]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
Merge ^/head r320994 through r321238.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / SystemZLongBranch.cpp
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass makes sure that all branches are in range.  There are several ways
11 // in which this could be done.  One aggressive approach is to assume that all
12 // branches are in range and successively replace those that turn out not
13 // to be in range with a longer form (branch relaxation).  A simple
14 // implementation is to continually walk through the function relaxing
15 // branches until no more changes are needed and a fixed point is reached.
16 // However, in the pathological worst case, this implementation is
17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
18 // go out of range, which in turn can make branch N-2 go out of range,
19 // and so on.
20 //
21 // An alternative approach is to assume that all branches must be
22 // converted to their long forms, then reinstate the short forms of
23 // branches that, even under this pessimistic assumption, turn out to be
24 // in range (branch shortening).  This too can be implemented as a function
25 // walk that is repeated until a fixed point is reached.  In general,
26 // the result of shortening is not as good as that of relaxation, and
27 // shortening is also quadratic in the worst case; shortening branch N
28 // can bring branch N-1 in range of the short form, which in turn can do
29 // the same for branch N-2, and so on.  The main advantage of shortening
30 // is that each walk through the function produces valid code, so it is
31 // possible to stop at any point after the first walk.  The quadraticness
32 // could therefore be handled with a maximum pass count, although the
33 // question then becomes: what maximum count should be used?
34 //
35 // On SystemZ, long branches are only needed for functions bigger than 64k,
36 // which are relatively rare to begin with, and the long branch sequences
37 // are actually relatively cheap.  It therefore doesn't seem worth spending
38 // much compilation time on the problem.  Instead, the approach we take is:
39 //
40 // (1) Work out the address that each block would have if no branches
41 //     need relaxing.  Exit the pass early if all branches are in range
42 //     according to this assumption.
43 //
44 // (2) Work out the address that each block would have if all branches
45 //     need relaxing.
46 //
47 // (3) Walk through the block calculating the final address of each instruction
48 //     and relaxing those that need to be relaxed.  For backward branches,
49 //     this check uses the final address of the target block, as calculated
50 //     earlier in the walk.  For forward branches, this check uses the
51 //     address of the target block that was calculated in (2).  Both checks
52 //     give a conservatively-correct range.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "SystemZ.h"
57 #include "SystemZInstrInfo.h"
58 #include "SystemZTargetMachine.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/StringRef.h"
62 #include "llvm/CodeGen/MachineBasicBlock.h"
63 #include "llvm/CodeGen/MachineFunction.h"
64 #include "llvm/CodeGen/MachineFunctionPass.h"
65 #include "llvm/CodeGen/MachineInstr.h"
66 #include "llvm/CodeGen/MachineInstrBuilder.h"
67 #include "llvm/IR/DebugLoc.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include <cassert>
70 #include <cstdint>
71
72 using namespace llvm;
73
74 #define DEBUG_TYPE "systemz-long-branch"
75
76 STATISTIC(LongBranches, "Number of long branches.");
77
78 namespace {
79
80 // Represents positional information about a basic block.
81 struct MBBInfo {
82   // The address that we currently assume the block has.
83   uint64_t Address = 0;
84
85   // The size of the block in bytes, excluding terminators.
86   // This value never changes.
87   uint64_t Size = 0;
88
89   // The minimum alignment of the block, as a log2 value.
90   // This value never changes.
91   unsigned Alignment = 0;
92
93   // The number of terminators in this block.  This value never changes.
94   unsigned NumTerminators = 0;
95
96   MBBInfo() = default;
97 };
98
99 // Represents the state of a block terminator.
100 struct TerminatorInfo {
101   // If this terminator is a relaxable branch, this points to the branch
102   // instruction, otherwise it is null.
103   MachineInstr *Branch = nullptr;
104
105   // The address that we currently assume the terminator has.
106   uint64_t Address = 0;
107
108   // The current size of the terminator in bytes.
109   uint64_t Size = 0;
110
111   // If Branch is nonnull, this is the number of the target block,
112   // otherwise it is unused.
113   unsigned TargetBlock = 0;
114
115   // If Branch is nonnull, this is the length of the longest relaxed form,
116   // otherwise it is zero.
117   unsigned ExtraRelaxSize = 0;
118
119   TerminatorInfo() = default;
120 };
121
122 // Used to keep track of the current position while iterating over the blocks.
123 struct BlockPosition {
124   // The address that we assume this position has.
125   uint64_t Address = 0;
126
127   // The number of low bits in Address that are known to be the same
128   // as the runtime address.
129   unsigned KnownBits;
130
131   BlockPosition(unsigned InitialAlignment) : KnownBits(InitialAlignment) {}
132 };
133
134 class SystemZLongBranch : public MachineFunctionPass {
135 public:
136   static char ID;
137
138   SystemZLongBranch(const SystemZTargetMachine &tm)
139     : MachineFunctionPass(ID) {}
140
141   StringRef getPassName() const override { return "SystemZ Long Branch"; }
142
143   bool runOnMachineFunction(MachineFunction &F) override;
144
145   MachineFunctionProperties getRequiredProperties() const override {
146     return MachineFunctionProperties().set(
147         MachineFunctionProperties::Property::NoVRegs);
148   }
149
150 private:
151   void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
152   void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
153                       bool AssumeRelaxed);
154   TerminatorInfo describeTerminator(MachineInstr &MI);
155   uint64_t initMBBInfo();
156   bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
157   bool mustRelaxABranch();
158   void setWorstCaseAddresses();
159   void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
160   void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
161   void relaxBranch(TerminatorInfo &Terminator);
162   void relaxBranches();
163
164   const SystemZInstrInfo *TII = nullptr;
165   MachineFunction *MF;
166   SmallVector<MBBInfo, 16> MBBs;
167   SmallVector<TerminatorInfo, 16> Terminators;
168 };
169
170 char SystemZLongBranch::ID = 0;
171
172 const uint64_t MaxBackwardRange = 0x10000;
173 const uint64_t MaxForwardRange = 0xfffe;
174
175 } // end anonymous namespace
176
177 // Position describes the state immediately before Block.  Update Block
178 // accordingly and move Position to the end of the block's non-terminator
179 // instructions.
180 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
181                                            MBBInfo &Block) {
182   if (Block.Alignment > Position.KnownBits) {
183     // When calculating the address of Block, we need to conservatively
184     // assume that Block had the worst possible misalignment.
185     Position.Address += ((uint64_t(1) << Block.Alignment) -
186                          (uint64_t(1) << Position.KnownBits));
187     Position.KnownBits = Block.Alignment;
188   }
189
190   // Align the addresses.
191   uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
192   Position.Address = (Position.Address + AlignMask) & ~AlignMask;
193
194   // Record the block's position.
195   Block.Address = Position.Address;
196
197   // Move past the non-terminators in the block.
198   Position.Address += Block.Size;
199 }
200
201 // Position describes the state immediately before Terminator.
202 // Update Terminator accordingly and move Position past it.
203 // Assume that Terminator will be relaxed if AssumeRelaxed.
204 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
205                                        TerminatorInfo &Terminator,
206                                        bool AssumeRelaxed) {
207   Terminator.Address = Position.Address;
208   Position.Address += Terminator.Size;
209   if (AssumeRelaxed)
210     Position.Address += Terminator.ExtraRelaxSize;
211 }
212
213 // Return a description of terminator instruction MI.
214 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
215   TerminatorInfo Terminator;
216   Terminator.Size = TII->getInstSizeInBytes(MI);
217   if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
218     switch (MI.getOpcode()) {
219     case SystemZ::J:
220       // Relaxes to JG, which is 2 bytes longer.
221       Terminator.ExtraRelaxSize = 2;
222       break;
223     case SystemZ::BRC:
224       // Relaxes to BRCL, which is 2 bytes longer.
225       Terminator.ExtraRelaxSize = 2;
226       break;
227     case SystemZ::BRCT:
228     case SystemZ::BRCTG:
229       // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
230       Terminator.ExtraRelaxSize = 6;
231       break;
232     case SystemZ::BRCTH:
233       // Never needs to be relaxed.
234       Terminator.ExtraRelaxSize = 0;
235       break;
236     case SystemZ::CRJ:
237     case SystemZ::CLRJ:
238       // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
239       Terminator.ExtraRelaxSize = 2;
240       break;
241     case SystemZ::CGRJ:
242     case SystemZ::CLGRJ:
243       // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
244       Terminator.ExtraRelaxSize = 4;
245       break;
246     case SystemZ::CIJ:
247     case SystemZ::CGIJ:
248       // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
249       Terminator.ExtraRelaxSize = 4;
250       break;
251     case SystemZ::CLIJ:
252     case SystemZ::CLGIJ:
253       // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
254       Terminator.ExtraRelaxSize = 6;
255       break;
256     default:
257       llvm_unreachable("Unrecognized branch instruction");
258     }
259     Terminator.Branch = &MI;
260     Terminator.TargetBlock =
261       TII->getBranchInfo(MI).Target->getMBB()->getNumber();
262   }
263   return Terminator;
264 }
265
266 // Fill MBBs and Terminators, setting the addresses on the assumption
267 // that no branches need relaxation.  Return the size of the function under
268 // this assumption.
269 uint64_t SystemZLongBranch::initMBBInfo() {
270   MF->RenumberBlocks();
271   unsigned NumBlocks = MF->size();
272
273   MBBs.clear();
274   MBBs.resize(NumBlocks);
275
276   Terminators.clear();
277   Terminators.reserve(NumBlocks);
278
279   BlockPosition Position(MF->getAlignment());
280   for (unsigned I = 0; I < NumBlocks; ++I) {
281     MachineBasicBlock *MBB = MF->getBlockNumbered(I);
282     MBBInfo &Block = MBBs[I];
283
284     // Record the alignment, for quick access.
285     Block.Alignment = MBB->getAlignment();
286
287     // Calculate the size of the fixed part of the block.
288     MachineBasicBlock::iterator MI = MBB->begin();
289     MachineBasicBlock::iterator End = MBB->end();
290     while (MI != End && !MI->isTerminator()) {
291       Block.Size += TII->getInstSizeInBytes(*MI);
292       ++MI;
293     }
294     skipNonTerminators(Position, Block);
295
296     // Add the terminators.
297     while (MI != End) {
298       if (!MI->isDebugValue()) {
299         assert(MI->isTerminator() && "Terminator followed by non-terminator");
300         Terminators.push_back(describeTerminator(*MI));
301         skipTerminator(Position, Terminators.back(), false);
302         ++Block.NumTerminators;
303       }
304       ++MI;
305     }
306   }
307
308   return Position.Address;
309 }
310
311 // Return true if, under current assumptions, Terminator would need to be
312 // relaxed if it were placed at address Address.
313 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
314                                         uint64_t Address) {
315   if (!Terminator.Branch)
316     return false;
317
318   const MBBInfo &Target = MBBs[Terminator.TargetBlock];
319   if (Address >= Target.Address) {
320     if (Address - Target.Address <= MaxBackwardRange)
321       return false;
322   } else {
323     if (Target.Address - Address <= MaxForwardRange)
324       return false;
325   }
326
327   return true;
328 }
329
330 // Return true if, under current assumptions, any terminator needs
331 // to be relaxed.
332 bool SystemZLongBranch::mustRelaxABranch() {
333   for (auto &Terminator : Terminators)
334     if (mustRelaxBranch(Terminator, Terminator.Address))
335       return true;
336   return false;
337 }
338
339 // Set the address of each block on the assumption that all branches
340 // must be long.
341 void SystemZLongBranch::setWorstCaseAddresses() {
342   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
343   BlockPosition Position(MF->getAlignment());
344   for (auto &Block : MBBs) {
345     skipNonTerminators(Position, Block);
346     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
347       skipTerminator(Position, *TI, true);
348       ++TI;
349     }
350   }
351 }
352
353 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
354 // by a BRCL on the result.
355 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
356                                            unsigned AddOpcode) {
357   MachineBasicBlock *MBB = MI->getParent();
358   DebugLoc DL = MI->getDebugLoc();
359   BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
360       .add(MI->getOperand(0))
361       .add(MI->getOperand(1))
362       .addImm(-1);
363   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
364                            .addImm(SystemZ::CCMASK_ICMP)
365                            .addImm(SystemZ::CCMASK_CMP_NE)
366                            .add(MI->getOperand(2));
367   // The implicit use of CC is a killing use.
368   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
369   MI->eraseFromParent();
370 }
371
372 // Split MI into the comparison given by CompareOpcode followed
373 // a BRCL on the result.
374 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
375                                            unsigned CompareOpcode) {
376   MachineBasicBlock *MBB = MI->getParent();
377   DebugLoc DL = MI->getDebugLoc();
378   BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
379       .add(MI->getOperand(0))
380       .add(MI->getOperand(1));
381   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
382                            .addImm(SystemZ::CCMASK_ICMP)
383                            .add(MI->getOperand(2))
384                            .add(MI->getOperand(3));
385   // The implicit use of CC is a killing use.
386   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
387   MI->eraseFromParent();
388 }
389
390 // Relax the branch described by Terminator.
391 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
392   MachineInstr *Branch = Terminator.Branch;
393   switch (Branch->getOpcode()) {
394   case SystemZ::J:
395     Branch->setDesc(TII->get(SystemZ::JG));
396     break;
397   case SystemZ::BRC:
398     Branch->setDesc(TII->get(SystemZ::BRCL));
399     break;
400   case SystemZ::BRCT:
401     splitBranchOnCount(Branch, SystemZ::AHI);
402     break;
403   case SystemZ::BRCTG:
404     splitBranchOnCount(Branch, SystemZ::AGHI);
405     break;
406   case SystemZ::CRJ:
407     splitCompareBranch(Branch, SystemZ::CR);
408     break;
409   case SystemZ::CGRJ:
410     splitCompareBranch(Branch, SystemZ::CGR);
411     break;
412   case SystemZ::CIJ:
413     splitCompareBranch(Branch, SystemZ::CHI);
414     break;
415   case SystemZ::CGIJ:
416     splitCompareBranch(Branch, SystemZ::CGHI);
417     break;
418   case SystemZ::CLRJ:
419     splitCompareBranch(Branch, SystemZ::CLR);
420     break;
421   case SystemZ::CLGRJ:
422     splitCompareBranch(Branch, SystemZ::CLGR);
423     break;
424   case SystemZ::CLIJ:
425     splitCompareBranch(Branch, SystemZ::CLFI);
426     break;
427   case SystemZ::CLGIJ:
428     splitCompareBranch(Branch, SystemZ::CLGFI);
429     break;
430   default:
431     llvm_unreachable("Unrecognized branch");
432   }
433
434   Terminator.Size += Terminator.ExtraRelaxSize;
435   Terminator.ExtraRelaxSize = 0;
436   Terminator.Branch = nullptr;
437
438   ++LongBranches;
439 }
440
441 // Run a shortening pass and relax any branches that need to be relaxed.
442 void SystemZLongBranch::relaxBranches() {
443   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
444   BlockPosition Position(MF->getAlignment());
445   for (auto &Block : MBBs) {
446     skipNonTerminators(Position, Block);
447     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
448       assert(Position.Address <= TI->Address &&
449              "Addresses shouldn't go forwards");
450       if (mustRelaxBranch(*TI, Position.Address))
451         relaxBranch(*TI);
452       skipTerminator(Position, *TI, false);
453       ++TI;
454     }
455   }
456 }
457
458 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
459   TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
460   MF = &F;
461   uint64_t Size = initMBBInfo();
462   if (Size <= MaxForwardRange || !mustRelaxABranch())
463     return false;
464
465   setWorstCaseAddresses();
466   relaxBranches();
467   return true;
468 }
469
470 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
471   return new SystemZLongBranch(TM);
472 }