]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp
MFV 313786
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / SystemZLongBranch.cpp
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass makes sure that all branches are in range.  There are several ways
11 // in which this could be done.  One aggressive approach is to assume that all
12 // branches are in range and successively replace those that turn out not
13 // to be in range with a longer form (branch relaxation).  A simple
14 // implementation is to continually walk through the function relaxing
15 // branches until no more changes are needed and a fixed point is reached.
16 // However, in the pathological worst case, this implementation is
17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
18 // go out of range, which in turn can make branch N-2 go out of range,
19 // and so on.
20 //
21 // An alternative approach is to assume that all branches must be
22 // converted to their long forms, then reinstate the short forms of
23 // branches that, even under this pessimistic assumption, turn out to be
24 // in range (branch shortening).  This too can be implemented as a function
25 // walk that is repeated until a fixed point is reached.  In general,
26 // the result of shortening is not as good as that of relaxation, and
27 // shortening is also quadratic in the worst case; shortening branch N
28 // can bring branch N-1 in range of the short form, which in turn can do
29 // the same for branch N-2, and so on.  The main advantage of shortening
30 // is that each walk through the function produces valid code, so it is
31 // possible to stop at any point after the first walk.  The quadraticness
32 // could therefore be handled with a maximum pass count, although the
33 // question then becomes: what maximum count should be used?
34 //
35 // On SystemZ, long branches are only needed for functions bigger than 64k,
36 // which are relatively rare to begin with, and the long branch sequences
37 // are actually relatively cheap.  It therefore doesn't seem worth spending
38 // much compilation time on the problem.  Instead, the approach we take is:
39 //
40 // (1) Work out the address that each block would have if no branches
41 //     need relaxing.  Exit the pass early if all branches are in range
42 //     according to this assumption.
43 //
44 // (2) Work out the address that each block would have if all branches
45 //     need relaxing.
46 //
47 // (3) Walk through the block calculating the final address of each instruction
48 //     and relaxing those that need to be relaxed.  For backward branches,
49 //     this check uses the final address of the target block, as calculated
50 //     earlier in the walk.  For forward branches, this check uses the
51 //     address of the target block that was calculated in (2).  Both checks
52 //     give a conservatively-correct range.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "SystemZTargetMachine.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/CodeGen/MachineFunctionPass.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Target/TargetInstrInfo.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/Target/TargetRegisterInfo.h"
65
66 using namespace llvm;
67
68 #define DEBUG_TYPE "systemz-long-branch"
69
70 STATISTIC(LongBranches, "Number of long branches.");
71
72 namespace {
73 // Represents positional information about a basic block.
74 struct MBBInfo {
75   // The address that we currently assume the block has.
76   uint64_t Address;
77
78   // The size of the block in bytes, excluding terminators.
79   // This value never changes.
80   uint64_t Size;
81
82   // The minimum alignment of the block, as a log2 value.
83   // This value never changes.
84   unsigned Alignment;
85
86   // The number of terminators in this block.  This value never changes.
87   unsigned NumTerminators;
88
89   MBBInfo()
90     : Address(0), Size(0), Alignment(0), NumTerminators(0) {} 
91 };
92
93 // Represents the state of a block terminator.
94 struct TerminatorInfo {
95   // If this terminator is a relaxable branch, this points to the branch
96   // instruction, otherwise it is null.
97   MachineInstr *Branch;
98
99   // The address that we currently assume the terminator has.
100   uint64_t Address;
101
102   // The current size of the terminator in bytes.
103   uint64_t Size;
104
105   // If Branch is nonnull, this is the number of the target block,
106   // otherwise it is unused.
107   unsigned TargetBlock;
108
109   // If Branch is nonnull, this is the length of the longest relaxed form,
110   // otherwise it is zero.
111   unsigned ExtraRelaxSize;
112
113   TerminatorInfo() : Branch(nullptr), Size(0), TargetBlock(0),
114                      ExtraRelaxSize(0) {}
115 };
116
117 // Used to keep track of the current position while iterating over the blocks.
118 struct BlockPosition {
119   // The address that we assume this position has.
120   uint64_t Address;
121
122   // The number of low bits in Address that are known to be the same
123   // as the runtime address.
124   unsigned KnownBits;
125
126   BlockPosition(unsigned InitialAlignment)
127     : Address(0), KnownBits(InitialAlignment) {}
128 };
129
130 class SystemZLongBranch : public MachineFunctionPass {
131 public:
132   static char ID;
133   SystemZLongBranch(const SystemZTargetMachine &tm)
134     : MachineFunctionPass(ID), TII(nullptr) {}
135
136   const char *getPassName() const override {
137     return "SystemZ Long Branch";
138   }
139
140   bool runOnMachineFunction(MachineFunction &F) override;
141   MachineFunctionProperties getRequiredProperties() const override {
142     return MachineFunctionProperties().set(
143         MachineFunctionProperties::Property::AllVRegsAllocated);
144   }
145
146 private:
147   void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
148   void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
149                       bool AssumeRelaxed);
150   TerminatorInfo describeTerminator(MachineInstr &MI);
151   uint64_t initMBBInfo();
152   bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
153   bool mustRelaxABranch();
154   void setWorstCaseAddresses();
155   void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
156   void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
157   void relaxBranch(TerminatorInfo &Terminator);
158   void relaxBranches();
159
160   const SystemZInstrInfo *TII;
161   MachineFunction *MF;
162   SmallVector<MBBInfo, 16> MBBs;
163   SmallVector<TerminatorInfo, 16> Terminators;
164 };
165
166 char SystemZLongBranch::ID = 0;
167
168 const uint64_t MaxBackwardRange = 0x10000;
169 const uint64_t MaxForwardRange = 0xfffe;
170 } // end anonymous namespace
171
172 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
173   return new SystemZLongBranch(TM);
174 }
175
176 // Position describes the state immediately before Block.  Update Block
177 // accordingly and move Position to the end of the block's non-terminator
178 // instructions.
179 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
180                                            MBBInfo &Block) {
181   if (Block.Alignment > Position.KnownBits) {
182     // When calculating the address of Block, we need to conservatively
183     // assume that Block had the worst possible misalignment.
184     Position.Address += ((uint64_t(1) << Block.Alignment) -
185                          (uint64_t(1) << Position.KnownBits));
186     Position.KnownBits = Block.Alignment;
187   }
188
189   // Align the addresses.
190   uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
191   Position.Address = (Position.Address + AlignMask) & ~AlignMask;
192
193   // Record the block's position.
194   Block.Address = Position.Address;
195
196   // Move past the non-terminators in the block.
197   Position.Address += Block.Size;
198 }
199
200 // Position describes the state immediately before Terminator.
201 // Update Terminator accordingly and move Position past it.
202 // Assume that Terminator will be relaxed if AssumeRelaxed.
203 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
204                                        TerminatorInfo &Terminator,
205                                        bool AssumeRelaxed) {
206   Terminator.Address = Position.Address;
207   Position.Address += Terminator.Size;
208   if (AssumeRelaxed)
209     Position.Address += Terminator.ExtraRelaxSize;
210 }
211
212 // Return a description of terminator instruction MI.
213 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
214   TerminatorInfo Terminator;
215   Terminator.Size = TII->getInstSizeInBytes(MI);
216   if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
217     switch (MI.getOpcode()) {
218     case SystemZ::J:
219       // Relaxes to JG, which is 2 bytes longer.
220       Terminator.ExtraRelaxSize = 2;
221       break;
222     case SystemZ::BRC:
223       // Relaxes to BRCL, which is 2 bytes longer.
224       Terminator.ExtraRelaxSize = 2;
225       break;
226     case SystemZ::BRCT:
227     case SystemZ::BRCTG:
228       // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
229       Terminator.ExtraRelaxSize = 6;
230       break;
231     case SystemZ::CRJ:
232     case SystemZ::CLRJ:
233       // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
234       Terminator.ExtraRelaxSize = 2;
235       break;
236     case SystemZ::CGRJ:
237     case SystemZ::CLGRJ:
238       // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
239       Terminator.ExtraRelaxSize = 4;
240       break;
241     case SystemZ::CIJ:
242     case SystemZ::CGIJ:
243       // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
244       Terminator.ExtraRelaxSize = 4;
245       break;
246     case SystemZ::CLIJ:
247     case SystemZ::CLGIJ:
248       // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
249       Terminator.ExtraRelaxSize = 6;
250       break;
251     default:
252       llvm_unreachable("Unrecognized branch instruction");
253     }
254     Terminator.Branch = &MI;
255     Terminator.TargetBlock =
256       TII->getBranchInfo(MI).Target->getMBB()->getNumber();
257   }
258   return Terminator;
259 }
260
261 // Fill MBBs and Terminators, setting the addresses on the assumption
262 // that no branches need relaxation.  Return the size of the function under
263 // this assumption.
264 uint64_t SystemZLongBranch::initMBBInfo() {
265   MF->RenumberBlocks();
266   unsigned NumBlocks = MF->size();
267
268   MBBs.clear();
269   MBBs.resize(NumBlocks);
270
271   Terminators.clear();
272   Terminators.reserve(NumBlocks);
273
274   BlockPosition Position(MF->getAlignment());
275   for (unsigned I = 0; I < NumBlocks; ++I) {
276     MachineBasicBlock *MBB = MF->getBlockNumbered(I);
277     MBBInfo &Block = MBBs[I];
278
279     // Record the alignment, for quick access.
280     Block.Alignment = MBB->getAlignment();
281
282     // Calculate the size of the fixed part of the block.
283     MachineBasicBlock::iterator MI = MBB->begin();
284     MachineBasicBlock::iterator End = MBB->end();
285     while (MI != End && !MI->isTerminator()) {
286       Block.Size += TII->getInstSizeInBytes(*MI);
287       ++MI;
288     }
289     skipNonTerminators(Position, Block);
290
291     // Add the terminators.
292     while (MI != End) {
293       if (!MI->isDebugValue()) {
294         assert(MI->isTerminator() && "Terminator followed by non-terminator");
295         Terminators.push_back(describeTerminator(*MI));
296         skipTerminator(Position, Terminators.back(), false);
297         ++Block.NumTerminators;
298       }
299       ++MI;
300     }
301   }
302
303   return Position.Address;
304 }
305
306 // Return true if, under current assumptions, Terminator would need to be
307 // relaxed if it were placed at address Address.
308 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
309                                         uint64_t Address) {
310   if (!Terminator.Branch)
311     return false;
312
313   const MBBInfo &Target = MBBs[Terminator.TargetBlock];
314   if (Address >= Target.Address) {
315     if (Address - Target.Address <= MaxBackwardRange)
316       return false;
317   } else {
318     if (Target.Address - Address <= MaxForwardRange)
319       return false;
320   }
321
322   return true;
323 }
324
325 // Return true if, under current assumptions, any terminator needs
326 // to be relaxed.
327 bool SystemZLongBranch::mustRelaxABranch() {
328   for (auto &Terminator : Terminators)
329     if (mustRelaxBranch(Terminator, Terminator.Address))
330       return true;
331   return false;
332 }
333
334 // Set the address of each block on the assumption that all branches
335 // must be long.
336 void SystemZLongBranch::setWorstCaseAddresses() {
337   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
338   BlockPosition Position(MF->getAlignment());
339   for (auto &Block : MBBs) {
340     skipNonTerminators(Position, Block);
341     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
342       skipTerminator(Position, *TI, true);
343       ++TI;
344     }
345   }
346 }
347
348 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
349 // by a BRCL on the result.
350 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
351                                            unsigned AddOpcode) {
352   MachineBasicBlock *MBB = MI->getParent();
353   DebugLoc DL = MI->getDebugLoc();
354   BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
355     .addOperand(MI->getOperand(0))
356     .addOperand(MI->getOperand(1))
357     .addImm(-1);
358   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
359     .addImm(SystemZ::CCMASK_ICMP)
360     .addImm(SystemZ::CCMASK_CMP_NE)
361     .addOperand(MI->getOperand(2));
362   // The implicit use of CC is a killing use.
363   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
364   MI->eraseFromParent();
365 }
366
367 // Split MI into the comparison given by CompareOpcode followed
368 // a BRCL on the result.
369 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
370                                            unsigned CompareOpcode) {
371   MachineBasicBlock *MBB = MI->getParent();
372   DebugLoc DL = MI->getDebugLoc();
373   BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
374     .addOperand(MI->getOperand(0))
375     .addOperand(MI->getOperand(1));
376   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
377     .addImm(SystemZ::CCMASK_ICMP)
378     .addOperand(MI->getOperand(2))
379     .addOperand(MI->getOperand(3));
380   // The implicit use of CC is a killing use.
381   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
382   MI->eraseFromParent();
383 }
384
385 // Relax the branch described by Terminator.
386 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
387   MachineInstr *Branch = Terminator.Branch;
388   switch (Branch->getOpcode()) {
389   case SystemZ::J:
390     Branch->setDesc(TII->get(SystemZ::JG));
391     break;
392   case SystemZ::BRC:
393     Branch->setDesc(TII->get(SystemZ::BRCL));
394     break;
395   case SystemZ::BRCT:
396     splitBranchOnCount(Branch, SystemZ::AHI);
397     break;
398   case SystemZ::BRCTG:
399     splitBranchOnCount(Branch, SystemZ::AGHI);
400     break;
401   case SystemZ::CRJ:
402     splitCompareBranch(Branch, SystemZ::CR);
403     break;
404   case SystemZ::CGRJ:
405     splitCompareBranch(Branch, SystemZ::CGR);
406     break;
407   case SystemZ::CIJ:
408     splitCompareBranch(Branch, SystemZ::CHI);
409     break;
410   case SystemZ::CGIJ:
411     splitCompareBranch(Branch, SystemZ::CGHI);
412     break;
413   case SystemZ::CLRJ:
414     splitCompareBranch(Branch, SystemZ::CLR);
415     break;
416   case SystemZ::CLGRJ:
417     splitCompareBranch(Branch, SystemZ::CLGR);
418     break;
419   case SystemZ::CLIJ:
420     splitCompareBranch(Branch, SystemZ::CLFI);
421     break;
422   case SystemZ::CLGIJ:
423     splitCompareBranch(Branch, SystemZ::CLGFI);
424     break;
425   default:
426     llvm_unreachable("Unrecognized branch");
427   }
428
429   Terminator.Size += Terminator.ExtraRelaxSize;
430   Terminator.ExtraRelaxSize = 0;
431   Terminator.Branch = nullptr;
432
433   ++LongBranches;
434 }
435
436 // Run a shortening pass and relax any branches that need to be relaxed.
437 void SystemZLongBranch::relaxBranches() {
438   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
439   BlockPosition Position(MF->getAlignment());
440   for (auto &Block : MBBs) {
441     skipNonTerminators(Position, Block);
442     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
443       assert(Position.Address <= TI->Address &&
444              "Addresses shouldn't go forwards");
445       if (mustRelaxBranch(*TI, Position.Address))
446         relaxBranch(*TI);
447       skipTerminator(Position, *TI, false);
448       ++TI;
449     }
450   }
451 }
452
453 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
454   TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
455   MF = &F;
456   uint64_t Size = initMBBInfo();
457   if (Size <= MaxForwardRange || !mustRelaxABranch())
458     return false;
459
460   setWorstCaseAddresses();
461   relaxBranches();
462   return true;
463 }