]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
Merge llvm trunk r338150 (just before the 7.0.0 branch point), and
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Target / SystemZ / SystemZTargetTransformInfo.cpp
1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // SystemZ target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "SystemZTargetTransformInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/BasicTTIImpl.h"
20 #include "llvm/CodeGen/CostTable.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Debug.h"
24 using namespace llvm;
25
26 #define DEBUG_TYPE "systemztti"
27
28 //===----------------------------------------------------------------------===//
29 //
30 // SystemZ cost model.
31 //
32 //===----------------------------------------------------------------------===//
33
34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
35   assert(Ty->isIntegerTy());
36
37   unsigned BitSize = Ty->getPrimitiveSizeInBits();
38   // There is no cost model for constants with a bit size of 0. Return TCC_Free
39   // here, so that constant hoisting will ignore this constant.
40   if (BitSize == 0)
41     return TTI::TCC_Free;
42   // No cost model for operations on integers larger than 64 bit implemented yet.
43   if (BitSize > 64)
44     return TTI::TCC_Free;
45
46   if (Imm == 0)
47     return TTI::TCC_Free;
48
49   if (Imm.getBitWidth() <= 64) {
50     // Constants loaded via lgfi.
51     if (isInt<32>(Imm.getSExtValue()))
52       return TTI::TCC_Basic;
53     // Constants loaded via llilf.
54     if (isUInt<32>(Imm.getZExtValue()))
55       return TTI::TCC_Basic;
56     // Constants loaded via llihf:
57     if ((Imm.getZExtValue() & 0xffffffff) == 0)
58       return TTI::TCC_Basic;
59
60     return 2 * TTI::TCC_Basic;
61   }
62
63   return 4 * TTI::TCC_Basic;
64 }
65
66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
67                                   const APInt &Imm, Type *Ty) {
68   assert(Ty->isIntegerTy());
69
70   unsigned BitSize = Ty->getPrimitiveSizeInBits();
71   // There is no cost model for constants with a bit size of 0. Return TCC_Free
72   // here, so that constant hoisting will ignore this constant.
73   if (BitSize == 0)
74     return TTI::TCC_Free;
75   // No cost model for operations on integers larger than 64 bit implemented yet.
76   if (BitSize > 64)
77     return TTI::TCC_Free;
78
79   switch (Opcode) {
80   default:
81     return TTI::TCC_Free;
82   case Instruction::GetElementPtr:
83     // Always hoist the base address of a GetElementPtr. This prevents the
84     // creation of new constants for every base constant that gets constant
85     // folded with the offset.
86     if (Idx == 0)
87       return 2 * TTI::TCC_Basic;
88     return TTI::TCC_Free;
89   case Instruction::Store:
90     if (Idx == 0 && Imm.getBitWidth() <= 64) {
91       // Any 8-bit immediate store can by implemented via mvi.
92       if (BitSize == 8)
93         return TTI::TCC_Free;
94       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
95       if (isInt<16>(Imm.getSExtValue()))
96         return TTI::TCC_Free;
97     }
98     break;
99   case Instruction::ICmp:
100     if (Idx == 1 && Imm.getBitWidth() <= 64) {
101       // Comparisons against signed 32-bit immediates implemented via cgfi.
102       if (isInt<32>(Imm.getSExtValue()))
103         return TTI::TCC_Free;
104       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
105       if (isUInt<32>(Imm.getZExtValue()))
106         return TTI::TCC_Free;
107     }
108     break;
109   case Instruction::Add:
110   case Instruction::Sub:
111     if (Idx == 1 && Imm.getBitWidth() <= 64) {
112       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
113       if (isUInt<32>(Imm.getZExtValue()))
114         return TTI::TCC_Free;
115       // Or their negation, by swapping addition vs. subtraction.
116       if (isUInt<32>(-Imm.getSExtValue()))
117         return TTI::TCC_Free;
118     }
119     break;
120   case Instruction::Mul:
121     if (Idx == 1 && Imm.getBitWidth() <= 64) {
122       // We use msgfi to multiply by 32-bit signed immediates.
123       if (isInt<32>(Imm.getSExtValue()))
124         return TTI::TCC_Free;
125     }
126     break;
127   case Instruction::Or:
128   case Instruction::Xor:
129     if (Idx == 1 && Imm.getBitWidth() <= 64) {
130       // Masks supported by oilf/xilf.
131       if (isUInt<32>(Imm.getZExtValue()))
132         return TTI::TCC_Free;
133       // Masks supported by oihf/xihf.
134       if ((Imm.getZExtValue() & 0xffffffff) == 0)
135         return TTI::TCC_Free;
136     }
137     break;
138   case Instruction::And:
139     if (Idx == 1 && Imm.getBitWidth() <= 64) {
140       // Any 32-bit AND operation can by implemented via nilf.
141       if (BitSize <= 32)
142         return TTI::TCC_Free;
143       // 64-bit masks supported by nilf.
144       if (isUInt<32>(~Imm.getZExtValue()))
145         return TTI::TCC_Free;
146       // 64-bit masks supported by nilh.
147       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
148         return TTI::TCC_Free;
149       // Some 64-bit AND operations can be implemented via risbg.
150       const SystemZInstrInfo *TII = ST->getInstrInfo();
151       unsigned Start, End;
152       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
153         return TTI::TCC_Free;
154     }
155     break;
156   case Instruction::Shl:
157   case Instruction::LShr:
158   case Instruction::AShr:
159     // Always return TCC_Free for the shift value of a shift instruction.
160     if (Idx == 1)
161       return TTI::TCC_Free;
162     break;
163   case Instruction::UDiv:
164   case Instruction::SDiv:
165   case Instruction::URem:
166   case Instruction::SRem:
167   case Instruction::Trunc:
168   case Instruction::ZExt:
169   case Instruction::SExt:
170   case Instruction::IntToPtr:
171   case Instruction::PtrToInt:
172   case Instruction::BitCast:
173   case Instruction::PHI:
174   case Instruction::Call:
175   case Instruction::Select:
176   case Instruction::Ret:
177   case Instruction::Load:
178     break;
179   }
180
181   return SystemZTTIImpl::getIntImmCost(Imm, Ty);
182 }
183
184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
185                                   const APInt &Imm, Type *Ty) {
186   assert(Ty->isIntegerTy());
187
188   unsigned BitSize = Ty->getPrimitiveSizeInBits();
189   // There is no cost model for constants with a bit size of 0. Return TCC_Free
190   // here, so that constant hoisting will ignore this constant.
191   if (BitSize == 0)
192     return TTI::TCC_Free;
193   // No cost model for operations on integers larger than 64 bit implemented yet.
194   if (BitSize > 64)
195     return TTI::TCC_Free;
196
197   switch (IID) {
198   default:
199     return TTI::TCC_Free;
200   case Intrinsic::sadd_with_overflow:
201   case Intrinsic::uadd_with_overflow:
202   case Intrinsic::ssub_with_overflow:
203   case Intrinsic::usub_with_overflow:
204     // These get expanded to include a normal addition/subtraction.
205     if (Idx == 1 && Imm.getBitWidth() <= 64) {
206       if (isUInt<32>(Imm.getZExtValue()))
207         return TTI::TCC_Free;
208       if (isUInt<32>(-Imm.getSExtValue()))
209         return TTI::TCC_Free;
210     }
211     break;
212   case Intrinsic::smul_with_overflow:
213   case Intrinsic::umul_with_overflow:
214     // These get expanded to include a normal multiplication.
215     if (Idx == 1 && Imm.getBitWidth() <= 64) {
216       if (isInt<32>(Imm.getSExtValue()))
217         return TTI::TCC_Free;
218     }
219     break;
220   case Intrinsic::experimental_stackmap:
221     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
222       return TTI::TCC_Free;
223     break;
224   case Intrinsic::experimental_patchpoint_void:
225   case Intrinsic::experimental_patchpoint_i64:
226     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
227       return TTI::TCC_Free;
228     break;
229   }
230   return SystemZTTIImpl::getIntImmCost(Imm, Ty);
231 }
232
233 TargetTransformInfo::PopcntSupportKind
234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
235   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
236   if (ST->hasPopulationCount() && TyWidth <= 64)
237     return TTI::PSK_FastHardware;
238   return TTI::PSK_Software;
239 }
240
241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
242                                              TTI::UnrollingPreferences &UP) {
243   // Find out if L contains a call, what the machine instruction count
244   // estimate is, and how many stores there are.
245   bool HasCall = false;
246   unsigned NumStores = 0;
247   for (auto &BB : L->blocks())
248     for (auto &I : *BB) {
249       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
250         ImmutableCallSite CS(&I);
251         if (const Function *F = CS.getCalledFunction()) {
252           if (isLoweredToCall(F))
253             HasCall = true;
254           if (F->getIntrinsicID() == Intrinsic::memcpy ||
255               F->getIntrinsicID() == Intrinsic::memset)
256             NumStores++;
257         } else { // indirect call.
258           HasCall = true;
259         }
260       }
261       if (isa<StoreInst>(&I)) {
262         Type *MemAccessTy = I.getOperand(0)->getType();
263         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
264       }
265     }
266
267   // The z13 processor will run out of store tags if too many stores
268   // are fed into it too quickly. Therefore make sure there are not
269   // too many stores in the resulting unrolled loop.
270   unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
271
272   if (HasCall) {
273     // Only allow full unrolling if loop has any calls.
274     UP.FullUnrollMaxCount = Max;
275     UP.MaxCount = 1;
276     return;
277   }
278
279   UP.MaxCount = Max;
280   if (UP.MaxCount <= 1)
281     return;
282
283   // Allow partial and runtime trip count unrolling.
284   UP.Partial = UP.Runtime = true;
285
286   UP.PartialThreshold = 75;
287   UP.DefaultUnrollRuntimeCount = 4;
288
289   // Allow expensive instructions in the pre-header of the loop.
290   UP.AllowExpensiveTripCount = true;
291
292   UP.Force = true;
293 }
294
295
296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
297                                    TargetTransformInfo::LSRCost &C2) {
298   // SystemZ specific: check instruction count (first), and don't care about
299   // ImmCost, since offsets are checked explicitly.
300   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
301                   C1.NumIVMuls, C1.NumBaseAdds,
302                   C1.ScaleCost, C1.SetupCost) <
303     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
304              C2.NumIVMuls, C2.NumBaseAdds,
305              C2.ScaleCost, C2.SetupCost);
306 }
307
308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
309   if (!Vector)
310     // Discount the stack pointer.  Also leave out %r0, since it can't
311     // be used in an address.
312     return 14;
313   if (ST->hasVector())
314     return 32;
315   return 0;
316 }
317
318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
319   if (!Vector)
320     return 64;
321   if (ST->hasVector())
322     return 128;
323   return 0;
324 }
325
326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
327   EVT VT = TLI->getValueType(DL, DataType);
328   return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
329 }
330
331 int SystemZTTIImpl::getArithmeticInstrCost(
332     unsigned Opcode, Type *Ty,
333     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
334     TTI::OperandValueProperties Opd1PropInfo,
335     TTI::OperandValueProperties Opd2PropInfo,
336     ArrayRef<const Value *> Args) {
337
338   // TODO: return a good value for BB-VECTORIZER that includes the
339   // immediate loads, which we do not want to count for the loop
340   // vectorizer, since they are hopefully hoisted out of the loop. This
341   // would require a new parameter 'InLoop', but not sure if constant
342   // args are common enough to motivate this.
343
344   unsigned ScalarBits = Ty->getScalarSizeInBits();
345
346   // Div with a constant which is a power of 2 will be converted by
347   // DAGCombiner to use shifts. With vector shift-element instructions, a
348   // vector sdiv costs about as much as a scalar one.
349   const unsigned SDivCostEstimate = 4;
350   bool SDivPow2 = false;
351   bool UDivPow2 = false;
352   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
353       Args.size() == 2) {
354     const ConstantInt *CI = nullptr;
355     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
356       if (C->getType()->isVectorTy())
357         CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
358       else
359         CI = dyn_cast<const ConstantInt>(C);
360     }
361     if (CI != nullptr &&
362         (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
363       if (Opcode == Instruction::SDiv)
364         SDivPow2 = true;
365       else
366         UDivPow2 = true;
367     }
368   }
369
370   if (Ty->isVectorTy()) {
371     assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
372     unsigned VF = Ty->getVectorNumElements();
373     unsigned NumVectors = getNumberOfParts(Ty);
374
375     // These vector operations are custom handled, but are still supported
376     // with one instruction per vector, regardless of element size.
377     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
378         Opcode == Instruction::AShr || UDivPow2) {
379       return NumVectors;
380     }
381
382     if (SDivPow2)
383       return (NumVectors * SDivCostEstimate);
384
385     // These FP operations are supported with a single vector instruction for
386     // double (base implementation assumes float generally costs 2). For
387     // FP128, the scalar cost is 1, and there is no overhead since the values
388     // are already in scalar registers.
389     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
390         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
391       switch (ScalarBits) {
392       case 32: {
393         // The vector enhancements facility 1 provides v4f32 instructions.
394         if (ST->hasVectorEnhancements1())
395           return NumVectors;
396         // Return the cost of multiple scalar invocation plus the cost of
397         // inserting and extracting the values.
398         unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
399         unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
400         // FIXME: VF 2 for these FP operations are currently just as
401         // expensive as for VF 4.
402         if (VF == 2)
403           Cost *= 2;
404         return Cost;
405       }
406       case 64:
407       case 128:
408         return NumVectors;
409       default:
410         break;
411       }
412     }
413
414     // There is no native support for FRem.
415     if (Opcode == Instruction::FRem) {
416       unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
417       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
418       if (VF == 2 && ScalarBits == 32)
419         Cost *= 2;
420       return Cost;
421     }
422   }
423   else {  // Scalar:
424     // These FP operations are supported with a dedicated instruction for
425     // float, double and fp128 (base implementation assumes float generally
426     // costs 2).
427     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
428         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
429       return 1;
430
431     // There is no native support for FRem.
432     if (Opcode == Instruction::FRem)
433       return LIBCALL_COST;
434
435     if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
436       return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
437
438     // Or requires one instruction, although it has custom handling for i64.
439     if (Opcode == Instruction::Or)
440       return 1;
441
442     if (Opcode == Instruction::Xor && ScalarBits == 1)
443       // 2 * ipm sequences ; xor ; shift ; compare
444       return 7;
445
446     if (UDivPow2)
447       return 1;
448     if (SDivPow2)
449       return SDivCostEstimate;
450
451     // An extra extension for narrow types is needed.
452     if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
453       // sext of op(s) for narrow types
454       return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));
455
456     if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
457       // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
458       return (ScalarBits < 32 ? 4 : 2);
459   }
460
461   // Fallback to the default implementation.
462   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
463                                        Opd1PropInfo, Opd2PropInfo, Args);
464 }
465
466
467 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
468                                    Type *SubTp) {
469   assert (Tp->isVectorTy());
470   assert (ST->hasVector() && "getShuffleCost() called.");
471   unsigned NumVectors = getNumberOfParts(Tp);
472
473   // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
474
475   // FP128 values are always in scalar registers, so there is no work
476   // involved with a shuffle, except for broadcast. In that case register
477   // moves are done with a single instruction per element.
478   if (Tp->getScalarType()->isFP128Ty())
479     return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
480
481   switch (Kind) {
482   case  TargetTransformInfo::SK_ExtractSubvector:
483     // ExtractSubvector Index indicates start offset.
484
485     // Extracting a subvector from first index is a noop.
486     return (Index == 0 ? 0 : NumVectors);
487
488   case TargetTransformInfo::SK_Broadcast:
489     // Loop vectorizer calls here to figure out the extra cost of
490     // broadcasting a loaded value to all elements of a vector. Since vlrep
491     // loads and replicates with a single instruction, adjust the returned
492     // value.
493     return NumVectors - 1;
494
495   default:
496
497     // SystemZ supports single instruction permutation / replication.
498     return NumVectors;
499   }
500
501   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
502 }
503
504 // Return the log2 difference of the element sizes of the two vector types.
505 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
506   unsigned Bits0 = Ty0->getScalarSizeInBits();
507   unsigned Bits1 = Ty1->getScalarSizeInBits();
508
509   if (Bits1 >  Bits0)
510     return (Log2_32(Bits1) - Log2_32(Bits0));
511
512   return (Log2_32(Bits0) - Log2_32(Bits1));
513 }
514
515 // Return the number of instructions needed to truncate SrcTy to DstTy.
516 unsigned SystemZTTIImpl::
517 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
518   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
519   assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
520           "Packing must reduce size of vector type.");
521   assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
522           "Packing should not change number of elements.");
523
524   // TODO: Since fp32 is expanded, the extract cost should always be 0.
525
526   unsigned NumParts = getNumberOfParts(SrcTy);
527   if (NumParts <= 2)
528     // Up to 2 vector registers can be truncated efficiently with pack or
529     // permute. The latter requires an immediate mask to be loaded, which
530     // typically gets hoisted out of a loop.  TODO: return a good value for
531     // BB-VECTORIZER that includes the immediate loads, which we do not want
532     // to count for the loop vectorizer.
533     return 1;
534
535   unsigned Cost = 0;
536   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
537   unsigned VF = SrcTy->getVectorNumElements();
538   for (unsigned P = 0; P < Log2Diff; ++P) {
539     if (NumParts > 1)
540       NumParts /= 2;
541     Cost += NumParts;
542   }
543
544   // Currently, a general mix of permutes and pack instructions is output by
545   // isel, which follow the cost computation above except for this case which
546   // is one instruction less:
547   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
548       DstTy->getScalarSizeInBits() == 8)
549     Cost--;
550
551   return Cost;
552 }
553
554 // Return the cost of converting a vector bitmask produced by a compare
555 // (SrcTy), to the type of the select or extend instruction (DstTy).
556 unsigned SystemZTTIImpl::
557 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
558   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
559           "Should only be called with vector types.");
560
561   unsigned PackCost = 0;
562   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
563   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
564   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
565   if (SrcScalarBits > DstScalarBits)
566     // The bitmask will be truncated.
567     PackCost = getVectorTruncCost(SrcTy, DstTy);
568   else if (SrcScalarBits < DstScalarBits) {
569     unsigned DstNumParts = getNumberOfParts(DstTy);
570     // Each vector select needs its part of the bitmask unpacked.
571     PackCost = Log2Diff * DstNumParts;
572     // Extra cost for moving part of mask before unpacking.
573     PackCost += DstNumParts - 1;
574   }
575
576   return PackCost;
577 }
578
579 // Return the type of the compared operands. This is needed to compute the
580 // cost for a Select / ZExt or SExt instruction.
581 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
582   Type *OpTy = nullptr;
583   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
584     OpTy = CI->getOperand(0)->getType();
585   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
586     if (LogicI->getNumOperands() == 2)
587       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
588         if (isa<CmpInst>(LogicI->getOperand(1)))
589           OpTy = CI0->getOperand(0)->getType();
590
591   if (OpTy != nullptr) {
592     if (VF == 1) {
593       assert (!OpTy->isVectorTy() && "Expected scalar type");
594       return OpTy;
595     }
596     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
597     // be either scalar or already vectorized with a same or lesser VF.
598     Type *ElTy = OpTy->getScalarType();
599     return VectorType::get(ElTy, VF);
600   }
601
602   return nullptr;
603 }
604
605 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
606                                      const Instruction *I) {
607   unsigned DstScalarBits = Dst->getScalarSizeInBits();
608   unsigned SrcScalarBits = Src->getScalarSizeInBits();
609
610   if (Src->isVectorTy()) {
611     assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
612     assert (Dst->isVectorTy());
613     unsigned VF = Src->getVectorNumElements();
614     unsigned NumDstVectors = getNumberOfParts(Dst);
615     unsigned NumSrcVectors = getNumberOfParts(Src);
616
617     if (Opcode == Instruction::Trunc) {
618       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
619         return 0; // Check for NOOP conversions.
620       return getVectorTruncCost(Src, Dst);
621     }
622
623     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
624       if (SrcScalarBits >= 8) {
625         // ZExt/SExt will be handled with one unpack per doubling of width.
626         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
627
628         // For types that spans multiple vector registers, some additional
629         // instructions are used to setup the unpacking.
630         unsigned NumSrcVectorOps =
631           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
632                           : (NumDstVectors / 2));
633
634         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
635       }
636       else if (SrcScalarBits == 1) {
637         // This should be extension of a compare i1 result.
638         // If we know what the widths of the compared operands, get the
639         // cost of converting it to Dst. Otherwise assume same widths.
640         unsigned Cost = 0;
641         Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
642         if (CmpOpTy != nullptr)
643           Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
644         if (Opcode == Instruction::ZExt)
645           // One 'vn' per dst vector with an immediate mask.
646           Cost += NumDstVectors;
647         return Cost;
648       }
649     }
650
651     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
652         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
653       // TODO: Fix base implementation which could simplify things a bit here
654       // (seems to miss on differentiating on scalar/vector types).
655
656       // Only 64 bit vector conversions are natively supported.
657       if (SrcScalarBits == 64 && DstScalarBits == 64)
658         return NumDstVectors;
659
660       // Return the cost of multiple scalar invocation plus the cost of
661       // inserting and extracting the values. Base implementation does not
662       // realize float->int gets scalarized.
663       unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
664                                              Src->getScalarType());
665       unsigned TotCost = VF * ScalarCost;
666       bool NeedsInserts = true, NeedsExtracts = true;
667       // FP128 registers do not get inserted or extracted.
668       if (DstScalarBits == 128 &&
669           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
670         NeedsInserts = false;
671       if (SrcScalarBits == 128 &&
672           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
673         NeedsExtracts = false;
674
675       TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
676
677       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
678       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
679         TotCost *= 2;
680
681       return TotCost;
682     }
683
684     if (Opcode == Instruction::FPTrunc) {
685       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
686         return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
687       else // double -> float
688         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
689     }
690
691     if (Opcode == Instruction::FPExt) {
692       if (SrcScalarBits == 32 && DstScalarBits == 64) {
693         // float -> double is very rare and currently unoptimized. Instead of
694         // using vldeb, which can do two at a time, all conversions are
695         // scalarized.
696         return VF * 2;
697       }
698       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
699       return VF + getScalarizationOverhead(Src, false, true);
700     }
701   }
702   else { // Scalar
703     assert (!Dst->isVectorTy());
704
705     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
706       return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
707
708     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
709         Src->isIntegerTy(1)) {
710       // This should be extension of a compare i1 result, which is done with
711       // ipm and a varying sequence of instructions.
712       unsigned Cost = 0;
713       if (Opcode == Instruction::SExt)
714         Cost = (DstScalarBits < 64 ? 3 : 4);
715       if (Opcode == Instruction::ZExt)
716         Cost = 3;
717       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
718       if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
719         // If operands of an fp-type was compared, this costs +1.
720         Cost++;
721
722       return Cost;
723     }
724   }
725
726   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
727 }
728
729 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
730                                        const Instruction *I) {
731   if (ValTy->isVectorTy()) {
732     assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
733     unsigned VF = ValTy->getVectorNumElements();
734
735     // Called with a compare instruction.
736     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
737       unsigned PredicateExtraCost = 0;
738       if (I != nullptr) {
739         // Some predicates cost one or two extra instructions.
740         switch (cast<CmpInst>(I)->getPredicate()) {
741         case CmpInst::Predicate::ICMP_NE:
742         case CmpInst::Predicate::ICMP_UGE:
743         case CmpInst::Predicate::ICMP_ULE:
744         case CmpInst::Predicate::ICMP_SGE:
745         case CmpInst::Predicate::ICMP_SLE:
746           PredicateExtraCost = 1;
747           break;
748         case CmpInst::Predicate::FCMP_ONE:
749         case CmpInst::Predicate::FCMP_ORD:
750         case CmpInst::Predicate::FCMP_UEQ:
751         case CmpInst::Predicate::FCMP_UNO:
752           PredicateExtraCost = 2;
753           break;
754         default:
755           break;
756         }
757       }
758
759       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
760       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
761       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
762       unsigned NumVecs_cmp = getNumberOfParts(ValTy);
763
764       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
765       return Cost;
766     }
767     else { // Called with a select instruction.
768       assert (Opcode == Instruction::Select);
769
770       // We can figure out the extra cost of packing / unpacking if the
771       // instruction was passed and the compare instruction is found.
772       unsigned PackCost = 0;
773       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
774       if (CmpOpTy != nullptr)
775         PackCost =
776           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
777
778       return getNumberOfParts(ValTy) /*vsel*/ + PackCost;
779     }
780   }
781   else { // Scalar
782     switch (Opcode) {
783     case Instruction::ICmp: {
784       unsigned Cost = 1;
785       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
786         Cost += 2; // extend both operands
787       return Cost;
788     }
789     case Instruction::Select:
790       if (ValTy->isFloatingPointTy())
791         return 4; // No load on condition for FP, so this costs a conditional jump.
792       return 1; // Load On Condition.
793     }
794   }
795
796   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
797 }
798
799 int SystemZTTIImpl::
800 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
801   // vlvgp will insert two grs into a vector register, so only count half the
802   // number of instructions.
803   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
804     return ((Index % 2 == 0) ? 1 : 0);
805
806   if (Opcode == Instruction::ExtractElement) {
807     int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1);
808
809     // Give a slight penalty for moving out of vector pipeline to FXU unit.
810     if (Index == 0 && Val->isIntOrIntVectorTy())
811       Cost += 1;
812
813     return Cost;
814   }
815
816   return BaseT::getVectorInstrCost(Opcode, Val, Index);
817 }
818
819 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
820                                     unsigned Alignment, unsigned AddressSpace,
821                                     const Instruction *I) {
822   assert(!Src->isVoidTy() && "Invalid type");
823
824   if (!Src->isVectorTy() && Opcode == Instruction::Load &&
825       I != nullptr && I->hasOneUse()) {
826       const Instruction *UserI = cast<Instruction>(*I->user_begin());
827       unsigned Bits = Src->getScalarSizeInBits();
828       bool FoldsLoad = false;
829       switch (UserI->getOpcode()) {
830       case Instruction::ICmp:
831       case Instruction::Add:
832       case Instruction::Sub:
833       case Instruction::Mul:
834       case Instruction::SDiv:
835       case Instruction::UDiv:
836       case Instruction::And:
837       case Instruction::Or:
838       case Instruction::Xor:
839       // This also makes sense for float operations, but disabled for now due
840       // to regressions.
841       // case Instruction::FCmp:
842       // case Instruction::FAdd:
843       // case Instruction::FSub:
844       // case Instruction::FMul:
845       // case Instruction::FDiv:
846         FoldsLoad = (Bits == 32 || Bits == 64);
847         break;
848       }
849
850       if (FoldsLoad) {
851         assert (UserI->getNumOperands() == 2 &&
852                 "Expected to only handle binops.");
853
854         // UserI can't fold two loads, so in that case return 0 cost only
855         // half of the time.
856         for (unsigned i = 0; i < 2; ++i) {
857           if (UserI->getOperand(i) == I)
858             continue;
859           if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
860             if (LI->hasOneUse())
861               return i == 0;
862           }
863         }
864
865         return 0;
866       }
867   }
868
869   unsigned NumOps = getNumberOfParts(Src);
870
871   if (Src->getScalarSizeInBits() == 128)
872     // 128 bit scalars are held in a pair of two 64 bit registers.
873     NumOps *= 2;
874
875   return  NumOps;
876 }
877
878 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
879                                                unsigned Factor,
880                                                ArrayRef<unsigned> Indices,
881                                                unsigned Alignment,
882                                                unsigned AddressSpace) {
883   assert(isa<VectorType>(VecTy) &&
884          "Expect a vector type for interleaved memory op");
885
886   unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ?
887      (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits());
888   assert (WideBits > 0 && "Could not compute size of vector");
889   int NumWideParts =
890     ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
891
892   // How many source vectors are handled to produce a vectorized operand?
893   int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
894   int NumSrcParts =
895     ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
896
897   // A Load group may have gaps.
898   unsigned NumOperands =
899     ((Opcode == Instruction::Load) ? Indices.size() : Factor);
900
901   // Each needed permute takes two vectors as input.
902   if (NumSrcParts > 1)
903     NumSrcParts--;
904   int NumPermutes = NumSrcParts * NumOperands;
905
906   // Cost of load/store operations and the permutations needed.
907   return NumWideParts + NumPermutes;
908 }