlock =
258       TII->getBranchInfo(MI).Target->getMBB()->getNumber();
259   }
260   return Terminator;
261 }
262
263 // Fill MBBs and Terminators, setting the addresses on the assumption
264 // that no branches need relaxation.  Return the size of the function under
265 // this assumption.
266 uint64_t SystemZLongBranch::initMBBInfo() {
267   MF->RenumberBlocks();
268   unsigned NumBlocks = MF->size();
269
270   MBBs.clear();
271   MBBs.resize(NumBlocks);
272
273   Terminators.clear();
274   Terminators.reserve(NumBlocks);
275
276   BlockPosition Position(MF->getAlignment());
277   for (unsigned I = 0; I < NumBlocks; ++I) {
278     MachineBasicBlock *MBB = MF->getBlockNumbered(I);
279     MBBInfo &Block = MBBs[I];
280
281     // Record the alignment, for quick access.
282     Block.Alignment = MBB->getAlignment();
283
284     // Calculate the size of the fixed part of the block.
285     MachineBasicBlock::iterator MI = MBB->begin();
286     MachineBasicBlock::iterator End = MBB->end();
287     while (MI != End && !MI->isTerminator()) {
288       Block.Size += TII->getInstSizeInBytes(*MI);
289       ++MI;
290     }
291     skipNonTerminators(Position, Block);
292
293     // Add the terminators.
294     while (MI != End) {
295       if (!MI->isDebugValue()) {
296         assert(MI->isTerminator() && "Terminator followed by non-terminator");
297         Terminators.push_back(describeTerminator(*MI));
298         skipTerminator(Position, Terminators.back(), false);
299         ++Block.NumTerminators;
300       }
301       ++MI;
302     }
303   }
304
305   return Position.Address;
306 }
307
308 // Return true if, under current assumptions, Terminator would need to be
309 // relaxed if it were placed at address Address.
310 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
311                                         uint64_t Address) {
312   if (!Terminator.Branch)
313     return false;
314
315   const MBBInfo &Target = MBBs[Terminator.TargetBlock];
316   if (Address >= Target.Address) {
317     if (Address - Target.Address <= MaxBackwardRange)
318       return false;
319   } else {
320     if (Target.Address - Address <= MaxForwardRange)
321       return false;
322   }
323
324   return true;
325 }
326
327 // Return true if, under current assumptions, any terminator needs
328 // to be relaxed.
329 bool SystemZLongBranch::mustRelaxABranch() {
330   for (auto &Terminator : Terminators)
331     if (mustRelaxBranch(Terminator, Terminator.Address))
332       return true;
333   return false;
334 }
335
336 // Set the address of each block on the assumption that all branches
337 // must be long.
338 void SystemZLongBranch::setWorstCaseAddresses() {
339   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
340   BlockPosition Position(MF->getAlignment());
341   for (auto &Block : MBBs) {
342     skipNonTerminators(Position, Block);
343     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
344       skipTerminator(Position, *TI, true);
345       ++TI;
346     }
347   }
348 }
349
350 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
351 // by a BRCL on the result.
352 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
353                                            unsigned AddOpcode) {
354   MachineBasicBlock *MBB = MI->getParent();
355   DebugLoc DL = MI->getDebugLoc();
356   BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
357     .addOperand(MI->getOperand(0))
358     .addOperand(MI->getOperand(1))
359     .addImm(-1);
360   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
361     .addImm(SystemZ::CCMASK_ICMP)
362     .addImm(SystemZ::CCMASK_CMP_NE)
363     .addOperand(MI->getOperand(2));
364   // The implicit use of CC is a killing use.
365   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
366   MI->eraseFromParent();
367 }
368
369 // Split MI into the comparison given by CompareOpcode followed
370 // a BRCL on the result.
371 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
372                                            unsigned CompareOpcode) {
373   MachineBasicBlock *MBB = MI->getParent();
374   DebugLoc DL = MI->getDebugLoc();
375   BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
376     .addOperand(MI->getOperand(0))
377     .addOperand(MI->getOperand(1));
378   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
379     .addImm(SystemZ::CCMASK_ICMP)
380     .addOperand(MI->getOperand(2))
381     .addOperand(MI->getOperand(3));
382   // The implicit use of CC is a killing use.
383   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
384   MI->eraseFromParent();
385 }
386
387 // Relax the branch described by Terminator.
388 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
389   MachineInstr *Branch = Terminator.Branch;
390   switch (Branch->getOpcode()) {
391   case SystemZ::J:
392     Branch->setDesc(TII->get(SystemZ::JG));
393     break;
394   case SystemZ::BRC:
395     Branch->setDesc(TII->get(SystemZ::BRCL));
396     break;
397   case SystemZ::BRCT:
398     splitBranchOnCount(Branch, SystemZ::AHI);
399     break;
400   case SystemZ::BRCTG:
401     splitBranchOnCount(Branch, SystemZ::AGHI);
402     break;
403   case SystemZ::CRJ:
404     splitCompareBranch(Branch, SystemZ::CR);
405     break;
406   case SystemZ::CGRJ:
407     splitCompareBranch(Branch, SystemZ::CGR);
408     break;
409   case SystemZ::CIJ:
410     splitCompareBranch(Branch, SystemZ::CHI);
411     break;
412   case SystemZ::CGIJ:
413     splitCompareBranch(Branch, SystemZ::CGHI);
414     break;
415   case SystemZ::CLRJ:
416     splitCompareBranch(Branch, SystemZ::CLR);
417     break;
418   case SystemZ::CLGRJ:
419     splitCompareBranch(Branch, SystemZ::CLGR);
420     break;
421   case SystemZ::CLIJ:
422     splitCompareBranch(Branch, SystemZ::CLFI);
423     break;
424   case SystemZ::CLGIJ:
425     splitCompareBranch(Branch, SystemZ::CLGFI);
426     break;
427   default:
428     llvm_unreachable("Unrecognized branch");
429   }
430
431   Terminator.Size += Terminator.ExtraRelaxSize;
432   Terminator.ExtraRelaxSize = 0;
433   Terminator.Branch = nullptr;
434
435   ++LongBranches;
436 }
437
438 // Run a shortening pass and relax any branches that need to be relaxed.
439 void SystemZLongBranch::relaxBranches() {
440   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
441   BlockPosition Position(MF->getAlignment());
442   for (auto &Block : MBBs) {
443     skipNonTerminators(Position, Block);
444     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
445       assert(Position.Address <= TI->Address &&
446              "Addresses shouldn't go forwards");
447       if (mustRelaxBranch(*TI, Position.Address))
448         relaxBranch(*TI);
449       skipTerminator(Position, *TI, false);
450       ++TI;
451     }
452   }
453 }
454
455 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
456   TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
457   MF = &F;
458   uint64_t Size = initMBBInfo();
459   if (Size <= MaxForwardRange || !mustRelaxABranch())
460     return false;
461
462   setWorstCaseAddresses();
463   relaxBranches();
464   return true;
465 }